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Abstract

In this paper we numerically detect the web of
three–planet resonances (i.e. resonances among
mean anomalies, nodes and perihelia of three plan-
ets) with respect to the variation of the semi–major
axis of Saturn and Jupiter, in a model including
the planets from Jupiter to Neptune. The measure
confirms the relevance of these resonances in the
long–term evolution of the outer Solar System and
provides a technique to identify some of the related
coefficients.
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1 Introduction

The problem of the stability of our Solar System is
one of the main problems of Celestial Mechanics.
In the last decades this problem has been stud-
ied by means of long–term numerical integrations
(Sussman and Wisdom 1988; Laskar 1989; Nobili
et al. 1989; Sussman and Wisdom 1992; Laskar
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1996) which demonstrated that while the system
does not show significant instabilities (especially for
the outer planets), it is nevertheless chaotic. Laskar
(1990) found secular resonances responsible for the
chaos of the inner planets. The chaotic nature of
the outer planets is instead a problem which is still
under study, with a recent advancement on its com-
prehension made by Murray and Holman (1999).
Sussmann and Wisdom (1992) remarked that long–
term integrations of the outer Solar System made
with different integrators and different integration
steps agreed that the system is chaotic, but gave
substantially different Lyapunov times. They con-
jectured that these discrepancies could be due to
a high sensitivity of the dynamics of the system
on the initial conditions, so that little changes in
the integration scheme could potentially give dif-
ferent results. Murray and Holman (1999) found
that the chaotic nature of the solutions is very sen-
sitive to small changes of the semi–major axis of
Uranus, and identified the three–body resonances
among Jupiter, Saturn and Uranus as the main re-
sponsible for this. They also provided a heuristic
model to show that these resonances can produce
chaotic diffusion of the planets on very long times.

Three–body resonances have been already used
to explain in great detail the dynamical structure of
the asteroid belt (Murray, Holman and Potter 1998,
Nesvorny and Morbidelli 1998a, Nesvorny and Mor-
bidelli 1998b, Morbidelli and Nesvorny 1999). In
particular, they allow one to explain much of the
slow chaos arising at moderate eccentricities.

The importance of three–body resonances for the
dynamics is due to the fact that though they are
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second order resonances with respect to the plan-
etary masses (they include at least three objects),
and therefore their amplitude is small, they are nev-
ertheless organized in multiplets that typically can
overlap (Nesvorny and Morbidelli 1998b) at moder-
ate eccentricities, giving rise to chaotic motion and
possibly to chaotic diffusion (for asteroids, diffusion
times can be typically 100Myr). In the planetary
case, the structure of the multiplets is the follow-
ing. Denoting by aj , ej , ij , λj , ωj ,Ωj the orbital el-
ements of the j–th planet, with j running from 5
(Jupiter) to 8 (Neptune), a three–body resonance
occurs when there exist three integers ni, nj , nk

such that:

niλ̇i + nj λ̇j + nkλ̇k ∼ 0 , (1)

more precisely when this quantity is of the same or-
der of the secular frequencies ω̇h, Ω̇h (h = 5, . . . , 8).

Therefore, as explained in Murray an Holman
1999, in the phase space of the planets there are
initial conditions such that for some integer values
of the kh, k′

h the angle:

niλi + njλj + nkλk +
8∑

h=5

(khωh + k′

hΩh) (2)

is resonant, i.e. it is librating, or it is in a regime
of chaotic alternation of librations and circulations.
Because the secular frequencies ω̇h, Ω̇h are of the
same order of the planetary masses m5, . . . ,m8 (the
mass of the Sun is 1; hereafter for convenience we
denote also ε = m5), while the main contribution
to the frequencies λ̇i is given by the Keplerian ap-
proximation, for any fixed (ni, nj , nk) all possible
values of the kh, k′

h generate a multiplet of reso-
nances (2) separated in semi-major axis by order
ε. But the strength of resonant harmonics is of or-
der ε2 (see Nesvorny and Morbidelli 1998b; Murray
and Holman 1999, and also section 4) so that their
amplitude in semi–major axis is of order ε. There-
fore, because the distances among these resonances
and their amplitudes are of the same order, they
can overlap.

To determine analytically the overlapping of
these resonances is a complicated technical prob-
lem. In the case of a planar approximation of the
asteroid motion an analytic approach for the pre-
cise computation of the location and separation of
the different components of the multiplet has been

done in Nesvorny and Morbidelli 1998b. Numerical
approaches have been also used to detect the loca-
tion and the structure of the resonances (Morbidelli
and Nesvorny 1999), based on the computation of
the largest Lyapunov exponent of the system (ac-
tually, a Fast Lyapunov Indicator, see Froeschlé et
al. 1997) with respect to the change of a critical
initial condition, and then trying to associate to
the peaks of positive Lyapunov exponent a linear
combination of the frequencies.

