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1. Introduction

In this note we study the well-posedness of the following Cauchy problem:

o*u .
Por Z( )k+1a k(aka k)_colulp‘lu inS:=Rx(0,T),
u=1up in R x {0}.
(1.1)

Here p > 1, m € N while the coefficiente = p(x, 1), ar = ar(x,t), andco =
co(x,t) are positive functions defined i, which satisfy among others the
following growth conditions:

(P1) there existk > 0, @ € R such that
plx,1) = i(1+ XD, z Scolx,n) <K
K K
(P2) foranyk=1,...,m there existMy > 0, ok € R such that
ag(x, 1) < Mi(L+ |x[)*
forany(x,t) € S.
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The motivation of our study comes from the recent paper [1], where the same
guestion was addressed for the Cauchy problem:

ou 9%u n 92u n 3 ins

—=—y—+—+4u—u ,

or  Voxd T 9x2 : (1.2)
u=ug in R x {0}

(y > 0), which is a particular case of problem (1.1) (see Section 2). In particular,
uniqueness of solutions to problem (1.2) was proved in a class of functions
satisfying the growth condition

lu(x, )] < crexp{Balx|?3} as|x| > oo (r€[0,T1) (1.3)

for somecy, B1 > 0.

Let us recall that, even in the linear cage= 0, uniqueness of solutions to
problem (1.1) holds in classes of functions which “do not grow too rapidly at
infinity,” depending on the behaviour of the coefficients of the first equation as
|x] — oo. For instance, for the general second-order parabolic Cauchy problem

ou al 9%u Y du
W S i (xut + ) bilx,)o— +clx,nu INRN x (0, 7),
at ijz—lal] “ )ax,-xj ; i )3xi cbx <O

u=up in RN x {0}
(1.4)

uniqueness holds in the class of bounded solutions if there eist< such that
1/2
jaij (e, Dl < M(L+1x1%),  1biCe, 0] < M(L+ D)2,
cx,) <M ((,j=1,...,N).
On the other hand, if
laij(x, )| < M, [Di(x, )| < M, cx,n) <M
(G,j=1,...,N)

(in particular, in the case of constant coefficients), there exists at most one solution
to problem (1.4) such that

lu(x, )] < coexp{Balx|?} as|x|—> oo (c2,f2>0,1€[0,T]) (L.5)

(see [2,3]; see also [4] for a related problem). As is well known, condition (1.5) is
essential for uniqueness; in fact, a celebrated counterexample proves the existence
of a nontrivial solution to the Cauchy problem

u;=Au inRY x (0, T),

u=0 inRN x {0},

which grows like expBo|x|%t€} for somee > 0 (see [5,6]).
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Concerning parabolic equations of arbitrary order 2n > 1), analogous
results are given in [7] for the case of constant coefficients, respectively in [8]
for bounded coefficients (always in the linear cage= 0; see also [9] for general
results concerning parabolic systems). In all these cases uniqueness holds in the
class of functions that do not grow faster than {g@gpc|2"/@"—D} (B3 > 0);
observe that this condition reduces to the growth condition (1.5) whenl,
respectively to (1.3) whem = 2.

In light of the previous remarks, the above-mentioned uniqueness result in [1]
appears as a nontrivial extension to gemilinearproblem (1.2) of the growth
condition (1.3), already known for the relatbdear case. However, as we shall
see below, we can take advantage of the nonlinear testhin the differential
equation to prove uniqueness in a wider class of locally integrable solutions
of problem (1.2), regardless of their behaviour|ag— oco. More generally,
Theorem 2.1 below gives sufficient conditions—depending on the growth of the
coefficients—for the uniqueness of locally integrable solutions to problem (1.1)
(see Definition 2.1), if the coefficienp satisfies assumption {]

The above uniqueness result (which is due to the effect of the nonlinear term
on the right-hand side of the first equation of (1.1)) is not surprising, for it partly
generalizes to the present situation previous results obtained by Brezis for second-
order (elliptic and parabolic) problems (see [10]) and by Bernis for a class of
higher-order problems with constant coefficients ([11]; see also [12,13] for some
generalizations). In this connection, let us observe that well-posedness results
analogous to those for problem (1.1) can be proved for the elliptic equation

“ d* d* .
Z(—l)kﬂﬁ [ak(x)d—);} —co@ulPlu=f inR (1.6)
k=0

without prescribing any growth condition at infinity of the data(see Theo-
rem 2.2).

