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Abstract

This paper is devoted to a Schur complement approach to the E-transformation which is the
most general scalar sequence transformation known so far for accelerating the convergence. A
new derivation of known results on Schur complements is given in the first part of the paper.
Then, Schur complements and their properties are used to obtain various interpretations of
the E-transformation. The recursive rules of the E-algorithm for its implementation are also
recovered. New results on its kernel are derived and issues on its convergence are discussed.
This approach can be extended to the vector case, thus leading to new vector sequence trans-
formations.
© 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

Iterative methods are aimed at producing a sequence converging to the solution of
the problem to be solved. However, when such a sequence converges too slowly, its
practical interest is quite limited. Thus, in this case, a sequence transformation can be
used to transform the slowly converging sequence into a new sequence converging
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faster, under some assumptions, to the same limit. The most well-known example of
such a sequence transformation is Aitken �2 process. Sequence transformations are
based on the idea of extrapolation [18].

The E-transformation is the most general scalar sequence transformation known
so far. The elements of the new sequence it produces are defined by the solution of a
system of linear equations and are expressed as ratios of determinants. These ratios
can be computed by a triangular recursive algorithm called the E-algorithm. Its rules
can be obtained either by an elimination strategy [34], or by means of Sylvester deter-
minantal identity [6], or by the bordering method [12], or by an annihilation operator
approach connected to elimination [19]. Ratios of determinants, Sylvester identity,
Schur complements, and the bordering method are, in fact, all related to Gaussian
elimination for the solution of systems of linear equations. In particular, Sylvester
determinantal formula can be obtained from Gaussian elimination [30, Chapter 2,
Section 3], or by the bordering method and Schur complements [8], or even directly
[14, Appendix 3]. Thus, it is not surprising that the rules of the E-algorithm could
be derived by using any of these tools. However, although the ratios of determinants
involved in the E-transformation were related to Schur complements in [10], the
rules of the E-algorithm have never been established employing only Schur comple-
ments. The main motivation of this paper is to derive the E-transformation and the
E-algorithm by different approaches and to give various representations that could be
extended to the vector and matrix cases [20]. New algebraic and convergence results
are also presented. They can be obtained directly without using Schur complements.

Schur complements have many applications in numerical mathematics [10,25–27,
47,48,52]. So, any new derivation concerning this topic could be of some interest.
This is, in particular, the case in the domain of sequence transformations [10]. So,
the first part of this paper will be devoted to Schur complements. Our goal is not
to obtain new results on Schur complements, but only to derive known ones by a
different procedure (that could be extended to the vector case). In the second part
of the paper, we will exhibit the tight bonds between Schur complements and the
E-transformation. Many results scattered in the literature will be recovered, related,
and interpreted in an alternative way even those which are not directly connected to
Schur complements. This Schur complement approach will also allow us to obtain
additional representations and new results for the E-transformation. Moreover, in
our derivation, we will only make use of operations that can be carried over to the
vector case, thus opening the way to new vector sequence transformations [20].

Section 2 is devoted to Schur complements and their relations with Gaussian fac-
torization and the solution of a system of linear equations. The quotient property of
Schur complements will be the subject of Section 3 where it will also be related to
Gaussian elimination. These ingredients will be used, in Section 4, to establish the
recursive rules of the E-algorithms employing only Schur complements and their
quotient property. Then, the quantities computed by the E-transformation will be
represented as Schur complements, ratios of determinants, linear combinations, and
by recurrence relations. They will also be associated with the solution of different
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systems of linear equations. We will relate some of these results to important proper-
ties of sequence transformations. A new expression, which sheds some light on the
structure of the kernel of the E-transformation, will be derived. Various necessary
and sufficient conditions for a sequence to belong to the kernel of the E-transforma-
tion will be proved. Convergence results will be stated. Examples will be provided
as illustrations of the results. Extensions of the techniques of this paper to vector
sequences and other topics will be evoked in Section 5.

2. Schur complements

We consider the following partitioned matrices

A′ =
(
A B

C D

)
, B ′ =

(
B E

D F

)
,

C′ =
(
C D

G H

)
, D′ =

(
D F

H L

)
.

Assuming that D is square and nonsingular, we define the following Schur com-
plements of D in the corresponding partitioned matrix

(A′/D) = A − BD−1C, (B ′/D) = E − BD−1F,

(C′/D) = G − HD−1C, (D′/D) = L − HD−1F.

Schur complements are related to the Gaussian factorization of a matrix. Indeed,
we have

A′ =
(
I BD−1

0 I

) (
(A′/D) 0

C D

)
,

B ′ =
(
I BD−1

0 I

)(
0 (B ′/D)

D F

)
,

C′ =
(

I 0
HD−1 I

) (
C D

(C′/D) 0

)
,

D′ =
(

I 0
HD−1 I

)(
D F

0 (D′/D)

)
.

So, if the matrices are square, we have the Schur determinantal formulae [50]

detA′ = det(A′/D) detD,

detB ′ = (−1)n det(B ′/D) detD,

detC′ = (−1)n det(C′/D) detD,

detD′ = det(D′/D) detD,

where n is the dimension of the block opposite to D on the diagonal.
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If A′ is square and nonsingular, we consider the system of linear equations(
A B

C D

) (
x

y

)
=

(
u

v

)
.

Since D is square and nonsingular, we see from the Gaussian factorization of A′
(or from the corresponding determinantal formula), that (A′/D) is nonsingular and
it follows that

x = (A′/D)−1(u − BD−1v). (1)

Once x has been obtained, y can be easily deduced but it has no interest for our
purposes.

