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Abstract. In this paper, we prove a comparison result between semicontinuous viscosity sub-
and supersolutions growing at most quadratically of second-order degenerate parabolic Hamilton–
Jacobi–Bellman and Isaacs equations. As an application, we characterize the value function of a
finite horizon stochastic control problem with unbounded controls as the unique viscosity solution of
the corresponding dynamic programming equation.
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1. Introduction. In this paper, we are interested in the second-order equation⎧⎨⎩
∂w

∂t
+ H(x, t,Dw,D2w) + G(x, t,Dw,D2w) = 0 in R

N × (0, T ),

w(x, 0) = ψ(x) in R
N ,

(1.1)

where N ≥ 1, T > 0, the unknown w is a real-valued function defined in R
N × [0, T ],

Dw and D2w denote, respectively, its gradient and Hessian matrix, and ψ is a given
initial condition. The Hamiltonians H,G : R

N × [0, T ] × R
N × SN (R) → R are

continuous in all their variables and have the form

H(x, t, p,X) = inf
α∈A

{
〈b(x, t, α), p〉 + �(x, t, α) − Tr

[
σ(x, t, α)σT (x, t, α)X

]}
(1.2)

and

G(x, t, p,X) = sup
β∈B

{
−〈g(x, t, β), p〉 − f(x, t, β) − Tr

[
c(x, t, β)cT (x, t, β)X

]}
.(1.3)

This kind of equation is of particular interest for applications since it relies on dif-
ferential game theory (Isaacs equations) or on deterministic and stochastic control
problems when either H ≡ 0 or G ≡ 0 (Hamilton–Jacobi–Bellman equations).

Notations and precise assumptions are given in section 2 but we point out that
we allow one of the control set A or B to be unbounded and the solutions to (1.1) may
have quadratic growth. Our model case is the well-known stochastic linear quadratic
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problem. We refer to Bensoussan [10], Fleming and Rishel [18], Fleming and Soner
[19], Øksendal [38], Yong and Zhou [41], and the references therein for an overview
and to Examples 2.2 and 3.1 below. This problem can be described as follows. Let
(Ω,F , (Ft)t≥0, P ) be a filtered probability space and let (Wt)t be an Ft-adapted stan-
dard M -Brownian motion. The control set is A = R

k for some k > 0 and we consider
the linear stochastic differential equation{

dXs = [A(s)Xs + B(s)αs]ds + [C(s)Xs + D(s)]dWs for t ≤ s ≤ T,
Xt = x,

where αs ∈ At, the set of A-valued Ft-progressively measurable controls and the
adapted process Xs is the solution. The linear quadratic problem consists in mini-
mizing the quadratic cost

V (x, t) = inf
αs∈At

E

{∫ T

t

[〈Xs, Q(s)Xs〉 + R|αs|2] ds + 〈XT , SXT 〉
}
,(1.4)

where A(·), B(·), C(·), D(·), Q(·), and S are deterministic matrix-valued functions of
suitable size and R > 0 to simplify the presentation. The Hamilton–Jacobi equation
associated to this problem is

⎧⎨⎩ −∂w

∂t
− 〈A(t)x,Dw〉 − 〈x,Q(t)x〉 +

1

4R
|B(t)TDw|2 − Tr

[
a(x, t)D2w

]
= 0,

w(x, T ) = 〈x, Sx〉,

(1.5)

where a(x, t) = (C(t)x + D(t))(C(t)x + D(t))T /2. Note that this equation is of type
(1.1) (with G ≡ 0) since

1

4R
|B(t)TDw|2 = sup

α∈Rk

{
− 〈B(t)α,Dw〉 −R|α|2

}
.(1.6)

In this paper, we are concerned with two issues about this problem.
The first question relies on the partial differential equation (1.5). We note that

the quadratic cost with unbounded controls leads to a quadratic term with respect
to the gradient variable. From the terminal condition, we expect the solutions have
quadratic growth. Moreover, the diffusion matrix may be degenerate. Therefore,
we cannot hope to obtain smooth solutions in general. We need to consider weak
solutions, namely, viscosity solutions. (We refer the reader who is not familiar with
this notion of solutions to Crandall, Ishii and Lions [15], Fleming and Soner [19],
Bardi and Capuzzo Dolcetta [3], and Barles [6], and all the references therein). We
obtain the existence of a unique continuous viscosity solution for (1.5) and for a large
class of equations of type (1.1) (see Theorem 2.1 and Corollary 2.1).

We point out that the results obtained in this paper are beyond the classical com-
parison results for viscosity solutions (see, e.g., [15]) because of the growth of both the
solutions and the Hamiltonians. In fact, most of the comparison results in the litera-
ture require that either the solutions are uniformly continuous or the Hamiltonian is
uniformly continuous with respect to the gradient uniformly in the x variable. (In our
case this amounts to assuming that both controls sets are compact.) Let us mention
that uniqueness and existence problems for a class of first-order Hamiltonians corre-
sponding to unbounded control sets and under assumptions including deterministic
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linear quadratic problems have been addressed by several authors; see, e.g., the book
by Bensoussan [10], the papers of Alvarez [2], Bardi and Da Lio [4], Cannarsa and Da
Prato [12], and Rampazzo and Sartori [40] in the case of convex operators, and the
papers of Da Lio and McEneaney [16] and Ishii [22] for more general operators. As
for second-order Hamiltonians under quadratic growth assumptions, Ito [23] obtained
the existence of locally Lipschitz solutions to particular equations of the form (1.1)
under more regularity conditions on the data, by establishing a priori estimates on the
solutions, whereas Crandall and Lions in [14] proved a uniqueness result for very par-
ticular operators depending only on the Hessian matrix of the solution. Kobylanski
[26] studied equations with the same kind of quadratic nonlinearity in the gradient as
ours, but her existence and uniqueness results hold in the class of bounded viscosity
solutions. Finally, one can find existence and uniqueness results for viscosity solu-
tions which may have a quadratic growth in [7] for quasilinear degenerate parabolic
equations.

The second question we deal with in this paper concerns the link between the
control problem (1.4) and equation (1.5). The rigorous connection between the
Hamilton–Jacobi–Bellman and optimal control is usually performed by means of a
principle of optimality. For deterministic control problems which lead to a first-
order Hamilton–Jacobi equation, see Bardi and Capuzzo Dolcetta [3] and Barles [6];
for the connections between stochastic control problems and second-order Hamilton–
Jacobi–Bellmann equations see Fleming and Rishel [18], Krylov [27], Lions [31, 32, 33],
Fleming and Soner [19], Yong and Zhou [41, Theorem 3.3], and the references therein.

However, for stochastic differential equations with unbounded controls as in sto-
chastic linear quadratic problems, additional difficulties arise. Some results in this
direction were obtained for infinite horizon problems, in the deterministic case by
Barles [5] and in the stochastic case by Alvarez [1]. In this paper, we characterize the
value function (1.4) as the unique solution of (1.5). Actually, our results apply for a
larger class of unbounded stochastic control problems

V (x, t) = inf
αs∈At

E

{∫ T

t

�(Xs, s, αs) ds + ψ(XT )

}
,(1.7)

where the process Xs is governed by{
dXs = b(Xs, s, αs)ds + σ(Xs, s, αs)dWs,
Xt = x,

(1.8)

where A is a possibly unbounded subset of a normed linear space and all the data
are continuous with the following restricted growths: b grows at most linearly with
respect to both the control and the state, σ grows at most linearly with respect to
the state and is bounded in the control variable, ψ can have a quadratic growth, and
� grows at most quadratically with respect to both the control and the state with a
coercitivity assumption

�(x, α, t) ≥ ν

2
|α|2 − C(1 + |x|2).(1.9)

In this case, the Hamilton–Jacobi equation looks like (1.1) with G ≡ 0. (See section 3
for details.) Because of the unbounded framework, the use of an optimality principle
to establish the connection between the control problem and the equation is more
delicate than usual. Thus we follow another strategy which consists in comparing
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directly the value function with the unique solution of the Hamilton–Jacobi equation
as long as this latter exists (see Theorem 3.1).

It is worth noticing that, surprisingly, for the general stochastic linear problem, it
is not even clear how to give sense to the partial differential equation associated to the
stochastic control problem! For instance, consider again the above linear quadratic
problem where σ(x, t, α) = C(t)x+D(t) is replaced by C(t)x+D(t)α which depends
now both on the state and the control. Taking A,C,Q ≡ 0 and B,R,D ≡ 1 to
simplify, the Hamiltonian in (1.5) becomes

sup
α∈Rk

{
−〈α,Dw〉 − |α|2 − |α|2

2
Δw

}
,(1.10)

which is +∞ as soon as Δw ≤ −2. The connection between the control problem and
the equation in this case was already investigated (see Yong and Zhou [41] and the
references therein). The results need a priori knowledges about the value function.
(The value function and its derivatives are supposed to remain in the domain of the
Hamiltonian.) We do not consider the case when σ is unbounded in the control
variable in this paper; this is the aim of a future work. When finishing this paper, we
learned that Krylov [28] succeeded in treating the general stochastic linear regulator.
But his assumptions are designed to solve this latter problem (the data are supposed
to be polynomials of degree 1 or degree 2 in (x, α)) and the proofs rely heavily on the
particular form of the data.

Another important example of equations of type (1.1) where concave and convex
Hamiltonians appear is the first-order equation

∂w

∂t
+ min

α∈Rk

{
γ2

2
|α|2 − 〈σ(x)α,Dw〉

}
+ max

β∈B
{−〈g(x, β), Dw〉 − f(x, β)} = 0(1.11)

in R
N × (0, T ). This kind of equation is related to the so-called H∞-Robust control

problem. This problem can be seen as a deterministic differential game. See Example
3.3 and McEneaney [34, 35, 36], Nagai [37], and the references therein for details.

Finally, we point out that one of the main fields of application of these types of
equations and problems is mathematical finance; see, e.g., Lamberton and Lapeyre
[29], Fleming and Soner [19], Øksendal [38], and the references therein for an intro-
duction. For recent papers which deal with equations we are interested in, see Pham
[39] and Benth and Karlsen [11] (see Example 3.2).

Let us now describe how the paper is organized.
Section 2 is devoted to the study of (1.1). More precisely, we prove a uniqueness

result for (1.1) in the set of continuous functions growing at most quadratically in the
state variable under the assumption that either A or B is an unbounded control set,
the functions b, g and �, f grow, respectively, at most linearly and quadratically with
respect to both the control and the state. Instead the functions σ, c are assumed to
grow at most linearly with respect to the state and bounded in the control variable.

One of the main tools within the theory of viscosity solutions to obtain a unique-
ness result is to show a comparison result between viscosity upper semicontinuous
subsolutions and lower semicontinuous supersolutions to (1.1); see Theorem 2.1. In-
deed, the existence and the uniqueness (Corollary 2.1) follow as a by-product of the
comparison result and Perron’s method of Ishii [21]. However, under our general as-
sumptions one cannot expect the existence of a solution for all times, as Example 2.2
shows.
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The method we use in proving the comparison Theorem 2.1 is similar in spirit to
the one applied by Ishii in [22] in the case of first-order Hamilton–Jacobi equations and
it is based on a kind of linearization procedure of the equation. Roughly speaking,
it consists of three main steps: (1) one computes the equations satisfied by Ψμ =
U − μV (U, V being, respectively, the sub- and supersolution of the original pde and
0 < μ < 1 a parameter); (2) for all R > 0 one constructs a strict supersolution χμ

R

of the linearized equation such that χμ
R(x, t) → 0 as R → ∞; (3) one shows that

Ψμ(x, t) ≤ χμ
R(x, t) and then one concludes by letting first R → ∞ and then μ → 1.

In section 3, we give applications to finite horizon stochastic control problems
previously mentioned and we provide some examples.

