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1. Introduction

In this note we study the well-posedness of the following Cauchy problem:

ρ
∂u

∂t
=

m∑
k=0

(−1)k+1 ∂
k

∂xk

(
ak
∂ku

∂xk

)
− c0|u|p−1u in S := R × (0, T ),

u= u0 in R × {0}.
(1.1)

Herep > 1, m ∈ N while the coefficientsρ = ρ(x, t), ak = ak(x, t), andc0 =
c0(x, t) are positive functions defined inS, which satisfy among others the
following growth conditions:

(P1) there existK > 0, α ∈ R such that

ρ(x, t)� 1

K
(1+ |x|)α, 1

K
� c0(x, t)�K;

(P2) for anyk = 1, . . . ,m there existMk > 0,αk ∈ R such that

ak(x, t)�Mk(1+ |x|)αk
for any(x, t) ∈ S.
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The motivation of our study comes from the recent paper [1], where the same
question was addressed for the Cauchy problem:{

∂u

∂t
= −γ ∂

4u

∂x4 + ∂2u

∂x2 + u− u3 in S,

u= u0 in R × {0}
(1.2)

(γ > 0), which is a particular case of problem (1.1) (see Section 2). In particular,
uniqueness of solutions to problem (1.2) was proved in a class of functions
satisfying the growth condition

|u(x, t)| � c1 exp
{
β1|x|4/3

}
as|x| → ∞ (t ∈ [0, T ]) (1.3)

for somec1, β1> 0.
Let us recall that, even in the linear casec0 ≡ 0, uniqueness of solutions to

problem (1.1) holds in classes of functions which “do not grow too rapidly at
infinity,” depending on the behaviour of the coefficients of the first equation as
|x| → ∞. For instance, for the general second-order parabolic Cauchy problem


∂u

∂t
=

N∑
i,j=1

aij (x, t)
∂2u

∂xixj
+

N∑
i=1

bi(x, t)
∂u

∂xi
+ c(x, t)u in R

N × (0, T ),

u= u0 in R
N × {0}

(1.4)

uniqueness holds in the class of bounded solutions if there existsM > 0 such that

|aij (x, t)| �M
(
1+ |x|2), |bi(x, t)| �M

(
1+ |x|2)1/2,

c(x, t)�M (i, j = 1, . . . ,N).

On the other hand, if

|aij (x, t)| �M, |bi(x, t)| �M, c(x, t)�M
(i, j = 1, . . . ,N)

(in particular, in the case of constant coefficients), there exists at most one solution
to problem (1.4) such that

|u(x, t)| � c2 exp
{
β2|x|2

}
as|x| → ∞ (c2, β2> 0, t ∈ [0, T ]) (1.5)

(see [2,3]; see also [4] for a related problem). As is well known, condition (1.5) is
essential for uniqueness; in fact, a celebrated counterexample proves the existence
of a nontrivial solution to the Cauchy problem{

ut =∆u in R
N × (0, T ),

u= 0 in R
N × {0},

which grows like exp{β2|x|2+ε} for someε > 0 (see [5,6]).
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Concerning parabolic equations of arbitrary order 2m (m � 1), analogous
results are given in [7] for the case of constant coefficients, respectively in [8]
for bounded coefficients (always in the linear casec0 ≡ 0; see also [9] for general
results concerning parabolic systems). In all these cases uniqueness holds in the
class of functions that do not grow faster than exp{β3|x|2m/(2m−1)} (β3 > 0);
observe that this condition reduces to the growth condition (1.5) whenm = 1,
respectively to (1.3) whenm= 2.

In light of the previous remarks, the above-mentioned uniqueness result in [1]
appears as a nontrivial extension to thesemilinearproblem (1.2) of the growth
condition (1.3), already known for the relatedlinear case. However, as we shall
see below, we can take advantage of the nonlinear term−u3 in the differential
equation to prove uniqueness in a wider class of locally integrable solutions
of problem (1.2), regardless of their behaviour as|x| → ∞. More generally,
Theorem 2.1 below gives sufficient conditions—depending on the growth of the
coefficients—for the uniqueness of locally integrable solutions to problem (1.1)
(see Definition 2.1), if the coefficientc0 satisfies assumption (P1).