Similar expressions hold for the systems with matrices B ′, C′ and D′.
Schur complements can be defined also for matrices partitioned into an arbitrary

number of blocks. We consider the n × m block matrix

M =




A11 · · · A1j · · · A1m
...

...
...

Ai1 · · · Aij · · · Aim

...
...

...

An1 · · · Anj · · · Anm




.

We denote by A(i,j) the (n − 1) × (m − 1) block matrix obtained by deleting the
ith row of blocks and the j th column of blocks of M, and we set

Bj =




A1j
...

Ai−1,j
Ai+1,j

...

Anj




, Ci = (Ai1, . . . , Ai,j−1, Ai,j+1, . . . , Aim).

Assuming that Aij is square and nonsingular, the Schur complement of Aij in M is
defined as

(M/Aij ) = A(i,j) − BjA
−1
ij Ci . (2)

For Schur complements, consult, for example, [29, pp. 19–23] or [56, pp. 36–39].

3. The quotient property

Let us consider the matrix

M =

A B E

C D F

G H L


 .
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The quotient property of Schur complements was established in [28] using the
Schur determinantal formula (for another proof, see [46]). We will give a proof based
on the inverse of a bordered matrix.

Property 1. If (D′/D) is nonsingular, then

(M/D′) = (A′/D) − (B ′/D)(D′/D)−1(C′/D) (3)

= ((M/D)/(D′/D)). (4)

Proof. By definition

(M/D′) = A − (BE)(D′)−1
(
C

G

)
.

Setting for simplicity S = (D′/D), we have, by the block bordering method [37],

(D′)−1 =
(
D F

H L

)−1

=
(
D−1 + D−1FS−1HD−1 −D−1FS−1

−S−1HD−1 S−1

)
,

and (3) follows easily from the expression of (M/D′).
We set

M ′ =
(
(A′/D) (B ′/D)

(C′/D) (D′/D)

)
.

So,

(M ′/(D′/D)) = (A′/D) − (B ′/D)(D′/D)−1(C′/D) = (M/D′).
But, by (2),

(M/D) =
(
A E

G L

)
−

(
B

H

)
D−1(C F)

=
(
A − BD−1C E − BD−1F

G − HD−1C L − HD−1F

)
= M ′

which proves (4). �

Remark 1. In the case where the matrices involves are square, (4) gives

det(M/D) = detM/ detD = det(M/D′) det(D′/D).

If A,E,G and L are numbers, then the four Schur complements involved in the
right hand side of (3) are also numbers and Schur determinantal identity for (M/D′)
gives

detM detD = detA′ detD′ − detB ′ detC′

which is the Sylvester identity. We also note (see [14, p. 143]) that the Schweins
determinantal identity can be obtained by applying the Sylvester identity to the
matrix
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M =




0 b1 · · · bn−1 bn
0 a1,1 · · · a1,n−1 a1,n
...

...
...

...

0 an−2,1 · · · an−2,n−1 an−2,n
1 an−1,1 · · · an−1,n−1 an−1,n

0 c1 · · · cn−1 cn




.

So, the Schweins identity can be seen as arising from Schur complements and the
quotient property. It can be extended to the case where A,E,G and L are matrices
instead of numbers. For Sylvester and Schweins identities, see [1, pp. 45ff, 107ff].

For the connections between Schur complements, Sylvester’s and other determi-
nantal identities, see [24].

Many other algebraic properties of Schur complements were given in [42].
Now, we consider the system

A B E

C D F

G H L





x

y

z


 =


u

v

w


 . (5)

Let us apply the block Gaussian elimination to this system with D as the pivot.
The first step consists in eliminating B and H

(A′/D) 0 (B ′/D)

C D F

(C′/D) 0 (D′/D)





x

y

z


 =


 u − BD−1v

v

w − HD−1v


 .

Let us notice that this system leads to(
(A′/D) (B ′/D)

(C′/D) (D′/D)

) (
x

z

)
=

(
u − BD−1v

w − HD−1v

)
. (6)

The second step of Gaussian elimination removes (B ′/D) and gives
(M/D′) 0 0

C D F

(C′/D) 0 (D′/D)





x

y

z




=

(u − BD−1v) − (B ′/D)(D′/D)−1(w − HD−1v)

v

w − HD−1v




and it follows

x = (M/D′)−1[(u − BD−1v) − (B ′/D)(D′/D)−1(w − HD−1v)]. (7)

This formula can also be obtained directly by applying (1) to the system (6). The
expressions for y and z can easily be deduced but they have no interest for our pur-
poses.
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We also have

M =

I BD−1 (B ′/D)(D′/D)−1

0 I 0
0 HD−1 I





(M/D′) 0 0

C D F

(C′/D) 0 (D′/D)


 .

4. The E-algorithm

Let (Sn) be a scalar sequence. The E-transformation consists of converting (Sn)

into a set of new sequences denoted by
(
E

(n)
k

)
. The quantities E(n)

k , for k = 1, 2, . . .
and n = 0, 1, . . . , are defined as the first component of the solution of the system
(partitioned as the system (5), and using the same denominations for the blocks)




1 g1(n) · · · gk−1(n) gk(n)

1 g1(n + 1) · · · gk−1(n + 1) gk(n + 1)
...

...
...

...

1 g1(n + k − 1) · · · gk−1(n + k − 1) gk(n + k − 1)
1 g1(n + k) · · · gk−1(n + k) gk(n + k)







E
(n)
k

γ
(k,n)
1
...