In section 4, we deal with particular cases where both controls are unbounded
but H (or G) is “predominant” in H + G (see Remark 2.2 and Theorem 4.1). For
instance, we are able to deal with equations of the form

∂w

∂t
− |Σ1(x)Dw|2

2
+

|Σ2(x)Dw|2
2

= 0 in R
N × (0, T ),

where Σ1, Σ2 are N×k matrices, which corresponds to the case α, β ∈ R
k, σ ≡ c ≡ 0,

b(x, t, α) = Σ1(x)α, g(x, t, β) = Σ2(x)β, and �(x, t, α) = |α|2/2, f(x, t, β) = |β|2/2 in
(1.2) and (1.3). The comparison result applies if either (Σ1Σ

T
1 )(x) > (Σ2Σ

T
2 )(x) or

(Σ1Σ
T
1 )(x) < (Σ2Σ

T
2 )(x).

When neither H nor G is predominant, the problem seems to be very difficult
and our only result takes place in dimension N = 1: we have comparison for

∂w

∂t
+ h(x, t)|Dw|2 = 0 in R

N × (0, T ),(1.12)

where the function h may change sign (see (A5) for details). Finally, we point out
that assumptions and proofs in section 4 essentially differ from those of Theorem 2.1
(see Remark 4.1).

2. Comparison result for the Hamilton–Jacobi equation (1.1). In order
to give precise assumptions on (1.1) and (1.2), (1.3), we need to introduce some
notation. For all integers N,M ≥ 1 we denote by MN,M (R) (respectively, SN (R),
S+
N (R)) the set of real N × M matrices (respectively, real symmetric matrices, real

symmetric nonnegative N ×N matrices). All the norms which appear in the sequel
are denoted by | · |. The standard Euclidean inner product in R

N is written 〈·, ·〉.
We recall that a modulus of continuity m : R → R

+ is a nondecreasing continuous
function such that m(0) = 0. Finally, B(x, r) = {y ∈ R

N : |x − y| < r} is the open
ball of center x and radius r > 0.

We list the basic assumptions on H, G and ψ. We assume that there exist positive
constants C̄ and ν such that

(A1) (assumptions on H given by (1.2)):

(i) A is a subset of a separable complete normed space. The main point here is
the possible unboundedness of A. Therefore, to emphasize this property in
what follows, we take A = R

k for some k ≥ 1 (see Remark 2.1 above);
(ii) b ∈ C(RN × [0, T ] × R

k; RN ) satisfying for x, y ∈ R
N , t ∈ [0, T ], α ∈ R

k,

|b(x, t, α) − b(y, t, α)| ≤ C̄(1 + |α|)|x− y|,
|b(x, t, α)| ≤ C̄(1 + |x| + |α|);
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(iii) � ∈ C(RN × [0, T ] × R
k; R) satisfying for x ∈ R

N , t ∈ [0, T ], α ∈ R
k,

C̄(1+|x|2+|α|2)≥ �(x, t, α) ≥ ν

2
|α|2+�0(x, t, α) with �0(x, t, α)≥−C̄(1+|x|2),

and for every R > 0, there exists a modulus of continuity mR such that for
all x, y ∈ B(0, R), t ∈ [0, T ], α ∈ R

k,

|�(x, t, α) − �(y, t, α)| ≤ (1 + |α|2)mR(|x− y|);(2.1)

(iv) σ ∈ C(RN×[0, T ]×R
k;MN,M (R)) is locally Lipschitz continuous with respect

to x uniformly for (t, α) ∈ [0, T ] × R
k and satisfies for every x ∈ R

N , t ∈
[0, T ], α ∈ R

k,

|σ(x, t, α)| ≤ C̄(1 + |x|).

(A2) (assumptions on G given by (1.3)):
(i) B is a bounded subset of a normed space;
(ii) g ∈ C(RN × [0, T ] ×B; RN ) is locally Lipschitz continuous with respect to x

uniformly for (t, β) ∈ [0, T ]×B and satisfies for every x ∈ R
N , t ∈ [0, T ], β ∈

B,

|g(x, t, β)| ≤ C̄(1 + |x|);

(iii) f ∈ C(RN × [0, T ] × B; R) is locally uniformly continuous with respect to x
uniformly in (t, β) ∈ [0, T ]×B and satisfies for every x ∈ R

N , t ∈ [0, T ], β ∈
B,

|f(x, t, β)| ≤ C̄(1 + |x|2);

(iv) c ∈ C(RN × [0, T ]×B;MN,M (R)) is locally Lipschitz continuous with respect
to x uniformly for (t, β) ∈ [0, T ] × B and satisfies for every x ∈ R

N , t ∈
[0, T ], β ∈ B,

|c(x, t, β)| ≤ C̄(1 + |x|).

(A3) (assumptions on the initial condition ψ):
ψ ∈ C(RN ; R) and

|ψ(x)| ≤ C̄(1 + |x|2) for every x ∈ R
N .

Remark 2.1. (i) Concerning (A1)(i), we choose to take A = R
k in this section to

emphasize the possible unboundedness of A in the notation. Indeed, the calculations
when A is any subset of a complete separable normed space are the same and are
based on the following inequality: for every ρ > 0, γ ∈ R,

inf
α∈A

{
ρ|α|2 + γ|α|

}
= inf

α∈A

{(
√
ρ|α|2 +

γ

2
√
ρ

)2

− γ2

4ρ

}
≥ −γ2

4ρ
.(2.2)

(ii) Note that with respect to the gradient variable, H is a concave function and
G is a convex function. Under Assumptions (A1) and (A2), classical computations
show that H and G are continuous in all their variables.

Example 2.1. The typical case we have in mind is when H is quadratic in the
gradient variable, for instance, A = R

k, �(x, t, α) = |α|2/2, σ ≡ 0, and b(x, t, α) =
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a(x)α, where a ∈ C(RN ;MN,k(R)) is locally Lipschitz continuous and bounded for
all x ∈ R

N . It leads to

H(x, p) = inf
α∈Rk

{
〈a(x)α, p〉 +

|α|2
2

}
= −|a(x)T p|2

2
.(2.3)

This particular example is treated both in Ishii [22] and in Da Lio and McEneaney [16]
in the case of first-order Hamilton–Jacobi–Bellman equations under more restrictive
assumptions than ours. In particular, a has to be a nonsingular matrix in [22]. See
also section 4 for some further comments.

For any O ⊆ R
K , we denote by USC(O) the set of upper semicontinuous functions

in O and by LSC(O) the set of lower semicontinuous functions in O.
The main result of this section is the following theorem.
Theorem 2.1. Assume (A1)–(A3). Let U ∈ USC(RN × [0, T ]) be a viscosity

subsolution of (1.1) and V ∈ LSC(RN × [0, T ]) be a viscosity supersolution of (1.1).
Suppose that U and V have quadratic growth, i.e., there exists Ĉ > 0 such that for all
x ∈ R

N , t ∈ [0, T ],

|U(x, t)|, |V (x, t)| ≤ Ĉ(1 + |x|2).(2.4)

Then U ≤ V in R
N × [0, T ].

The question of the existence of a continuous solution to (1.1) is not completely
obvious. In the framework of viscosity solutions, existence is usually obtained as a
consequence of the comparison principle by means of Perron’s method as soon as we
can build a sub- and a supersolution to the problem. Here, the comparison principle
is proved in the class of functions satisfying the quadratic growth condition (2.4).
Therefore, to perform the above program of existence, we need to be able to build
quadratic sub- and supersolutions to (1.1). In general one can expect to build such
sub- and supersolutions only for a short time. (See the following lemma and Corollary
2.1.) In Example 2.2, we see that solutions may not exist for all time.

Lemma 2.1. Assume (A1)–(A3). If K ≥ C̄ + 1 and ρ are large enough, then
u(x, t) = −Keρt(1 + |x|2) is a viscosity subsolution of (1.1) in R

N × [0, T ] and there
exists 0 < τ ≤ T such that u(x, t) = Keρt(1+ |x|2) is a viscosity supersolution of (1.1)
in R

N × [0, τ ].
Proof of Lemma 2.1. We only verify that u is a supersolution (the proof that

u is a subsolution being similar and simpler). Since K ≥ C̄ + 1, we have u(x, 0) =
K(1 + |x|2) ≥ ψ(x). Moreover, since u is smooth and using (A1), (A2), and (2.2), we
have

∂u

∂t
+ H(x, t,Du,D2u) + G(x, t,Du,D2u)

= Kρeρt(1 + |x|2) + H(x, t, 2Keρtx, 2KeρtId) + G(x, t, 2Keρtx, 2KeρtId)

≥ Kρeρt(1 + |x|2) + inf
α∈Rk

{
−C̄(1 + |x| + |α|)}2Keρt|x| + ν

2
|α|2

− C̄(1 + |x|2) − C̄2(1 + |x|)22Keρt
}

+ sup
β∈B

{−C̄(1 + |x|)2Keρt|x| − C̄(1 + |x|2) − C̄2(1 + |x|)22Keρt}

≥ Kρeρt(1 + |x|2) −K(10C̄ + 12C̄2)eρt(1 + |x|2) + inf
α∈Rk

{
−2KC̄eρt|x||α| + ν

2
|α|2
}

≥
[
ρ− 10C̄ − 12C̄2 − 2C̄2Keρt

ν

]
Keρt(1 + |x|2).
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We notice that if tρ ≤ 1 and ρ > 0 is large enough, then the quantity between the
brackets is nonnegative. Hence the result follows with 0 < τ = 1/ρ.

As explained above, Theorem 2.1 together with Perron’s method implies the fol-
lowing result. We omit its proof since it is standard.

Corollary 2.1. Assume (A1)–(A3). Then there is τ > 0 such that there exists
a unique continuous viscosity solution of (1.1) in R

N × [0, τ ] satisfying the growth
condition (2.4).

Remark 2.2. (i) For global existence results under further regularity assumptions
on the data see [23]. For a case where blowup in finite time occurs, see Example 2.2.

(ii) Theorem 2.1 and Corollary 2.1 hold when replacing “inf” by “sup” and “�”
by “−�” in H or/and “sup” by “inf” and “f” by “−f” in G. To adapt the proofs, one
can use the change of function w′ := −w or to consider μU − V instead of U − μV
in the proof of Theorem 2.1. Therefore it is possible to deal either with unbounded
controls in the sup in order to have a convex quadratic Hamiltonian or to deal with
unbounded control in the inf in order to have a concave quadratic Hamiltonian.

(iii) Up to replace t by T − t, all our results hold for⎧⎨⎩ −∂w

∂t
+ H(x, t,Dw,D2w) + G(x, t,Dw,D2w) = 0 in R

N × (0, T ),

w(x, T ) = ψ(x) in R
N .

(2.5)

This latter equation with terminal condition is the one which arises usually in control
theory; see Example 2.2 and section 3.

(iv) In this section, we are not able to consider the case when both α in H and β
in G are unbounded controls. Roughly speaking, a reason is that unbounded controls
lead to quadratic Hamiltonians. When both controls are unbounded, we then obtain
two quadratic-type Hamiltonians, a concave and a convex one. Let us explain the
difficulty on a model case where

H(x, p) = inf
α∈Rk

{
〈a1(x)α, p〉 +

|α|2
2

}
= −|a1(x)T p|2

2
,

G(x, p) = sup
β∈Rk

{
〈a2(x)β, p〉 − |β|2

2

}
=

|a2(x)T p|2
2

,

where a1, a2 ∈ C(RN ;MN,k(R)) are locally Lipschitz continuous and bounded. The
difficulty to treat such a case is related to our strategy of proof which relies on a kind
of linearization procedure (see Lemma 2.2 and its proof). In this simple case, this
linearization uses in a crucial way the convex inequality

|p|2
μ

− |q|2 ≥ −|p− q|2
1 − μ

for all p, q ∈ R
N and 0 < μ < 1,

which does not work at the same time for a concave and a convex Hamiltonian. Of
course, in this simple case, there are alternative ways to solve the problem: we have

H(x, p) + G(x, p) =
1

2
〈(a1 + a2)(a2 − a1)

T p, p〉,(2.6)

then we can apply Theorem 2.1 to H given by 2.6 to add some assumptions on a1

or a2 (for instance, (a1 + a2)(a2 − a1)
T is a nonnegative symmetric matrix with a

locally Lipschitz squareroot). In section 4, we provide another approach to solving
such equations (see Theorem 4.1 and Remark 4.1).
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Example 2.2 (a deterministic linear quadratic control problem). Linear quadratic
control problems (see also section 3 for stochastic linear quadratic control problems)
are the typical examples we have in mind since they lead to Hamilton–Jacobi equations
with quadratic terms. On the other hand, the value function can blow up in finite
time. Consider the control problem (in dimension 1 for sake of simplicity){

dXs = αs ds, s ∈ [t, T ], 0 ≤ t ≤ T,
Xt = x ∈ R,

where the control α ∈ At := L2([t, T ]; R) and the value function is given by

V (x, t) = inf
α∈At

{
ρ

∫ T

t

(|αs|2 + |Xs|2) ds− |XT |2
}

for some ρ > 0.

