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ALGEBRAIC RICCATI EQUATION AND J-SPECTRAL
FACTORIZATION FOR H∞ SMOOTHING AND DECONVOLUTION∗

PATRIZIO COLANERI† AND AUGUSTO FERRANTE‡

Abstract. This paper deals with a general steady-state estimation problem in the H∞ setting.
The existence of the stabilizing solution of the related algebraic Riccati equation (ARE) and of the
solution of the associated J-spectral factorization problem is investigated. The existence of such
solutions is well established if the prescribed attenuation level γ is larger than γf (the infimum of the
values of γ for which a causal estimator with attenuation level γ exists). We consider the case when
γ ≤ γf and show that the stabilizing solution of the ARE still exists (except for a finite number of
values of γ) as long as a fixed-lag acausal estimator (smoother) does. The stabilizing solution of the
ARE may be employed to derive a state-space realization of a minimum-phase J-spectral factor of the
J-spectrum associated with the estimation problem. This J-spectral factor may be used, in turn, to
compute the minimum-lag smoothing estimator. Some of the aspects of the J-spectral factorization
problem and the properties of its solutions are discussed in correspondence to the (finite number of)
values of γ for which the stabilizing solution of the ARE does not exist.
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1. Introduction and problem statement. Consider the discrete-time linear
system

xk+1 = Axk + Bwk,(1.1a)

yk = Cxk + Dwk,(1.1b)

zk = Lxk + Mwk,(1.1c)

where xk ∈ R
n and yk ∈ R

p are the state and the measurement output vector,
respectively, and wk ∈ R

m is the vector of inputs and disturbances. The to-be-
estimated signal zk ∈ R

l is an unaccessible linear combination of the state and the
input. This is very general and includes, as particular cases, the state-filtering problem
(L = I and M = 0) and the deconvolution problem (L = 0 and M = I). See section
1.3 for a brief discussion and references on these problems.

Let F (z) be the transfer function of a causal filter driven by the observations yk
whose output ẑk is an estimate of zk, and let ek := zk − ẑk. The infinite-horizon H∞
filtering problem consists in designing an estimator F (z) guaranteeing a prescribed
level of attenuation γ between the �2-norm of wk and the �2-norm of the estimation
error ek. Introducing the transfer functions

H1(z) := C(zI −A)−1B + D,(1.2a)
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H2(z) := L(zI −A)−1B + M,(1.2b)

this problem is equivalent to that of finding a stable causal transfer function F (z)
such that

F (z)H1(z) −H2(z) ∈ RH∞, ‖F (z)H1(z) −H2(z)‖∞ < γ,(1.3)

where RH∞ denotes the space of real rational matrix functions whose poles lie all
in {z ∈ C : |z| < 1}. RH∞ is endowed with the infinity norm associating with any
G(z) ∈ RH∞, ‖G(z)‖∞ = sup

|z|=1

‖G(z)‖ with ‖G(z)‖ being the largest singular value

of G(z) for each given z.
The H∞ fixed-lag smoothing problem with preview horizon of length N (or N -

lag smoothing problem) may be defined as the problem of estimating (in the H∞
framework) the signal zk given the observations up to time k + N , N ≥ 0. In other
words, the only difference with the filtering problem is that the transfer function of
the estimator is not required to be causal but has to be of the form E(z) = zNF (z)
with F (z) being stable and causal. This may be easily reformulated as the problem
of finding a stable causal transfer function F (z) such that

F (z)H1(z) −H2,N (z) ∈ RH∞, ‖F (z)H1(z) −H2,N (z)‖∞ < γ(1.4)

with

H2,N (z) := z−NH2(z).(1.5)

For a general overview on H∞ estimation see to [19, 21] and references therein.
For the continuous time version of the H∞ smoothing problem see [18].

