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ABSTRACT
Planetesimal accretion in close binary systems is a complex process for the gravitational perturbations

of the companion star on the planetesimal orbits. These perturbations excite high eccentricities that can
halt the accumulation process of planetesimals into planets also in those regions around the star where
stable planetary orbits would eventually be possible. However, the evolution of a planetesimal swarm is
also a†ected by collisions and gas drag. In particular, gas drag combined with the secular perturbations
of the secondary star forces a strong alignment of all the planetesimal periastra. Since periastra are also
coupled to eccentricities via the secular perturbations of the companion, the orbits of the planetesimals,
besides all being aligned, also have very close values of eccentricity. This orbital ““ phasing ÏÏ strongly
reduces the contribution of the eccentricity to the relative velocities between planetesimals, and the
impact speeds are dominated by the Keplerian shear : accretion becomes possible. This behavior is not
limited to small planetesimals but also a†ects bodies as large as 100 km in diameter. The e†ects of gas
drag are in fact enhanced by the presence of the constant forced component in the orbital eccentricity of
the planetesimals. We describe analytically the periastron alignment by using the secular equations
developed by Heppenheimer, and we test the prediction of the theory with a numerical code that inte-
grates the orbits of a swarm of planetesimals perturbed by gas drag and collisions. The gas density is
assumed to decrease outward, and the collisions are modeled as inelastic. Our computations are focused
on the a Centauri system, which is a good candidate for terrestrial planets as we will show. The impact
velocities between planetesimals of di†erent sizes are computed at progressively increasing distances from
the primary star and are compared with estimates for the maximum velocity for accretion. According to
our simulations in the a Centauri system, the formation of a planet within 2 AU of the primary star is
possible because of the orbital phasing forced by gas drag.
Subject headings : binaries : close È celestial mechanics, stellar dynamics È planetary systems È

planets and satellites : general È solar system: formation È stars : formation
On-line materials : color Ðgures

1. INTRODUCTION

The formation of planets by accretion around a star is a
complex process believed to occur mainly through the fol-
lowing steps : (1) a rotating protostellar disk of gas and dust
forms around the star ; (2) the dust in the disk accumulates
into planetesimals by nongravitational sticking processes ;
(3) planetesimals collide and gravitationally accrete into
larger bodies ; and (4) terrestrial planets and cores of giant
planets are formed.

Accretion disks have been detected around most T Tauri
stars, and recently they have also been directly observed
with the Hubble Space Telescope (McCaughrean & OÏdell
1996). The presence of these disks has been interpreted as
evidence of the Ðrst step toward the formation of planetary
systems similar to our own. The detection of numerous
extrasolar planets and the coexistence around the same star
of an extrasolar planet and a circumstellar disk (Dominik et
al. 1998 ; Trilling & Brown 1998 ; Trilling, Brown, & Rivkin
2000) strongly suggest that indeed these disks evolve fre-
quently into planetary systems.

Until recently, it was believed that only single solar-type
stars might harbor planetary systems. However, since 1997
three multiple systems with planets have been detected : 16
Cyg B, 55 o Cnc, and q Boo. This important circumstance
conÐrms that planetary formation is not limited to single

stars but can also occur in the more frequent multiple-star
systems. That the accretion process occurs in a similar way
in single and in binary stars is strongly supported by the
presence of circumstellar disks around binaries. Obser-
vational evidences such as near-infrared excess emission,
spectral veiling, Balmer and forbidden emission lines, and
polarization (see Mathieu 1994 ; Mathieu et al. 2000) indi-
rectly suggest the existence of disk material around each
individual component of the binary system (circumstellar
disk) or around the entire binary star system (circumbinary
disk). Direct observations of circumstellar disks have been
obtained by Akeson, Koerner, & Jensen (1998) who imaged
at high resolution a young binary T Tauri star and detected
a small disk around one of the stars smaller than the separa-
tion between the two binary components. Rodriguez et al.
(1998) imaged two clearly separated circumstellar disks
associated with the two components of a binary system in
L1551. Their observations suggest circumstellar disks
extending for about 10 AU from the star and with masses of
0.06 and 0.03 respectively. In spite of the fact thatM

_
,

circumstellar disks are tidally truncated at 0.2È0.5 times the
binary separation, as also conÐrmed by the reduction in the
millimeter Ñux of dust emission, it is expected that in
general they still have masses comparable to the minimum
solar mass model for the solar system (0.01È0.03 ThisM

_
).
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implies that planetary formation in binary systems may be
common and may proceed as in our solar system: forma-
tion of planetesimals and Ðnal accretion of these planetesi-
mals into planets.

One should make a distinction between accretion around
a single star and accretion in a binary system. In binary
systems the gravitational perturbations of the companion
star can interfere, and they may inhibit the planetesimal
accumulation process around the other star. While 16 Cyg
B and 55 o Cnc are rather loose systems, where the distance
between the two components is more than 1000 AU, most
of the binary systems have separations between 10 and 100
AU. In these cases, the companion may have played an
important role either by preventing the formation of planets
by increasing the relative velocities among planetesimals or
by destabilizing the possible planetary system.