Then the value function, when it is finite, is the unique viscosity solution of the
Hamilton–Jacobi equation of type (1.1) which reads{

−wt + 1
4ρ |wx|2 = ρx2 in R × (0, T ),

w(x, T ) = −x2.
(2.7)

(See Theorem 3.1 for a proof of this result.) Looking for a solution w under the form
w(x, t) = ϕ(t)x2, we obtain that ϕ is a solution of the differential equation

−ϕ′ +
ϕ2

ρ
= ρ in (0, T ), ϕ(T ) = −1.(2.8)

We distinguish two cases.
Case 1. If ρ ≥ 1, then the solution of (2.8) is defined in the whole interval [0, T ]

for all T > 0 and is given by

ϕ(t) = ρ
(ρ− 1)e2(T−t) − (ρ + 1)

(ρ− 1)e2(T−t) + ρ + 1
,(2.9)

which is a function decreasing from ϕ(0) to −1. Therefore (2.7) admits a unique
viscosity solution in R × [0, T ] which is the value function of the control problem

V (x, t) = ϕ(t)x2.

Note that if ρ > 1 and T > ln((ρ + 1)/(ρ − 1))/2, then ϕ(0) > 0. It follows that the
value function satisfies (2.4) but is neither bounded from above nor bounded from
below.

Case 2. If 0 < ρ < 1 and T > ln((1 + ρ)/(1 − ρ))/2, then the solution of (2.8) is
given by (2.9) in (τ̄ , T ], where

τ̄ := T − 1

2
ln

(
1 + ρ

1 − ρ

)
,

and blows up at t = τ̄ . Therefore we have existence for (2.7) only in R × (τ̄ , T ].
Proof of Theorem 2.1. We divide the proof of the theorem into two steps.
Step 1. We first assume that �0 ≥ 0, f ≤ 0, and ψ ≤ 0 in (A1), (A2), and (A3).
The proof is based on the two following lemmas, whose proofs are postponed.
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Lemma 2.2 (linearization of (1.1)). Let 0 < μ < 1 and set Ψ = U − μV. Suppose
�0 ≥ 0, f ≤ 0 and ψ ≤ 0. Then Ψ is a USC viscosity subsolution of

L[w] :=
∂w

∂t
− C̄2

2ν(1 − μ)
|Dw|2 − 2C̄(1 + |x|)|Dw|

− sup
α∈Rk

Tr
[
σ(x, t, α)σT (x, t, α)D2w

]
− sup

β∈B
Tr
[
c(x, t, β)cT (x, t, β)D2w

]
= 0(2.10)

in R
N × (0, T ), with the initial condition

w(·, 0) ≤ (1 − μ)ψ ≤ 0.(2.11)

Lemma 2.3. Consider the parabolic problem{
ϕt − r2ϕrr − rϕr = 0 in [0,+∞) × (0, T ],
ϕ(r, 0) = ϕR(r) in [0,+∞),

(2.12)

where ϕR(r) = max{0, r−R} for some R > 0. Then (2.12) has a unique solution ϕ ∈
C([0,+∞)×[0, T ])∩C∞([0,+∞)×(0, T ]) such that for all t ∈ (0, T ], ϕ(·, t) is positive,
nondecreasing, and convex in [0,+∞). Moreover, for every (r, t) ∈ [0,+∞) × (0, T ],

ϕ(r, t) ≥ ϕR(r), 0 ≤ ϕr(r, t) ≤ eT and ϕ(r, t) −→
R→+∞

0.(2.13)

Let Φ(x, t) = ϕ(C(1+ |x|2)eLt,Mt)+ ηt, where ϕ is given by Lemma 2.3, L,M, η
are positive constants to be determined, and C > max{C̄, Ĉ}, where C̄ and Ĉ are the
constants appearing in the assumptions.

Claim. We can choose the constants L and M such that Φ is a strict supersolution
of (2.10) at least in R

N × (0, τ ] for small τ.
To prove the claim, we have to show that L[Φ] > 0 in R

N × (0, τ ] for some τ > 0.
The function Φ ∈ C(RN × [0, T ]) ∩ C∞(RN × (0, T ]) and we have, for t > 0,

Φt = η + LC(1 + |x|2)eLtϕr + Mϕt, DΦ = 2CxeLtϕr,

and D2Φ = 2C Id eLtϕr + 4C2e2Ltϕrr x⊗ x.

Using (A1) and (A2), for all (x, t) ∈ R
N × (0, T ], we get

L[Φ] ≥ η + LC(1 + |x|2)eLtϕr + Mϕt −
C̄2

2ν(1 − μ)
|2CxeLtϕr|2

− 2C̄(1 + |x|)|2CxeLtϕr| − 2C̄2(1 + |x|)2|2C Id eLtϕr + 4C2e2Ltx⊗ xϕrr|.

Setting r = C(1 + |x|2)eLt and since C > C̄, we obtain

L[Φ] ≥ η + Mϕt − 16C2r2ϕrr − 8C(C + 1)rϕr +

(
L− 2C3eLtϕr

ν(1 − μ)

)
rϕr.

Our aim is to fix the parameters M and L in order to make L[Φ] positive.
We first choose M > 16C2 + 8C. Since ϕ is a solution of (2.12) (Lemma 2.3), we

obtain

L[Φ] > η +

(
L− 2C3eLtϕr

ν(1 − μ)

)
rϕr.(2.14)
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Then, taking L > 2C3eT+1

ν(1−μ) , we get L[Φ] > η > 0 for all x ∈ R
N and t ∈ (0, τ ], where

τ = 1/L. This proves the claim.

We continue by considering

max
RN×[0,τ ]

{Ψ − Φ},(2.15)

where Ψ is the function defined in Lemma 2.2 which is a viscosity subsolution of (2.10)
and Φ is the strict supersolution of (2.10) in R

N × (0, τ ] we built above.

From (2.13), we have Φ(x, t) ≥ C(1 + |x|2) > C̄(1 + |x|2) ≥ Ψ(x, t) for |x| ≥ R. It
follows that the maximum (2.15) is achieved at a point (x̄, t̄) ∈ R

N × [0, τ ]. We claim
that t̄ = 0. Indeed, suppose by contradiction that t̄ > 0. Then since Ψ is a viscosity
subsolution of (2.10), by taking Φ as a test function, we would have L[Φ](x̄, t̄) ≤ 0,
which contradicts the fact that Φ is a strict supersolution.

Thus, for all (x, t) ∈ R
N × [0, τ ],

Ψ(x, t) − Φ(x, t) ≤ Ψ(x̄, 0) − Φ(x̄, 0) ≤ (1 − μ)ψ(x̄),

where the last inequality follows from (2.11) and the fact that Φ ≥ 0. Since we assumed
that ψ is nonpositive, for every (x, t) ∈ R

N × [0, τ ], we have Ψ(x, t) ≤ Φ(x, t). Letting
η go to 0 and R to +∞, we get by Lemma 2.3, Ψ ≤ 0 in R

N × [0, τ ].

By a step-by-step argument, we prove that Ψ ≤ 0 in R
N × [0, T ]. Therefore

Ψ = U − μV ≤ 0 in R
N × [0, T ]. Letting μ go to 1, we obtain U ≤ V as well, which

concludes Step 1.

Step 2. The general case. The idea is to reduce to the first case by a suitable
change of function (see Ishii [22]). Suppose that w is a solution of (1.1). Then, a
straightforward computation shows that w̄(x, t) = w(x, t)−C(1+|x|2)eρt for C > C̄, Ĉ
and ρ > 0 is a solution of

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w̄t + inf

α∈Rk

{
〈b(x, t, α), Dw̄〉 + �̄(x, t, α) − Tr

[
σ(x, t, α)σT (x, t, α)D2w̄

]}
+ sup

β∈B

{
−〈g(x, t, β), Dw̄〉 − f̄(x, t, β) − Tr

[
c(x, t, β)cT (x, t, β)D2w̄

]}
= 0,

w̄(x, 0) = ψ(x) − C(1 + |x|2),

(2.16)

where

�̄(x, t, α) = �(x, t, α) + 2Ceρt〈b(x, t, α), x〉 − 2Ceρt Tr
[
σ(x, t, α)σT (x, t, α)

]
+

1

2
Cρeρt(1 + |x|2),

f̄(x, t, β) = f(x, t, β) + 2Ceρt〈g(x, t, β), x〉 + 2Ceρt Tr
[
c(x, t, β)cT (x, t, β)

]
− 1

2
Cρeρt(1 + |x|2).

We observe that �̄ and f̄ still satisfy, respectively, assumptions (A1)(iii) and (A2)(iii).
Moreover from (A3), we can choose C > C̄ in order that ψ̄ ≤ 0.

Next we show that if ρ > 0 is chosen in a suitable way, then �̄(x, t, α) ≥ ν̄|α|2/2 for
all (x, t, α) ∈ R

N × [0, 1/ρ]×R
k and f(x, t, β) ≤ 0 for all (x, t, β) ∈ R

N × [0, 1/ρ]×B.
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Indeed, for all (x, t, α) ∈ R
N × [0, 1/ρ] × R

k by (A1) we have

�̄(x, t, α) ≥ ν

2
|α|2 − C̄(1 + |x|2) − 2CC̄eρt(1 + |x| + |α|)|x| − 2CC̄2eρt(1 + |x|)2

+
1

2
Cρeρt(1 + |x|2)

≥ ν

2
|α|2 − (C̄ + 4CC̄ + 4CC̄2)eρt(1 + |x|2) − 2CC̄eρt|α||x|

+
1

2
Cρeρt(1 + |x|2).

But

2CC̄eρt|α||x| ≤ ν

4
|α|2 +

16C2C̄2e2ρt

ν
|x|2 .

Therefore, by choosing

ρ > 2
C̄

C
+ 8C̄ + 8C̄2 +

32CC̄2e

ν
,(2.17)

we have

�̄(x, t, α) ≥ ν

4
|α|2 for all (x, t, α) ∈ R

N × [0, 1/ρ] × R
k,

which is the desired estimate with ν̄ = ν/2 > 0 and �0 ≡ 0.
The next step consists in choosing ρ such that f̄ ≤ 0. Using (A2), the same kind

of calculation as above shows that taking

ρ > 8(C̄ + C̄2) + 2(2.18)

ensures f̄ ≤ 0.
Finally, if we choose C > C̄ and ρ as the maximum of the two quantities appearing

in (2.17) and (2.18), we are in the framework of Step 1 in R
N × [0, ρ]. Setting Ū =

U − C(1 + |x|2)eρt and V̄ = V − C(1 + |x|2)eρt, from Step 1 we get Ū ≤ V̄ in
R

N × [0, 1/ρ]; thus U ≤ V in R
N × [0, 1/ρ]. Then by a step-by-step argument we

obtain the comparison in R
N × [0, T ].

Remark 2.3. A key fact in the proof to build a strict supersolution of (2.10) is to
use a function which is the solution of the auxiliary—and simpler—pde (2.12). This
idea comes from mathematical finance to deal with equations related to the Blake and
Scholes formula. See, for instance, Lamberton and Lapeyre [29] and Barles et al. [8].

We turn to the proof of Lemmas 2.2 and 2.3.
Proof of Lemma 2.2. For 0 < μ < 1, let Ṽ = μV and Ψ = U − Ṽ . We divide the

proof into steps.
Step 1. A new equation for Ṽ . It is not difficult to see that if V is a supersolution

of (1.1), then Ṽ is a supersolution of

Ṽt + μH

(
x, t,

DṼ

μ
,
D2Ṽ

μ

)
+ μG

(
x, t,

DṼ

μ
,
D2Ṽ

μ

)
≥ 0 in R

N × (0, T ),

Ṽ (x, 0) ≥ μψ(x) in R
N .