In the case of the planets, the one–dimensional
spans of the parameters space provided in Murray
and Holman 1999 allow one to appreciate alterna-
tion of intervals of regular motions and intervals of
chaotic motions, thus excluding a uniform covering
of the phase space by resonance overlapping.

Moreover, two dimensional spans of the parame-
ters space allow one to appreciate the geometry of
the resonances. In particular they allow one to ap-
preciate if the resonances constitute a regular web
(the so called Arnold web, see Froeschlé et al. 2000)
or instead there are some local overlappings. These
two scenarios can have different implications on the
long–term stability of the system (see Morbidelli
and Guzzo 1997, Guzzo and Morbidelli 1997, Mor-
bidelli 2002).

Mitchenko and Ferraz–Mello (2001a) provide
two–dimensional explorations of the phase–space
around each planet obtained by changing the semi–
major axis and the eccentricity of one planet in
each exploration. The results, obtained with 3
Myr numerical integrations, confirm that within a
distance of order 10−2 au from our Solar System
there are some important three–planet resonances.
Nevertheless, due to the limited integration time
they cannot detect the three–planet resonances de-
scribed by Murray and Holman (1999).

In this article, using a numerical approach based
on the combined use of the fast Lyapunov indica-
tor method (FLI hereafter) and of frequency anal-
ysis (Laskar 1993) we will provide a direct repre-
sentation of the three–planet resonances on a two–
dimensional grid of initial conditions which is ob-
tained changing the values of the initial semi–major
axis of Jupiter and Saturn.

As we explain in section 2, these are expected
to be critical parameters for the exploration of the
three–planet resonances in a neighborhood of the
true initial condition of our Solar System.

The present exploration concerns a very small
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neighbourhood of the true solar system, (from
2·10−5 to 4·10−3 au) and the integration time is 20
Myr for each initial condition, so that we can detect
the weak three–planet resonances which were indi-
cated by Murray and Holman (1999) as the origin
of the chaos of the outer planets.

Our results establish that in this small neighbor-
hood of the true Solar System (obtained from JPL
DE405) some families of three planet–resonances
constitute an intricate web. The typical separa-
tion of these resonances is of order 10−5 rad/yr,
and therefore a change in the semi–major axis of
Jupiter (or Saturn) of about 10−5 au can change the
dynamical state of the system. The results agree
with those of Murray and Holman 1999, who find
the family of resonances (n5, n6, n7) ∼ (3,−5,−7),
but also we find other families of three–body res-
onances associated to the coefficients n6/n5 = 3,
11/4 ∼ 2.73, 1, 4, 17/6 ∼ 2.84, 6 (see section 3).
It is relevant that all these families are consistent
with the small denominators found by Bretagnon
(Bretagnon 1981, 1982) in his analysis of the solu-
tion of the Solar System at third order in planetary
masses. In Bretagnon papers the question about
the location of the resonances associated to these
small divisors (nor its arrangment in phase space as
a web) is not raised. Nevertheless the appearence
of these small denominators in the analytic solution
suggests that they should be in some sense relevant
to the dynamics of the Solar System, as it is pre-
cisely shown in this paper.

The position of the true Solar System with re-
spect to the web of three–planet resonances is a
peculiar one. In fact, the true Solar System is at the
edge of a crossing of these resonances, and therefore
its dynamical state is particularly sensitive to very
small changes of the initial conditions. The compu-
tation of the Lyapunov exponent exhibits the puz-
zling dependence on the integration step and on the
initial conditions which was first described by Suss-
man and Wisdom 1992. This can be possibly due to
intermittency phenomena, which usually character-
ize the border of resonance crossings. This aspect
will be investigated in a forthcoming paper.

As a final comment, we spend a few words about
the geometry of three–planet resonances, which, as
it will be shown in figure 2, resembles the celebrated
Arnold web. Indeed, the web of figure 2 is quali-
tatively similar to the one numerically detected for
a three degrees of freedom system (Froeschlé et al.

2000), except for the resolution of the figure which,
for the Solar System, is necessary limited by CPU
cost. This gives indication that an eventual dif-
fusion in semi–major axis space should be a very
slow Arnold diffusion along the three–planet reso-
nances, as it is suggested by a preliminary numer-
ical test (see section 4.2). However, our results do
not predict the geometry of resonances for the other
degrees of freedom, expecially those related to ec-
centricities and inclinations of the planets.

This article is organized as follows: section 2 is
devoted to a preliminary numerical exploration of
the Sun–Jupiter–Saturn system; in section 3 we de-
scribe the web of three–planet resonances in the
small neighbourhood of our Solar System; section
4 is devoted to the analysis of a test orbit in a
three–planet resonance. Section 5 is devoted to the
description of the numerical methods used in the
paper.