γ
(k,n)
k−1

γ
(k,n)
k




=




Sn
Sn+1
...

Sn+k−1

Sn+k


 . (8)

The (gi(n)) are known given sequences (which can depend on the sequence (Sn)),
and γ (k,n) = (

γ
(k,n)
1 , . . . , γ

(k,n)
k

)T is a vector of parameters depending on k and n.

We set E(n)
0 = Sn.

The quantities E(n)
k can also be expressed as a ratio of determinants and computed

by a recursive algorithm called the E-algorithm; see, for example, [18, pp. 55–72]
for more detailed explanations. Both will be recovered from our Schur complement
approach.

The system (8) shows that the idea behind the E-transformation is that of extrapo-
lation. According to the choice of the auxiliary sequences (gi(n)), many well-known
sequence transformations are recovered as particular cases.

Writing the system (8) for E(n)
k−1 and E

(n+1)
k−1 gives(

A B

C D

) (
E

(n)
k−1

α(k−1,n)

)
=

(
u

v

)
,

(
C D

G H

) (
E

(n+1)
k−1

β(k−1,n+1)

)
=

(
v

w

)
, (9)

where u = Sn, v = (Sn+1, . . . , Sn+k−1)
T, w = Sn+k, and where α(k−1,n) and

β(k−1,n+1) are vectors of parameters similar to γ (k,n).
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If, in the system (8) giving E
(n)
k , the right hand side is replaced by (gi(n), . . . ,

gi(n + k))T then the first component of its solution will be denoted by g
(n)
k,i for k =

1, 2, . . . and n = 0, 1, . . . Similar changes in the systems for E(n)
k−1 and E

(n+1)
k−1 lead

to g
(n)
k−1,i and g

(n+1)
k−1,i respectively. So, in these systems, u is identical to the block E

in (8), v to F, and w to L. We also see that g(n)
k,i = 0 for i � k. We set g(n)

0,i = gi(n).

As will be seen below, the g
(n)
k,i are auxiliary quantities needed in the recursive rule

of the E-algorithm.
In this section, we will make use of Schur complements and their properties for

obtaining various representations of the quantities E
(n)
k . First, the recursive rules of

the E-algorithm will be derived by applying the quotient property given in Section 3
to the definition (8) of the transformation. Then, the quantities E(n)

k will be exhibited
in different ways as Schur complements and written as a ratio of determinants. They
will also be given as a linear combination of successive terms of the sequence to be
transformed with coefficients as the solution of a system of linear equations whose
matrix could depend on the initial sequence. The kernel of the E-transformation will
be characterized from this expression. Other interpretations connected to the solution
of linear systems will also be discussed. Necessary and sufficient conditions related
to the kernel will be proved. Then, convergence results will be deduced from the
expression of E(n)

k . Examples conclude the section.
In the sequel, the quantities to be computed will always be assumed to be well

defined, and the matrices whose inverses are needed to be nonsingular. In particular,
the matrices of the systems (8) are assumed to be nonsingular for all k � 0 and
all n � 0. Thus ∀ k, n � 0, E(n)

k and g
(n)
k,i exist. We also assume that the sequences

(gi(n)), i = 1, . . . , k are linearly independent (they are said to form a fundamental
set) which means that, ∀ n,

k∑
i=1

aigi(n) = 0,

implies ai = 0 for i = 1, . . . , k. Let Hk(un) be the Casorati’s determinant

Hk(n) =

∣∣∣∣∣∣∣
g1(n) · · · gk(n)

...
...

g1(n + k − 1) · · · gk(n + k − 1)

∣∣∣∣∣∣∣ . (10)

A sufficient condition for the linear independence of the gi’s is that there exists an
index n̄ such that Hk(n̄) /= 0. In the sequel, we will assume that, ∀ k, n � 0, Hk(n) /=
0. It is a necessary condition for the matrices of the systems (8) to be nonsingular.
This condition also insures that, ∀ k, n, g

(n)
k−1,k /= 0. The meaning of these conditions

will again be discussed in Section 4.2.
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4.1. A variety of representations

We will now exhibit several representations for the quantities E(n)
k .

4.1.1. Representation 1
Let us first derive the recursive rules of the E-algorithm with the help of Schur

complements. In [34], these rules were found by elimination, while they were obtained
from Sylvester determinantal identity in [6]. Other derivations are given in [19].

Applying formula (1) (and the similar one with (C′/D)) to the systems (9) gives

(B ′/D) = (A′/D)g
(n)
k−1,k,

(D′/D) = (C′/D)g
(n+1)
k−1,k,

u − BD−1v = (A′/D)E
(n)
k−1,

w − HD−1v = (C′/D)E
(n+1)
k−1 .

Let us now exploit the quotient property and its consequences for the system (8)
which defines E(n)

k , and make use of (7). We have

(M/D′) = (A′/D)[1 − (A′/D)−1(B ′/D)(D′/D)−1(C′/D)]
= (A′/D)

[
1 − g

(n)
k−1,k

(
g
(n+1)
k−1,k

)−1
]
.

Similarly

(u − BD−1v) − (B ′/D)(D′/D)−1(w − HD−1v)

= (A′/D)E
(n)
k−1 − (B ′/D)(D′/D)−1(C′/D)E

(n+1)
k−1

= (A′/D)

[
E

(n)
k−1 − g

(n)
k−1,k

(
g
(n+1)
k−1,k

)−1
E

(n+1)
k−1

]
.