Holman & Wiegert (1999) have investigated the stability
of planetary orbits in eccentric binary systems and deter-
mined regions of the phase space where planets can persist
for long timescales. We study within these stability regions
whether or not planetesimal accretion can lead to the for-
mation of planets. There are competing mechanisms that
inhibit or favor the formation of planets from a swarm of
planetesimals. On the one hand, the strong gravitational
perturbations of the companion can increase the relative
velocities among planetesimals and collisions might result
in disruption rather than accretion. For instance, Whitmire
et al. (1998), using a model without collisions and drag
forces, found relative velocities among planetesimals inhi-
biting accretion in many cases also in the stability zones of
Holman & Wiegert. On the other hand, several dissipative
mechanisms, which include gas drag, viscous stirring, and
dynamical friction, can counterbalance the gravitational
e†ects of the secondary star and allow planetesimal accu-
mulation. We will show that gas drag, in particular, plays
an important role in reducing the impact velocities. It does
not only damp the planetesimalsÏ eccentricities, but it also
forces a strong alignment of the planetesimalsÏ periastra.
This alignment signiÐcantly reduces the impact velocities,
favoring the accretion process.

To investigate the planetesimal accretion process, we
adopt in this paper a numerical model that includes both
the gas drag force and inelastic collisions. The advantage of
including collisions is that we can roughly simulate their
eventual damping e†ects on the relative velocities and we
can also derive the statistical distribution of the impact
velocities. This distribution depends on the planetesimalsÏ
orbital elements, which are signiÐcantly inÑuenced by the
combination of the gravitational perturbation of the com-
panion star and by the dissipative processes. Great rele-
vance resides in the combination of the forced secular
perturbations by the companion and the gas drag that
leads, as mentioned above, to a strong alignment of the
planetesimalsÏ periastra. This phenomenon, already studied
by Marzari et al. (1997) for planetesimals in a solar nebula
where a proto-Jupiter formed on a short timescale, induces
a decrease of the relative velocities as compared with a
swarm with no alignment. This is particularly relevant for
the accretion process of small planetesimals, where impact
velocities of few hundred meters per second can lead to
disruption instead of accumulation.

We applied our model to the a Centauri system. For a
long time, this system has been suspected to harbor a plan-
etary system, and it also presents a good test case for planet-

ary accretion in the terrestrial region. The separation
between the stars is about 24 AU, and the accretion process
below 2 AU around the primary star must be put under
scrutiny because of the closeness of the companion star. The
critical semimajor axis within which stable planetary orbits
are possible is within D2.7 AU from the primary star.
However, planetary accretion inside the critical semimajor
axis might have been halted by the high eccentricity of the
orbits. We assume in our computations that the circumstel-
lar disk is coplanar with the binary orbital plane. This
assumption is natural in cloud collapse models ; however,
little is still known from an observational point of view
about the alignment of the circumstellar disks and the
binary orbital plane. We assume here that coplanarity is the
most probable geometrical conÐguration.

In ° 2 we describe in detail the numerical model we
employed in our computations of dynamical and collisional
planetesimal evolution. In ° 3 we interpret analytically the
periastron alignment of planetesimal orbits and we present
numerical results conÐrming the analytical predictions. In °
4 we show that collisions do not signiÐcantly alter the align-
ment even under the hypothesis of a dense planetesimal disk
and, then, of a high collision rate. Finally, in ° 4.3 we give
the distribution of the impact velocities showing how they
are signiÐcantly damped by the periastron alignment : acc-
retion is favored rather than fragmentation. Section 5 is
devoted to a discussion of the results and conclusions.

2. THE NUMERICAL MODEL

In our model, the star a Centauri B moves on a Ðxed
elliptical orbit around the primary component A with a
semimajor axis of 23.4 AU and an eccentricity of 0.52. The
masses of components A and B are, respectively, 1.1 and 0.9

The planetesimals move solely around component AM
_

.
on planar orbits. Besides the gravitational forces exerted by
the binaries, the planetesimals may be subjected to gas drag
forces. In this case, we assume a gas disk around the
primary A, coplanar with the planetesimal disk. In addition,
inelastic collisions between planetesimals can be taken into
account. Gravitational interactions among the planetesi-
mals are not considered.

The main purpose of our model is to investigate the
e†ects of gas drag and collisions on the velocity distribution
of planetesimals. Both e†ects can be studied separately or
combined.

2.1. Gas Drag
A gas disk around a star exerts a drag force on the

motion of a small body orbiting around the star. The reason
is that, because of gas pressure, the velocity of the gas at a
given distance from the star is not equal to the Kepler
velocity of a body revolving the star at the same distance
(Adachi, Hayashi, & Nakazawa 1976). Hence, a planetesi-
mal revolving around a Centauri A and embedded in a gas
disk is accelerated because of the gravitational forces of the
binaries and, in addition, because of the gas drag force. The
latter acceleration can be modeled by (e.g., Marzari et al.
1997)

r� \ [Kvrel ¿rel , (1)

where is the velocity of the planetesimal relative to the¿relgas and its modulus.vrel
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The drag parameter K (Kary, Lissauer, & Greenzweig
1993) is given by

K \ 3o
g
C

d
8opl s

, (2)

with s the radius of the planetesimal, its mass density,opl o
gthe gas density of the nebula, and a dimensionless dragC

dcoefficient (^0.4 for spherical bodies). K is turned into a
nondimensional numerical quantity when multiplied by 1
AU.

We assumed that the variation of the gas density follows
in the radial direction a r~5@2 law. Which values should we
take for the gas density and the mass density of the plan-
etesimals? Since there is no reliable observational data
available, we adopted in our simulations the same values as
for the early solar system, namely, a nebula density ofo

g5.6^ 10~9 g cm~3 at 1 AU and a mass density for the
planetesimals of g cm~3. Using these values and, foropl\ 2
instance, a radius of s \ 10 km, the drag parameter K is
^1.3] 10~2. We performed simulations with di†erent
values for the planetesimal size ranging from 5 to 100 km (in
diameter). This means that we varied the drag parameter K
over an order of magnitude and investigated its e†ect on the
resulting planetesimal velocity distribution. In case our
adopted values for gas density and mass density are slightly
wrong, our results are eventually valid for slightly di†erent
planetesimal diameters.