Assumptions. Let1

B1 := B(I −D�(DD�)−1D), F := A−BD�(DD�)−1C.(1.6)

We make the following standard assumptions:

DD� > 0,(1.7a)

(A,C) is detectable,(1.7b)

(F,B1) is reachable,(1.7c)

F is invertible.(1.7d)

Moreover, if MD� �= 0, we define the auxiliary signal ξk := zk −MD�(DD�)−1yk =

L̃xk + M̃wk with L̃ := L − MD�(DD�)−1C and M̃ := M − MD�(DD�)−1D
and observe that, since ξ is obtained from z by subtracting a linear combination
of the observed signal y, the estimations of z and ξ are equivalent problems (i.e.,
the estimation error is the same). In addition, a simple computation shows that

M̃D� = 0. Hence, without loss of generality, we assume

MD� = 0(1.7e)

so that the following identity holds:

BM� = B1M
�.(1.8)

Eventually, notice that neither A nor F is assumed to be stable.

1We denote by M� the transpose of a matrix M .
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From the point of view of the motivating H∞ estimation problem, we mention
that assumptions (1.7a) and (1.7d) do not impair loss of generality. In fact if (1.7a) is
not satisfied we may resort to a Silverman transfomation (see [6]) that, employing a
spectral interactor matrix, yields an equivalent problem in which DD� > 0. If (1.7d)
is not satisfied, we may perform a preliminary feedback transformation, as described
in [5], and obtain an equivalent problem, in which (1.7d) is satisfied.

1.1. J-spectral factorization. For a real transfer matrix function G(z), we
define G (̃z) := G�(z−1). Let

H(z) :=

[
H1(z) 0
H2(z) Il

]
=

[
C
L

]
(zI −A)−1[B | 0 ] +

[
D 0
M Il

]
(1.9)

and Ji,j(γ) := diag{Ii,−γ2Ij}. (We shall simply write J and I, instead of Ji,j(γ) and
Ii, when there is no risk of confusion.) The transfer function

Ψ(z) := H(z)Jm,l(γ)H (̃z) =

[
Ψ11(z) Ψ12(z)
Ψ12̃ (z) Ψ22(z)

]
(1.10)

with

Ψ11(z) := H1(z)H1̃ (z), Ψ12(z) := H1(z)H2̃ (z), Ψ22(z) := H2(z)H2̃ (z) − γ2I

(1.11)

is called the J-spectrum of the system. A square J-spectral factor of Ψ(z) is a square
matrix function Ω(z) such that

Ω(z)Jp,l(γ)Ω̃ (z) = Ψ(z).(1.12)

A square J-spectral factor is said to be minimum phase if all its zeros lay in the
open unit disk.2 See [10] and references therein for further details on J-spectral
factorization.

The estimation problem is strictly related to the existence of a J-spectral fac-
tor. Precisely, the existence of an estimator with prescribed attenuation level γ is
equivalent to the existence of a minimum phase J-spectral factor of Ψ(z) having a
realization with the same state matrix A and the same output matrix [C� | L�]� of
the realization (1.9) of H(z); see [3]. Once obtained such a spectral factor, a simple
constructive procedure (described in [3]) furnishes a class of estimators F (z) satisfying
(1.3).

1.2. Algebraic Riccati equation. Let

H0 :=

[
C
L

]
, J0 :=

[
D
M

]
, J1 := J0J

�
0 −

[
0 0
0 γ2I

]
=

[
DD� DM�

MD� MM� − γ2I

]
(1.13)
and consider the algebraic Riccati equation (ARE)

Δ = AΔA� + BB� − (AΔH�
0 + BJ�

0 )(J1 + H0ΔH�
0 )−1(H0ΔA� + J0B

�).(1.14)