Substituting into (7) gives

E
(n)
k =

[
1 − g

(n)
k−1,k

(
g
(n+1)
k−1,k

)−1
]−1 [

E
(n)
k−1 − g

(n)
k−1,k

(
g
(n+1)
k−1,k

)−1
E

(n+1)
k−1

]
.

This formula can also be written in a more symmetrical form as

E
(n)
k =

[
1 − g

(n)
k−1,k

(
g
(n+1)
k−1,k

)−1
]−1 (

g
(n)
k−1,k

)−1
g
(n)
k−1,k

×
[
E

(n)
k−1 − g

(n)
k−1,k

(
g
(n+1)
k−1,k

)−1
E

(n+1)
k−1

]

=
[(

g
(n+1)
k−1,k

)−1 −
(
g
(n)
k−1,k

)−1
]−1

×
[(

g
(n+1)
k−1,k

)−1
E

(n+1)
k−1 −

(
g
(n)
k−1,k

)−1
E

(n)
k−1

]
.
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From the preceding relation, we also have

E
(n)
k = [(

g
(n+1)
k−1,k

)−1 − (
g
(n)
k−1,k

)−1]−1

× [(
g
(n+1)
k−1,k

)−1
E

(n)
k−1 − (

g
(n+1)
k−1,k

)−1
E

(n)
k−1

+ (
g
(n+1)
k−1,k

)−1
E

(n+1)
k−1 − (

g
(n)
k−1,k

)−1
E

(n)
k−1

]
= [

(g
(n+1)
k−1,k)

−1 − (g
(n)
k−1,k)

−1]−1

× [((
g
(n+1)
k−1,k

)−1 − (
g
(n)
k−1,k

)−1)
E

(n)
k−1 + (

g
(n+1)
k−1,k

)−1
�E

(n)
k−1

]
= E

(n)
k−1 + [

g
(n+1)
k−1,k

((
g
(n+1)
k−1,k

)−1 − (
g
(n)
k−1,k

)−1)]−1
�E

(n)
k−1

= E
(n)
k−1 + [

1 − g
(n+1)
k−1,k

(
g
(n)
k−1,k

)−1]−1
�E

(n)
k−1

= E
(n)
k−1 − g

(n)
k−1,k

(
�g

(n)
k−1,k

)−1
�E

(n)
k−1

where the forward difference operator � acts on the upper indexes.
Similar rules hold for the quantities g(n)

k,i , i = k + 1, k + 2, . . . ,

g
(n)
k,i = [

1 − g
(n)
k−1,k

(
g
(n+1)
k−1,k

)−1]−1[
g
(n)
k−1,i − g

(n)
k−1,k

(
g
(n+1)
k−1,k

)−1
g
(n+1)
k−1,i

]
= [(

g
(n+1)
k−1,k

)−1 − (
g
(n)
k−1,k

)−1]−1[(
g
(n+1)
k−1,k

)−1
g
(n+1)
k−1,i − (

g
(n)
k−1,k

)−1
g
(n)
k−1,i

]
= g

(n)
k−1,i − g

(n)
k−1,k

(
�g

(n)
k−1,k

)−1
�g

(n)
k−1,i .

These rules are exactly those of the E-algorithm as given in [6,34] (see also
[40,49]). Obviously, since we are in the scalar case, they can still be written in various
other forms. However, we restrict ourselves to manipulations that could be carried
over to the vector or the matrix case. In [43], the rules of the vector and the matrix
E-algorithm were established from Schur complements. Of course, the same meth-
odology is also valid for the scalar E-algorithm. However, the derivation given above
is simpler. A similar approach to other vector and matrix sequence transformations
is also possible as shown in [41].

4.1.2. Representation 2
The quantities E

(n)
k can be expressed as a ratio of determinants. From (8), we

immediately recover the formula

E
(n)
k =

∣∣∣∣∣∣∣∣∣

Sn g1(n) · · · gk(n)

Sn+1 g1(n + 1) · · · gk(n + 1)
...

...
...

Sn+k g1(n + k) · · · gk(n + k)

∣∣∣∣∣∣∣∣∣
/ ∣∣∣∣∣∣∣∣∣

1 g1(n) · · · gk(n)

1 g1(n + 1) · · · gk(n + 1)
...

...
...

1 g1(n + k) · · · gk(n + k)

∣∣∣∣∣∣∣∣∣
.

(11)

A quite similar determinantal formula allows us to express E
(n)
k+m in terms of

E
(n+i)
m and g

(n+i)
m,m+j for i, j = 0, . . . , k (the roles of k and m can also be interchanged)
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[13]. A formula analogous to (11) holds for the quantities g
(n)
k,i , i > k, by replacing

Sn, . . . , Sn+k in the first column by gi(n), . . . , gi(n + k).

4.1.3. Representation 3
Let us show that E(n)

k can be expressed as a Schur complement. The system (8)
can be written as


1 g1(n) · · · gk(n)

0 �g1(n) · · · �gk(n)
...

...
...

0 �g1(n + k − 1) · · · �gk(n + k − 1)







E
(n)
k

γ
(k,n)
1
...

γ
(k,n)
k


 =




Sn
�Sn
...

�Sn+k−1


 .

So, the vector γ (k,n) is solution of


�g1(n) · · · �gk(n)
...

...

�g1(n + k − 1) · · · �gk(n + k − 1)






γ
(k,n)
1
...

γ
(k,n)
k


 =




�Sn
...

�Sn+k−1


 . (12)

Thus

E
(n)
k = Sn − (g1(n), . . . , gk(n))

×



�g1(n) · · · �gk(n)
...