2. Mathematical framework and results

Following [11] we shall work in an(H ", H™) framework. We denote as
usual byH*(Q), H*(Q) the Sobolev space&*2(Q), W—*2(Q), respectively
(0 CR, k <m). We set also

HY(R) := {u € H*(R)| suppu is compac},
HE(R) == {u e LE (R)| ulg, € H*(Bg) foranyR > 0},
Hyt:={f eD®)]| fls, € H*(Bg) foranyR > 0},

whereBg := {x € R| |x| < R} andD’ denotes the space of distributions.
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Let usrecall thaif ngé‘ (R) if and only if there existg € L%C(R) whosekth

distributional derivative is equal tp (see [11]). For any € ng(f R), u € H¥(R)
the following duality product is defined:

d*u

(o= (-0F [ ¢

R

Concerning the coefficiengs, ax, besides the growth conditions;(RP(P) we
always assume that

(Ps) 0 € C(S)NCAHS), ar e C5)NCEOS) (k=0,...,m);
(Pg) 0p/0t <0,a; >0(k=0,. ..,m);_
(Ps) foranyk=1,...,m there existdyf; > 0 such that

My
14 x|

dag(x,t)
0x

ar(x,t)

forany(x,t) € S.
Let us make the following definition.

Definition 2.1. Let ug € ]Lﬁ)c(R). By a solution to problem (1.1) we mean any

functionu € C([0, T1; L2 (R)) NL2((0, T); H . (R) N LPH(S) such that

loc loc
Y- ak oku

ou _ D NYS = B L DY S

= ;)( Vg ag ) = colul”

in D’(S) and, moreover,
u=ug a.e.ink.
We can now state the following result.

Theorem 2.1. Let assumptionéP;1)—(Ps) be satisfiedlet ug € L%C(R). Assume
that

-1

Qg —2k<max{a,—p—} (2.1)
p+1

foranyk =1, ..., m. Then there exists exactly one solution to prob(ér).

The proof of the above result relies on local estimates of the solution (see
[10,11]); the presence of variable coefficients and of lower-order terms requires
some nontrivial adaptation of the method (see Section 3).



356 C. Marchi, A. Tesei / J. Math. Anal. Appl. 269 (2002) 352—-368

Let us observe that by the standard transformatiog exp(—At)u (A > 1)
problem (1.2) reads

ov ot | 0% O — v —exp2h)v3 in S
—=—y—+-——-A—-v-— v :

ot Voxd T ax2 ,

vV =1ug in R x {0}.

Itis easily seen that Theorem 2.1 applies in this case; in particular, inequality (2.1)
is satisfied sincer = o1 = a2 = 0. Then there exists a unique solution (in the
sense of Definition 2.1) to problem (1.2). Similarly, the well-posedness result in
[11, Theorem 9.1] follows from Theorem 2.1 in the case of one space dimension.
Concerning the elliptic equation (1.6), the following result can be proved.

Theorem 2.2. Let the following assumptions be satisfied

(E1) there existk > 0 such that
1
— < <K;
X co(x)
(E2) foranyk =1,...,m there existM; > 0, o € R such that

ap(x) < Mi(14 |x[)*
foranyx e R;
(Es) ax € C*(R), ax >0 (k=0,...,m);
(E4) foranyk=1,..., m there existsf; > 0 such that
day(x) My )
ai (X
dx T+ x|k
for anyx € R. Moreover, let

~1
ap —2k < -2 = (2.2)
p+1

foranyk=1,...,m.

<

X

Then for anyf e Ll(é’c“Ll)/p(R) there exists exactly onee H.(R) N Lf;“gl(R)

satisfying Eq(1.6)in D'(R).

3. A useful inequality

It is expedient for further purposes to consider the following family of test
functions

me s .
ER(x) = [R(l_ﬁﬂ It x € Br, (3.1)
0 otherwise,

whereR > 0,m € N, ands > 2m.
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In this connection it is useful to introduce another family of functions. Let
k=1,...,m be fixed; define forany =0, ...,k — 1

K2m\TS2kA2 N\ 2H2)
Vi) =vyjrx) = |:R<1_ﬁ>i| (E) if x € Bg,

0 otherwise.
(3.2)

It is the purpose of this section to prove the following result.