2 The 5-2 mean motion reso-

nance

Before discussing the full model which includes
the four giant planets, we find instructive to show
the results for the restricted systems Sun–Jupiter–
Saturn (for a detailed investigation of the prob-
lem see Michtchenko and Ferraz–Mello 2001b) and
Sun–Jupiter–Saturn–Uranus.

As is well known since Laplace, the motion
of Saturn and Jupiter is affected by the quasi–
resonance 5-2, i.e. 2λ̇5 − 5λ̇6 ∼ 0. Actually, the
system is not in the resonance, because on average
the critical angle 2λ5−5λ6 advances monotonically
with respect to time, but the vicinity of the 5–2 res-
onance forces large oscillations of it. To appreciate
the relative position of the Sun–Jupiter–Saturn sys-
tem with respect to the 5–2 resonance we represent
numerically the web of resonances of the system
using the FLI indicator (Froeschlé et al. 1997).
Other two–dimensional representations of the res-
onances of the Solar System, showing in particular
the location of the Solar System with respect to the
5–2 resonance, can be found in Robutel and Laskar
2001, Michtchenko and Ferraz–Mello 2001a, Laskar
2003, Robutel 2004.

The computation of the FLI on a grid of initial
conditions allows us to display a clear picture of
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the web of resonances of the system. As it is well
known, in the parameters space of a complicated
dynamical system (such as the one which repre-
sents the evolution of the planets) there is a com-
plicated distribution of regular motions and chaotic
motions. Of course, regular motions are stable. In-
stead, it is the distribution of chaotic orbits which
provides insights on the long–term stability of the
system. For example, if the chaotic motions are or-
ganized in a regular web (the so–called Arnold web)
then there is a strong chance that even chaotic mo-
tions are practically stable over very long times.
Instead, if the distribution of the chaotic orbits
does not constitutes a regular web and looks like a
chaotic see, then there is the possibility of Chirikov
diffusion. These different situations can be discrim-
inated by computing a dynamical indicator on a
grid of initial conditions.

The FLI indicator is the logarithm of the norm
of a tangent vector v(t) (computed with the varia-
tional equations of the dynamics) taken at the end
of the computation, with the same initial tangent
vector v(0) for any initial condition on the grid. As
is well known, the growth of tangent vectors is lin-
ear in time in the case of regular orbits, while it
is exponential in time in the case of chaotic orbits.
To compute the largest Lyapunov exponent λ it is
necessary to compute the growth of tangent vectors
for times t which are sufficiently long so that the
quantity log |v(t)|/t converges to λ. However, in
order to discriminate between regular and chaotic
orbits it is sufficient to compute |v(t)| for such a
(small) time such that the exponential growth law
can be distinguished from the linear growth law
(Froeschlé et al. 1997). Therefore, computing the
FLI on a grid of initial conditions allows one to
discriminate between the resonant chaotic motions
and the regular motions because the formers take
the higher FLI values. A more subtle point is that
the FLI allows one also to discriminate between the
regular orbits which are inside a resonance (such as
librating motions) and the regular orbits which are
outside a resonance (Froeschlé et al 2000; Guzzo
et al. 2002). In fact, the FLI of regular motions
inside a resonance is lower than the FLI of regular
motions which are outside the resonance.

Summarizing these facts, when computing the
FLI on a grid of initial conditions, the resonances
are well individuated as the regions with the higher
and the lower FLI values, while the uniform inter-

mediate value characterizes the regular non reso-
nant motions. Therefore, in each picture of fig-
ures 1 and 2 the yellow and the dark lines identify
the resonances, while the uniform background color
identifies regular non resonant motions. For the
detailed explanation of the FLI and its use in the
detection of the geometry of resonances of a system
we refer to Froeschlé et al. 2000, and to Guzzo et
al. 2002.

Coming back to the planetary problem, figure 1
top–left (see section 5 for the explanation of the
integrated model and for the choice of initial con-
ditions) reports the computation of the FLI for
the Sun–Jupiter–Saturn system on a two dimen-
sional grid of initial conditions, obtained keeping
constant all initial values of the orbital elements of
the two planets, except the initial values of their
semi–major axes. This choice was motivated by
the fact that semi–major axes are the elements
which mainly determine the mean motion reso-
nances. From this picture it is clear that the system
is near the 5–2 resonance, but not in it: the 5-2
resonance is clearly identified as the yellow band
of chaotic motions, while the initial condition of
the ’true’ Solar System1 is definitely outside this
chaotic band, and it is in a region of regular mo-
tions (characterized in the picture by the orange
value of the FLI).