...

�g1(n + k − 1) · · · �gk(n + k − 1)




−1 


�Sn
...

�Sn+k−1


 . (13)

4.1.4. Representation 4
Applying the Schur determinantal formula to (13) leads to

E
(n)
k =

∣∣∣∣∣∣∣∣∣

Sn g1(n) · · · gk(n)

�Sn �g1(n) · · · �gk(n)
...

...
...

�Sn+k−1 �g1(n + k − 1) · · · �gk(n + k − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
�g1(n) · · · �gk(n)

...
...

�g1(n + k − 1) · · · �gk(n + k − 1)

∣∣∣∣∣∣∣
. (14)

This ratio of determinants is the same as (11). Formulae similar to (13) and (14)
hold for the quantities g(n)

k,i , i > k, after replacing Sn, . . . , Sn+k by gi(n), . . . , gi(n +
k), see [10].
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4.1.5. Representation 5
Let us now express E

(n)
k as a combination of terms of the sequence (Sn). This

expression will be useful in the sequel for deriving the results on the kernel of the
E-transformation (Section 4.2) and those concerning its convergence (Section 4.3).
It is not derived from the Schur complement but directly from the system (8) which
may be written

E
(n)
k = Sn+i −

k∑
j=1

γ
(k,n)
j gj (n + i), i = 0, . . . , k, (15)

where the γ
(k,n)
j are solution of the system (12).

Let a(k,n)0 , . . . , a
(k,n)
k be parameters, depending on k and n, such that a(k,n)0 a

(k,n)
k /=

0, and a
(k,n)
0 + · · · + a

(k,n)
k = 1 (which does not restrict the generality). We multiply

the first equation of (15) by a
(k,n)
0 , the second one by a

(k,n)
1 , and so on until the last

one which is multiplied by a
(k,n)
k . Adding them together gives

E
(n)
k =

k∑
i=0

a
(k,n)
i Sn+i −

k∑
i=0

a
(k,n)
i

k∑
j=1

γ
(k,n)
j gj (n + i)

=
k∑

i=0

a
(k,n)
i Sn+i −

k∑
j=1

γ
(k,n)
j

k∑
i=0

a
(k,n)
i gj (n + i).

Since, for l > k,

g
(n)
k,l = gl(n + i) −

k∑
j=1

γ
(k,n)
j gj (n + i), i = 0, . . . , k,

a similar formula holds for g(n)
k,l .

Thus, as shown in [49] in a slightly less general setting, we have the

Lemma 1. For all k and n,

E
(n)
k =

k∑
i=0

a
(k,n)
i Sn+i ,

(16)

g
(n)
k,l =

k∑
i=0

a
(k,n)
i gl(n + i), l > k,

where the coefficients a(k,n)i satisfy the system
k∑

i=0

a
(k,n)
i = 1,

(17)
k∑

i=0

a
(k,n)
i gj (n + i) = 0, j = 1, . . . , k.



C. Brezinski, M. Redivo Zaglia / Linear Algebra and its Applications 368 (2003) 279–301 291

It must be noticed that the condition Hk(n) /= 0 insures that a(k,n)0 a
(k,n)
k /= 0 in

(17). The coefficients a
(k,n)
i can also be recursively computed by the E-algorithm

[18, pp. 59–60].

4.1.6. Representation 6
Another expression by Schur complements can be obtained. It follows from

Lemma 1 that

E
(n)
k = (Sn, . . . , Sn+k)




1 · · · 1
g1(n) · · · g1(n + k)

...
...

gk(n) · · · gk(n + k)




−1 


1
0
...

0


 (18)

which shows that E(n)
k is also the Schur complement of the matrix of the system (17)

in the matrix


1 · · · 1 −1
g1(n) · · · g1(n + k) 0

...
...

...

gk(n) · · · gk(n + k) 0
Sn · · · Sn+k 0


 . (19)

Applying the Schur determinantal formula yields (14) again. Obviously, the g
(n)
k,l ’s

can also be expressed as Schur complements.
It must be noticed that the determinants of the systems (12) and (17) are the same,

and that
(
a
(k,n)
0 , . . . , a

(k,n)
k

)T is the first column of the inverse of the matrix of the
system (17).

4.1.7. Representation 7
Let us give another interpretation of the E-transformation and relate it to the pre-

vious one. We consider the system (whose solution depends on k and n)


Sn · · · Sn+k

g1(n) · · · g1(n + k)
...

...

gk(n) · · · gk(n + k)






α0
α1
...

αk


 =



α

0
...

0


 (20)

with α /= 0. Replacing each column by its difference with the previous one, we ob-
serve that this system is equivalent to


Sn �Sn · · · �Sn+k−1

g1(n) �g1(n) · · · �g1(n + k − 1)
...

...
...

gk(n) �gk(n) · · · �gk(n + k − 1)






β0
β1
...

βk


 =



α

0
...

0
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with βi = ∑k
j=i αj for i = 0, . . . , k. So, it is easy to see from (14) (or directly from

(11)) that

E
(n)
k = α∑k

i=0 αi

.

This relation generalizes the interpretation of the ε-algorithm given in [3] (see also
[5, pp. 51–52]).

We have β0 = ∑k
i=0 αi. Adding this condition to (20), we get



1 · · · 1 −1
g1(n) · · · g1(n + k) 0

...
...

...

gk(n) · · · gk(n + k) 0
Sn · · · Sn+k 0







α0
α1
...

αk

β0


 =




0
0
...