(2.19)

Step 2. Viscosity inequalities for U and Ṽ . This step is classical in viscosity theory.
Let ϕ ∈ C2(RN × (0, T ]) and (x̄, t̄) ∈ R

N × (0, T ] be a local maximum of Ψ − ϕ. We
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can assume that this maximum is strict in the same ball B(x̄, r) × [t̄ − r, t̄ + r] (see
[6] or [3]). Let

Θ(x, y, t) = ϕ(x, t) +
|x− y|2

ε2

and consider

Mε := max
x,y∈B(x̄,r), t∈[t̄−r,t̄+r]

{U(x, t) − Ṽ (y, t) − Θ(x, y, t)}.

This maximum is achieved at a point (xε, yε, tε) and, since the maximum is strict, we
know [6], [3] that

|xε − yε|2
ε2

→ 0 as ε → 0

and

Mε =U(xε, tε)−Ṽ (yε, tε)−Θ(xε, yε, tε) −→ U(x̄, t̄)−Ṽ (x̄, t̄)−ϕ(x̄, t̄) = Ψ(x̄, t̄)−ϕ(x̄, t̄).

This means that at the limit ε → 0, we obtain some information on Ψ − ϕ at (x̄, t̄)
which will provide the new equation for Ψ. Before that, we can take Θ as a test
function to use the fact that U is a subsolution and Ṽ a supersolution. Indeed,
(x, t) ∈ B(x̄, r)× [t̄− r, t̄+ r] �→ U(x, t)− Ṽ (yε, t)−Θ(x, yε, t) achieves its maximum
at (xε, tε) and (y, t) ∈ B(x̄, r)× [t̄−r, t̄+r] �→ −U(xε, t)+ Ṽ (y, t)+Θ(xε, y, t) achieves
its minimum at (yε, tε). Thus, by Theorem 8.3 in the user’s guide [15], for every ρ > 0,
there exist a1, a2 ∈ R and X,Y ∈ SN such that

(a1, DxΘ(xε, yε, tε), X) ∈ P̄2,+(U)(xε, tε), (a2,−DyΘ(xε, yε, tε), Y ) ∈ P̄2,−(Ṽ )(yε, tε),

a1 − a2 = Θt(xε, yε, tε) = ϕt(xε, tε) and

−
(

1

ρ
+ |M |

)
I ≤
(

X 0
0 −Y

)
≤ M + ρM2, where M = D2Θ(xε, yε, tε).(2.20)

Setting pε = 2
xε − yε

ε2
, we have

DxΘ(xε, yε, tε) = pε + Dϕ(xε, tε) and DyΘ(xε, yε, tε) = −pε,

and

M =

(
D2ϕ(xε, tε) + 2I/ε2 −2I/ε2

−2I/ε2 2I/ε2

)
.

Thus, from (2.20), it follows

〈Xp, p〉 − 〈Y q, q〉 ≤ 〈D2ϕ(xε, tε)p, p〉 +
2

ε2
|p− q|2 + m

( ρ

ε4

)
,(2.21)

where m is a modulus of continuity which is independent of ρ and ε. In what follows,
m will always denote a generic modulus of continuity independent of ρ and ε.
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Writing the subsolution viscosity inequality for U and the supersolution inequality
for Ṽ by means of the semijets and subtracting the inequalities, we obtain

ϕt(xε, tε) + H
(
xε, tε, Dϕ(xε, tε) + pε, X) − μH

(
yε, tε,

pε
μ
,
Y

μ

)
+ G
(
xε, tε, Dϕ(xε, tε) + pε, X) − μG

(
yε, tε,

pε
μ
,
Y

μ

)
≤ 0.(2.22)

Step 3. Estimate of G := G
(
xε, tε, Dϕ(xε, tε) + pε, X) − μG

(
yε, tε,

pε

μ , Y
μ

)
. For

simplicity, we set

c(xε, tε, β) = cx and c(yε, tε, β) = cy.

We have

G = sup
β∈B

{
−〈g(xε, tε, β), Dϕ(xε, tε) + pε〉 − f(xε, tε, β) − Tr

[
cxc

T
xX
]}

− sup
β∈B

{
−〈g(yε, tε, β), pε〉 − μf(yε, tε, β) − Tr

[
cyc

T
y Y
]}

≥ inf
β∈B

{〈g(yε, tε, β) − g(xε, tε, β), pε〉 − 〈g(xε, tε, β), Dϕ(xε, tε)〉

−(1 − μ)f(yε, tε, β) + f(yε, tε, β) − f(xε, tε, β) − Tr
[
cxc

T
xX − cyc

T
y Y
]}

.

From (A2), if Lg,r is the Lipschitz constant of g in B(x̄, r)× [t̄−r, t̄+r], then we have

〈g(yε, tε, β) − g(xε, tε, β), pε〉 ≤ Lg,r|yε − xε||pε| ≤ 2Lg,r
|yε − xε|2

ε2
= m(ε)

and

−〈g(xε, tε, β), Dϕ(xε, tε)〉 ≥ −C̄(1 + |xε|)|Dϕ(xε, tε)| .

By assumption, f ≤ 0 thus −(1 − μ)f(yε, tε, β) ≥ 0. Again from (A2) it follows that

f(yε, tε, β) − f(xε, tε, β) ≥ −m(|yε − xε|).

Let us denote by (ei)1≤i≤N the canonical basis of R
N . By using (2.21), we obtain

Tr
[
cxc

T
xX − cyc

T
y Y
]

=

N∑
i=1

〈Xcxei, cxei〉 − 〈Y cyei, cyei〉

≤ Tr
[
cxc

T
xD

2ϕ(xε, tε)
]
+

2

ε2
|cx − cy|2 + m

( ρ

ε4

)
≤ Tr

[
cxc

T
xD

2ϕ(xε, tε)
]
+ 2L2

c,r

|xε − yε|2
ε2

+ m
( ρ

ε4

)
≤ Tr

[
cxc

T
xD

2ϕ(xε, tε)
]
+ m(ε) + m

( ρ

ε4

)
,

where Lc,r is a Lipschitz constant for c in B̄(x, r). Hence, since all the moduli are
independent of ε, ρ and the control, we have

G ≥ −C̄(1 + |xε|)|Dϕ(xε, tε)| + inf
β∈B

{
−Tr
[
c(xε, tε, β)c(xε, tε, β)TD2ϕ(xε, tε)

]}
+ m(ε) + m

( ρ

ε4

)
.
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Step 4. Estimate of H := H
(
xε, tε, Dϕ(xε, tε) + pε, X) − μH

(
yε, tε,

pε

μ , Y
μ

)
. With

the same notation as in Step 3, we have

H ≥ inf
α∈Rk

{〈b(xε, tε, α) − b(yε, tε, α), pε〉 + 〈b(xε, tε, α), Dϕ(xε, tε)〉

+ (1 − μ)�(yε, tε, α) + �(xε, tε, α) − �(yε, tε, α) − Tr
[
σxσ

T
xX − σyσ

T
y Y
]}

.

From (A1) these estimates follow:

〈b(xε, tε, α) − b(yε, tε, α), pε〉 ≥ −C̄(1 + |α|)|xε − yε||pε| ≥ −C̄|α|m(ε) + m(ε),

〈b(xε, tε, α), Dϕ(xε, tε)〉 ≥ −C̄(1 + |xε|)|Dϕ(xε, tε)| − C̄|α||Dϕ(xε, tε)|,

�(xε, tε, α) − �(yε, tε, α) ≥ −(1 + |α|2)mr(|xε − yε|) ≥ −|α|2m(ε) + m(ε),

(1 − μ)�(yε, tε, α) ≥ (1 − μ)
(ν

2
|α|2 + �0(x, t, α)

)
≥ ν(1 − μ)

2
|α|2,

where the last inequality follows from the fact that by assumption, �0(x, t, α) ≥ 0.
By proceeding exactly as in Step 3 one can show that

Tr
[
σxσ

T
xX − σyσ

T
y Y
]
≤ Tr

[
σxσ

T
xD

2ϕ(xε, tε)
]
+ m(ε) + m

( ρ

ε4

)
,(2.23)

where m is independent of α. Thus, using (2.2), we have

H ≥ inf
α∈Rk

{(
ν(1 − μ)

2
+ m(ε)

)
|α|2 − C̄(|Dϕ(xε, tε)| + m(ε))|α|

}
+ inf

α∈Rk

{
−Tr
[
σ(xε, tε, α)σ(xε, tε, α)TD2ϕ(xε, tε)

]}
− C̄(1 + |xε|)|Dϕ(xε, tε)| + m(ε) + m

( ρ

ε4

)
≥ − (C̄|Dϕ(xε, tε)| + m(ε))2

2ν(1 − μ) + m(ε)
− C̄(1 + |xε|)|Dϕ(xε, tε)|

+ inf
α∈Rk

{
−Tr
[
σ(xε, tε, α)σ(xε, tε, α)TD2ϕ(xε, tε)

]}
+ m(ε) + m

( ρ

ε4

)
.(2.24)

Step 5. Finally, from (2.22), (2.23), and (2.24), letting first ρ go to 0 and then
sending ε to 0, we obtain

L[ϕ](x̄, t̄) = ϕt(x̄, t̄) −
C̄2

2ν(1 − μ)
|Dϕ(x̄, t̄)|2 − 2C̄(1 + |x̄|)|Dϕ(x̄, t̄)|

+ inf
α∈Rk

{
−Tr
[
σ(x̄, t̄, α)σ(x̄, t̄, α)TD2ϕ(x̄, t̄)

]}
+inf
β∈B

{
−Tr
[
c(x̄, t̄, β)c(x̄, t̄, β)TD2ϕ(x̄, t̄)

]}
≤ 0,

which means exactly that Ψ is a subsolution of (2.10).
Proof of Lemma 2.3. Set χ(s, t) = ϕ(es, t) for (s, t) ∈ R × [0,+∞). A straightfor-

ward calculation shows that ϕ satisfies (2.12) if and only if χ is a solution of the heat
equation {

χt − χss = 0 in R × (0, T ),
χ(s, 0) = ϕR(es) in R.

(2.25)
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Since the initial data satisfy the growth estimate |χ(s, 0)| < es
2

, by classical results
on the heat equation (John [24], Evans [17]), we know there exists a unique classical
solution χ ∈ C(R× [0, T ])×C∞(R× (0, T ]) of (2.25). It is given by the representation
formula: for every (s, t) ∈ R × [0, T ],

χ(s, t) =
1√
4πt

∫
R

e−
(s−y)2

4t ϕR(ey) dy =
1√
4πt

∫ +∞

logR

e−
(s−y)2

4t (ey −R) dy.(2.26)

From the above formula, it follows χ(s, t) > 0 for all (s, t) ∈ R × (0, T ]. Let h > 0.
We have ϕR(es) ≤ ϕR(es+h) for all s ∈ R. Since χ(·+ h, ·) is a solution of (2.25) with
initial data ϕR(es+h), by the maximum principle, we obtain χ(s, t) ≤ χ(s+h, t). This
proves that χ is nondecreasing with respect to s. It follows that ϕ(r, t) = χ(log r, t) is
the unique solution of (2.12) and ϕ ∈ C([0,+∞) × [0, T ]) ∩ C∞((0,+∞) × (0, T ]) is
positive and nondecreasing. Moreover, if the initial data are convex, we know that the
solution of a quasi-linear equation like (2.12) is convex in the space variable for every
time (see, e.g., Giga et al. [20]). Thus ϕ(·, t) is convex in [0,+∞) for all t ∈ [0, T ].

It remains to prove the estimates (2.13). Noticing that ϕR(es) ≤ es and that
(s, t) �→ ϕR(es) and (s, t) �→ es+t are respectively sub- and supersolution (in the
viscosity sense, for example) of (2.25), by the maximum principle, we obtain ϕR(es) ≤
χ(s, t) ≤ es+t ≤ es+T for (s, t) ∈ R × [0, T ]. It follows

ϕR(r) ≤ ϕ(r, t) ≤ eT r for (r, t) ∈ [0,+∞] × [0, T ].(2.27)

This gives the first estimate. To prove the second estimate, we note that ϕ(·, t)
is a convex nondecreasing function satisfying (2.27). It follows 0 ≤ ϕr(r, t) ≤ eT for
(r, t) ∈ [0,+∞]×(0, T ]. The last assertion is obvious, using the dominated convergence
theorem in (2.26). It completes the proof of the lemma.