2Notice that in some papers and books the definition of minimum phase requires the stability of
the spectral factor. Here, since neither A nor F is assumed to be “stable,” we are not interested in
stable J-spectral factors and we adopt the definition of phase minimality given above.
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It is well known (see, e.g., [21]) that the existence of a proper stable filter F (z) satis-
fying (1.3) is equivalent to the existence of a symmetric, positive definite, stabilizing,
feasible solution of (1.14), i.e., a solution Δf = Δ�

f > 0 such that

Af := A− (AΔfH
�
0 + BJ�

0 )(J1 + H0ΔfH
�
0 )−1H0(1.15)

is stable and J1 + H0ΔfH
�
0 has the same inertia of Jp,l(γ). In passing, notice that

as long as (DD� + CΔfC
�) > 0, the latter condition (feasibility) may be written in

the form

γ2I −MM� − LΔfL
� + LΔfC

�(DD� + CΔfC
�)−1CΔfL

� > 0.(1.16)

If we now define

γ
f

:= inf{γ : there exists a proper stable filter F (z) satisfying (1.3)},(1.17)

it is clear that (1.14) admits a feasible symmetric positive semidefinite stabilizing
solution if and only if γ > γ

f
.

If this is the case, there exists a square J-spectral factor of Ψ(z) having all zeros
in the open unit disk and satisfying the stability conditions described in [3, Theorem
3.1], ensuring the existence of a proper stable filter F (z).

On the other hand, it is also well known that there exists a value γ0 such that
for γ < γ0, the ARE (1.14) does not admit any symmetric solution satisfying the
feasibility condition and hence Ψ(z) does not admit any minimal square J-spectral
factor, namely, a J-spectral factor having the last possible McMillan degree. The
constant γ0 has the following interpretation from the J-spectral factorization point of
view. A necessary condition for the existence of a square spectral factor is that Ψ(ejω)
has p positive eigenvalues and l negative eigenvalues for all ω ∈ (−π, π]. Since under
the present assumptions Ψ11(e

jω) > 0 for all ω ∈ (−π, π], this condition is equivalent
to the negative definiteness of the Schur complement

S(z) := Ψ22(z) − Ψ12̃ (z)[Ψ11(z)]
−1Ψ12(z)(1.18)

on the unit circle, i.e., to

S(ejω) < 0, ω ∈ (−π, π].(1.19)

By employing (1.11), we may write S(z) as S(z) = W (z) − γ2I with

W (z) := H2(z)H2̃ (z) −H2(z)H1̃ (z)[H1(z)H1̃ (z)]−1H1(z)H2̃ (z)

= H2(z)[I −H1̃ (z)[H1(z)H1̃ (z)]−1H1(z)]H2̃ (z).(1.20)

It is now easy to see that (1.19) is satified for γ sufficiently large: γ0 is the infimum
of the values of γ for which (1.19) is satisfied, i.e., γ2

0 is the L∞ norm of W (z):

γ2
0 = ‖W (z)‖∞.(1.21)

For a general overview on the connections between ARE and spectral and J-spectral
factorization see [11, 12, 17, 1, 15] and references therein.

Remark 1.1. From the estimation problem point of view, the constant γ0 is the
infimum of the values of γ for which there exists a fixed-lag smoother (for some pre-
view horizon N) achieving the attenuation level γ. To see this, first recall that under
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the detectability assumption of the pair (A,C), without any loss of generality, one
can assume from the very beginning the stability of H1(z) and H2(z) and transform
the given problem in a unilateral model matching problem in a new stable free fil-
ter parameter [21]. Now, let V1(z) be a square spectral factor of H1(z). A simple
computation shows that

‖F (z)H1(z) −H2(z)‖2
∞ = ‖F (z)V1(z) −H2(z)H

∼
1 (z)V ∼

1 (z)−1‖2
∞ + ‖W (z)‖∞.(1.22)

Hence, the attenuation level cannot be lower than γ0 and this infimum value is
achieved by the acausal estimator

F∞(z) = H2(z)H
∼
1 (z) (H1(z)H

∼
1 (z))

−1
=

∞∑
i=−∞

Fiz
i.(1.23)

Now the question arises of how to construct a stable fixed-lag smoother when an
attenuation level γ > γ0 is prescribed. This problem can be solved directly from
expression (1.22) by taking a finite length expansion of the anticausal part of F∞(z)
given by (1.23). Indeed, let

FN (z) = F∞(z) −
∞∑

i=N+1

Fiz
i.