The above uniqueness result (which is due to the effect of the nonlinear term
on the right-hand side of the first equation of (1.1)) is not surprising, for it partly
generalizes to the present situation previous results obtained by Brezis for second-
order (elliptic and parabolic) problems (see [10]) and by Bernis for a class of
higher-order problems with constant coefficients ([11]; see also [12,13] for some
generalizations). In this connection, let us observe that well-posedness results
analogous to those for problem (1.1) can be proved for the elliptic equation

m∑
k=0

(−1)k+1 d
k

dxk

[
ak(x)

dku

dxk

]
− c0(x)|u|p−1u= f in R (1.6)

without prescribing any growth condition at infinity of the dataf (see Theo-
rem 2.2).

2. Mathematical framework and results

Following [11] we shall work in an(H−m,Hm) framework. We denote as
usual byHk(Q), H−k(Q) the Sobolev spacesWk,2(Q),W−k,2(Q), respectively
(Q⊆ R, k �m). We set also

Hkc (R) :=
{
u ∈Hk(R)| suppu is compact

}
,

H kloc(R) :=
{
u ∈ L2

loc(R)| u|BR ∈Hk(BR) for anyR > 0
}
,

H−k
loc := {

f ∈D′(R)| f |BR ∈H−k(BR) for anyR > 0
}
,

whereBR := {x ∈ R| |x|<R} andD′ denotes the space of distributions.
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Let us recall thatf ∈H−k
loc (R) if and only if there existsg ∈ L2

loc(R) whosekth
distributional derivative is equal tof (see [11]). For anyf ∈H−k

loc (R), u ∈Hkc (R)
the following duality product is defined:

〈f,u〉−k,k := (−1)k
∫
R

g
dku

dxk
.

Concerning the coefficientsρ, ak, besides the growth conditions (P1), (P2) we
always assume that

(P3) ρ ∈ C(S̄)∩C0,1
x,t (S), ak ∈ C(S̄)∩C1,0

x,t (S) (k = 0, . . . ,m);
(P4) ∂ρ/∂t � 0, ak > 0 (k = 0, . . . ,m);
(P5) for anyk = 1, . . . ,m there existsM̄k > 0 such that∣∣∣∣∂ak(x, t)∂x

∣∣∣∣� M̄k

1+ |x|ak(x, t)

for any(x, t) ∈ S.

Let us make the following definition.

Definition 2.1. Let u0 ∈ L
2
loc(R). By a solution to problem (1.1) we mean any

functionu ∈C([0, T ];L
2
loc(R))∩ L

2((0, T );Hmloc(R))∩ L
p+1
loc (S) such that

ρ
∂u

∂t
=

m∑
k=0

(−1)k+1 ∂
k

∂xk

(
ak
∂ku

∂xk

)
− c0|u|p−1u

in D′(S) and, moreover,

u= u0 a.e. inR.

We can now state the following result.

Theorem 2.1. Let assumptions(P1)–(P5) be satisfied; let u0 ∈ L
2
loc(R). Assume

that

αk − 2k <max

{
α,−p− 1

p+ 1

}
(2.1)

for anyk = 1, . . . ,m. Then there exists exactly one solution to problem(1.1).

The proof of the above result relies on local estimates of the solution (see
[10,11]); the presence of variable coefficients and of lower-order terms requires
some nontrivial adaptation of the method (see Section 3).
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Let us observe that by the standard transformationv := exp(−λt)u (λ � 1)
problem (1.2) reads{

∂v

∂t
= −γ ∂

4v

∂x4
+ ∂2v

∂x2
− (λ− 1)v − exp(2λt)v3 in S,

v = u0 in R × {0}.
It is easily seen that Theorem 2.1 applies in this case; in particular, inequality (2.1)
is satisfied sinceα = α1 = α2 = 0. Then there exists a unique solution (in the
sense of Definition 2.1) to problem (1.2). Similarly, the well-posedness result in
[11, Theorem 9.1] follows from Theorem 2.1 in the case of one space dimension.

Concerning the elliptic equation (1.6), the following result can be proved.