3. Applications. This section is divided into two parts. In the first part we
consider a finite horizon unbounded stochastic control problem and we characterize
the value function as the unique viscosity solution of the corresponding dynamic
programming equation, which is a particular case of (1.1). In the second part we
list some concrete examples of model cases to which the results of section 1 can be
applied.

3.1. Unbounded stochastic control problems. Let (Ω,F , (Ft)t≥0, P ) be a
filtered probability space, Wt be an Ft-adapted standard M -Brownian motion such
that W0 = 0 a.s., and let A be a subset of a separable normed space (possibly un-
bounded). We consider a finite horizon unbounded stochastic control problem for con-
trolled diffusion processes Xt,x

s whose dynamic is governed by a stochastic differential
equation of the form{

dXt,x
s = b(Xt,x

s , s, αs)ds + σ(Xt,x
s , s, αs)dWs, s ∈ (t, T ), 0 ≤ t ≤ T,

Xt,x
t = x ∈ R

N ,
(3.1)

where the control αs ∈ A, b : R
N × R ×A → R

N is a continuous vector field and σ is
a continuous real N ×M matrix. The payoff to be minimized is

J(t, x, α) = Etx

{∫ T

t

�(Xt,x
s , s, αs) ds + ψ(Xt,x

T )

}
,

where Etx is the expectation with respect to the event Xt,x
t = x, the functions � :

R
N × [0, T ] × A → R and ψ : R

N → R are continuous, αs ∈ At, the set of A-valued
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Ft-progressively measurable controls such that

Etx

(∫ T

t

|αs|2 ds
)

< +∞,(3.2)

and Xt,x
s is the solution of (3.1). The value function is defined by

V (x, t) = inf
αs∈At

J(t, x, αs).(3.3)

At least formally, the dynamic programming equation associated to this control prob-
lem is

−∂w

∂t
+ sup

α∈A

{
−〈b(x, t, α), Dw〉 − �(x, t, α) − 1

2
Tr (σ(x, t, α)σ(x, t, α)TD2w)

}
= 0

(3.4)

in R
N × (0, T ), with the terminal value condition w(x, T ) = ψ(x).
Our main goal is to characterize the value function V as the unique continuous

viscosity solution of (3.4) with the terminal value condition V (x, T ) = ψ(x). We
recall that the fact that the value function is a viscosity solution of (3.4) is in general
obtained by a direct use of the dynamic programming principle. Since we are in
an unbounded control framework, the proof of the dynamic programming principle
is rather delicate, and thus we follow another strategy which consists in comparing
directly V with the unique viscosity solution U of (3.4) obtained by Corollary 2.1
when this latter exists.

We make the following assumptions on the data.
(S0) A is a subset (possibly unbounded) of a separable complete normed space.
(S1) b ∈ C(RN × [0, T ] × A; RN ) and there exists C̄ > 0 such that for all x, y ∈ R

N ,
t ∈ [0, T ], and α ∈ A we have

|b(x, t, α) − b(y, t, α)| ≤ C̄|x− y|,
|b(x, t, α)| ≤ C̄(1 + |x| + |α|);

(S2) σ ∈ C(RN×[0, T ]×A;MN,M ) and there exists C̄ > 0 such that for all x, y ∈ R
N ,

t ∈ [0, T ] and α ∈ A we have

|σ(x, t, α) − σ(y, t, α)| ≤ C̄|x− y|,
|σ(x, t, α)| ≤ C̄(1 + |x|).

Moreover we assume that � and ψ satisfy, respectively, (A1)(iii) and (A3).
We first observe that under the current assumptions (S1) and (S2) on b and σ, for

any control α ∈ At satifying (3.2) and any random variable Z such that E[Z] < ∞,
there exists a unique strong solution of the stochastic differential equation (3.1) which
satisfies

E

{
sup

t≤s≤T
|Xt,Z

s |2
}

< ∞

(see, e.g., Appendix D in [19]). Moreover, we have better estimates on the trajectories
of (3.1).

Lemma 3.1. Assume (S0), (S1), and (S2). For every (x, t) ∈ R
N × [0, T ] and

every αs ∈ At, the solution Xt,x
s of (3.1) corresponding to αs satisfies the following

properties:
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(i) there exists a constant C > 0 such that

Etx

{
sup

t≤s≤T
|Xt,x

s |2
}

≤
(
|x|2 + C(T − t) + CEtx

∫ T

t

|αs|2 ds
)

eC(T−t) ;(3.5)

(ii) there exists Cx,α > 0 which depends on x and on the control αs such that for
all s, s′ ∈ [t, T ],

Etx{|Xt,x
s −Xt,x

s′ |} ≤ Cx,α|s− s′|1/2.(3.6)

In particular for all τ ∈ [t, T ] we have

Etx

{
sup

t≤s≤τ
|Xt,x

s − x|
}

≤ Cx,α|τ |1/2.(3.7)

Proof of Lemma 3.1. We start by proving (i). Let us take an increasing sequence
of C2 functions ϕR : R+ → R+ such that for all R > 0, ϕ′

R(r) = 0 if r > 2R,
ϕ′′
R(r) ≤ 0 and ϕR(r) ↑ r, ϕ′

R(r) ↑ 1, as R → +∞. By applying Ito’s formula to the
process ϕR(|Xt,x

s |2), for a.e. t ≤ τ ≤ T, we have (dropping the argument of ϕR and
its derivatives)

ϕR(|Xt,x
τ |2) = ϕR(|x|2) +

∫ τ

t

2ϕ′
R〈Xt,x

s , b(Xt,x
s , s, αs)〉 ds

+

∫ τ

t

(
ϕ′
RTr[σσT (Xt,x

s , s, αs)] + 2ϕ′′
R|σT (Xt,x

s , s, αs)X
t,x
s |2
)
ds(3.8)

+

∫ τ

t

2ϕ′
R〈Xt,x

s , σ(Xt,x
s , s, αs)dWs〉.

By using the current assumptions on b and σ the following estimate holds:∫ τ

t

(
2ϕ′

R〈Xt,x
s , b(Xt,x

s , s, αs)〉 + ϕ′
RTr[σσT (Xt,x

s , s, αs)]

+ 2 ϕ′′
R|σT (Xt,x

s , s, αs)X
t,x
s |2
)
ds

≤ 2C

∫ τ

t

ϕ′
R|Xt,x

s |(1 + |Xt,x
s | + |αs|) ds + C

∫ τ

t

ϕ′
R(1 + |Xt,x

s |2) ds a.s.,

where the constant C depends on neither the control αs nor on R. Moreover, we
observe that since ϕ′

R = 0 for t > 2R we have

Etx

{∫ τ

t

|ϕ′
R〈Xt,x

s , σ(Xs, s, αs)〉|2 ds
}

< +∞,

hence the expectation of the stochastic integral is zero. By taking the expectation in
(3.9) and applying Fubini’s theorem we obtain

Etx{ϕR(|Xt,x
τ |2)} ≤ ϕR(|x|2) + C

∫ τ

t

Etx{ϕ′
R[2 + 5|Xt,x

s |2 + |αs|2]} ds.

Since ϕR, ϕ
′
R are increasing sequences, we can apply Levi’s theorem. Therefore by

letting R → ∞ we obtain, for every t ≤ τ ≤ T,

Etx{|Xt,x
τ |2} ≤ |x|2 + C

∫ τ

t

Etx{2 + 5|Xt,x
s |2 + |αs|2} ds

≤ |x|2 + 5C

∫ τ

t

Etx|Xt,x
s |2 ds + CEtx

{∫ τ

t

|αs|2 ds
}

+ 2C(T − t).
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Applying Gronwall’s inequality we obtain

Etx{|Xt,x
τ |2} ≤

(
|x|2 + 2C(T − t) + C Etx

{∫ T

t

|αs|2 ds
})

e5C(T−t).

We conclude by Doob’s maximal inequality (see, e.g., [25]).
The proof of (ii) is an extension of the one in the Appendix D in [19] and we leave

it to the reader.
Proposition 3.1. Assume (S0), (S1), (S2), (A1)(iii) for � and (A3) for ψ. Then

there exists 0 ≤ τ < T such that the value function V is finite and satisfies the
quadratic growth condition (2.4) in R

N × [τ, T ].
Proof of Proposition 3.1. We aim to show that if the constants ρ,C > 0 are large

enough, then there exists τ > 0 depending on ρ such that |V (x, t)| ≤ C(1+|x|2)eρ(T−t)

for all (x, t) ∈ R
N × [τ, T ]. The upper estimate is obtained by majorizing directly the

value function with the cost functional corresponding to a constant control and using
the estimates of the trajectories in Lemma 3.1. The most difficult is to prove the
estimate from below since V is defined by an infimum. To this purpose we take any
control αs ∈ At. By applying Ito’s formula to the process (1 + |Xt,x

s |2)eρ(t−s), Xt,x
s

being the trajectory corresponding to αs, we have the following estimate:

d[(1 + |Xt,x
s |2)eρ(T−s)] = −ρeρ(T−s)(1 + |Xt,x

s |2)ds + eρ(T−s)Tr (σσT (Xt,x
s , s, αs))ds

+ 2eρ(T−s)〈Xt,x
s , b(Xt,x

s , s, αs)ds + σ(Xt,x
s , s, αs)dWs〉.(3.9)

Integrating both sides of (3.9) from t to T and taking the expectation we get

Etx{1 + |Xt,x
T |2} − (1 + |x|2)eρ(T−t) = Etx

{∫ T

t

(
− ρ(1 + |Xt,x

s |2)(3.10)

+ 2〈Xt,x
s , b(Xt,x

s , s, αs)〉

+ Tr(σσT (Xs, s, αs)
)
eρ(T−s) ds

}
.

We notice that in the above estimate we supposed that the expectation of the stochas-
tic integral is zero. This is false in general but we can overcome such a difficulty by
an approximation argument which is similar to the one used in the proof of Lemma
3.1. Now for any ε-optimal control αs for V (x, t), by using (3.10), we get

V (x, t) + C(1 + |x|2)eρ(T−t) + ε

≥ Etx

{∫ T

t

(
�(Xt,x

s , s, αs) − 2Ceρ(T−s)〈Xt,x
s , b(Xt,x

s , s, αs)〉

− Ceρ(T−s)Tr(σσT (Xt,x
s , s, αs)) + ρeρ(T−s)C(1 + |Xs|2)

)
ds

+ ψ(Xt,x
T ) + C(1 + |Xt,x

T |2)
}

= Etx

{∫ T

t

�̄(Xt,x
s , s, αs) ds + ψ̄(Xt,x

T )

}
,
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where �̄(x, t, α) := �(x, t, α) − 2Ceρ(T−t)〈b(x, t, α), x〉 − 2Ceρ(T−t)Tr a(x, t, α)
+ Cρeρ(T−t)(1 + |x|2) and ψ̄(x) := ψ(x) + C(1 + |x|2). By analogous arguments
as those used in section 2 one can see that for ρ,C > 0 large enough there is τ > 0
such that �̄ and ψ̄ are nonnegative in R

N × [τ, T ]. Thus we can conclude since ε is
arbitrary.

Remark 3.1. If �, ψ are bounded from below, namely, they satisfy, for some C > 0,
the two conditions �(x, t, α) ≥ ν|α|2 −C and ψ(x) ≥ −C, then V is finite and satisfies
the growth condition (2.4) in R

N × [0, T ] (i.e., for all time).

Next we prove that V is the unique viscosity solution of (3.4). We start with the
following proposition.

Proposition 3.2. Under the assumptions of Proposition 3.1 we have

(i) (superoptimality principle) for all t ∈ (τ, T ] and 0 < h ≤ T − t and for all
stopping time t ≤ θ ≤ T, we have

V (x, t) ≥ inf
αs∈At

Etx

{∫ (t+h)∧θ

t

�(Xt,x
s , s, αs) ds + V∗(X

t,x
(t+h)∧θ, (t + h) ∧ θ)

}
;

(3.11)

(ii) the function V is a supersolution of (3.4) in R
N × [τ, T ].