2.2. Collisions
For the collisional computations, inÑated planetesimals

are used in order to obtain a reasonable number of colli-
sions per revolution. In a simulation, the dynamical evolu-
tion of typically 5000 planetesimals was followed. The
planetesimals are usually distributed between 0.8 and 3.0
AU. The inÑated diameter is the principal parameter that
determines the optical depth of the planetesimal disk and
then the collisional frequency. The choice of a suitable value
of the inÑated diameter or, equivalently, of impact rate is
problematic since we have no clues about the possible
physical parameters of the disk that might have surrounded
the primary star in a Centauri. A possible strategy is to
adjust the surface density of planetesimals in the a Centauri
disk to that of the standard model for the solar nebula
(Wetherill & Stuart 1993). Unfortunately, this does not
mean that we can adopt the same optical depth as that
computed for the solar nebula. The dynamics of a disk in a
binary system is in fact complicated by the secular pertur-
bations of the companion star that strongly a†ect the dis-
tribution of the planetesimal orbital elements. If, for
example, we apply the simple relation between the mean
eccentricity and inclination of a planetesimal swarm
SiT ^ SeT/2 derived by Stewart & Wetherill (1988) for the
solar nebula, we immediately see that the a Centauri disk
would have a higher vertical extension compared with the
solar nebula because of the larger mean eccentricity forced
by the secular perturbations of the companion. The relation
between SeT and SiT might, however, not hold for a disk in
a binary system where the secular perturbations have a
dominant role. Our simulations are bidimensional (three-
dimensional simulations exceed the present CPU
capabilities), and we cannot determine how the secular per-
turbations, once coupled to collisions and gas drag, which
tends to damp the inclination as well (Adachi, Hayashi, &

Nakazawa 1976), a†ect the average inclination of the plan-
etesimal swarm. Unpredictable as well are the e†ects of the
clustering in e and that, on average, increases signiÐcantlyu8
the collision rate by reducing the available phase space for
the planetesimal orbit (DellÏOro et al. 1998). In conclusion,
even if the superÐcial density for the a Centauri disk and the
solar nebula were the same, the relative optical depth may
have been signiÐcantly di†erent : the optical depth is not a
suitable parameter to tune our simulations. We prefer to
adopt the impact rate as the parameter that characterizes
the collisional evolution of the planetesimal disk and that,
therefore, determines the inÑated diameter to be used in the
model. We considered two di†erent collisional frequencies
as representative of the planetesimal disk in a Centauri : (1)
one collision every D103 yr, corresponding approximately
to the impact rate of 5 km diameter planetesimals in the
solar nebula ; this choice requires an inÑated diameter of
500,000 km; and (2) one collision every D104 yr, corre-
sponding approximately to the impact rate of 50 km diam-
eter planetesimals in the solar nebula ; this rate has been
obtained by assuming an inÑated diameter of 125,000 km.
This same rate was used for 100 km planetesimals. It over-
estimates the collision rate among equal sized bodies of 100
km in diameter, but we may account in this way for the
more frequent collisions of the large bodies with smaller
ones, assuming that their e†ects are cumulative.

The collisional frequency in the simulations is computed
as an average over all the radial extent of the swarm. When
gas drag is included in the simulations we will see that an
equilibrium state is reached, at least within 2 AU, where we
are interested in showing that accretion is possible. In this
case the collisional frequency is computed at the equi-
librium.

The algorithm to compute the outcome of collisions con-
sists of two major steps, namely, (1) Ðnd two planetesimals
that have a mutual distance less than the critical distance
for a collision (misdistance), which is equal to the inÑated
diameter, and (2) compute the outcome of an inelastic colli-
sion between the two bodies.

The algorithm to Ðnd close planetesimals can be very
time consuming if all mutual distances between planetesi-
mals are computed and compared with the misdistance d

m
.

As we will show below, the computation of all distances
among the planetesimals can be avoided. We applied a so-
called systolic algorithm to Ðnd nearby planetesimals : we
assume n planetesimals and we assign a number to each
planetesimal, numbers running from 1 to n. The planetesi-
mals are sorted in ascending order with respect to the x-
coordinates of their respective position vectors r. Then, the
distances between the Ðrst and adjacent planetesimals are
computed and tested for a possible collision. The test on
adjacent planetesimals can be terminated as soon as the
di†erence between the x-coordinate of an adjacent plan-
etesimal and the Ðrst planetesimal is larger than the misdi-
stance. It is clear that only a comparatively small number of
distance computations is necessary. Then, the second plan-
etesimal is tested for possible collisions with adjacent plan-
etesimals, and so on.

In case the distance between planetesimals i and j is less
than the misdistance, an inelastic collision between the two
bodies is computed in the following way. Two virtual bodies
i@ and j@ are introduced. Body i@ is situated on a line connect-
ing bodies i and j at a distance d from body j, where d is the
real, not the inÑated diameter of body j. All bodies are
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assumed to have the same diameter. Hence, bodies i@ and j
touch each other. Body i@ has the same velocity as body i
but corrected for the Kepler shear due to the di†erence
between the radial distances of i and j. The outcome of an
inelastic collision between bodies i@ and j is computed, and a
new velocity vector for body j is obtained. A corresponding
computation for bodies i and j@ yields the new velocity
vector for body i.