Theorem 2.2. Let the following assumptions be satisfied:

(E1) there existsK > 0 such that
1

K
� c0(x)�K;

(E2) for anyk = 1, . . . ,m there existMk > 0, αk ∈ R such that

ak(x)�Mk(1+ |x|)αk
for anyx ∈ R;

(E3) ak ∈C1(R), ak > 0 (k = 0, . . . ,m);
(E4) for anyk = 1, . . . ,m there existsM̄k > 0 such that∣∣∣∣∂ak(x)∂x

∣∣∣∣� M̄k

1+ |x|ak(x)
for anyx ∈ R. Moreover, let

αk − 2k <−p− 1

p+ 1
(2.2)

for anyk = 1, . . . ,m.

Then for anyf ∈ L
(p+1)/p
loc (R) there exists exactly oneu ∈ Hmloc(R) ∩ Lp+1

loc (R)

satisfying Eq.(1.6) in D′(R).

3. A useful inequality

It is expedient for further purposes to consider the following family of test
functions

ζR(x) :=


[
R

(
1− x2m

R2m

)]s
if x ∈ BR,

0 otherwise,

(3.1)

whereR > 0,m ∈ N, ands > 2m.



C. Marchi, A. Tesei / J. Math. Anal. Appl. 269 (2002) 352–368 357

In this connection it is useful to introduce another family of functions. Let
k = 1, . . . ,m be fixed; define for anyj = 0, . . . , k − 1

ψj(x)≡ψj,k,R(x) :=


[
R

(
1− x2m

R2m

)]s−2k+2j( x
R

)2k+2j

if x ∈BR,

0 otherwise.
(3.2)

It is the purpose of this section to prove the following result.

Proposition 3.1. There existsM > 0 (only depending ons, k, andm) such that
for anyu ∈Hmloc(R) and t ∈ (0, T ) there holds

m∑
k=0

(−1)k
〈
∂k

∂xk

[
ak(·, t)d

ku

dxk

]
, uζR

〉
−k,k

� 1

2

m∑
k=0

∫
BR

ak(·, t)
(
dku

dxk

)2

ζR −M
m∑
k=1

∫
BR

ak(·, t)u2ψ0. (3.3)

Let us first prove some preliminary results concerning the functionsζR , ψj .

Lemma 3.1. For anyk � 1 there holds

dkζR(x)

dxk
=


[
R

(
1− x2m

R2m

)]s−k(
x

R

)2m−k
Pk

[
x2m

R2m

]
if x ∈BR ,

0 otherwise;
(3.4)

herePk is a polynomial of degreek − 1, whose coefficients depend only ons, k,
andm.

Proof. Let us proceed by induction. It is immediately seen that equality (3.4)
holds fork = 1 with P1(z) := −2ms. On the other hand, if equality (3.4) holds
for 1 � l � k, then it holds forl = k + 1 with

Pk+1(z) := −2m(s − k)zPk(z)+ (2m− k)(1− z)Pk(z)
+ 2m(1− z)zP ′

k(z),

as is easily checked. Then the conclusion follows.✷
It follows from equality (3.4) thatζR ∈ Ck0(R) for anyk < s (k = 1, . . . ,m).
Observe that by definitionψk � ζR in BR . Another link between the functions

ζR andψj is given by the following lemma.
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Lemma 3.2. For any j = 0, . . . , k − 1 there exists a constantκj > 0 (only
depending ons, k, andm) such that inBR there holds

1

ζR

(
dk−j ζR
dxk−j

)2

� κjψj . (3.5)

Proof. It follows from equality (3.4) that inBR

1

ζR

(
dk−j ζR
dxk−j

)2

=
[
R

(
1− x2m

R2m

)]s−2k+2j(
x

R

)4m−2k+2j

×
[
Pk−j

(
x2m

R2m

)]2

.

Since|x|/R � 1 the conclusion easily follows.✷
Lemma 3.3. For anyj = 1, . . . , k − 1:

(i) there holds

ψj
2

ψj+1
=ψj−1;

(ii) there existsλj > 0 (only depending ons, k, andm) such that

1

ψj

(
dψj

dx

)2

� λjψj−1.