Proposition 3.1. There exists¥ > 0 (only depending on, k, andm) such that
foranyu € H (R) andr € (0, T') there holds

Sk 2 e e
DD |at D= | ute
k=0 . x —k.k

1 dku\? " )
>3 /akc,r)(W) tR—MY /ak<~,r>u Yo. (3.3)
k=0 g, k=1p,
Let us first prove some preliminary results concerning the funcgang ;.
Lemma 3.1. For anyk > 1 there holds

2m s—k 2m—k 2m
d*er(x) [ [R(l—%)} <%> Pk[%} if x € Bp,
dxk

0 otherwise
(3.4)

here P, is a polynomial of degrek — 1, whose coefficients depend onlygrk,
andm.

Proof. Let us proceed by induction. It is immediately seen that equality (3.4)
holds fork = 1 with P1(z) := —2ms. On the other hand, if equality (3.4) holds
for 1 </ <k, then it holds forl = k 4 1 with
Pry1(z) := —2m(s — k)z P(2) + (2m — k)(1 — 2) P (2)
+2m(1—2)zP(2),

as is easily checked. Then the conclusion follows.
It follows from equality (3.4) thatg € C§(R) foranyk <s (k=1,...,m).

Observe that by definitiogt, < ¢g in Bg. Another link between the functions
¢r andys; is given by the following lemma.
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Lemma 3.2. For any j =0,...,k — 1 there exists a constant; > 0 (only
depending on, k, andm) such that inBg there holds

1 (d* g
Cr \ dxk=i

2
) <Ky (3.5
Proof. It follows from equality (3.4) that iBBg
i dk—jgl'e 2: R 1_x2m s—2k+2j i Am—2k+-2j
Cr\ dxk=i R2m R
x2m 2
<[ ()]

Since|x|/R < 1 the conclusion easily follows. O

Lemma3.3.Foranyj=1,...,k—1:

(i) there holds

(i) there exists.; > 0 (only depending om, k, andm) such that
1 (dy;)\?
| L <A1,
17 < dx ) 1¥i-a

Proof. (i) Due to definition (3.2) there holds
2m

2
w,-(x)zxz(l— ;—M) Wioa(x),

whence the claim follows.
(ii) It is easily checked that

1 /dy; 2 w2\ P 2kA2j=2 1\ N 2k+2j =2
ola) =l ()
Y\ dx R2m R

X 2m

2m 2
. . X
X |:—2m(s — 2k + 2J)<W> + 2k + ])<l— W)} .
Then the conclusion follows. O

Now we can prove the following

Lemma34.Foranyk=1,...,m, j=0,...,k —1ande > 0 sufficiently small
there existg.; = 11 (¢) > 0 (only depending o, s, k, andm) such that
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diu\? di+u\?
/ak( t)( ) v <6/ak(wt)<m> Vj+1
B B

R R
+Mj(6)/ak(-,t)u2tﬁo (3.6)

foranyu € H (R) andz € (0, T').
Proof. (i) Let us first prove the following claim: For any = 2,...,m, j =

1,...,k—1andé > 0 there existe; = v;(0) > 0 (only depending o#, s, k,
andm) such that

dlu di1\?
[ (d,)w,@/ () v
B

+vj(9)/ak<d = 1) V-1 3.7)

foranyu € H .(R) andr € (0, T) (we seta; = ax (-, t) for brevity).
Integrating by parts gives

A A di "ty dap diudi
U\ axi vi=- akdxj+1dxj—1wj_ Ox dxJ dxi— 11//]

Bg Bgr Bgr
/ diudi~ 1ud¢, b4l
Maxd dxi-1 gy rTRETE
Bgr

By Young inequality, for any; > 0 there holds

di+1\? 1 di=tu\? ¥?
nl< =) it — : ,
|11] n/ak(dx,u) %+1+4n/ak(dxj_1> "

Br Br

<y [ )y w2 f2 )’ (A2
<= [ a| — 4+ == . ”
A5 ) N ax o) a \ ox dxi—1) "/

Br Bgr

w<! fa dlu ZW-J/@ dl tu\® dwj
\4B dxJ J nB dxi—1 I//] '

R R

Due to Lemma 3.3 and assumptions)Pfrom the above inequalities we obtain
easily

diu dit1y
/“"<ﬁ> S e- n)/ <dxf+1) Vi

Bgr
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2 1+M —i—)» / 7w 21”'
Tie—n k U\ api1) Vit
B

R

for any n < 2, wherei; denotes the constant in Lemma 3.3(ii). Choosing
n=20/(2+0), then defining

2
vj = (2+96) (4+Mk+)») (3.8)

40
we obtain inequality (3.7); hence the claim follows.