This experimental fact implies that the mean
anomalies of the two planets can be effectively av-
eraged out from the equations of motion of the sys-
tem, which can be therefore described by its secular
equations. Then, an analytic study of the secular
system can be done as in Locatelli and Giorgilli
2000, who proved with computer assisted methods
that the Sun–Jupiter–Saturn secular system has
plenty of KAM tori near the true initial condition,
providing perpetual stability. On figure 1 top–right
we report also an exploration of the initial condi-
tions very near the true Sun–Jupiter system: the
uniform color confirms that no relevant resonances
can be found nearby the true Sun–Jupiter–Saturn

1As explained in section 5, by ’true’ Solar System we re-
fer to the ephemerids of the outer Solar System as provided
by the DE405 digital ephemerids, with a barycentric cor-
rection due to the presence of the inner planets (see Milani
and Knežević 1992). This can be considered as one of the
most precise initial conditions which we can use, but possi-
ble errors in DE405 and in the numerical integrations force
us to consider the true system in a small neighborhood of
this initial condition.
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Figure 1: The four panels report on a color scale the FLI associated to each initial condition on a two–dimensional
grid, obtained by changing the semi–major axis of Jupiter and Saturn a5, a6. The lines defined by the higher value of the
FLI (yellow in the color scale) or the lower value of the FLI (dark orange in the color scale) correspond to resonances.
The uniform background color correspond to regular motions such as KAM tori. The integration time is 1 Myr for all
integrations. The ’true’ initial condition of the system is represented by a black dot. Top left: FLI of the Sun–Jupiter–
Saturn system; the 5–2 resonance is clearly identified as the large yellow band. The ’true’ Solar System is outside the
resonance. Top right: Enlargement of the previous picture around the ’true’ initial condition. The FLI does not reveal
any structure. Bottom left: FLI of the Sun–Jupiter–Saturn–Uranus system. The geometry of resonances has drastically
changed with respect to the Sun–Jupiter–Saturn system: many other resonances, different from the 5–2, have appeared,
and they correspond to three–body resonances with Uranus. The ’true’ system is very near on of these resonances, so a
more detailed study around it is necessary. Bottom right: FLI of the Sun–Jupiter–Saturn–Uranus–Neptune system. The
picture is similar to the previous one, with the exception of some more small resonances.
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system.
We now include in the system also Uranus and

Neptune. These two planets introduce of course
new resonances. This can be seen in figure 1
bottom–right, where we repeated the computa-
tions of figure 1 top–left, but for the four planets
model: new important resonances appear. Beside
the most important 5–2 resonance, many other res-
onances constitute a web in the parameter space,
and all these new resonances are related to the or-
bital elements of Jupiter, Saturn, and at least one
planet among Uranus and Neptune. The picture
is drastically changed with respect to the Sun–
Jupiter–Saturn case, and the appearance of the
web of second order resonances forces a more accu-
rate study of the neighbourhood of the true initial
condition. In figure 1 bottom–left we report also
the same computation done on the Sun–Jupiter–
Saturn–Uranus–Neptune system. The picture is
very similar to the previous one, except for the lack
of few resonances related to Neptune.

3 The web of three–planet

resonances

Motivated by the results of the previous section,
we explored a very small window of the parame-
ters space around the initial condition correspond-
ing to the true initial condition of the Sun–Jupiter–
Saturn–Uranus–Neptune system. As explained in
Murray and Holman 1999, three–body resonances
are expected to be produced by the mixing of the
5-2 quasi–mean motion resonance with other possi-
ble quasi mean motion resonances. Therefore, Mur-
ray and Holman explored a one–dimensional grid of
initial conditions obtained changing only the semi–
major axis of Uranus. Here, we do a different choice
exploring a two dimensional grid of initial condi-
tions obtained by changing the semi–major axes of
Jupiter and Saturn2, therefore changing the rela-
tive position of Jupiter–Saturn with respect to the
5–2 resonance, which enters in many three–body
resonances. Moreover, profiting of the study of
Murray and Holman who predicted typical periods
for these resonances of about 10 Myr, we integrated

2The grid covers a variation of the semi major axes of
Jupiter and Saturn from 5.202 to 5.206 and from 9.58 to
9.584 respectively (epoch 5 June 2000) using steps of 2 10−5

au.

the system up to 20 Myr. This integration time
is sufficient for the FLI to evidenciate resonances
with libration periods of this order. The results are
shown in Figure 2. There is a technical difference
between the bottom panel of figure 2 and the ones
on the top, because the x, y axes do not report the
semi–major axes a5, a6, but the frequencies λ̇5, λ̇6,
obtained with a frequency analysis of the solution
in the time interval t ∈ [0, 104]yr. Of course, if one
computes the frequencies on different times inter-
vals t ∈ [t0, t0 +104]yr one obtains different values.
However, because the main variation of the com-
puted frequencies with respect to the initial time
t0 is a quasi–periodic oscillation, for the purpose
of using these values to represent the geometry of
resonances it is sufficient to keep the same t0 = 0
for all initial conditions of the grid.