Proof. (i) Due to definition (3.2) there holds

ψj (x)= x2
(

1− x2m

R2m

)2

ψj−1(x),

whence the claim follows.
(ii) It is easily checked that

1

ψj

(
dψj

dx

)2

=
[
R

(
1− x2m

R2m

)]s−2k+2j−2(
x

R

)2k+2j−2

×
[
−2m(s − 2k+ 2j)

(
x2m

R2m

)
+ 2(k+ j)

(
1− x2m

R2m

)]2

.

Then the conclusion follows.✷
Now we can prove the following

Lemma 3.4. For anyk = 1, . . . ,m, j = 0, . . . , k − 1 andε > 0 sufficiently small
there existsµj = µj(ε) > 0 (only depending onε, s, k, andm) such that
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∫
BR

ak(·, t)
(
dju

dxj

)2

ψj � ε
∫
BR

ak(·, t)
(
dj+1u

dxj+1

)2

ψj+1

+µj(ε)
∫
BR

ak(·, t)u2ψ0 (3.6)

for anyu ∈Hmloc(R) and t ∈ (0, T ).

Proof. (i) Let us first prove the following claim: For anyk = 2, . . . ,m, j =
1, . . . , k − 1 andθ > 0 there existsνj = νj (θ) > 0 (only depending onθ , s, k,
andm) such that∫

BR

ak

(
dju

dxj

)2

ψj � θ
∫
BR

ak

(
dj+1u

dxj+1

)2

ψj+1

+ νj (θ)
∫
BR

ak

(
dj−1u

dxj−1

)2

ψj−1 (3.7)

for anyu ∈Hmloc(R) andt ∈ (0, T ) (we setak ≡ ak(·, t) for brevity).
Integrating by parts gives∫
BR

ak

(
dju

dxj

)2

ψj = −
∫
BR

ak
dj+1u

dxj+1

dj−1u

dxj−1
ψj −

∫
BR

∂ak

∂x

dju

dxj

dj−1u

dxj−1
ψj

−
∫
BR

ak
dju

dxj

dj−1u

dxj−1

dψj

dx
=: I1 + I2 + I3.

By Young inequality, for anyη > 0 there holds

|I1| � η
∫
BR

ak

(
dj+1u

dxj+1

)2

ψj+1 + 1

4η

∫
BR

ak

(
dj−1u

dxj−1

)2 ψ2
j

ψj+1
,

|I2| � η

4

∫
BR

ak

(
dju

dxj

)2

ψj + 1

η

∫
BR

1

ak

(
∂ak

∂x

)2(
dj−1u

dxj−1

)2

ψj ,

|I3| � η

4

∫
BR

ak

(
dju

dxj

)2

ψj + 1

η

∫
BR

ak

(
dj−1u

dxj−1

)2 1

ψj

(
dψj

dx

)2

.

Due to Lemma 3.3 and assumption (P5), from the above inequalities we obtain
easily∫

BR

ak

(
dju

dxj

)2

ψj � 2η

(2− η)
∫
BR

ak

(
dj+1u

dxj+1

)2

ψj+1
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+ 2

η(2− η)
(

1

4
+ M̄2

k + λj
)∫
BR

ak

(
dj−1u

dxj−1

)2

ψj−1

for any η < 2, whereλj denotes the constant in Lemma 3.3(ii). Choosing
η= 2θ/(2+ θ), then defining

νj := (2+ θ)2
4θ

(
1

4
+ M̄2

k + λj
)
, (3.8)

we obtain inequality (3.7); hence the claim follows.
(ii) For k = 1, . . . ,m, j = 0 inequality (3.6) is clearly satisfied. Ifk = 2, . . . ,m

andj = 1, . . . , k − 1 we proceed by induction. Forj = 1 the statement follows
from inequality (3.7) withε = θ andµ1 := ν1. Further suppose the statement to
be true for 1� l � j − 1; then by inequality (3.7) we obtain easily

[
1− θ2νj (θ)

] ∫
BR

ak

(
dju

dxj

)2

ψj

� θ
∫
BR

ak

(
dj+1u

dxj+1

)2

ψj+1 +µj−1
(
θ2)νj (θ)

∫
BR

aku
2ψ0.