For the inelastic collision computation, we follow the
algorithm of Hertzsch et al. (1997). The relative velocities of
two bodies are related in the normal and tangential direc-
tions after and before the collision with the help of the
reconstitution coefficients andv

N
v
T

:

v
N
@ \ [v

N
v
N

(3)

v
T
@ \ [v

T
v
T

. (4)

We used a value of 0.3 for and kept since therev
N

v
T

\ 1
is up to now no sufficient experimental evidence for a
dependence of on andv

T
v
N

v
T
.

2.3. Numerical Integrator
Two aspects determined the choice of the numerical inte-

grator. The planetesimals can be expected to be on almost
circular orbits. Otherwise, planetesimals are rapidly ejected
out of the system by one of the binary stars. Hence, an
integrator with a Ðxed step size and a low order scheme is
suitable. The collision computations suggest an integrator
that can easily handle instantaneous velocity changes at a
given time due to collisions. Therefore, numericalt

cschemes that need data at steps preceding to advance onet
cstep would not be suitable. We, therefore, decided to use a

simple fourth-order Runge-Kutta integrator with Ðxed step
size.

2.4. Starting Values for the Planetesimals
Numerical integrations of the equations of motion were

carried out in Cartesian coordinates. The component a
Centauri A is located at the origin of the coordinate system.
The longitude of periastron of component B is set equal to
zero. All starting values of the planetesimals were uniformly
distributed and chosen at random. The starting semimajor
axes range from 0.8 to 3.0 AU, and inclinations were always
set equal to zero, while the remaining angle variables were
chosen in the interval (0.¡, 360.¡). For the initial eccentric-
ities we considered two di†erent ranges : high values almost
comparable to the forced eccentricity (^0.05 at 1 AU)
between 0. and 0.03, and low values between 0. and 0.001.
We do not have any indication of the formation process of
planetesimals in a binary star system and we do not know
how the secular perturbations of the companion, active per-
manently during the evolution of the circumstellar disk,
a†ected the initial orbital elements of the planetesimals.
Low eccentricities are typical for a young planetesimal
swarm in the solar system, but the perturbations of the
secondary star in the a Centauri case might have inÑuenced
the formation of planetesimals forcing higher values. The
two di†erent ranges of starting eccentricities determine the
distribution of the initial proper eccentricities, spread in the
case [0È0.03], concentrated and almost equal to the forced
eccentricity in the case [0È0.001]. In this last case we also
expect an initial alignment of the periastra that are coupled
to the eccentricities via the secular perturbations.

3. PERIASTRON ALIGNMENT : THE ANALYTICAL THEORY

The eccentricities and periastra of a planetesimal popu-
lation revolving around the primary star of a binary system
are a†ected by the strong secular perturbations of the com-
panion star. Heppenheimer (1978) derived a set of equations
to predict the secular evolution of the h and k variables of a
test body in a binary system, with h and k deÐned as

h \ e sin (u8 ) (5)

k \ e cos (u8 ) , (6)

where e is the eccentricity of the body and its periastronu8
longitude deÐned with respect to the periastron of the com-
panion star. Introducing in the Lagrange planetary equa-
tions a development of the perturbing function, he obtained
the following equations for h and k :

dh
dt

\ Ak[ B (7)

dk
dt

\ [Ah , (8)

where the constants A, B are

A\ 3
4

m
P

n(1[ e
B
2)3@2 (9)

B\ 15
16

ae
B

(1[ e
B
2)5@2 , (10)

with the eccentricity of the binary system and thee
B

m
Pmass of the primary around which the test body orbits. The

a and n are the semimajor axis and mean motion of the
body, a planetesimal in our case, respectively. The units of
mass, distance, and time are normalized in such a way that
the gravitational constant G and the sum of the masses of
the stars are set equal to 1, so that withG(m

P
] m

s
)\ 1 m

Sthe mass of the companion star. The semimajor axis of the
binary is chosen as the unit of length, while the time isa

Bexpressed in units of where is the orbital period(1/2n)T
B
, T

Bof the binary system.
The solution to the system of coupled di†erential equa-

tions can be cast in the form

h(t) \ e
P

sin (At ] u8 0) (11)

k(t) \ e
P

cos (At ] u8 0) ]
B
A

, (12)

where is the proper eccentricity. The terme
P

B
A

\ 5
4

ae
B

(1[ e
B
2) (13)

is the forced eccentricity induced by the companion star.e
fIt is proportional to the binary eccentricity The pulsa-e

B
.

tion A of the secular perturbation in e and can be read asu8

A\ 3
4

Jm
P
a3@2

(1[ e
B
2)3@2 . (14)

Depending on the ratio between the proper and forced
eccentricity, we may have libration of around 180¡, oru8
circulation. Heppenheimer gave an analytical solution for
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the particular case in which the proper and forced eccentric-
ities are equal, so that the solution always passes through
the origin of the h, k coordinates.

With the secular equations in hand, we turn to the evolu-
tion of the periastra and eccentricities of a planetesimal
swarm. It has been argued by Heppenheimer (1978) that, at
the end of the planetesimal formation process, all the plan-
etesimal orbits were aligned. This is a reasonable assump-
tion if the secular perturbations of the secondary star did
not inÑuence the planetesimal formation process. In this
case, the planetesimals decouple from the nebular gas and
evolve under the inÑuence of the starsÏ gravity with initial
low eccentricities. In consequence, all the h and k values
were concentrated around the origin and the periastra were
aligned at the beginning of the secular evolution of the
swarm. At subsequent times, the following two mechanisms
contribute to spread the values.u8

1. The period A of the (and of the eccentricity) dependsu8
on the semimajor axis of the planetesimal. When a
increases, the secular perturbation period decreases. As
already noted by Heppenheimer, there is a slow dephasing
process for planetesimals with di†erent semimajor axes : the
larger *a is, the faster is the dephasing process.