The correspondence between the semi–major
axes and the frequencies of the mean anomalies is
the following: in addition to the two body keplerian
frequencies there is a contribution due to the mu-
tual interactions among the planets. This contribu-
tion has the effect to transform the square grid in
the semi–major axes space (top panels of figure 2)
to the parallelogram picture in the frequency space
which can be seen in the bottom panel of figure 2
(because the frequency of Saturn is affected by the
interaction with Jupiter more than the frequency of
Jupiter is affected by the interaction with Saturn).

The representation of the FLI indicator with re-
spect to a two dimensional grid of frequencies al-
lows us to identify, for each resonant multiplet as-
sociated to n5λ5 +n6λ6 +njλj , with some j = 7, 8,
the ratio n6/n5, which is the slope of the resonant
line in the two–dimensional figure.

In fact, any linear combination of n5λ5 + n6λ6 +
njλj with the secular angles can produce a three–
planet resonance which appears as a straight line
in the space of frequencies λ̇5, λ̇6. The multiplet
associated to fixed n5, n6, nj is represented in such
a plane by a family of parallel lines.

Following this technique, it is possible to iden-
tify the presence of multiplets associated to the ra-
tios: 2.735 ∼ 11/4 (family of yellow lines on the
bottom–right); 3 (main yellow line in the middle);
1.67 ∼ 5/3; 2.84 ∼ 17/6 (small yellow resonances
on the top–left); 6.0, 4.0 and 1. In the picture
one can also appreciate some horizontal resonances,
which correspond to three–planet resonances which
do not depend on the semi–major axis of Jupiter
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Figure 2: The panels report on a color scale the FLI associated to each initial condition on a two–dimensional grid,
obtained by changing the semi–major axis of Jupiter and Saturn a5, a6 very near the ’true’ initial condition. Top Left:

FLI of the Sun–Jupiter–Saturn–Uranus–Neptune system; the system is integrated up to 10 Myr with a time step of 0.05
yr; the grid is 99 times 99. Top Right: Same system as before, but integrated up to 20 Myr with a time step of 0.2 yr;
the grid is 200 times 200. Bottom: Same integration as top right, but on the x, y axes we do not report the value of
the semi–major axis, but the value of the frequencies λ̇5, λ̇6 of the mean motions numerically computed with a frequency
analysis on the time interval [0, 104]yr. The lines defined by the higher value of the FLI (yellow in the color scale) or the
lower value of the FLI (dark orange in the color scale) correspond to resonances. The uniform background color corresponds
to regular motions such as KAM tori. The ’true’ Solar System is represented by a black dot.
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(while they depend on the semi–major axis of Sat-
urn). Note however that there are not vertical reso-
nances, which means that all relevant three–planet
resonances depend on the semi–major axis of Sat-
urn. The true Solar System is very near the cross-
ing among the families with ratio 1 and 4. A more
complete representation of the three–planet reso-
nances would be provided by additional numerical
explorations of the planes related to Saturn–Uranus
and Uranus—Neptune. However, due to the high
CPU cost required by these computations they will
be published in the future.

The resonances represented in figure 2 constitute
a web with step–size of order of 10−5 rad/yr, or
equivalently 10−5 ∼ 10−4 au in semi–major axis
(i.e. about 104 Km). Therefore, on the same range
of 10−4 au, there are initial conditions with very dif-
ferent dynamical state, and this fact could explain
the puzzling dependence of the Lyapunov exponent
on the initial conditions. The extreme sensitivity
of the location of the resonances on the initial con-
ditions, the errors which affect the initial condi-
tions of the true Solar System (DE405 have pos-
sible errors on Saturn ephemerids of 200-300 km,
but possible larger errors on Uranus and Neptune
ephemerids) and the errors which affect the numer-
ical integration (with possible errors in frequencies
of 10−8−10−7 rad/yr, see Guzzo 2001) do not allow
us to precisely identify the dynamical state of our
Solar System, but allows us to understand that it
is one of the possible dynamical states around the
’true’ initial condition represented in the figure. In
particular, the ’true’ Solar System seems to be at
the edge of the crossing among the resonances with
ratio 1 and 4, and therefore the precise determina-
tion of its dynamical state is particularly critical.
Our computations do not allow us to clearly under-
stand if the true initial condition is indeed inside
the resonance, or it is outside. The computation
of the largest Lyapunov exponent on a time much
longer than the 20 Myr used for figure 2 does not
help to solve the problem. The evolution of the
quantity l(t) = log |v(t)|/t versus time is reported
in figure 3. It is evident that the orbit is not regular
(confirming the long term integrations of the sys-
tem which can be found in the literature), but be-
cause l(t) is not convergent in the integration time
we cannot identify l(t) at the end of the integra-
tion as the largest Lyapunov exponent. The reason
is that the system seems to alternate periods of

chaotic motion (increase of l(t)) to periods of reg-
ular motion (decreasing of l(t)), as in the intermit-
tent dynamical regimes. Effectively, intermittency
could be find in the peculiar location of the true
Solar System, such as the neighborhood of a cross-
ing of two resonances, but this will be the subject
of a forthcoming paper.