For anyε > 0 sufficiently small choosēθ = θ̄ (ε) > 0 such that̄θ/(1 − θ̄2νj (θ̄ ))

= ε (this is possible since by definition (3.8) there holdsθ2νj (θ)→ 0 asθ → 0).
Defining recursively

µj(ε) := νj (θ̄ )

1− θ̄2νj (θ̄)
µj−1

(
θ̄2)

we obtain inequality (3.6); then the conclusion follows.✷
Lemma 3.5. For anyk = 1, . . . ,m, j = 0, . . . , k − 1 andε > 0 sufficiently small
there holds∫

BR

ak(·, t)
(
dju

dxj

)2

ψj

� εk−j
∫
BR

ak(·, t)
(
dku

dxk

)2

ζR +
k−j−1∑
i=0

εiµj+i (ε)
∫
BR

ak(·, t)u2ψ0

for any u ∈ Hmloc(R) and t ∈ (0, T ) (the constantsµj being the same as in in-
equality(3.6)).

Proof. It suffices to apply inequality (3.6)k − j times. ✷
Now we can prove Proposition 3.1.
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Proof of Proposition 3.1. Sinceu ∈Hmloc(R), by assumption (P3) there holds

∂k

∂xk

(
ak
dku

dxk

)
∈H−m

loc (R) for anyk �m.

On the other hand, by Lemma 3.1 we haveuζR ∈Hmc (R). It follows that for any
k �m the equality〈

∂k

∂xk

(
ak
dku

dxk

)
, uζR

〉
−k,k

= (−1)k
∫
BR

ak
dku

dxk

dk(uζR)

dxk

is well defined. Then there holds

m∑
k=0

(−1)k
〈
∂k

∂xk

(
ak
dku

dxk

)
, uζR

〉
−k,k

=
m∑
k=0

∫
BR

ak

(
dku

dxk

)2

ζR +
m∑
k=1

k−1∑
j=0

(
k

j

)∫
BR

ak
dku

dxk

dju

dxj

dk−j ζR
dxk−j

. (3.9)

Due to Lemmas 3.2 and 3.5, by Young’s inequality we obtain for anyk =
1, . . . ,m, j = 0, . . . , k − 1 andε > 0 small enough∣∣∣∣∣

∫
BR

ak
dku

dxk

dju

dxj

dk−j ζR
dxk−j

∣∣∣∣∣� √
ε

∫
BR

ak

(
dku

dxk

)2

ζR + κj

4
√
ε

∫
BR

ak

(
dju

dxj

)2

ψj

�
√
ε

(
1+ κj

4
εk−j−1

)∫
BR

ak

(
dku

dxk

)2

ζR

+ κj

4
√
ε

k−j−1∑
i=0

εiµj+i (ε)
∫
BR

aku
2ψ0.

From the above inequality and equality (3.9) it follows that

m∑
k=0

(−1)k
〈
∂k

∂xk

(
ak
dku

dxk

)
, uζR

〉
−k,k

�
∫
BR

a0u
2ζR +

m∑
k=1

[
1− √

ε

k−1∑
j=0

(
k

j

)(
1+ κj

4

)]∫
BR

ak

(
dku

dxk

)2

ζR

− 1

4

m∑
k=1

k−1∑
j=0

k−j−1∑
i=0

(
k

j

)
κj ε

i−1/2µj+i (ε)
∫
BR

aku
2ψ0.
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Set

H0 := max
k=1,...,m

{
k−1∑
j=0

(
k

j

)(
1+ κj

4

)}
,

then chooseε = ε0< 1/4H 2
0 . Set also

M := 1

4
max

k=1,...,m

{
k−1∑
j=0

k−j−1∑
i=0

(
k

j

)
κj ε

i−1/2
0 µj+i (ε0)

}
.

Then the latter inequality implies (3.3); hence the conclusion follows.✷

4. Proof of the main results

In order to prove Theorem 2.1 the following local estimate of solutions of
problem (1.1) is important.