If FN (z) is the (N steps acausal, yet stable) estimator so constructed, then

‖FN (z)H1(z) −H2(z)‖2
∞ ≤ γ2

0 +

∥∥∥∥∥
∞∑

i=N+1

Fiz
iV1(z)

∥∥∥∥∥
2

∞

≤ γ2
0 +

( ∞∑
i=N+1

‖Fi‖
)2

‖H1(z)‖2
∞

can be rendered arbitrarily close to γ2
0 by selecting a sufficiently large N . The esti-

mator can be realized from the relevant factor following the results in [3] or directly
from the solution of a suitable Riccati equation as described in [20].

1.3. Contribution of the paper. In this paper, we investigate the existence
of a feasible stabilizing solution of (1.14) and the existence and the construction of a
minimum phase square J-spectral factor Ω(z) for values of γ in the interval (γ0, γf

].
Clearly, for such values of γ the filter cannot exist, but there exists a fixed-lag smoother
associated with a certain preview horizon length N achieving the desired attenuation
level. As shown in [5], the computation of the stabilizing solution Δ of (1.14) and
of the corresponding J-spectral factor Ω(z) are crucial steps to obtain efficiently the
minimum-lag smoothing filter achieving the desired attenuation level. Notably, the
solution Δ can be directly used to initialize an iterative algorithm to work out a
minimum-lag central smoother; see [13, 2].

The contribution of the present paper is to prove that for γ ∈ (γ0, γf
], equation

(1.14) still admits a stabilizing feasible solution except for a finite number (at most
2[n + rank(M)]) of values of γ. This result generalizes a result in [4] where it was
assumed that DD� = I, M = 0, and DB� = 0. While removing the assumption
DD� = I impairs only slightly longer formulas, the presence of the matrix M gives
rise to a much more difficult problem. Also, the presence of the matrix M implies that
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having assumed (1.7e) we cannot assume DB� = 0 (only one of the two conditions
(1.7e) and DB� = 0 can be assumed without loss of generality) and this adds some
other technical difficulties to the problem. On the other hand the estimation problem
becomes much more interesting and of practical importance if we consider the presence
of the matrix M . Indeed, in this case, not only can we attack deconvolution problems
for the importance of which we refer to [9] and references therein, but we can, more
generally, address the problem of estimating an arbitrary linear combination of input
and state vectors; see the discussion in [7] for the practical importance of the latter
problem.

1.4. Paper organization. In section 2 we analyze some auxiliary spectral fac-
torization problems and the corresponding AREs. In section 3 we show that for
generic values of γ, the antistabilizing solution of an ARE considered in section 2 is
nonsingular. Such preliminary results are employed in section 4, where we prove our
main result on the existence of a stabilizing feasible solution of (1.14). In section
5 we explicitly derive a minimum phase J-spectral factor of Ψ(z). In section 6 we
analyze some of the issues arising in correspondence of the values of γ for which we
cannot guarantee the existence of the stabilizing solution of (1.14) and we discuss
some peculiar aspects of the J-spectral factorization.

2. Preliminary spectral factorizations and auxiliary AREs. In this sec-
tion we compute a state-space realization of a spectral factor T (z) of W (z) defined
in (1.20) and a spectral factorization of −S(z) = γ2I − W (z). These factorizations
are related to the stabilizing solutions of a pair of coupled AREs. These solutions
will be used to compute the solution (and hence to prove constructively its existence)
of a third ARE that is strictly related to (1.14). This procedure will be carried over
through various steps.