1e-08

1e-07

1e-06

1e+07 1e+08 1e+09

" "

Figure 3: Computation of the largest Lyapunov exponent
of the ’true’ initial condition, integrated with the order four
symplectic integrator described in Guzzo 2001, with small
integration step of 0.01 yr. The plot reports the evolu-
tion of the quantity log |v(t)| /t versus time. The quantity
log |v(t)| /t seems to behave as if the solution is chaotic. Nev-
ertheless, the curve does not stabilizes in the integration
time.

The impact of the slow chaos generated in the
three–planet resonances on the long–term evolution
of the Solar System is a delicate, not completely un-
derstood problem. It is clear that these resonances
do not produce dramatic changes in the Solar Sys-
tem lifetime. Indeed, diffusion times estimated by
Murray and Holman (1999) with a heuristic argu-
ment are very long (of order 1017 yr for Uranus’s ec-
centricity). In order to investigate the possible im-
pact of three–planet resonances on the diffusion in
the semi–major axes space I have performed some
long–term test integrations with chaotic initial con-
ditions in the resonances. The results, which are
described in section 4, suggest that indeed within
Gyr timescales one can detect a drift in the direc-
tion parallel to the resonances, as it is the case of
Arnold diffusion, but this kind of diffusion occurs
with very small speed of order 10−15 au/yr.
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4 Dynamics within reso-

nances

4.1 Fourier analysis of a test orbit in

the n6/n5 = 3 three planet reso-

nance

In this section we perform a Fourier analysis of
a test initial condition in one of the main three–
planet resonances, i.e. the one with ratio n6/n5 =
3. Our purpose is to identify the main quasi–
resonances generating the three–planet resonances,
and to find a trace in the Fourier spectrum of har-
monics in the range of the secular frequencies which
can be related to the three–planet resonance.

We will find that the main quasi mean motion
resonances are, besides the 5-2 Jupiter Saturn res-
onance, also the 1-3 Saturn–Uranus resonance and
the 1-2 Uranus–Neptune. These quasi–resonances
can be considered to be present in all the region ex-
plored, because quasi mean motion resonances are
not so sensitive to the initial condition as three–
body resonances. The same resonances were also
individuated by Mitchenko and Ferraz Mello 2001a.
It is immediate to recognize that these quasi–mean
motion resonances can combine to produce all the
possible three–body resonances.

We will interpret the Fourier analysis of the so-
lution by means of Hamiltonian perturbation the-
ory (for the detailed description of normal forms
of three–body resonances in the asteroid case see
Nesvorny and Morbidelli 1998b and Morbidelli
2002). This will help us to associate to each Fourier
harmonic of the numerically computed solution the
resonance which is responsible of it.

The Hamiltonian representation of the dynamics
of the planetary problem is done using the canon-
ical Delaunay variables Lj , Gj ,Hj , λj , ωj ,Ωj . Us-
ing standard perturbation theory (see, for exam-
ple, Morbidelli 2002), one can show that the motion
L(t) − L(0) has the following representation:

L(t) − L(0) = ε
∑

j

νjAj(t) + ε2kB(t) + .... (3)

where νj ∈ Z
4 are the vectors related to the

leading quasi resonances among two bodies, i.e.
to the resonance νi

j λ̇i + νk
j λ̇k ∼ 0; Aj depend

quasi–periodically on time t; the integer vector
k ∈ Z

4 is related to the three–planet resonance

ki1 λ̇i1+ki2 λ̇i2+ki3 λ̇i3+ki4 λ̇i4 ∼ 0 (one of the ki can
be 0). The above representation can be used to de-
tect numerically the leading quasi–resonances and
the leading three–planet resonances. This can be
done as follows. We first compute numerically the
quantity L(t) − L(0) for a time span of 8.4 Myr,
and then we compute the discrete Fourier trans-
form. To increase the precision of the computa-
tion we actually compute the Fourier transform of
φ(t)(L(t) − L(0)), where φ(t) is the analytic win-
dow defined in Guzzo and Benettin 2001 (see Guzzo
and Benettin 2001 for technical details and moti-
vations). In such a way, we obtain a quasi–periodic
representation of φ(t)(L(t) − L(0)) with a discrete
set of frequencies σ ∈ Σ:

φ(t)(L(t) − L(0)) ∼
∑

σ∈Σ

νσfσeiσt , (4)

with νσ ∈ Z
4. The Fourier spectrum for the test

initial condition in the resonance n6/n5 ∼ 3 is re-
ported in figure 4 on the top.