0
α


 . (21)

The matrix of this system is (19). Solving it for the unknown β0 provides the determi-
nantal expression (11). Comparing with the solution of (17) shows that αi = β0a

(k,n)
i

for i = 0, . . . , k, and it follows β0E
(n)
k = ∑k

i=0 αiSn+i = α. Since α is arbitrary, it

can be adjusted so that β0 = 1 and, thus, α = E
(n)
k . So (21) becomes

α0 + · · · + αk − 1 = 0,

α0g1(n) + · · · + αkg1(n + k) = 0,
...

α0gk(n) + · · · + αkgk(n + k) = 0,

α0Sn + · · · + αkSn+k − E
(n)
k = 0.

As this system has a nonzero solution, its determinant is zero and (11) is recovered.
This result generalizes the heuristic interpretation of the ε-algorithm given in [32]
(see also [5, pp. 52–53]).

4.1.8. Representation 8
We will now examine some of the preceding results in the light of certain prop-

erties of sequence transformations which are quite useful for a deeper understand-
ing. Let F be a function of x0, . . . , xk. It is assumed to be translative, that is, ∀ b,

F (x0 + b, . . . , xk + b) = F(x0, . . . , xk) + b. As proved in [2], a necessary and suf-
ficient condition for F to be translative is that it can be written as F(x0, . . . , xk) =
f (x0, . . . , xk)/Df (x0, . . . , xk), where Df denotes the sum of the partial derivatives
of f, and where D2f is identically zero. We also assume that F is homogeneous,
that is, ∀ a, F (ax0, . . . , axk) = aF(x0, . . . , xk). A function which is translative and
homogeneous is called quasi-linear. In this case, it holds [11] (see also [18, pp.
11–18])
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F =
k∑

i=0

xif
′
i /Df with f ′

i = �f/�xi, (22)

=
k∑

i=0

xiF
′
i with F ′

i = �F/�xi. (23)

From (11), we see that the E-transformation (as many other sequence transfor-
mations) has the form

E
(n)
k = F(Sn, . . . , Sn+k), k, n = 0, 1, . . . (24)

with F quasi-linear and depending on k and n. Indeed, it corresponds to

f (x0, . . . , xk) =

∣∣∣∣∣∣∣∣∣

x0 · · · xk
g1(n) · · · g1(n + k)

...
...

gk(n) · · · gk(n + k)

∣∣∣∣∣∣∣∣∣
.

It can easily be verified that (24) is identical to (18). Indeed, the inverse of the
matrix in (18) is the ratio of its adjunct matrix divided by its determinant. This deter-
minant is precisely Df (Sn, . . . , Sn+k). The adjunct of a matrix is the matrix whose
element (j, i) is the determinant of the submatrix obtained by deleting the ith row
and the j th column, multiplied by (−1)i+j . When this adjunct matrix is multiplied
by the vector (1, 0, . . . , 0)T, and then scalarly by the row vector (Sn, . . . , Sn+k), we
get f (Sn, . . . , Sn+k) and (24) is recovered.

It follows from (22)–(24) that F ′
i = a

(k,n)
i , i = 0, . . . , k, the solution of the sys-

tem (17). So, the coefficients a
(k,n)
i have been identified as the partial derivatives of

F and, conversely, these partial derivatives have been expressed as the solution of a
system of linear equations.

4.2. The kernel

We will now discuss the kernel of the E-transformation. By definition, it is the set
of sequences such that, ∀ n,E

(n)
k = S.

We have the following result which was, apparently, first reported in [9] but with-
out a formal proof. Of course, the proof given in [43] for the matrix case is valid in
the scalar case, but, as we will see, a simpler one could be obtained in our situation.
It is based on the Representations 2, 4, and 5 above.

Theorem 1. Let k be fixed. A necessary and sufficient condition that, ∀ n, E
(n)
k = S

is that, ∀ n,

Sn = S + γ1g1(n) + · · · + γkgk(n), (25)

where the γi are constants independent of k and n.
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Proof. By construction of the transformation, we see from (8), or (11), or (14), or
(15) that, if the sequence (Sn) satisfies (25), then, ∀ n, E

(n)
k = S.

Let us prove the reciprocal. From (8), we see that, ∀ n, E
(n)
k = Sn − γ

(k,n)
1 g1(n) −

· · · − γ
(k,n)
k gk(n). If, ∀ n, E

(n)
k = S, we will show that the coefficients γ

(k,n)
i are

independent of n.
The systems (12) for the indexes n and n + 1 have k − 1 equations in common.

Subtracting them gives

�g1(n + i)�γ
(k,n)
1 + · · · + �gk(n + i)�γ

(k,n)
k = 0, i = 1, . . . , k − 1,

where the forward difference operator � acts on n. One more equation is needed.
Writing (15) for n and i = 1, and for n + 1 and i = 0 provides

E
(n)
k = Sn+1 −

k∑
j=1

γ
(k,n)
j gj (n + 1),

E
(n+1)
k = Sn+1 −

k∑
j=1

γ
(k,n+1)
j gj (n + 1).

But, since, ∀ n, E
(n)
k = S, subtracting the first equation from the second leads to

k∑
j=1

gj (n + 1)�γ
(k,n)
j = 0,

where the operator � acts on the superscript n. So, we have obtained an homoge-
neous system of k equations in k unknowns �γ

(k,n)
i , i = 1, . . . , k. It is easy to see

that the determinant of this system is the numerator of g(n+1)
k−1,k which, by our assump-

tions, is different from zero. So it follows �γ
(k,n)
i = 0 for i = 1, . . . , k, which ends

the proof. �

We will now express this kernel in a different form. From (16) and the first equa-
tion in (17), it follows that

E
(n)
k − S =

k∑
i=0

a
(k,n)
i (Sn+i − S).