2.1. Computation of a square spectral factor of H1(z)H1 (̃z). Consider
the following standard filtering ARE:

P = APA� + BB� − (APC� + BD�)(DD� + CPC�)−1(CPA� + DB�).(2.1)

By assumptions (1.7b) and (1.7c), it admits a positive definite stabilizing solution
Ps = P�

s > 0. Such a solution corresponds to spectral factorization of H1(z)H1̃ (z).
In fact, by defining

D1 := (DD� + CPsC
�)1/2, G1 := (APsC

� + BD�)D−1
1 ,(2.2)

it is easy to check (see [12]) that

H1(z)H1̃ (z) = V1(z)V1̃ (z)(2.3)

with

V1(z) := C(zI −A)−1G1 + D1.(2.4)

2.2. Computation of V1(z)−1H1(z). First notice that

V1(z)
−1 = D−1

1 −D−1
1 C(zI − Γ)−1G1D

−1
1(2.5)

with

Γ := A−G1D
−1
1 C(2.6)
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being the closed-loop matrix corresponding to the stabilizing solution Ps of the ARE
(2.1) (so that all the eigenvalues of Γ lay in the open unit disk).

Then we have

V2(z) := V1(z)
−1H1(z)

= D−1
1 C(zI −A)−1B −D−1

1 C(zI − Γ)−1G1D
−1
1 D + D−1

1 D

−D−1
1 C(zI − Γ)−1 G1D

−1
1 C︸ ︷︷ ︸

(zI−Γ)−(zI−A)

(zI −A)−1B

= D−1
1 C(zI − Γ)−1(B −G1D

−1
1 D) + D−1

1 D

= C2(zI − Γ)−1G2 + D2(2.7)

with

C2 := D−1
1 C, G2 := B −G1D

−1
1 D, D2 := D−1

1 D.(2.8)

2.3. Computation of V2(z)H2 (̃z). We have

V2(z)H2̃ (z) = [C2(zI − Γ)−1G2 + D2][B
�(z−1I −A�)−1L� + M�]

= C2(zI − Γ)−1G2M
� + D2B

�(z−1I −A�)−1L� + D2M
�

+ C2(zI − Γ)−1G2B
�(z−1I −A�)−1L�.(2.9)

Taking the ARE (2.1) into account, it is easy to check that

G2B
� = Ps − ΓPsA

�,(2.10)

which may be easily rewritten in the form

G2B
� = (zI − Γ)Ps(z

−1I −A�) + (zI − Γ)PsA
� + ΓPs(z

−1I −A�).(2.11)

Plugging this expression in (2.9) we get

V2(z)H2̃ (z) = C2(zI − Γ)−1G3 + G�
1 (z−1I −A�)−1L� + D3(2.12)

with G3 := ΓPsL
�+G2M

� and D3 := C2PsL
�+D2M

� or, taking into account that
DM� = 0,

G3 = ΓPsL
� + BM�, D3 = C2PsL

�(2.13)

2.4. Computation of H2(z)H1 (̃z)[H1(z)H1 (̃z)]−1H1(z)H2 (̃z). It is
clear that H2(z)H1̃ (z)[H1(z)H1̃ (z)]−1H1(z)H2̃ (z) = H2(z)V2̃ (z)V2(z)H2̃ (z). We
have

H2(z)V2̃ (z)V2(z)H2̃ (z) = D�
3 D3 + G�

3 (z−1I − Γ�)−1C�
2 C2(zI − Γ)−1G3

+ D�
3 C2(zI − Γ)−1G3 + D�

3 G�
1 (z−1I −A�)−1L�

+ [D�
3 C2(zI − Γ)−1G3 + D�

3 G�
1 (z−1I −A�)−1L� ]̃

+ L(zI −A)−1G1C2(zI − Γ)−1G3

+ [L(zI −A)−1G1C2(zI − Γ)−1G3 ]̃

+ L(zI −A)−1G1G
�
1 (z−1I −A�)−1L�.(2.14)
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The last three terms of such expression may be expanded as follows: first taking into
account that