The determination of the vectors ν related to the
leading terms of the spectrum allows us to deter-
mine the main quasi mean motion resonances as
well as the three–body resonances. In fact, denot-
ing by ∑

σ∈Σ

Fσeiσt (5)

the numerically computed Fourier expansion of
φ(t)(L(t) − L(0)), the relevant quasi mean motion
resonances correspond to the leading terms of the
expansion such that Fσ ∈ R

4 has two coefficients
negligible with respect to the other two. Denoting
with F i

σ, F j
σ the two leading coefficients, the integer

vector νσ associated to the resonance satisfies:

νi
σ

νj
σ

=
F i

σ

F j
σ

(6)

while the other two entries are 0.
Exploring the domain of frequencies ω = (2π)/T

up to 0.12, which corresponds to a period of about
500 yrs, we detected the following quasi mean–
motion resonances:

• Jupiter–Saturn: we find a lot of periodic terms
with ν6

σ/ν5
σ ∼ 2.5, corresponding to the lead-

ing quasi mean motion resonance (2,−5, 0, 0).
The largest of these terms corresponds to the
frequency σ ∼ 6.526160 · 10−3.
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• Saturn–Uranus: we find a lot of periodic terms
with ν7

σ/ν6
σ ∼ 3., corresponding to the lead-

ing quasi mean motion resonance (0, 1,−3, 0).
The largest of these terms corresponds to the
frequency σ ∼ 1.080453 · 10−2.

• Uranus–Neptune: we find a lot of periodic
terms with ν8

σ/ν7
σ ∼ 2., corresponding to

the leading quasi mean motion resonance
(0, 0, 1,−2). The largest of these terms cor-
responds to the frequency σ ∼ 1.468068 ·10−3.

Then, we looked for three–planet resonances. Hav-
ing chosen the initial condition in the resonance
n6/n5 = 3 we expected to find many terms with
F 6

σ/F 5
σ ∼ 3. Actually, we observed many terms

with ratio F 6
σ/F 5

σ ∼ 3. Among all these terms the
leading one has frequency σ ∼ 4.272376 · 10−3 and
F 7

σ/F 6
σ ∼ 0.55, which is compatible with the com-

bination (2,−6, 3, 0), generated by (2,−5, 0, 0) and
(0,−1, 3, 0). However, its frequency is not near the
secular frequencies, so we do not expect that this is
the combination generating the resonance. To find
the harmonics which properly couples with the sec-
ular frequencies in order to produce a resonance we
therefore look at all terms in the range of secular
frequencies, i.e. we select all terms with frequency
smaller than: 1.4 · 10−4. The result is summa-
rized in figure 4 on the bottom. Actually, in the
frequency range up to 2 · 10−5, the most relevant
harmonics correspond to the ratio F 6

σ/F 5
σ ∼ 3., and

have non–negligible components over the four plan-
ets.

4.2 Long term integration of a test

orbit in the n6/n5 = 3 three

planet resonance

In this subsection I describe the result of a 3 Gyr
integration of a test particle in the n6/n5 = 3 three
planet resonance, in order to detect eventual long–
term diffusion in the semi–major axes space. From
equation (3) it is evident that the projection of the
motion over the semi–major axes space allows to
see mainly the dominant quasi–periodic terms due
to the functions Aj(t). The presence of these large
quasi–periodic oscillations in principle can prevent
to appreciate any smaller chaotic diffusion. In or-
der to minimize these projection effects, instead of
considering the orbit a5(t), a6(t), I consider the se-

quence ã5(2 k 106), ã6(2 k 106) of the running av-
erages of the semi–major axes in the 2 Myr in-
tervals t ∈ [2 k 106, 2 (k + 1) 106]. The aver-
aged dynamics should therefore satisfy the equa-
tion: L̃(t) − L̃(0) = ε2kB(t) + ...., i.e. the main
contribution to the averaged dynamics is a mo-
tion parallel to the integer vector k generating the
resonance (in the present case it is k6/k5 = 3).
Other contributions can in principle determine a
slower diffusion in the direction aligned with the
resonance, i.e. an Arnold diffusion.

In figure 5 I plotted a black dot for any point of
the sequence ã5, ã6. In figure 5a it is clear that the
orbit is flattened around a segment transversal to
the resonance and the the slope of the segment in
the action space L5, L6 is precisely equal to 3.