(iFork=1,...,m, j =0inequality (3.6) is clearly satisfied.Af=2, ..., m
andj=1,...,k — 1 we proceed by induction. Fgr= 1 the statement follows
from inequality (3.7) withe = 6 and 1 := v1. Further suppose the statement to
be true for 1< 1 < j — 1; then by inequality (3.7) we obtain easily

diu\?
[1—921)]-(9)]/@(#;) ¥

Bpg

dj+lu 2 ) )
<9/4k<m) Vir1+mj-1(0 )VJ'(@)/aku vo.
Bgr

Bpg
For anye > 0 sufficiently small choosé = é(¢) > 0 such tha8 /(1 — 2v;(H))
= ¢ (this is possible since by definition (3.8) there hcﬂ&sj (#) — 0 ast — 0).
Defining recursively
Vj ©0) (9‘2)
1-62v; (0)
we obtain inequality (3.6); then the conclusion followsa

wje) =

Lemma3.b. Foranyk=1,...,m, j=0,...,k — 1 ande > 0 sufficiently small
there holds

diu
/ak< r)( )w,

Br
k—j—1

2
< f/ak( r)(d k) tr+ Z €Mj+z(€)/ak( Hu*yo

Br

for anyu € Hg (R) andt € (0, T') (the constantg; belng the same as in in-
equality(3.6)).

Proof. It suffices to apply inequality (3.&) — j times. O

Now we can prove Proposition 3.1.
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Proof of Proposition 3.1. Sinceu € H,/|.(R), by assumption (§) there holds
gk
axk

On the other hand, by Lemma 3.1 we haxng € H" (R). It follows that for any
k < m the equality

ok d*u d*u d*(utg)
I -, — (=D* i
<8xk (akdxk) M§R>_k,k =D /akdxk dxk

Br

d*u m
akﬁ € H'(R) foranyk <m.

is well defined. Then there holds

- ak d*u
RV I
,;,( 1) <8xk (ak dxk),u;R>_

k.k
m k 2 m k-1 k i k— i
d*u k dud/ud“ g
:Z /Clk(ﬁ) CR+ZZ<])\/akﬁﬁidxk_1 . (39)
k=0 Bg k=1 j=0 Bg

Due to Lemmas 3.2 and 3.5, by Young’s inequality we obtain for any
1,...,m,j=0,...,k—1ande > 0 small enough

d*u\? Kj diu\?
<«/E/ak<w) §R+4—Jgfak(ﬁ) v
Br Bpg

k 2
Kj k—j-1 du
<«/E<1+Z€ J )/ak(ﬁ) R
B

R

/ d*u diu d* g
a - 1 . " . I =
Kaxk dxd dxk—
Bgr

k 1

7]'7
kj i 2
+—= i :
NG ; € Mj+z(€)/aku Yo
Br
From the above inequality and equality (3.9) it follows that

i(_l)k<8_k( dk_u> >
9k \ W gk Uk ik

k=0
= =l kN 2
k Kj d*u
>/aou2§R+Z[1—«/EZ(.><1+ Z])]/ak(ﬁ) IR
Br k=1 =™ a
LI L e 0 A
_ZZZ Z <')Kjel_l/zﬂjﬂ'(f)/akuzl/fo.
i=1j=0 i=0 s
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=1 s
Hp:= max 1+ L)%,
0= o1 m{;(])( + 4)}

then choose = e < 1/4HZ. Set also

k—1k—j—1
M : :Zkrrllax {Z Z < )K,eo M1+z(€0)}

""" j=0 i=0

Set

Then the latter inequality implies (3.3); hence the conclusion folloves.

4. Proof of the main results

In order to prove Theorem 2.1 the following local estimate of solutions of
problem (1.1) is important.

Proposition 4.1. Let u be any solution to probleril.1). Then for anyR > O,
R1 > R, ands sufficiently large there exist§ > 0 (only depending om, s, p,
T, R, Ry) such that

" d*u 2
sup uz(x,[)dx-i-Z//ak(ﬂ) +/ |u|p+1
o<t<T k=0 X 5

Bgr

N(1+ / u%(x)dx), 4.1

BRl

WhereSR = Bp X (0, T).