G1C2 = G1D
−1
1 C = A− Γ = (zI − Γ) − (zI −A)(2.15)

we have

L(zI −A)−1G1C2(zI − Γ)−1G3 = L(zI −A)−1G3 − L(zI − Γ)−1G3.(2.16)

Second, taking into account the ARE (2.1), we have

G1G
�
1 = APsA

� − Ps + BB� = BB� − (zI −A)Ps(z
−1I −A�) − (zI −A)PsA

�

−APs(z
−1I −A�)

(2.17)
so that

L(zI−A)−1G1G
�
1 (z−1I−A�)−1L�

= L(zI −A)−1BB�(z−1I −A�)−1L� − LPsL
�

− L(zI −A)−1APsL
� − LPsA

�(z−1I −A�)−1L�.

(2.18)

2.5. Computation of W (z). From the definition (1.20) of W (z) it follows that

W (z) = H2(z)H2̃ (z) −H2(z)V2̃ (z)V2(z)H2̃ (z).(2.19)

Moreover, by computing H2(z)H2̃ (z), we get the following expression:

H2(z)H2̃ (z) = L(zI −A)−1BB�(z−1I −A�)−1L� + MM�

+ L(zI −A)−1BM� + [L(zI −A)−1BM� ]̃ .(2.20)

By subtracting (2.14) from (2.20), taking (2.16), (2.18), and (2.19) into account, we
get

W (z) = (L−D�
3 C2)(zI − Γ)−1G3 + [(L−D�

3 C2)(zI − Γ)−1G3 ]̃

− G�
3 (z−1I − Γ�)−1C�

2 C2(zI − Γ)−1G3 + LPsL
� + MM� −D�

3 D3

+ L(zI −A)−1(BM� −G1D3 + APsL
� −G3)

+ [L(zI −A)−1(BM� −G1D3 + APsL
� −G3)]̃ .(2.21)

We now prove that BM� −G1D3 + APsL
� −G3 = 0, so that the last two terms of

the latter expression vanish. We have

BM�−G1D3+APsL
�−G3

= BM� −G1C2︸ ︷︷ ︸
A−Γ

PsL
� + APsL

� − ΓPsL
� −BM� = 0.(2.22)

2.6. Spectral factorization of W (z). To factorize W (z) we first need to
rewrite the term

G�
3 (z−1I − Γ�)−1C�

2 C2(zI − Γ)−1G3.

To this aim we derive a new expression for C�
2 C2. Standard computations show that

the solution Ps of the ARE (2.1) satisfies the following identity [15, p. 271]:

Ps = FPsF
� − FPsC

�(CPsC
� + DD�)−1CPsF

� + B1B
�
1 ,(2.23)
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where F and B1 are defined in (1.6). We also have

Γ = A−G1D
−1
1 C = F + [BD�(DD�)−1D2

1 −APsC
� −BD�]D−1

1 C2

= F − FPsC
�D−1

1 C2 = F − FPsC
�
2 C2

= F (I − PsC
�
2 C2)(2.24)

so that (2.23) may be rewritten in the form

Ps −B1B
�
1 = ΓPsF

� = FPsΓ
�.(2.25)

From DD� > 0 and Ps > 0 it easily follows that (I − PsC
�
2 C2) = Ps(P

−1
s −

C�(CPsC
� +DD�)−1C) is nonsingular (in fact, (P−1

s −C�(CPsC
� +DD�)−1C) >

0). Thus Γ, and hence FPsΓ
�, are nonsingular so that the left-hand side of (2.25) is

nonsingular as well, and we have

(Ps −B1B
�
1 )−1 = Γ−�P−1

s F−1,(2.26)

which may be rewritten as

P−1
s = Γ�(Ps −B1B

�
1 )−1F,(2.27)

and, by multiplying on the right side by (I − PsC
�
2 C2),

P−1
s (I − PsC

�
2 C2) = Γ�(Ps −B1B

�
1 )−1Γ.(2.28)