Then we zoom in the picture in order to appre-
ciate eany ventual Arnold diffusion in a direction
parallel to the resonance. Indeed, figure 5b allows
to appreciate, beyond the main motion flattened
on the direction k, also a much smaller variation of
the orbit of about 1.4 10−6 au along the direction
of the resonance. This variation occurs mainly in
the interval of time [5 108, 7 108] yr, and therefore
has an average speed of 7 10−15 au/yr.

5 Numerical methods

The numerical integrations reported in this paper
refer to the Hamiltonian model of the Solar Sys-
tem, including the planets from Jupiter to Nep-
tune (some computations shown in figure 1 include
only Jupiter–Saturn, or Jupiter–Saturn–Uranus).
The initial conditions of the planets are taken from
DE405 ephemerids, and the inner planets have been
taken into account by applying a barycentric cor-
rection to the initial condition (see Milani and
Knežević 1992). The integrator used is a four or-
der symplectic integrator described in Guzzo 2001,
specifically designed for the symplectic integration
of the outer Solar System. All integrations have
been done with integration step 0.2 yr, except for
figure 2 top–left which has been done for control
with integration step 0.05 yr. The smallest step
gives accurate results for our purposes: only errors
of at most 10−8−10−7 rad/yr are introduced on the
secular frequencies of the planets (see Guzzo 2001).
Of course, the computation of figure 2 top–right
and bottom is affected by larger errors, but the

10



Figure 4: Top: Spectrum of φ(t)(L6(t)−L6(0)), related to the motion of Saturn. The three families of quasi–resonances
(2,−5, 0, 0), (0, 1,−3, 0) and (2,−6, 3, 0) generate the multiplets located around the frequencies 6.51 · 10−3, 1.102 · 10−2

and 4.3 · 10−3. Bottom: ratio yσ = F 6
σ

/F 5
σ

versus frequency σ; if the value of F 6
σ

or F 5
σ

is too small (10−7 in the plot) we
set yσ = 0.
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9.58306

9.58307

9.58308

9.58309

9.5831

9.58311

9.58312

9.58313

5.20476         5.204481  

 

Figure 5: Diffusion of a test initial condition in the resonance n6/n5 = 3. On both pictures we print the averaged
semi–major axes of Saturn and Jupiter each 2 Myr of the orbit integrated up to 3 Gyr. On the top the orbit is represented
on the FLI map of the three–body resonances (the x, y axis of the picture reports the initial values of the semi–major
axes of Jupiter and Saturn). On this picture we appreciate that the main variation of the orbit is along a direction which
is transverse to the resonance. On the bottom we represent a zoom of the orbit which allows one to appreciate also a
much smaller (and much slower) variation of the orbit of about 1.4 10−6 au in the direction which is aligned with the
resonance. This variation occurs in the interval of time [5 108, 7 108] yr, and therefore has an average speed of 7 10−15

au/yr. Precisely, denoting with a5(t), a6(t) the values of the semi major axes of the numerically computed orbit and
with ã5(2 k 106), ã6(2 k 106) the averaged semi–major axis in the interval t ∈ [2 k 106, 2 (k + 1) 106], we print a dot
corresponding to: ã5(2 k 106)+d5, ã6(2 k 106)+d6, where d5 = ã5(0)−a5(0), d6 = ã5(0)−a5(0). The average over 2 Myr
is done to minimize all projection effects, while the adjustment of (d5, d6) is necessary in order to represent the averaged
values on the grid of initial osculating semi–major axes.
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comparison with figure 2 top–left shows that these
errors do not affect the location of the three–planet
resonances. The larger integration step allowed us
to refine the grid of initial conditions and to ex-
tend the integration time from 107 yr to 2.107 yr.
The symplectic method used has also the advantage
that, being implemented as a simple map on the he-
liocentric canonical variables position–momentum,
it allows one to simply write the variational equa-
tions which are necessary to compute the evolution
of tangent vectors, and therefore of the FLI.

The FLI indicator (Freschlé et al. 1997) is the
logarithm of the norm of a tangent vector taken at
the end of the computation, with the same initial
tangent vector for any initial condition on the grid.
A detailed description of the method has been al-
ready given in section 2.

The frequency analysis used to produce figure
2 is based on Laskar’s method (see, for example,
Laskar 1993). Precisely, we computed the frequen-
cies of the mean anomalies of Jupiter and Sat-
urn using a Fourier analysis on the time inter-
val t ∈ [t0, t0 + 104]yr. Of course, if one com-
putes the frequencies on different times intervals
t ∈ [t0, t0 + 104]yr one obtains different values.
However, because the main variation of the com-
puted frequencies with respect to the initial time
t0 is a quasi–periodic oscillation, for the purpose
of using these values to represent the geometry of
resonances it is sufficient to keep the same t0 = 0
for all initial conditions of the grid.
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