Proof of Proposition 3.2. The proof of (i) is a standard routine and we refer the
reader, for instance, to [41]. The opposite inequality is more delicate; see Krylov
[27, 28].

We turn to the proof of (ii), showing that the superoptimality principle implies
that V∗ is a viscosity supersolution of (3.4). Let φ ∈ C2(RN × [0, T ]) and (x̄, t̄) ∈
R

N × (τ, T ) be a local minimum of V∗ −φ. We can assume that V∗(x̄, t̄) = φ(x̄, t̄) and
that the maximum is strict, i.e., V∗(x, t) > φ(x, t) for all (x, t) ∈ B̄(x̄, ε)× [t̄− ε, t̄+ ε]
with (x, t) �= (x̄, t̄) (see [3] or [6]). We assume by contradiction that there exists δε > 0
such that for all (x, t) ∈ B̄(x̄, ε) × [t̄− ε, t̄ + ε], we have

−φt(x, t) + sup
α∈A

{
−〈b(x, t, α), Dφ(x, t)〉−�(x, t, α)−Tr

[
1

2
σσT (x, t, α)D2φ(x, t)

]}
≤−δε.

(3.12)

Since (x̄, t̄) is a strict minimum of V∗ − φ, it follows that there exists ηε such that

V∗(x, t) ≥ φ(x, t) + ηε for all (x, t) ∈ ∂B(x̄, ε) × [t̄− ε, t̄ + ε].(3.13)

From now on, we fix 0 < h < ε/2 such that hδε < ηε. Let us denote by τt,x the exit time
of the trajectory Xt,x

s from the ball B(x̄, ε). We first observe that by the continuity
of the trajectory (see Lemma 3.1), we have τt,x > t for all (x, t) ∈ B(x̄, ε)× [0, T ). For
every (x, t) ∈ B(x̄, ε) × (t̄− ε/2, t̄ + ε/2), there exists a control αs ∈ At such that

V (x, t) +
δεh

2
≥ Etx

{∫ (t+h)∧τt,x

t

�(Xt,x
s , s, αs) ds + V∗(X

t,x
(t+h)∧τt,x

, (t + h) ∧ τt,x)

}
.

Since V∗ ≥ φ in B̄(x̄, ε) × [t̄− ε, t̄ + ε], if τt,x < t + h, then, from (3.13), we have

V∗(X
t,x
(t+h)∧τt,x

, (t + h) ∧ τt,x) ≥ φ(Xt,x
τt,x , τt,x) + ηε.
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Therefore the following estimate holds:

V (x, t) +
δεh

2
≥ Etx

{[∫ τt,x

t

�(Xt,x
s , s, αs) ds + φ(Xt,x

τt,x , τt,x) + ηε

]
1{τt,x<t+h}

}
+ Etx

{[∫ t+h

t

�(Xt,x
s , s, αs) ds + φ(Xt,x

t+h, t + h)

]
1{τt,x≥t+h}

}
≥ Etx

{
[I(τt,x) + ηε]1{τt,x<t+h}

}
+ Etx

{
I(t + h)1{τt,x≥t+h}

}
,(3.14)

where for all τ ′ > 0

I(τ ′) =

∫ τ ′

t

�(Xt,x
s , s, αs) ds + φ(Xt,x

τ ′ , τ
′).

Applying Ito’s formula to the process φ(Xt,x
τ ′ , τ ′), we obtain

I(τ ′) =

∫ τ ′

t

(
�(Xt,x

s , s, αs) + φt(X
t,x
s , s) + 〈Dφ(Xt,x

s , s), b(Xt,x
s , s, αs)〉

+
1

2
Tr [σσT (Xt,x

s , s, αs)D
2φ]
)
ds

+ φ(x, t) +

∫ τ ′

t

〈Dφ(Xt,x
s , s), σ(Xt,x

s , s, αs)dWs〉 a.s.

Note that the expectation of the above stochastic integral is zero for τ ′ ∈ [t, t + ε].

Now we can estimate the two last terms in (3.14). For the first term, we have

Etx

{
[I(τt,x) + ηε]1{τt,x<t+h}

}
≥ −Etx

{[∫ τt,x

t

(
− φt(X

t,x
s , s) + sup

α∈A
{−�(Xt,x

s , s, α) − 〈Dφ(Xt,x
s , s), b(Xt,x

s , s, α)〉

−1

2
Tr [σσT (Xt,x

s , s, α)D2φ]}
)
ds− φ(x, t) − ηε

]
1{τt,x<t+h}

}
.

Since Xt,x
s ∈ B(x̄, ε) when s ≤ τt,x and since t + h < t̄ + ε, from (3.12), we get

Etx

{
[I(τt,x) + ηε]1{τt,x<t+h}

}
≥ −Etx

{[∫ τt,x

t

(−δε) ds− φ(x, t) − ηε

]
1{τt,x<t+h}

}
≥ δεEtx

[
(τt,x − t)1{τt,x<t+h}

]
+ (ηε + φ(x, t))P ({τt,x < t + h})

≥ (ηε + φ(x, t))P ({τt,x < t + h}).(3.15)

For the second term, we proceed in the same way, noting that if τt,x ≥ t+ h, then for
all t ≤ s ≤ t + h, Xt,x

s ∈ B(x̄, ε), and it allows us to apply (3.12). More precisely we
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have

Etx

{
I(t + h)1{τt,x≥t+h}

}
≥ −Etx

{[∫ t+h

t

(
− φt(X

t,x
s , s) + sup

α∈A
{−�(Xt,x

s , s, α) − 〈Dφ(Xt,x
s , s), b(Xt,x

s , s, α)〉

− 1

2
Tr [σσT (Xt,x

s , s, α)D2φ]}
)
ds− φ(x, t)

]
1{τt,x≥t+h}

}
≥ (δεh + φ(x, t))P ({τt,x ≥ t + h}).

(3.16)

Combining (3.14), (3.15), and (3.16), we get

V (x, t) +
δεh

2
≥ ηεP ({τt,x < t + h}) + δεhP ({τt,x ≥ t + h})

+ φ(x, t) [P ({τt,x < t + h}) + P ({τt,x ≥ t + h})] .

Since ηε > δεh and P ({τt,x < t + h}) + P ({τt,x ≥ t + h}) = 1, we get

V (x, t) ≥ φ(x, t) +
δεh

2
.

The above inequality is valid for all (x, t) ∈ B(x̄, ε) × (t̄− ε/2, t̄ + ε/2), and thus we
have

lim inf
(x,t)→(x̄,t̄)

V (x, t) = V∗(x̄, t̄) ≥ φ(x̄, t̄) +
δεh

2
,

which is a contradiction with the choice of φ.
Theorem 3.1. Under the assumptions of Proposition 3.1, the function V is the

unique continuous viscosity solution of (3.4) in R
N × [τ, T ].

Proof of Theorem 3.1. Let U be the unique solution of (3.4) in R
N×[τ, T ] such that

U(x, T ) = ψ(x) given by Theorem 2.1. Our goal is to prove that V ≡ U in R
N × [τ, T ].

The inequality U ≤ V∗ follows by combining Proposition 3.2 and Theorem 2.1. To
show that V ∗ ≤ U in R

N × [τ, T ], we proceed as follows.

Step 1. We consider the functions Ṽ (x, t) := V (x, t) − C(1 + |x|2)eρ(T−t) and

Ũ(x, t) := U(x, t) − C(1 + |x|2)eρ(T−t). As it is proved in Step 2 of the proof of

Theorem 2.1, Ũ is the unique solution of

⎧⎪⎨⎪⎩
−wt + sup

α∈A

{
−1

2
Tr(σσT (x, t, α)D2w)−〈b(x, t, α), Dw〉− �̄(x, t, α)

}
= 0 in R

N × (τ, T ),

w(x, T ) = ψ̄(x),

(3.17)

where �̄(x, t, α) := �(x, t, α) + 2Ceρ(T−t)〈b(x, t, α), x〉 + Ceρ(T−t)TrσσT (x, t, α)
−Cρeρ(T−t)(1 + |x|2) and ψ̄(x) := ψ(x) − C(1 + |x|2).

Step 2. Claim: for all (x, t) ∈ R
N × [τ, T ], Ṽ satisfies

Ṽ (x, t) ≤ inf
αs∈At

Etx

{∫ T

t

�̄(Xs, s, αs) ds + ψ̄(Xt)

}
.(3.18)
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To prove the claim let us take any αs ∈ At. Arguing exactly as in the proof of
Proposition 3.1, from (3.10), we have

Ṽ (x, t) ≤ Etx

{∫ T

t

(
�(Xx,t

s , s, αs) + 2eρ(T−s)〈Xx,t
s , b(Xx,t

s , t, αs)〉

+ eρ(T−s) Tr(σσT (Xx,t
s , s, αs)) − ρeρ(T−s)(1 + |Xx,t

s |2)
)
ds + ψ(Xx,t

T )

− C(1 + |Xx,t
T |2)

}

= Etx

{∫ T

t

�̄(Xx,t
s , s, αs) ds + ψ̄(Xx,t

T )

}
.

Since αs is arbitrary we get (3.18) and prove the claim.

Step 3. Choose C, ρ > 0 large enough so that for all (x, t, α) ∈ R
N × [τ, T ] × A,

we have

−C̃e2ρ(T−t)(1 + |x|2) +
ν

4
|α|2 ≤ �̄(x, t, α) ≤ −Ceρ(T−t)(1 + |x|2) + Ceρ(T−t)(1 + |α|2),

−2C(1 + |x|2) ≤ ψ̄(x) ≤ 0,

where C̃ depends only on C and ν. For all real R > 0 and all integer n > 0, we
set An := {α ∈ A : |α| ≤ n}, �̄R(x, t, α) := max{�̄(x, t, α),−R} and ψ̄R(x, t) :=
max{ψ̄(x, t),−R}. We observe that �̄R : R

N × [τ, T ] × An → R is bounded and uni-
formly continuous in x ∈ R

N uniformly with respect to (t, α) ∈ [τ, T ] × An and
ψR : R

N → R is bounded and uniformly continuous in R
N . Set

H̄(x, t, p,X) := sup
α∈A

{
−1

2
Tr(σσT (x, t, α)X) − 〈b(x, t, α), p〉 − �̄(x, t, α)

}
,

HR
n (x, t, p,X) := sup

α∈An

{
−1

2
Tr(σσT (x, t, α)X) − 〈b(x, t, α), p〉 − �̄R(x, t, α)

}
and define

V R
n (x, t) = inf

αs∈An
t

Etx

{∫ T

t

�̄R(Xx,t
s , s, αs) ds + ψ̄R(Xx,t

T )

}
,

where An
t is the set of An-valued Ft-progressively measurable controls such that (3.2)

holds. The function V R
n is now the value function of a stochastic control problem with

bounded controls and uniformly continuous datas b, σ, �̄R, and ψ̄R. These assump-
tions enter the framework of Yong and Zhou [41]. We deduce that V R

n is the unique
continuous viscosity solution of

−∂V R
n

∂t
+ HR

n (x, t,DV R
n , D2V R

n ) = 0 in R
N × (τ, T ),(3.19)

with terminal condition V R
n (x, T ) = ψ̄R(x) in R

N . Moreover, for all compact subsets
K ⊂ R

N there exists M > 0 independent on R and n such that ||V R
n ||∞ ≤ M in

K × [τ, T ]. Indeed, take any constant control αs = ᾱ ∈ A1, by definition of V R
n for all
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R,n > 0 and for every (x, t) ∈ R
N × [τ, T ] we have

V R
n (x, t) ≤ Etx

{∫ T

t

�̄R(Xx,t
s , s, ᾱ) ds + ψ̄R(Xx,t

T )

}

≤
∫ T

t

Ceρ(T−s)(1 + ᾱ2) ds ≤ C

ρ
eρ(T−t)(1 + ᾱ2),

and on the other hand we have V R
n (x, t) ≥ Ṽ (x, t) ≥ −C̃e2ρ(T−t)(1 + |x|2).

Finally one can readily see that HR
n converges locally uniformly to H̄ as n,R → ∞.