2. Mutual collisions can change the values of the proper
eccentricity and, eventually, shift the values ofe

P
u8 .

Why is the periastron alignment so important for the
planetesimal accretion process? Larger impact velocities
are achieved when the periastra are not aligned. At orbital
crossing, the true anomalies of the colliding planetesimals
are di†erent and the radial components of the relative
velocities, related to the eccentricities of the bodies, domi-
nate over the Keplerian shear. For large eccentricities, the
di†erence in the orbital velocity at the crossing site also
contributes to increase the tangential component of the
relative speed. The high impact velocities computed by
Withmire et al. (1998) for the a Centauri system, and in
general for other binary systems, are derived within this
scenario. The companion star pumps up signiÐcant eccen-
tricities in the planetesimal swarm with its gravitational
perturbations. Since no dissipative force is included in their
computations, when the periastra have lost their initial
alignment and are randomly distributed, the relative veloci-
ties between planetesimals at the orbital crossing are domi-
nated by the values of the orbital eccentricity.

However, an entirely distinct scenario is achieved when
gas drag is taken into account. The combined e†ects of gas
drag and secular perturbations of the companion star can
restore a strong alignment of the planetesimalsÏ periastra. In
this condition the relative velocities are mostly determined
by the Keplerian shear and may be very low in spite of high
values of orbital eccentricities. The phenomenon of u8 -

was already observed by Marzari et al. (1997),alignment
who studied the combined e†ects of gas drag and gravita-
tional perturbations by a proto-Jupiter on a swarm of plan-
etesimals in the primordial asteroid belt. Outside of mean
motion resonances, they found that the perihelia of the
planetesimals were all aligned toward 270¡.

An analytical justiÐcation of the alignment of periastra
(or perihelia for the solar system case) can be found by
introducing into the equations for the secular evolution of
the variables h and k a term that models the dissipative
e†ect of the gas drag. This works in the same way for the

problem Sun-Jupiter-planetesimal as for the problem
binary systemÈplanetesimal since the equations for the vari-
ables h and k have the same structure. Since the drag would
damp the eccentricities of the planetesimals at a rate pro-
portional to e2 (Adachi et al. 1976 ; Weidenschilling & Davis
1985), we can compute its e†ect on the variables h and k by
modifying equations (7) and (8) as follows :

dh
dt

\ Ak[ B[ Dh(h2 ] k2)1@2 (15)

dk
dt

\ [Ah[ Dk(h2 ] k2)1@2 (16)

(Greenberg 1978). According to these equations, when D is
larger than A, the eccentricity is damped below B/A (the
forced eccentricity) and halts its circulation and assumesu8
a constant value that tends toward 270¡ for large values of
the ratio D/A. Note that in these equations if the forced
eccentricity is turned o† (B\ 0), the orbital eccentricity is
still damped but circulates. As a consequence, if the per-u8
turber is on a circular orbit, the periastra are not aligned
and the impact velocities between the planetesimals may be
high, depending on the eccentricity values.

The implications of equations (15) and (16) on the col-
lisional evolution of a planetesimal swarm are relevant. The
damping term proportional to D forces planetesimals with
similar semimajor axes to have the same periastra and
eccentricity values (for a given a, the ratio D/A is constant).
The immediate consequence is that the main contribution
to the impact velocity is due to the Keplerian shear since the
radial component of the relative velocity is negligible. The
trajectories of the planetesimals are in fact almost parallel
because of the alignment.

4. PERIASTRON ALIGNMENT : THE NUMERICAL RESULTS

4.1. T he E†ects of Collisions on the Planetesimal Orbits
In this section we analyze how collisions only, in the

absence of gas drag, inÑuence the orbital distribution of the
planetesimals. Studies on the evolution of planetesimal
swarms in the solar system have shown that collisions can
a†ect the random motion of planetesimals associated with
the orbital eccentricity. Stewart & Wetherill (1988) derived
analytical expressions for the ““ viscous stirring ÏÏ and
““ energy damping ÏÏ caused by collisions, modeled as inelas-
tic events. Depending on the characteristics of the planetesi-
mal swarm, one of the two terms can dominate over the
other. In binary systems, the scenario is complicated
because of the presence of the secular perturbations of the
companion star. One would expect that the impulsive
changes of the orbital elements after a collision alter the
proper eccentricity and the phase of destroying quicklyu8 ,
the coherence induced by the secular perturbations.
However, as we will see, the interplay between collisions
and secular perturbations is more complex.