Therefore

C�
2 C2 = P−1

s − Γ�(Ps −B1B
�
1 )−1Γ(2.29a)

= P−1
s − Γ�P−1

s Γ − Γ�P−1
s B1V

−1B�
1 P−1

s Γ(2.29b)

= (z−1I − Γ�)P−1
s (zI − Γ) + Γ�P−1

s (zI − Γ) + (z−1I − Γ�)P−1
s Γ

−Γ�P−1
s B1V

−1B�
1 P−1

s Γ,(2.29c)

where

V := I −B�
1 P−1

s B1.(2.30)

Notice that

P−1
s −C�

2 C2 = P−1
s −C�(DD�+CPsC

�)−1C = P−1
s [P−1

s +C�(DD�)−1C]−1P−1
s > 0

(2.31)
so that from (2.29a) it follows that Ps −B1B

�
1 > 0, which, together with the positive

definiteness of Ps, implies that V is positive definite as well.
Plugging in the expression in the right-hand side of (2.29c) in place of C�

2 C2 in
the third term of (2.21), we get

W (z) = (L−D�
3 C2 −G�

3 P
−1
s Γ)(zI − Γ)−1G3

+ [(L−D�
3 C2 −G�

3 P
−1
s Γ)(zI − Γ)−1G3 ]̃

+ G�
3 (z−1I − Γ�)−1Γ�P−1

s B1V
−1B�

1 P−1
s Γ(zI − Γ)−1G3

+ LPsL
� + MM� −D�

3 D3 −G�
3 P

−1
s G3.

(2.32)

Now we are ready to prove that the following spectral factorization of W (z) holds:

W (z) = T (z)T (̃z),(2.33)
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where

T (z) := [−G�
3 (z−1I − Γ�)−1Γ�P−1

s B1 −G�
3 P

−1
s B1 + M ]V −1/2.(2.34)

To this aim it is sufficient to show that

(M −G�
3 P

−1
s B1)V

−1(M −G�
3 P

−1
s B1)

�

− (LPsL
� + MM� −D�

3 D3 −G�
3 P

−1
s G3) = 0(2.35)

and

Γ�P−1
s B1V

−1(M −G�
3 P

−1
s B1)

� + (L−D�
3 C2 −G�

3 P
−1
s Γ)� = 0.(2.36)

As for (2.35) notice that

M −G�
3 P

−1
s B1 = M − LPsΓ

�P−1
s B1 −MB�

1 P−1
s B1 = MV − LPsΓ

�P−1
s B1

(2.37)

so that, taking (1.8) into account, we may expand the left-hand side of (2.35) as

MVM� −MB�
1 P−1

s ΓPsL
� − (MB�

1 P−1
s ΓPsL

�)�

+ LPsΓ
�P−1

s B1V
−1B�

1 P−1
s ΓPsL

� − LPsL
� −MM�

+ LPsC
�
2 C2PsL

� + LPsΓ
�P−1

s ΓPsL
� + MB�

1 P−1
s B1M

�(2.38)

+ MB�
1 P−1

s ΓPsL
� + (MB�

1 P−1
s ΓPsL

�)�

= LPs(Γ
�P−1

s B1V
−1B�

1 P−1
s Γ − P−1

s + C�
2 C2 + Γ�P−1

s Γ)PsL
� = 0,

where the latter equality follows from the expression (2.29b) for C�
2 C2.

Similarly, we may expand the left-hand side of (2.36) as

L� − C�
2 C2PsL

� − Γ�P−1
s ΓPsL

� − Γ�P−1
s B1V

−1B�
1 P−1

s ΓPsL
�

= (P−1
s − C�

2 C2 − Γ�P−1
s Γ − Γ�P−1

s B1V
−1B�

1 P−1
s Γ)PsL

� = 0.(2.39)