Thus by applying the half-relaxed limits method (see Barles and Perthame [9]), the
functions

V (x, t) = lim sup∗V R
n (x, t) = lim sup

(y,s)→(x,t)
n,R→+∞

V R
n (y, s)

and V (x, t) = lim inf∗V R
n (x, t) = lim inf

(y,s)→(x,t)
n,R→+∞

V R
n (y, s)

are, respectively, viscosity sub- and supersolution of (3.17). Theorem 2.1 yields

V (x, t) ≤ Ũ(x, t) ≤ V (x, t). On the other hand by construction we have also Ṽ ∗(x, t) ≤
lim sup∗ V R

n (x, t). It follows Ṽ ∗(x, t) ≤ Ũ(x, t) and we can conclude.

3.2. Some examples.
Example 3.1. A model case we have in mind is the so-called stochastic linear reg-

ulator problem which is a stochastic perturbation of the deterministic linear quadratic
problem. In this case, the stochastic differential (3.1) is linear and reads

dXt,x
s = [B(s)Xt,x

s + C(s)αs]ds +
∑
j

[Cj(s)X
t,x
s + Dj(s)]dW

j
s

and the expected total cost to minimized is

J(x, t, αs) = Etx

{∫ T

t

[〈Xt,x
s , Q(s)Xt,x

s 〉 + 〈αs, R(s)αs〉] ds + 〈Xt,x
T , GXt,x

T 〉
}
.

The previous results apply if the functions B(·), C(·), Cj(·), Dj(·), Q(·), R(·), and G
are deterministic continuous matrix-valued functions of suitable size and if R(s) is
a positive definite symmetric matrix. Deterministic and stochastic linear quadratic
problems were extensively studied. For a survey we refer for instance to the books of
Bensoussan [10], Fleming and Rishel [18], Fleming and Soner [19], Øksendal [38], and
Yong and Zhou [41] and references therein.

Example 3.2. Equations of the type (3.4) are largely considered in mathematical
finance. See the introductory books quoted in the introduction or Pham [39]. In
particular, recently Benth and Karlsen [11] studied the following semilinear elliptic
partial equation

−wt −
1

2
β2wxx + F (x,wx) = 0 in R × (0, T )(3.20)

with the final condition w(x, T ) = 0. The nonlinear function F is given by

F (x, p) =
1

2
δ2p2 −

{
α(x) − μ(x)βρ

σ(x)

}
p− μ2(x)

σ2(x)
,
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where δ, β, ρ are real constant and α(x) and
μ

σ
(x) are C1 functions satisfying

|α(x)|,
∣∣∣μ
σ

(x)
∣∣∣ ≤ C|x| for all x ∈ R.

Their main motivation is to determine via the solution of (3.20) the minimal entropy
martingale measure in stochastic market. The conditions they assume on data fall
within the assumptions of section 2.

Example 3.3. Another application of the results obtained in section 2 is given
by the finite time-horizon risk-sensitive limit problem for nonlinear systems. In the
stochastic risk-sensitive problem, (3.1) reads

dXt,x,ε
s = g(Xt,x,ε

s , βs) dt +

√
ε

γ2
c(Xt,x,ε

s ) dWs,(3.21)

where Xt,x,ε
s ∈ R

N depends on the parameter ε > 0, g represents the nominal dynam-
ics with control βs ∈ B, a compact normed space, and c is an N × k-valued diffusion
coefficient, ε is a measure of the risk-sensitivity and γ is the disturbance attenuation
level. The cost criterion is of the form

Jε(x, t, βs) = E exp

{
1

ε

[∫ T

t

f(Xt,x,ε
s , βs) dt + ψ(Xt,x,ε

T )

]}
(3.22)

and the value function is

V ε(x, t) = inf
βs∈Bt

ε log Jε(x, t, βs) = ε log inf
βs∈Bt

Jε(x, t, βs),(3.23)

where Bt is the set of B-valued, Ft-progressively measurable controls such that there
exists a strong solution to (3.21). The dynamic programming equation associated to
this problem is

⎧⎨⎩ −∂w

∂t
− 1

2γ2
〈Dw, a(x)Dw〉 + G̃(x,Dw) − ε

2γ2
Tr(a(x)D2w) = 0 in R

N × [τ, T ],

w(x, T ) = ψ(x),

(3.24)

where a(x) = c(x)c(x)T and

G̃(x, p) = max
β∈B

{〈−g(x, β), p〉 − f(x, β)}.

We note that

− 1

2γ2
〈p, a(x)p〉 = min

α∈Rk

{
γ2

2
|α|2 − 〈c(x)α, p〉

}
.(3.25)

In [16] it is shown that as ε ↓ 0 (i.e., as the problem becomes infinitely risk averse),
the value function of the risk-sensitive problem converges to that of an H∞ robust
control problem. This problem can be considered as a differential game with the cost
functional

J(x, t, α, β) =

∫ T

t

(
f(yx(s), βs) −

γ2

2
|αs|2

)
ds + ψ(yx(T )),(3.26)
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where αs ∈ At := L2([t, T ],Rk) is the control of the maximizing player, βs ∈ Bt :=
{measurable functions [t, T ] → B} is the control of the minimizing player, and yx(·)
is the unique solution of the following dynamical system{

y′(s) = g(y(s), βs) + c(y(s))αs,
y(t) = x.

Note that we switch notation from Xt to y(t) to emphasize that the paths are now
(deterministic) solutions of ordinary differential equations rather than (stochastic)
solutions of stochastic differential equations. The dynamic programing equation as-
sociated to the robust control problem is a first-order equation given by

−∂w

∂t
+ min

α∈Rk

{
γ2

2
|α|2 − 〈c(x)α,Dw〉

}
+ G̃(x,Dw) = 0 in R

N × (τ, T )(3.27)

with the terminal condition w(T, x) = ψ(x). One of the key tools to get this conver-
gence result is the uniqueness property for (3.27). In Da Lio and McEneaney [16], the
authors characterized the value function of the H∞ control as the unique solution to
(3.27) in the set of locally Lipschitz continuous functions growing at most quadrat-
ically with respect to the state variable. Moreover, the uniqueness result in [16] is
obtained by using representation formulas of locally Lipschitz solutions of (3.27). We
remark that the comparison theorem, Theorem 2.1, not only improves the uniqueness
result for (3.27) obtained in [16] (in the sense it holds in a larger class of functions) but
it also should allow us to prove the convergence result in [16] under weaker assump-
tions, only the equiboundedness estimates of the solutions of (3.24) being enough by
means of the half-relaxed limit method.

4. Study of related equations. In this section we focus our attention on
Hamilton–Jacobi equations of the form⎧⎨⎩

∂w

∂t
+ 〈Σ(x, t)Dw,Dw〉 + G(x, t,Dw,D2w) = 0 in R

N × (0, T ),

w(x, 0) = ψ(x) in R
N ,

(4.1)

where Σ(x, t) ∈ MN (R) and G is given by (1.3) and⎧⎨⎩
∂w

∂t
+ h(x)|Dw|2 = 0 in R

N × (0, T ),

w(x, 0) = ψ(x) in R
N ,

(4.2)

where h : R
N → R. Our aim is to investigate comparison (and existence) results for

(4.1) and (4.2) under assumptions which include Hamiltonians like (2.6) in Remark
2.2(iii) (see Remark 4.1 for further comments). More precisely, we introduce two new
assumptions:
(A4) Σ ∈ C(RN × [0, T ];S+

N (R)) and for all x ∈ R
N , t ∈ [0, T ],

0 < Σ(x, t) and |Σ(x, t)| ≤ C̄.

(A5) h ∈ C(RN ; R), h ∈ W 2,∞(Γ̃), where Γ̃ is an open neighborhood of Γ := {x ∈
R

N : h(x) = 0} and for all x ∈ Γ,

Dh(x) = 0.
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Theorem 4.1. Assume (A2), (A3) and (A4) (respectively, (A3) and (A5)).
Let U ∈ USC(RN × [0, T ]) be a viscosity subsolution of (4.1) (respectively, (4.2))
and V ∈ LSC(RN × [0, T ]) be a viscosity supersolution of (4.1) (respectively, (4.2))
satisfying the quadratic growth condition (2.4). Then U ≤ V in R

N × [0, T ].
The question of existence faces the same problems as in section 2. We have

existence and uniqueness of a continuous viscosity solution for (4.1) and (4.2) in the
class of functions with quadratic growth at least for short time (as in Corollary 2.1).
But solutions can blow up in finite time.

Before giving the proof of the theorem, we give some comments on the equations
and the assumptions.

Remark 4.1. (i) In the same way as in Remark 2.2, the above results hold
replacing Σ by −Σ in (4.1) and h by −h in (4.2) and when dealing with terminal data
in both equations.

(ii) Coming back to Remark 2.2(iii), we note (a1 +a2)(a2−a1)
T is not necessarily

symmetric in (2.6), whereas we assume Σ to be symmetric in (A4) (and h is real-
valued and therefore symmetric in (A5)). This is not a restriction of generality since
comparison for (4.1) with Σ symmetric implies obviously a comparison for (4.1) for
any matrix Σ, using that, for any Σ ∈ MN (R), (Σ + ΣT )/2 ∈ SN (R).

(iii) Coming back to Remark 2.2(iv) again, we see that (A4) corresponds to the
case where the convex Hamiltonian is predominant with respect to the concave one
in (1.1) with (2.6). Assumption (A5) corresponds to (2.6) when a1 and a2 are real
valued but h is allowed to change its sign. For example, we have comparison for

wt + φ(x)3|Dw|2 = 0,

where φ ∈ C2(RN ; R) is any bounded function. Let us compare (1.12) with first-order
Hamilton–Jacobi equations whose Hamilonians are Lipschitz continuous both in the
state and gradient variables, or, to make it simple, with the Eikonal equation

∂w

∂t
+ a(x)|Dw| = 0 in R

N × (0, T ),

where a is Lipschitz continuous function. We know [13], [30] we have existence and
uniqueness of a continuous viscosity solution for any continuous initial data without
any restriction on the growth. In this case, the sign of a does not play any role,
whereas it seems to be the case for the sign of h in (1.12). We would like to know if
comparison for (1.12) is true under weaker assumptions than (A5) and in dimension
N > 1 (i.e., when Σ is neither positive nor negative definite in (4.1)).

(iv) There are some links between Theorem 2.1 and Theorem 4.1. Nevertheless
we point out that if (1.1) under assumptions of section 2 is naturally associated with a
control problem, this is not necessarily the case under the assumptions of the current
section. To be more precise, let us compare (1.1) with H given by (2.3) and (4.1) under
(A4). The matrix a can be singular in (2.3), whereas we impose the nondegeneracy
condition Σ > 0 in (4.1). The counterpart is that the regularity assumption with
respect to x on Σ is weaker (Σ is supposed to be merely continuous) than the locally
Lipschitz regularity we assume for a. Therefore (4.1) does not enter in the framework
of section 2 in general. A natural consequence is that proofs differ: in both proofs
of Theorem 2.1 and 4.1, the main argument is a kind of linearization procedure, but
while in the proof of Theorem 2.1 we use essentially the convexity (or concavity)
of the operator corresponding to the unbounded control set, here we use the locally
Lipschitz continuity of the Hamiltonian with respect to the gradient uniformly in the
state variable.
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(v) Note that we are able to deal with a second-order term in (4.1) but not in
(4.2).

Proof of Theorem 4.1. We divide the proof into two parts, corresponding, respec-
tively, to the case of (4.1) and (4.2). The main argument in both proofs is a kind of
linearization procedure as the one of Lemma 2.2. The rest of the proof is close to the
one of Theorem 2.1.

Part 1. We assume (A2), (A3), and (A4).
The estimates of G are exactly the same than in Lemma 2.2 so, for sake of

simplicity, we choose to take G ≡ 0. The linearization procedure is the subject of the
following lemma, whose proof is postponed to the end of the section.

Lemma 4.1. Let 0 < λ < 1 and set Ψ = λU − V. Then Ψ is a USC viscosity
subsolution of ⎧⎨⎩

∂w

∂t
− 2C̄

1 − λ
|Dw|2 ≤ 0 in R

N × (0, T ),

w(x, 0) ≤ (λ− 1)ψ(x) in R
N .