Proof. Let 0 < R < R1. By Definition 2.1 we haver € L2((0, T); H".(R)) N
L2EN(S). Since¢r, € CZH(R), there also holdsi¢r, € L2((0, T); H™(R)) N

loc

L71(s). Then by Definition 2.1

loc
T
du ak ok u
/< 9t +Z(— )k8 k<ak3 k)-f—colulp u, MCR1> =0. (4.2)
0

—m,m

On the other handp (du/dr) € L2((0, T); Hg" (R)) + LZ/7(S). Then by
assumption (B we obtain

(R
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1
>§/p(x,T)u2(x,T)§Rl(X)dx

Bgry

1
-5 | o @ (4.3)

Bpr,

From equality (4.2), inequalities (3.3) and (4.3), and assumptighwE obtain
easily

1
5mm,o sup u (x DR, + = Z// < )CRl

SRy 0<t<T
Ry
K /|u|P+1§R <2MZ //aku Yo+ / p(x, 0)ud(x)¢Ry,
SRl k= 1SR1 BRl

(4.4)

where K is the constant in assumptionijPand yrg = Yo« 7,. By Hblder and
Young inequalities, forang =1, ..., m ande > 0 there holds

2
L
1)/2
// wein < [ //(uz(e )20 ) P ]
SRl SRl

P

axyo el
//<(€CR )2/(p+1)>
p+1
p+1//|”| ¢Rs

-

SRl
P=1 21 a}gp+1>/ (P=D o (P +D/(p=1)
WESY ¢, 2/ PD '

Sk

Observe thatforang=1,...,m

. // a]EP+1)/(l’—1)wo(erl)/(pfl) e
k=
A

Srq

if s >2m(p+1)/(p—1) —1, asis easily checked (here use of assumptigh (P
is made). Set

1
ezelzzi H2:=2max{

) — K, 1}.
8mKM ming,. p



364 C. Marchi, A. Tesei / J. Math. Anal. Appl. 269 (2002) 352—-368

Then from (4.4) and the above inequality we obtain

- aku\?
sup uz(x,t)dx+z //ak(ﬂ> +//|M|P+1
o<t<T k=0 g1 X Yo

Br

Hp P=1 -1 2
< 2M € I + R max p(x,0) [ uf(x)dx;.
;Rl(R) { p+l 1 kX=J:. 1x€BR1 0

BRl

(4.5)

Then by a proper definition of the constavithe conclusion follows. O
Now we can prove Theorem 2.1.

Proof of Theorem 2.1. Existence of solutions can be proved by a standard
procedure, due to estimate (4.1); we refer the reader to [11] for details.

Let us prove the statement concerning uniqueness: aetlv be two solutions
to problem (1.1); then the function := u — v satisfies

T
ow - ok *xw
- ¢ — | g —
/<p o T2V <a" axk)
0 k=0

+co(lul?tu — [P~ 1), w§R> dt =0.

—m,m

Due to assumption ¢, to inequality (3.3) and to the elementary inequality
(Is1P7ts — 11177 M) s — 1) = 25 Pls —1)P*Y (5,1 €R, p>1)

we obtain as in the proof of inequality (4.4)

su (x, Hw?(x, Her(x) d +}i// Pwy?
p px, Hw (X, CR X)ax 2k_0 dag Bxk CR
Br 7 SR

1
20<i<r
m
+20 [[wirice<an Y, [[awto
Sk k=1 ‘se
Since

OgthBR

2 1 2
sup [ p(x, Hw(x, ){r(x) dx = 7//pw LR,
Sr

from the previous inequality and assumption)(®e obtain
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// pw cR+//|w|P+1cR <cy J[ v (4.6)
k=1 g
whereC := M max2T, K /21~ 7}.

Using Young and Hdlder inequalities, we obtain for anye (1, co) the
following estimate from below the left-hand side of inequality (4.6)

([ iz [ e
SR SR
1 =1
g [// ""’Z“} U/ '""Hl“] > [[ oo @)
Sk SR SR

where

1
B=B(r) :=;[2+(p+1)(r—1)]. (4.8)
Now observe that by definitions (3.1), (3.2) there holds

2k
1//0——§R/ §R( g /S(R>

foranyk =1,...,m. Using the previous equality and Hélder inequality with
conjugate exponents= 8/2,s’ = 8/(8 — 2) (which is feasible sincg > 2; see
(4.8)) we find forank =1, ..., m andr € (1, o0)

2
B
[ o< [// Pl/’lwv%,e}
Sk S
ﬂ/(ﬂ 2) 1 2B/s(6-2) , % ﬂTjZ
[// 2/r(/3 2 (}) } . (4.9)

From inequalities (4.6), (4.7), and (4.9) we obtain

-2

B
[//Pl/rlwlﬂs“R]
Sr
-2

N AN -
CZ[// Z/r(ﬂ 5 (E) } : (4.10)