To have an insight on how collisions a†ect the dynamics
of a planetesimal swarm, we Ðrst performed a pure N-body
simulation without collisions and without gas drag : the
planetesimals evolve only under the secular perturbations
of the companion star. In Figures 1a, 1b, and 1c we show
the eccentricity and periastron distributions of the plan-
etesimals at di†erent evolutionary times. The choice of high
starting eccentricities in the range [0È0.03] generates an
initial weak alignment of the periastra. All the initial h, k
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FIG. 1a FIG. 1b

FIG. 1c

FIG. 1.È(a) Distribution of eccentricities and of periastra for the planetesimal swarm at t \ 5000 yr. Gas drag and collisions are not included. (b) Same as
(a) but for t \ 20,000 yr. (c) Same as (b) but for t \ 40,000 yr.

values of the planetesimals Ðll a circle centered at the origin
(0, 0) and with radius equal to 0.03. Depending on the initial

computed randomly in our simulations, di†erent valuesu8 ,
of will be assumed by each planetesimal : the maximume

Pvalue of will be For the periastra circu-e
P

e
f
] 0.03. e

P
[ e

flate ; otherwise they librate around 0¡. The distribution in e
and reÑects the spreading in When the planetesimalsu8 e

P
.

get close to the origin (0, 0), the periastron longitudes of the
circulators move fast in the h, k plane. The circulators must
in fact cover a large angular span when the eccentricity
approaches 0¡. With increasing time, the periastra are
slowly randomized, starting at larger distances from the star
(Fig. 1c) since the period of the secular perturbations
depends on a3@2.

When collisions are included in the numerical simula-
tions, they a†ect the initial distribution of e and to au8
di†erent extent, depending on the semimajor axis. In
Figures 2a, 2b, and 2c we follow the evolution in time of a
swarm characterized by a high collisional frequency (1 colli-
sion every D103 yr). Examining Figure 2c, we deduce that
at small distances from the star, between 0.8 and 1.0 AU,
collisions are not very e†ective in reducing the orbital
eccentricity. The collisional damping of e works only when
e itself is small, i.e., when h, k are close to the origin. In that
case, the energy dissipation reduces e and, consequently,
drags close to and close to 0¡ for the secular coup-e

P
e
f

u8
ling. h, k are driven toward the origin (0,0). Planetesimals
with similar a will have close values of e and and theu8 ,
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FIG. 2a FIG. 2b

FIG. 2c

FIG. 2.È(a) Periastron and eccentricity distributions of the planetesimal swarm at t \ 5000 yr. Collisions are included, but no gas drag. (b) Same as (a) but
for t \ 15,000 yr. (c) Same as (b) but for t \ 30,000 yr.

initial weak alignment, due to the choice of starting values
of e lower than is reinforced.e

f
,

Planetesimals farther from the star, for 1.0 AU\ a \ 2.0
AU, are very strongly perturbed by the mutual collisions
that damp e signiÐcantly even when h, k are far from the
origin and when the orbital e is large. Instead of driving e

Pclose to they tend to reduce The orbital e tendse
f
, e

P
.

toward and the amplitude of the librations is cute
f
, u8

down. The tendency to drive close to is stronger whene
P

e
fgetting farther away from the star, where collisions have a

considerable damping e†ect. For distances larger than 2.0
AU, collisions dominate and both e and are randomized.u8

To test the relevance of the initial distribution of eccen-
tricities on the evolution of the planetesimal swarm, we

performed a second simulation with low starting eccentric-
ities in the range [0È0.001]. In Figure 3 (upper panel) we
show the Ðnal distribution of the eccentricities after 3] 104
yr : it is almost undistinguishable from that of Figure 2c.
Our interpretation is that the swarm loses memory of the
initial distribution of the proper eccentricities on a short
timescale (D104 yr) to reach an equilibrium state generated
by the balancing between collisional damping and secular
forcing. The equilibrium distribution of the proper values of
e is determined by this balancing. If we reduce the col-
lisional frequency by a factor of 10 (Fig. 3, lower panel), the
cumulative e†ects on the proper eccentricities take a longer
time and cannot prevent the loss of alignment caused by the
secular perturbations. On the contrary, for a semimajor axis
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FIG. 3.ÈEccentricity distributions of a planetesimal swarm at
t \ 30,000 yr. The upper panel illustrates the distribution of the swarm
started with low initial eccentricities (e¹ 1 ] 10~4). The lower panel
shows the same distribution when a lower collision rate is adopted (1
collision every D104 yr).

larger than 1.3 AU, collisions help in destroying the coher-
ence of periastra and eccentricity, increasing then the rela-
tive velocities between the planetesimals.

4.2. Gas Drag and Strong Periastron Alignment
In what way does the presence of the nebular gas change

the planetesimal dynamics? For small and intermediate
sizes, the gas drag tends to align the periastra toward 270¡,
as anticipated in ° 2. In Figure 4, we show the e and u8
distribution of 5 kmÈsized planetesimals started on nearly

FIG. 4.ÈPeriastron and eccentricity distributions of a swarm of 5 km
diameter planetesimals at t \ 1 ] 104. Collisions and gas drag are
included.

circular orbits (initial e in the range [0È0.001]) after
t \ 1 ] 104. The alignment forced by gas drag is strong and
overcomes the e†ects of collisions on both e and for a \ 2u8
AU. Even if we increase the collisional frequency by a factor
of 3 with respect to the assumed impact rate for 5 km plan-
etesimals (1 collision every D103 yr), as we did in a test
simulation by altering the inÑated diameter, the collisions
are unable to destroy the alignment. The coherence of both
e and is very strong close to the star where the density ofu8
the gas is higher. At larger distances from the primary star,
the drag force diminishes since we adopt a gas density
decreasing with r~5@2. The aligned values of start fromu8
about 280¡ and increase up to 360¡ at 2 AU. Beyond 2 AU,
the coherence is deÐnitively lost : the e†ects of collisions and
secular perturbations dominate.