Proposition 4.1. Let u be any solution to problem(1.1). Then for anyR > 0,
R1 > R, ands sufficiently large there existsN > 0 (only depending onm, s, p,
T , R, R1) such that

sup
0�t�T

∫
BR

u2(x, t) dx +
m∑
k=0

∫∫
SR

ak

(
dku

dxk

)2

+
∫∫
SR

|u|p+1

�N
(

1+
∫
BR1

u2
0(x) dx

)
, (4.1)

whereSR := BR × (0, T ).

Proof. Let 0< R < R1. By Definition 2.1 we haveu ∈ L
2((0, T );Hmloc(R)) ∩

L
p+1
loc (S). Since ζR1 ∈ Cm0 (R), there also holdsuζR1 ∈ L

2((0, T );Hmc (R)) ∩
L
p+1
loc (S). Then by Definition 2.1

T∫
0

〈
ρ
∂u

∂t
+

m∑
k=0

(−1)k
∂k

∂xk

(
ak
∂ku

∂xk

)
+ c0|u|p−1u,uζR1

〉
−m,m

= 0. (4.2)

On the other hand,ρ(∂u/∂t) ∈ L
2((0, T );H−m

loc (R)) + L
(p+1)/p
loc (S). Then by

assumption (P4) we obtain

T∫
0

〈
ρ
∂u

∂t
, uζR1

〉
−m,m

=
∫∫
SR1

ρ
∂u

∂t
uζR1
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� 1

2

∫
BR1

ρ(x,T )u2(x, T )ζR1(x) dx

− 1

2

∫
BR1

ρ(x,0)u2
0(x)ζR1(x) dx. (4.3)

From equality (4.2), inequalities (3.3) and (4.3), and assumption (P1) we obtain
easily

1

2
min
SR1

ρ sup
0�t�T

∫
BR1

u2(x, t)ζR1 + 1

2

m∑
k=0

∫∫
SR1

ak

(
∂ku

∂xk

)2

ζR1

+ 1

K

∫∫
SR1

|u|p+1ζR1 � 2M
m∑
k=1

∫∫
SR1

aku
2ψ0 +

∫
BR1

ρ(x,0)u2
0(x)ζR1,

(4.4)

whereK is the constant in assumption (P1) andψ0 ≡ ψ0,k,R1. By Hölder and
Young inequalities, for anyk = 1, . . . ,m andε > 0 there holds

∫∫
SR1

aku
2ψ0 �

[∫∫
SR1

(
u2(εζR1)

2/(p+1))(p+1)/2

] 2
p+1

×
[∫∫
SR1

(
akψ0

(εζR1)
2/(p+1)

) p+1
p−1
] p−1
p+1

� 2ε

p+ 1

∫∫
SR1

|u|p+1ζR1

+ p− 1

p+ 1
ε−2/(p−1)

∫∫
SR1

a
(p+1)/(p−1)
k ψ0

(p+1)/(p−1)

ζR1
2/(p−1)

.

Observe that for anyk = 1, . . . ,m

Ik :=
∫∫
SR1

a
(p+1)/(p−1)
k ψ0

(p+1)/(p−1)

ζR1
2/(p−1)

<∞

if s > 2m(p+ 1)/(p− 1)− 1, as is easily checked (here use of assumption (P2)
is made). Set

ε = ε1 := p+ 1

8mKM
, H2 := 2 max

{
1

minSR1
ρ
,K,1

}
.
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Then from (4.4) and the above inequality we obtain

sup
0�t�T

∫
BR

u2(x, t) dx +
m∑
k=0

∫∫
SR

ak

(
∂ku

∂xk

)2

+
∫∫
SR

|u|p+1

� H2

ζR1(R)

{
2M

p− 1

p+ 1
ε
−2/(p−1)
1

m∑
k=1

Ik +Rs1 max
x∈BR1

ρ(x,0)
∫
BR1

u2
0(x) dx

}
.

(4.5)

Then by a proper definition of the constantN the conclusion follows. ✷
Now we can prove Theorem 2.1.

Proof of Theorem 2.1. Existence of solutions can be proved by a standard
procedure, due to estimate (4.1); we refer the reader to [11] for details.