So, we have the

Theorem 2. Let k be fixed. A necessary and sufficient condition that, ∀ n, E
(n)
k = S

is that, ∀ n,

k∑
i=0

a
(k,n)
i (Sn+i − S) = 0, (26)

with the coefficients a(k,n)i satisfying (17).
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Let us comment on Theorems 1 and 2. From the theory of linear difference equa-
tions (see, for example, [33, pp. 292–294], [38, pp. 27–31], [44, pp. 351–360], [45,
pp. 1–14] or [54, pp. 265–269]), we know that (26) has a unique solution. The vector
space of its solutions has dimension k, and its general solution is a linear combination
of k linearly independent particular solutions. From (17), we see that (gi(n)) is a par-
ticular solution of (26) for i = 1, . . . , k. Since we assumed the linear independence
of the gi’s, it follows that the general solution of (26) is given by the expression (25),
and the result of Theorem 1 is recovered. The Casorati’s determinant Hk(n) defined
by (10) satisfies

a
(k,n)
k Hk(n + 1) = (−1)ka(k,n)0 Hk(n).

So, if we assume that ∃ n̄ such that Hk(n̄) /= 0, and since the (gi(n)) are solutions
of (26), then ∀ n � n̄, Hk(n) /= 0 [38, Theorem 2.1.3, p. 30]. Conversely, if ∀ n,

Hk(n) /= 0, then ∀ n, a
(k,n)
0 a

(k,n)
k /= 0. The first condition in (17) simply means that

the sum of the a
(k,n)
i ’s must be different from zero (if their sum equals a /= 0, each

coefficient can be divided by a, thus making the sum equal to 1). If the sum is zero,
then S in (26) is not uniquely defined, and, moreover, the system (17) has only the
zero solution.

Although the result of Theorem 2 is evident from (16) and (17), it seems that it
has not been noticed so far.

The reason why the coefficients γi in (25) are independent of k and n, while the
coefficients a

(k,n)
i in (26) depend on k and n, is that there are k − 1 equations in

common between the systems (12) giving the coefficients γi for the indexes n and
n + 1, and no common equation between the systems (17) for the coefficients a(k,n)i

and a
(k,n+1)
i .

Let us now relate the function F which characterizes a quasi-linear transformation
(see Section 4.1.8) to its kernel. It follows from (22) and (23) (see [2] or [11]) that
a sequence (Sn) belongs to the kernel of a quasi-linear transformation if and only
if, ∀ n,

k∑
i=0

(Sn+i − S)f ′
i (Sn − S, . . . , Sn+k − S) = 0,

or if and only if, ∀ n,

k∑
i=0

(Sn+i − S)F ′
i (Sn − S, . . . , Sn+k − S) = 0. (27)

So, the expression (26) of Theorem 2 for the kernel of the E-transformation and
its expression as (27) are identical.
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4.3. Convergence results

We consider the sequence transformation T : (Si) �−→ (Tp) where

Tp =
∞∑
i=0

αpiSi, p = 0, 1, . . .

The transformation T is called regular if, for any convergent sequence (Si), the
sequence (Tp) converges and its limit is equal to the limit of (Si). The regularity of
T is governed by the Toeplitz Theorem (see, for example, [5, pp. 23–24] or [53, pp.
24–27]).

Theorem 3. The transformation T is regular if and only if

(1) ∃M, ∀p,
∑∞

i=0
|αpi | < M,

(2) ∀ i, limp→∞ αpi = 0,

(3) limp→∞
∑∞

i=0
αpi = 1.

An important point to notice is that, if the coefficients αpi depend on some con-
straints (which can involve the sequence (Si) itself), then the regularity is only valid
under the restriction that these constraints are satisfied. In particular, it means that
the regularity could hold only for some classes of sequences (those satisfying the
constraints) and not for all convergent sequences.

From (16), we see that the E-transformation enters into this framework either
when k is fixed and n tends to infinity or the contrary. Indeed, when k is fixed, we
consider the sequence transformation defined by Tp = E

(p)
k . It corresponds to

αpi =



0, i = 0, . . . , p − 1,

a
(k,p)
i−p , i = p, . . . , p + k,

0, i > p + k.

When n is fixed, we consider the transformation given by Tp = E
(n)
p , which corre-

sponds to

αpi =



0, i = 0, . . . , n − 1,

a
(p,n)
i−n , i = n, . . . , p + n,

0, i > p + n.

So, in both cases, the Toeplitz Theorem can be applied to the E-transformation.
The third condition is always satisfied and we have

Theorem 4. Let (Sn) be a sequence converging to S.

When k is fixed, (E(n)
k ) converges to S when n goes to infinity if and only if

∃M, ∀ n,

k∑
i=0

∣∣a(k,n)i

∣∣ < M.
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When n is fixed, (E(n)
k ) converges to S when k goes to infinity if and only if

lim
k→∞ a

(k,n)
i = 0, i = 0, 1, . . . ,

∃M, ∀ k,

k∑
i=0

∣∣a(k,n)i

∣∣ < M.

We see that it is harder to obtain convergence when n is fixed and k goes to infinity
than the contrary.