For larger planetesimals, since the drag force is inversely
proportional to the size of the body, we expect that the
alignment is less strong. Actually, the alignment dominates
the planetesimal dynamics up to diameters of 100 km. In
Figures 5 and 6 we show the e and distributions foru8
bodies of 50 and 100 km in diameter. Also in this case the
initial distribution of the eccentricities is in the range [0È
0.001] ; the collision rate is instead low (1 collision every
D104 yr). With increasing diameter, the alignment is less
signiÐcant and the coherence loss occurs closer to the
primary star. However, in particular close to 1 AU, the
values of e and of the swarm are still concentrated in au8
narrow range. There is a synergy between secular pertur-
bations and gas drag that helps keep the periastra well
aligned also for larger sized planetesimals. The secular per-
turbations by the companion contribute to the forced
eccentricities of the planetesimals and are not completely
damped by gas drag. According to the equations of Adachi
et al. (1976), gas drag e†ects are stronger for larger eccen-
tricities of the planetesimals (see also Weidenschilling,
Marzari, & Hood 1998). This e†ect has a feedback on the u8
alignment, which is reinforced. We can say that the secular
perturbations of the companion star help keep the impact
velocities low by increasing the eccentricities and, thus,

FIG. 5.ÈSame as Fig. 4 but for 50 kmÈsized planetesimals
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FIG. 6.ÈSame as Fig. 4 but for 100 km diameter planetesimals

favoring the gas drag to align the periastra. For the relative
impact velocities of planetesimals, this phenomenon is of
particular importance.

4.3. Distribution of the Impact Velocities
In a planetesimal swarm where the eccentricities are all

concentrated in a narrow range and where the periastra are
all aligned, the relative velocities at planetesimal encounters
are mostly determined by the Keplerian shear. This e†ect is
illustrated in Figure 7, which shows the impact velocities

versus time for 5 kmÈsized planetesimals in the range
between 0.8 and 1.2 AU from the primary star. At t \ 0, the
orbital elements are randomly distributed and the impact
velocities are of the order of 1È1.5 km s~1. As the periastra
and eccentricities align because of the e†ects of gas drag and
secular perturbations, the impact velocities progressively
decrease to values of the order of a few m s~1. An equi-
librium state is reached with all the periastra aligned, and
the impact velocities remain low during the subsequent
evolution of the swarm.

In a planetesimal population characterized by di†erent
sizes of the bodies and covering a large range in semimajor
axis, the balance between gas drag, collisions, and secular
perturbations can change signiÐcantly. The degree of
periastron alignment depends on both the diameter D and
distance R from the star. We compare in Figures 8a, 8b, and
8c the distributions of encounter velocities for di†erent
values of D (5, 50, and 100 km) and for R ranging from 0.8 to
2.4 AU. The sizes of the bodies are computed adopting a
bulk density o equal to 2 g cm~2. The velocities are taken
after the equilibrium state is reached (104 yr), and the dis-
tribution is computed over a time interval of 2000 yr. In
each panel of Figure 8, we also draw as reference the veloc-
ity for which bodies begin to fragment rather thanvfraccrete. is calculated with the semiempirical modelvfrdescribed in Davis et al. (1989), Spaute et al. (1991), Petit &
Farinella (1993), and Marzari, Davis, & Vanzani (1995). The
fraction of the collisional energy partitioned into thefKEfragments was assumed to be 0.05. We deÐne as thevfrvelocity for which 50% of the mass of each of the two bodies
escapes.

For planetesimals 5 km in diameter (Fig. 8a), accretion
dominates for radial distances less than 2.4 AU. This is
conÐrmed in Table 1, where we report the median of the
distribution for each interval of distance and we compare it

FIG. 7.ÈEvolution of the impact velocities with time in the swarm of 5 km planetesimals
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FIG. 8a FIG. 8b

FIG. 8c

FIG. 8.È(a) Distribution of the relative velocities between 5 kmÈsized planetesimals at di†erent distances from the primary star. The dashed line
represents the maximum speed before fragmentation dominates. (b) Same as (a) but for 50 kmÈsized planetesimals. (c) Same as (b) but for 100 kmÈsized
planetesimals. (See the electronic edition of the Journal for a color version of this Ðgure.)

with For larger planetesimals, the distributions extendvfr.to higher relative velocities since the gas drag is less efficient.
However, as conÐrmed in Figures 8b and 8c and in Table 1,
accretion dominates also for bodies of 50 and 100 km diam-
eter. To illustrate the e†ectiveness of periastron and eccen-
tricity alignment in reducing the encounter velocities, in
Figure 9 we show the relative velocities for a swarm of
planetesimals where the dynamical e†ects of gas drag are
switched o† by setting the gas density equal to 0. Even
higher impact speeds are obtained when also the e†ects of
the collisions are cancelled by Ðxing the restitution coeffi-
cient at each encounter to 1 (Fig. 10). In this last pure
three-body model, which reproduces closely the one
adopted by Whitmire et al. (1998), the relative velocities

would not allow accretion for bodies smaller than 100È200
km in diameter. In the last three lines of Table 1 we give the
medians of the relative velocity distributions for the case
[no-gas] with high and low collisional frequency and for the
case [no-gas, no-collisions] (pure three-body case).