Let us prove the statement concerning uniqueness. Letu andv be two solutions
to problem (1.1); then the functionw := u− v satisfies

T∫
0

〈
ρ
∂w

∂t
+

m∑
k=0

(−1)k
∂k

∂xk

(
ak
∂kw

∂xk

)

+ c0
(|u|p−1u− |v|p−1v

)
,wζR

〉
−m,m

dt = 0.

Due to assumption (P4), to inequality (3.3) and to the elementary inequality(|s|p−1s − |t|p−1t
)
(s − t)� 21−p|s − t|p+1 (s, t ∈ R, p > 1)

we obtain as in the proof of inequality (4.4)

1

2
sup

0�t�T

∫
BR

ρ(x, t)w2(x, t)ζR(x) dx + 1

2

m∑
k=0

∫∫
SR

ak

(
∂kw

∂xk

)2

ζR

+ 21−p
∫∫
SR

c0|w|p+1ζR � 2M
m∑
k=1

∫∫
SR

akw
2ψ0.

Since

sup
0�t�T

∫
BR

ρ(x, t)w2(x, t)ζR(x) dx � 1

T

∫∫
SR

ρw2ζR,

from the previous inequality and assumption (P1) we obtain
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∫∫
SR

ρw2ζR +
∫∫
SR

|w|p+1ζR �C
m∑
k=1

∫∫
SR

akw
2ψ0, (4.6)

whereC :=Mmax{2T ,K/21−p}.
Using Young and Hölder inequalities, we obtain for anyr ∈ (1,∞) the

following estimate from below the left-hand side of inequality (4.6)∫∫
SR

ρw2ζR +
∫∫
SR

|w|p+1ζR

�
[∫∫
SR

ρw2ζR

] 1
r
[∫∫
SR

|w|p+1ζR

] r−1
r

�
∫∫
SR

ρ1/r |w|βζR, (4.7)

where

β = β(r) := 1

r

[
2+ (p+ 1)(r − 1)

]
. (4.8)

Now observe that by definitions (3.1), (3.2) there holds

ψ0 = ζ 2/β
R ζ

(β−2)/β−2k/s
R

(
x

R

)2k

for any k = 1, . . . ,m. Using the previous equality and Hölder inequality with
conjugate exponentsr ′ = β/2, s′ = β/(β − 2) (which is feasible sinceβ > 2; see
(4.8)) we find for anyk = 1, . . . ,m andr ∈ (1,∞)

∫∫
SR

akw
2ψ0 �

[∫∫
SR

ρ1/r |w|βζR
] 2
β

×
[∫∫
SR

a
β/(β−2)
k ζ

1−2kβ/s(β−2)
R

ρ2/r(β−2)

(
x

R

) 2kβ
β−2
] β−2

β

. (4.9)

From inequalities (4.6), (4.7), and (4.9) we obtain

[∫∫
SR

ρ1/r |w|βζR
] β−2

β

�C
m∑
k=1

[∫∫
SR

a
β/(β−2)
k ζ

1−2kβ/s(β−2)
R

ρ2/r(β−2)

(
x

R

) 2kβ
β−2
] β−2

β

. (4.10)

Now observe that
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∫∫
SR

ρ1/r |w|βζR �
(

4m − 1

4m

)s
Rs
∫∫
SR/2

ρ1/r |w|β; (4.11)

moreover, by assumptions (P1), (P2) and the definition ofζR (see (3.1)) there
holds∫∫

SR

a
β/(β−2)
k ζ

1−2kβ/s(β−2)
R

ρ2/r(β−2)

(
x

R

) 2kβ
β−2

�
(
MkK

2/rβ)β/(β−2)
Rs−2kβ/(β−2)

∫∫
SR

(
1+ |x|)[1/(β−2)](αkβ−2α/r)

� T
(
MkK

2/rβ)β/(β−2)
Rs+1−2kβ/(β−2)

×
∫
B1

(
1+ |Rξ |)[1/(β−2)](αkβ−2α/r)

dξ

� 21+[1/(β−2)][αkβ−2α/r]+T
(
MkK

2/rβ)β/(β−2)