Now observe that
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1 4" -1V’ 1
//p/f|w|ﬂ;R>< - )RS//p/wwW; (4.11)
Sr

Sr/2

moreover, by assumptions ) (P;) and the definition oz (see (3.1)) there
holds

_ — — 2kp
oPI D A2B D o\ 2
02/7(B=2) R
Sr
< (M K2/7P)P/ P2 po=248/6-2) / / (14 [x ) /B2 e —20/)

SR
< T(MkKZ/rﬁ)ﬂ/(,B*Z)Rs+1—2k/3/(/3—2)

1/(B—2 —
o /(1+|R.§|)[ /(B=2))exp=2a/7) ¢
B1
< QU B=2ew=2a/rV (g, g 2/7P) P/ P2
w RSTI=2kB/(B=2+[1/(B=2)lxfp—20t/r]+ (4.12)

forany R > 1; here[r]; := max{r, 0} (r € R). From inequalities (4.10)—(4.12) it
follows that

B2

[//plﬁuﬂﬂ} ' <ick1€"k, (4.13)

SRr/2 k=1

where foranjk =1,...,m

A/B){B—2+[cxp—20/r]+} 4" Sﬂgz
Cr=C =2 Terlapmer/ vl
k= Cr(r) (4m — 1)

x T(ﬁ—z)/ﬁMsz/rﬁ’

1 2
Nk =nr(r) = —2k+—{,3—2+|:otkﬁ——ai| } (4.14)
B I

Then the statement concerning uniqueness will follow, if there exists some
(1, o0) such thaty; <0 foranyk =1, ..., m. Thisis easily seen to be the case if
condition (2.1) is satisfied, since by definitions (4.8) and (4.14) we have

1
M (r) = 2+(p+1)(r_1){[(17—1)—2k(p+1)](r—1)—4k

+ [Z(ak —a)+(p+D(r— l)ozk]Jr}.

In fact,
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() if ox —a <0, there holdg), — —2k <0 asr — 17;
(i) if ax —a >0 ando; < 0, there holds

(p—1 —-2k(p+1)
9

0
Nk P <
asr — oo;
(iii) if both ay —a > 0 anday > 0, there holds
(r) L
r) =
Tk 2+ (p+ D0 -1
+1
X {Z(ak —2k—a)+(p—D(r — 1)[1+ (otg — %)%“.
In this case

Nk — axy — 2k —«
asr — 17, respectively

p—1
>y —2k+ ——
Nk k D 1

asr — 00.

Due to condition (2.1) the conclusion followso

Let us finally prove Theorem 2.2. First we state the following result, which is
the counterpart of Proposition 4.1; the proof is omitted.
Proposition 4.2. Letu € H .(R) mLf;l(R) be any solutionto Eq1.6)in D' (R).
Then for anyR > 0, R1 > R, ands sufficiently large there existy > 0 (only
depending om1, s, p, R, R1) such that

m k 2

d*u _
Z/ak<ﬁ> +/Iul”+1<N<l+ / Ifl(”“)/”). (4.15)
k=0p, Bg Bg,

Proof of Theorem 2.2. Existence of solutions can be proved by a variational
argument using estimate (4.15). The proof is the same as in [11], thus we omit it.
Concerning uniqueness, letandv be two solutions to Eq. (1.6); then the

functionw := u — v satisfies

m
dk ( d*w
<§ e&%ag<agﬁ>+mdmw4u—ww4wﬂwf> =0.
k=0

—m,m

As in the proof of Theorem 2.1 it follows that

1 dFw\? "
52 /w(W) CR+21"’/con|”+1§R<MZ/aszwo.

k=0p By k=1p,
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Arguing as in the proof of Proposition 4.1 we obtain the following inequality,
analogous to (4.5),

- 2 m (P+1/ (=), (p+1)/(p—D)
S fa(fu) s [ toss [t
K\ dxk SR ¢r%(P=D ’
k=0 j B =g
R R K

whereHs > 0 is a constant not depending @ If s > 2m(p+1)/(p — 1) — 1,
each integral on the right-hand side of the above inequality is finite. As in the
proof of Theorem 2.1, for ang > 1 from the above inequality we obtain

m
/ wlP+1 < Hy 3 REF(d—20(+D/ (-1,

By k=1

for some constantl; > 0 which does not depend oR. Then the conclusion
easily follows. O
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