According to the results summarized in Table 1, accretion
of planetesimals into larger bodies and planets is possible in
the terrestrial region of the a Centauri system within the
critical semimajor axis of Holman & Wiegert (1999). At the
beginning of the planetesimal accretion, when the bodies
are small, the gas drag gives a fundamental contribution by
aligning the periastra and lowering the impact velocities.
This allows accretion to continue in spite of the strong
secular perturbations of the companion star. When larger
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TABLE 1

MEDIANS OF THE RELATIVE VELOCITY DISTRIBUTIONS BETWEEN PLANETESIMALS OF DIFFERENT SIZES AT

DIFFERENT DISTANCES FROM THE PRIMARY STAR

r-Zone

Size [0.8È1.2] [1.2È1.6] [1.6È2.0] [2.0È2.4] Fragmentation
(km) (m s~1) (m s~1) (m s~1) (m s~1) (m s~1)

5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.7 1.9 2.1 51.2 54.
50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 21.9 124.0 521.6 640.
100 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 34.1 270.0 621.6 1280.
No Gas (HCF) . . . . . . . . . . . . . . 137.2 323.2 519.3 713.4 . . .
No Gas (LCF) . . . . . . . . . . . . . . 154.4 722.1 970.3 1295.4 . . .
No GasÈNo Collision . . . . . . 818.3 855.7 1092.1 1233.1 . . .

NOTES.ÈThe corresponding velocities for which fragmentation occurs are given in the last column. In the
two lines of the table titled ““ No Gas ÏÏ the relative velocities are computed when collisions are included but no
gas drag, for high collisional frequency (HCF; Fig. 2c) and low collisional frequency (LCF; Fig. 3, bottom
panel). In the last line of the table the impact speeds are computed in a pure three-body problem in the absence
of gas drag and collisions.

sizes are obtained (º150 km) the gas drag is less efficient in
producing the periastron alignment. However, relative
velocities are lower than which is about 1.5 km s~1 forvfr,bodies of 150 km in diameter. Thus, accretion can continue
to form larger objects.

5. DISCUSSION

Relative velocities between planetesimals determine
whether or not accretion is possible. If they are too high,
fragmentation dominates and planetesimals do not grow
but comminute. Critical in this sense are the initial phases of
the accumulation process, when all the planetesimals have
approximately small sizes (¹10 km in diameter). During an
impact between two small bodies, the gravity may not be
strong enough to prevent the collisional fragments from
escaping. Planetesimal encounter velocities of some tens of
meters may in e†ect cause dispersion of the fragments
rather than accretion.

In close binary systems, encounter velocities in a swarm
of planetesimals surrounding one of the stars may be

FIG. 9.ÈVelocity distribution of planetesimals at di†erent distances
from the primary star. Gas drag e†ects are not included in the simulation.
(See the electronic edition of the Journal for a color version of this Ðgure.)

excited to high values by the gravitational perturbations of
the companion. In a system like a Centauri, which is a
typical close binary system, the forced eccentricity due to
the companion secular perturbations are of the order of
D0.05 in the terrestrial zone (0.8È3 AU). If the orbital angles
of the swarm are randomized, the resulting eccentricities
lead to impact velocities of the order of 1È1.5 km s~1,
enough to prevent accretion of planetesimals smaller than
150 km in diameter. If the initial planetesimal disk was
formed by small bodies (¹10 km), the formation of planets
might have been inhibited.

The scenario totally changes if we consider the e†ects of
the gas drag. The gas drag force coupled to the secular
perturbations due to the companion star causes a strong
periastron alignment that drastically diminishes the
encounter velocities of planetesimals in spite of large eccen-
tricities. We investigated the relative velocity distributions
in the a Centauri system including in our numerical model
both the e†ects of gas drag and collisions. The alignment of
periastra signiÐcantly reduces the radial component of

FIG. 10.ÈSame as Fig. 9 but gas drag and the e†ects of collisions are
not included. (See the electronic edition of the Journal for a color version of
this Ðgure.)
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encounter velocities. Keplerian shear dominates. Impact
velocities are signiÐcantly lower than the critical velocity for
fragmentation : accretion may occur at all planetesimal
sizes.

Although accurate, our numerical modeling is based on
some simpliÐcations required by the difficulty of including
in a single algorithm collisions and dynamical evolution.
The amount of CPU time needed to complete a single run
of the code has also forced us to introduce some approx-
imations in the simulations. Our results are obtained
assuming an initial two-dimensional distribution of the
planetesimals to keep the CPU time for a single simulation
within 1 month on a fast computer. However, the two-
dimensional results can be extended to three dimensions, at
least until the perpendicular component of the encounter
velocity, due to the inclination of the orbits, does not over-
come the Keplerian shear. The periastron alignment, as we
conÐrmed in some test numerical integrations without colli-
sions, persists at high inclinations (up to 30¡). The amount
of CPU time also constrains the number of bodies that can
be included in a simulation.

In our algorithm, collisions are assumed to be inelastic.
This modeling is incomplete since it does not include all the
possible outcomes of a collisional event. However, even if it

cannot describe the evolution of the planetesimal size dis-
tribution, it approximates quite well the dynamical e†ects of
collisions on the planetesimal swarm, in particular what
concerns the orbital element distribution. A similar algo-
rithm has already been used by Thebault & Brahic (1999) to
analyze the e†ects of collisions in the early asteroid belt in
mean motion resonances with Jupiter. Moreover, in our
simulation the periastron alignment due to gas drag is so
strong that our results are robust in spite of the incomplete-
ness of the collisional model. The combined e†ects of gas
drag and secular perturbations dominate over collisions.
For the same reason we expect that, in addition, the mutual
gravitational perturbations between planetesimals, which
are not included in our model, do not signiÐcantly a†ect our
results. The situation might change and the mutual pertur-
bations might be inÑuent when large embryos form within
the planetesimal swarm. It would also be interesting to
investigate whether the formation of the embryos occurs via
runaway growth or orderly growth. This is under investiga-
tion and will be described in a forthcoming paper.

We thank P. Thebault for useful comments and sugges-
tions.
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