×Rs+1−2kβ/(β−2)+[1/(β−2)][αkβ−2α/r]+ (4.12)

for anyR > 1; here[r]+ := max{r,0} (r ∈ R). From inequalities (4.10)–(4.12) it
follows that[ ∫∫

SR/2

ρ1/r |w|β
] β−2

β

�
m∑
k=1

CkR
ηk , (4.13)

where for anyk = 1, . . . ,m

Ck = Ck(r) := 2(1/β){β−2+[αkβ−2α/r]+}C
(

4m

4m − 1

)s β−2
β

× T (β−2)/βMkK
2/rβ,

ηk = ηk(r) := −2k+ 1

β

{
β − 2+

[
αkβ − 2α

r

]
+

}
. (4.14)

Then the statement concerning uniqueness will follow, if there exists somer ∈
(1,∞) such thatηk < 0 for anyk = 1, . . . ,m. This is easily seen to be the case if
condition (2.1) is satisfied, since by definitions (4.8) and (4.14) we have

ηk(r)= 1

2+ (p+ 1)(r − 1)

{[
(p− 1)− 2k(p+ 1)

]
(r − 1)− 4k

+ [
2(αk − α)+ (p+ 1)(r − 1)αk

]
+
}
.

In fact,
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(i) if αk − α < 0, there holdsηk → −2k < 0 asr → 1+;
(ii) if αk − α � 0 andαk < 0, there holds

ηk → (p− 1)− 2k(p+ 1)

p+ 1
< 0

asr → ∞;
(iii) if both αk − α � 0 andαk � 0, there holds

ηk(r)= 1

2+ (p+ 1)(r − 1)

×
{

2(αk − 2k − α)+ (p− 1)(r − 1)

[
1+ (αk − 2k)

p+ 1

p− 1

]}
.

In this case

ηk → αk − 2k− α
asr → 1+, respectively

ηk → αk − 2k+ p− 1

p+ 1
asr → ∞.

Due to condition (2.1) the conclusion follows.✷
Let us finally prove Theorem 2.2. First we state the following result, which is

the counterpart of Proposition 4.1; the proof is omitted.

Proposition 4.2. Letu ∈Hmloc(R)∩Lp+1
loc (R) be any solution to Eq.(1.6)in D′(R).

Then for anyR > 0, R1 > R, and s sufficiently large there exists̄N > 0 (only
depending onm, s, p, R, R1) such that

m∑
k=0

∫
BR

ak

(
dku

dxk

)2

+
∫
BR

|u|p+1 � N̄
(

1+
∫
BR1

|f |(p+1)/p

)
. (4.15)

Proof of Theorem 2.2. Existence of solutions can be proved by a variational
argument using estimate (4.15). The proof is the same as in [11], thus we omit it.

Concerning uniqueness, letu and v be two solutions to Eq. (1.6); then the
functionw := u− v satisfies〈

m∑
k=0

(−1)k
dk

dxk

(
ak
dkw

dxk

)
+ c0

(|u|p−1u− |v|p−1v
)
,wζR

〉
−m,m

= 0.

As in the proof of Theorem 2.1 it follows that

1

2

m∑
k=0

∫
BR

ak

(
dkw

dxk

)2

ζR + 21−p
∫
BR

c0|w|p+1ζR �M
m∑
k=1

∫
BR

akw
2ψ0.
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Arguing as in the proof of Proposition 4.1 we obtain the following inequality,
analogous to (4.5),

m∑
k=0

∫
BR

ak

(
dkw

dxk

)2

+
∫
BR

|w|p+1 � H3

Rs

m∑
k=1

∫
BR

a
(p+1)/(p−1)
k ψ0

(p+1)/(p−1)

ζR2/(p−1)
,

whereH3> 0 is a constant not depending onR. If s > 2m(p+ 1)/(p − 1)− 1,
each integral on the right-hand side of the above inequality is finite. As in the
proof of Theorem 2.1, for anyR > 1 from the above inequality we obtain∫

BR

|w|p+1 �H4

m∑
k=1

R1+([αk]+−2k)(p+1)/(p−1),

for some constantH4 > 0 which does not depend onR. Then the conclusion
easily follows. ✷
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