As a consequence of Theorem 4, we have the

Corollary 1. Let (Sn) be a sequence converging to S and let k be fixed. We assume
that ∃ a

(k)
0 , . . . , a

(k)
k such that limn→∞ a

(k,n)
i = a

(k)
i for i = 0, . . . , k. Then (E

(n)
k )

converges to S when n tends to infinity.

Proof. Under the condition of existence of the a
(k)
i ’s, there exists M such that, ∀ n

(maybe greater than some n̄),
∑k

i=0

∣∣a(k,n)i

∣∣ < M, and the result follows from the
first statement of Theorem 4. �

Applying the Toeplitz Theorem to the recursive rule of the E-algorithm

E
(n)
k = g

(n+1)
k−1,kE

(n)
k−1 − g

(n)
k−1,kE

(n+1)
k−1

g
(n+1)
k−1,k − g

(n)
k−1,k

gives

Theorem 5. Let k be fixed. We assume that the sequence
(
E

(n)
k−1

)
converges to S

when n goes to infinity. Then (E
(n)
k ) tends to S when n tends to infinity if and only if

∃M, ∀ n,

∣∣g(n+1)
k−1,k

∣∣ + ∣∣g(n)
k−1,k

∣∣∣∣g(n+1)
k−1,k − g

(n)
k−1,k

∣∣ < M.

Obviously, the difficulty lies in finding cases where the conditions of Theorems 4
and 5, and Corollary 1 are satisfied.

Thanks to the results given at the end of Section 4.2, convergence and acceleration
conditions expressed in terms of the partial derivatives of f or F [11] can be recast
in terms of the a

(k,n)
i ’s.

Let us now give some examples which illustrate the preceding convergence re-
sults.

The Richardson extrapolation process is a particular case of the E-algorithm. It
corresponds to gi(n) = xn, where (xn) is an auxiliary sequence. It can be seen that
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g
(n)
k−1,k = xn · · · xn+k−1. So, from the Toeplitz Theorem, we have the following result

[39].

Theorem 6. We assume that (Sn) converges to S. Let (xn) be a strictly decreasing
sequence of positive terms. Then, a necessary and sufficient condition that ∀ n, the
sequence

(
E

(n)
k

)
converges to S when k goes to infinity is that ∃M < 1, such that

∀ n, xn+1/xn � M.

Under this condition, convergence also occurs for k fixed and n tending to infinity.

The Shanks transformation [51] (see also [18, pp. 78ff]) corresponds to the choice
gi(n) = �Sn+i−1 in the E-algorithm. It can be implemented by the ε-algorithm [55].
Its kernel is the set of sequences such that, ∀ n,

k∑
i=0

ai(Sn+i − S) = 0, (28)

with a0ak /= 0 and a0 + · · · + ak /= 0. The conditions (17) are satisfied since they
are, in fact, a consequence of (28). The relation (28) is similar to (26), but with
the coefficients ai independent of k and n. So, the kernel of Shanks transformation
is clearly a particular case of the kernel of the E-algorithm. The difference equation
(28) can be solved, thus leading to an explicit expression for the sequences belonging
to the kernel of Shanks transformation (see [17]).

Aitken’s �2 process is the Shanks transformation for k = 1. Since g1(n) = �Sn,

the system (17) gives

a
(1,n)
0 = �Sn+1

�2Sn
, a

(1,n)
1 = − �Sn

�2Sn

and we have

E
(n)
1 = ε

(n)
2 = Sn �Sn+1 − Sn+1 �Sn

�Sn+1 − �Sn
.

If ∃ −1 � λ < 1 such that limn→∞(Sn+1 − S)/(Sn − S) = λ, then
limn→∞ �Sn+1/�Sn = λ [31]. Thus, when n goes to infinity, a(1,n)0 converges to

a
(1)
0 = λ/(λ − 1) and a

(1,n)
1 tends to a

(1)
1 = −1/(λ − 1). Thus, the conditions of

Corollary 1 are satisfied and a well-known sufficient condition for the convergence
of Aitken �2 process is recovered.

Since many other sequence transformations are particular cases of the E-trans-
formation, the preceding convergence results apply.

5. Perspectives

An extension of the E-transformation for treating vector sequences was given in
[6]. It is based on the solution of a system of linear equations and an extension of
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Sylvester determinantal identity established in [8]. A matrix version of the trans-
formation also exists. The elimination and annihilation operator approaches can be
carried out to these systems, thus leading to the vector and matrix E-algorithm [22].
The interest of the Schur complement approach presented in this paper lies in the
fact that it can be applied to the vector case as in [41], where the RPA [7] is treated,
and in [43], which is devoted to the E-algorithm. The topological ε-algorithm and its
variant [4], the β-algorithm [35] (see also [18, pp. 225–227]), and the H -algorithm
[21], which were investigated by the extension of Sylvester identity given in [8],
could easily be covered by the Schur complement approach. It also allows us to treat
the new vector sequence transformations introduced in [20].

It was proved in [23] that ratios of determinants similar to those appearing in the
E-transformation can be recursively computed by a triangular recursive scheme and
that, reciprocally, quantities computed by such a scheme can be expressed as a ratio
of determinants. Such a theory applies, in particular, to B-splines, Bernstein polyno-
mials, orthogonal polynomials, Padé approximants, generalized divided differences,
and projection methods. Thus, following the results of this paper, these items can
also be interpreted as Schur complements, another application of the results given
above.

Sequence transformation are also related to fixed point iterations for systems of
linear and nonlinear equations [16,36], and to numerical methods for differential
equations [15]. So, Schur complement techniques could also be beneficial in these
domains.
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