(4.3)

If ψ ≥ 0, then it follows Ψ(x, 0) ≤ 0 in R
N and using the above lemma with the

same supersolution as in the proof of Theorem 2.1, we obtain Ψ ≤ 0 in R
N × [0, T ].

Note that the boundedness of Σ (see (A4)) is crucial to build the supersolution. In
the particular case when G = 0, we can also choose a simpler supersolution such as,
for instance,

(x, t) �→ K
[(|x| −R)+]2

1 − Lt
+ ηt, K,L,R, η > 0.(4.4)

Letting λ go to 1, we conclude that U ≤ V in R
N × [0, T ].

It remains to prove that we can assume ψ ≥ 0 without loss of generality. To this
end we use an argument similar to the one of Step 2 in the proof of Theorem 2.1: let
Ū = U +M(1+ |x|2)eρt, V̄ = V +M(1+ |x|2)eρt, for some positive constants M and ρ
and set Ψ̄ = λŪ − V̄ . We can easily prove that for ρ > 16M2C̄e, Ψ̄ is a subsolution of
(4.3) (with a larger constant 4C̄ instead of 2C̄) in R

N × (0, τ ] for τ = 1/ρ. Moreover,
Ψ̄(x, 0) ≤ (λ − 1)(ψ(x) + M(1 + |x|2)eρt) ≤ 0 for M sufficiently large (since ψ has
quadratic growth). Letting λ go to 1, it follows that U ≤ V in R

N × [0, τ ] and we
conclude by a step-by-step argument.

Part 2. We assume (A3) and (A5).
Set Ω+ = {x ∈ R

N : h(x) > 0} and Ω− = {x ∈ R
N : h(x) < 0} which are

open subsets of R
N . Define Ψ̄ = λŪ − V̄ for 0 < λ < 1, Ū = U + M(1 + |x|2)eρt and

V̄ = V +M(1+ |x|2)eρt with M larger than the constants which appear in (A3) and in
the growth condition (2.4). Arguing as in Lemma 4.1 and noticing that all arguments
are local, we obtain that Ψ̄ is a subsolution in Ω+ of the same kind of equation as
(4.3), namely, ⎧⎨⎩

∂w

∂t
− C

1 − λ
|Dw|2 ≤ 0 in Ω+ × (0, τ),

w(x, 0) ≤ 0 in Ω+,
(4.5)

for some constant C = 16 ||h||∞, ρ > 4MCe, and τ = 1/ρ > 0 which are independent
of λ. Note that Ψ̄(·, 0) ≤ 0 in R

N because of the choice of M.
The sign of Ψ̄ on Γ is the subject of the following lemma the proof of which uses

(A5) and is postponed.
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Lemma 4.2. For all x ∈ Γ, t ∈ [0, T ], we have U(x, t) ≤ ψ(x) ≤ V (x, t).
Noticing that {Γ,Ω+,Ω−} is a partition of R

N , we set

Ψ̂ :=

{
sup{Ψ̄, 0} in (Γ ∪ Ω+) × [0, T ],

0 in Ω− × [0, T ].

From the lemma, Ψ̄ ≤ 0 in Γ × [0, T ]. Therefore the function Ψ̂ is continuous in
R

N × (0, T ). Moreover, we claim that Ψ̂ is a subsolution of (4.5) in R
N × (0, τ). This

claim is clearly true in Ω−× (0, T ) (since 0 is clearly a subsolution) and in Ω+× (0, τ)
(since Ψ̂ is the supremum of two subsolutions). It remains to prove the result on Γ.
Let ϕ ∈ C1(RN × (0, τ)) such that Ψ̂−ϕ achieves a local maximum at a point (x̄, t̄) ∈
Γ×(0, τ). Let (x, t) be in a neighborhood of (x̄, t̄). If x ∈ Γ∪Ω+, then 0 ≤ Ψ̂(x, t), and
if x ∈ Ω−, then 0 = Ψ̂(x, t). In any case, (0−ϕ)(x, t) ≤ (Ψ̂−ϕ)(x, t) ≤ (Ψ̂−ϕ)(x̄, t̄).
But Ψ̂(x̄, t̄) ≤ 0 since (x̄, t̄) ∈ Γ × (0, τ). Therefore (x̄, t̄) is a local maximum of 0 − ϕ
which ends the proof of the claim. The initial condition Ψ̂ ≤ 0 in R

N ×{0} is trivially
satisfied. From the comparison principle proved in Part 1 (for example, using (4.4) as
a supersolution), we obtain Ψ̂ ≤ 0 in R

N × [0, τ ]. Since τ does not depend on λ, we
can send λ to 1. We obtain U ≤ V in (Γ∪Ω+)× [0, τ ]. We conclude in (Γ∪Ω+)× [0, T ]
by a step-by-step procedure.

Repeating the same kind of arguments replacing Ω+ by Ω− and Ψ̄ by U −M(1+
|x|2)eρt−μ(V −M(1+|x|2)eρt), 0 < μ < 1, we obtain that U−V ≤ 0 in (Γ∪Ω−)×[0, T ],
which ends the proof.

Proof of Lemma 4.1. We proceed as in the proof of Lemma 2.2. We can assume
that G ≡ 0 since the computations with G are exactly the same than in Lemma 2.2.

Note first that λU is an USC subsolution of⎧⎨⎩
∂w

∂t
+

1

λ
〈Σ(x, t)Dw,Dw〉 ≤ 0 in R

N × (0, T ),

w(x, 0) ≤ λψ(x) in R
N .

(4.6)

Let ϕ ∈ C(RN × [0, T ]) and suppose that Ψ − ϕ reaches a strict local maximum at
(x̄, t̄) ∈ R

N × (0, T ] in some compact subset K ⊂ R
N × (0, T ]. We have

max
(x,t)(y,t)∈K

{
λU(x, t) − V (y, t) − ϕ

(
x + y

2
, t

)
− |x− y|2

ε2

}
−→
ε↓0

Ψ(x̄, t̄) − ϕ(x̄, t̄).

The above maximum is achieved at some point (xε, yε, tε). Writing the viscosity in-
equalities and subtracting them, we obtain

ϕt

(
xε + yε

2
, tε

)
+

1

λ

〈
Σ(xε, tε)

(
1

2
Dϕ

(
xε + yε

2
, tε

)
+ 2

xε − yε
ε2

)
,

1

2
Dϕ

(
xε + yε

2
, tε

)
+ 2

xε − yε
ε2

〉
−
〈

Σ(yε, tε)

(
−1

2
Dϕ

(
xε + yε

2
, tε

)
+ 2

xε − yε
ε2

)
,

−1

2
Dϕ

(
xε + yε

2
, tε

)
+ 2

xε − yε
ε2

〉
≤ 0.

In what follows, we omit writing the dependence in tε and the point ((xε + yε)/2, tε)
in the derivatives of ϕ. Set pε = 2(xε−yε)/ε

2, px = Dϕ/2+pε, and py = −Dϕ/2+pε.



UNIQUENESS RESULTS FOR BELLMAN–ISAACS EQUATIONS 103

We have

0 ≥ ϕt +
1

λ
〈Σ(xε)px, px〉 − 〈Σ(yε)py, py〉

≥ ϕt +

(
1

λ
− 1

)
〈Σ(xε)px, px〉 + 〈(Σ(xε) − Σ(yε))px, px〉 + 〈Σ(yε)px, px〉

−〈Σ(yε)py, py〉

≥ ϕt +

(
1

λ
− 1

)
〈Σ(xε)px, px〉 −mK(|xε − yε|)|px|2 + 〈Σ(yε)px, px〉 − 〈Σ(yε)py, py〉,

where mK is a modulus of continuity for Σ in the compact subset K. Since Σ(yε) is
a symmetric matrix, we have

〈Σ(yε)px, px〉 − 〈Σ(yε)py, py〉 = 〈Σ(yε)(px + py), px − py〉 = 2 〈Σ(yε)pε, Dϕ〉
= −〈Σ(yε)Dϕ,Dϕ〉 + 2 〈Σ(yε)px, Dϕ〉.

For any α > 0, denoting by
√

Σ(yε) the positive symmetric squareroot of the positive
symmetric matrix Σ(yε), we get

2〈Σ(yε)px, Dϕ〉 = 2〈
√

Σ(yε)px,
√

Σ(yε)Dϕ〉 ≤ α〈Σ(yε)Dϕ,Dϕ〉 +
1

α
〈Σ(yε)px, px〉

≤ α〈Σ(yε)Dϕ,Dϕ〉 +
1

α
〈Σ(xε)px, px〉 +

1

α
〈mK(|xε − yε|)px, px〉.

It follows

0 ≥ ϕt +

〈[(
1

λ
− 1 − 1

α

)
Σ(xε) −

(
1 +

1

α

)
mK(|xε − yε|)Id

]
px, px

〉
− (1 + α)〈Σ(yε)Dϕ,Dϕ〉.

Take α = 2λ
(1−λ) > 0 in order to have 1

λ − 1− 1
α = 1

2 ( 1
λ − 1) > 0. We recall that Σ > 0

by (A4); hence for ε small enough the above scalar product is nonnegative. Thus

0 ≥ ϕt − (1 + α)〈Σ(yε, tε)Dϕ,Dϕ〉 = ϕt −
1 + λ

1 − λ
〈Σ(yε, tε)Dϕ,Dϕ〉.

Letting ε go to 0, we get

0 ≥ ϕt(x̄, t̄) −
2

1 − λ
〈Σ(x̄, t̄)Dϕ(x̄, t̄), Dϕ(x̄, t̄)〉,

which proves the result.
Proof of Lemma 4.2. We make the proof for U, the second inequality being similar.

Let x0 ∈ Γ and consider, for η > 0,

sup
t∈[0,T ]

{U(x0, t) − ηt}.

This supremum is achieved at a point t0 ∈ [0, T ] and we can assume, up to subtract
|t− t0|2, that it is a strict local maximum. Consider, for ε > 0,

sup
B̄(x0,1)×[0,T ]

{
U(x, t) − |x− x0|2

ε2
− ηt

}
.
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This supremum is achieved at a point (xε, tε) and it is easy to see that (xε, tε) →
(x0, t0) when ε → 0.

Suppose that tε > 0. It allows us to write the viscosity inequality for the subso-
lution U at (xε, tε) and we get

η + h(xε)

∣∣∣∣2xε − x0

ε2

∣∣∣∣2 ≤ 0.(4.7)

Since h ∈ W 2,∞ in a neighborhood of Γ, we can write a Taylor expansion of h at x0

for ε small enough

h(xε) = h(x0) + 〈Dh(x0), xε − x0〉 +
1

2
〈D2h(x0)(xε − x0), xε − x0〉 + o(|xε − x0|2).

From (4.7) and (A5), it follows

η − (2C + m(|xε − x0|2))
(
|xε − x0|2

ε2

)2

≤ 0,

where m is a modulus of continuity. Since |xε − x0|2/ε2 → 0 as ε → 0, we obtain a
contradiction for small ε.

Therefore tε = 0 for ε small enough. It follows that for all (x, t) ∈ B̄(x0, 1)×[0, T ],
we have

U(x, t) − |x− x0|2
ε2

− ηt ≤ U(xε, 0) − |xε − x0|2
ε2

≤ ψ(xε).

Setting x = x0 and sending ε and then η to 0, we obtain the conclusion.
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[4] M. Bardi and F. Da Lio, On the Bellman equation for some unbounded control problems,
NoDEA Nonlinear Differential Equations Appl., 4 (1997), pp. 491–510.

[5] G. Barles, An approach of deterministic control problems with unbounded data, Ann. Inst. H.
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2nd ed., Ellipses Édition Marketing, Paris, 1997.
[30] O. Ley, Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and appli-

cations to the regularity of propagating fronts, Adv. Differential Equations, 6 (2001), pp.
547–576.

[31] P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. I.
The dynamic programming principle and applications, Comm. Partial Differential Equa-
tions, 8 (1983), pp. 1101–1174.

[32] P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations.
II. Viscosity solutions and uniqueness, Comm. Partial Differential Equations, 8 (1983), pp.
1229–1276.

[33] P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations.
III. Regularity of the optimal cost function, in Nonlinear Partial Differential Equations
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