We now rewrite T (z) in a more convenient form. Notice that

(z−1I − Γ�)−1 = −Γ−� − Γ−�(zI − Γ−�)−1Γ−�

so that

T (z) = [G�
3 Γ−�(zI − Γ−�)−1P−1

s B1 + M ]V −1/2

= [G�
3 Γ−�P−1

s (zI − PsΓ
−�P−1

s )−1B1 + M ]V −1/2

= L1(zI − Fa)
−1B1V

−1/2 + MV −1/2(2.40)

with

L1 := G�
3 Γ−�P−1

s = L + MB�
1 Γ−�P−1

s , Fa := PsΓ
−�P−1

s .(2.41)

Notice that since Γ is stable, Fa is antistable. As a direct consequence of (2.26) we
have the following relation that will be useful in what follows:

Fa = (I −B1B
�
1 P−1

s )−1F.(2.42)
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2.7. Spectral factorization of −S(z). We have

−S(z) = γ2I −W (z) = γ2I − T (z)T (̃z).

As we have done for the factorization in section 2.1 consider the following ARE for
the spectral factorization of −S(z):

X=FaXF�
a −B1V

−1B�
1 −(FaXL�

1 −B1V
−1M�)(R+L1XL�

1 )−1(L1XF�
a −MV −1B�

1 )
(2.43)
with

R := γ2I −MV −1M�.(2.44)

In view of (1.21), we have ‖T (z)‖∞ < γ for any γ > γ0 so that as a consequence of
a generalized version of the discrete-time bounded real lemma (see [8, Theorem 2.1]),
(2.43) admits a stabilizing solution, namely, a solution Xs = X�

s such that

Γa := Fa − (FaXsL
�
1 −B1V

−1M�)(R + L1XsL
�
1 )−1L1(2.45)

is a stability matrix; moreover (R + L1XsL
�
1 ) > 0 and the function

T1(z) := [I+L1(zI−Fa)
−1(FaXsL

�
1 −B1V

−1M�)(R+L1XsL
�
1 )−1](R+L1XsL

�
1 )1/2

(2.46)

is a square spectral factor of −S(z) = γ2Il − W (z), namely, it is a square matrix
function such that −S(z) = T1(z)T1̃ (z). Moreover, the numerator matrix of T1(z) is
given by (2.45) and hence [T1(z)]

−1 is stable.
We now show that Xs is positive definite. In fact, since (R + L1XsL

�
1 ) > 0, we

have

Xs ≤ FaXsF
�
a −B1V

−1B�
1 .(2.47)

But (F,B1) is, by assumption, reachable, (Fa, B1) is such (because Fa is obtained
from F by state feedback as it is apparent from (2.42)), and then also (Fa, B1V

−1/2)
is reachable. Therefore, since Fa is antistable, a standard Lyapunov argument, shows
that Xs > 0.

2.8. The ARE for P −1
s − X−1

s . Define

R1 := I − M�M

γ2
(2.48)

and

Fy := A−BJ ′
0J

−1
1 H0,(2.49)

where J0, J1, H0 are defined in (1.13). Notice that Fy is well defined if and only if J1

is nonsingular or, equivalently, if and only if R1 is nonsingular. Let

G1 := {γ > γ0 : at least one of the matrices R, R1, and Fy, is singular}.(2.50)

Remark 2.1. Notice that since Fy may be written in the form

Fy = F −B1M
�(MM� − γ2I)−1L,(2.51)

where F is nonsingular, G1 contains a finite number of points. More precisely, it
contains, at most, n + 2 rank(M) points.
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We consider now the following ARE:

Y = F�Y F +

(
F�Y B1 +

L�M

γ2

)
(R1 −B�

1 Y B1)
−1

(
B�

1 Y F +
M�L

γ2

)
− C�(DD�)−1C +

L�L

γ2

(2.52)

and prove that it admits a solution that can be explicitely computed. To this aim we
need a technical lemma.

Lemma 2.1. Let γ > γ0 and γ �∈ G1 and define

F1 := Fa + B1V
−1M�R−1L1.(2.53)

Then the following relation holds:

X−1
s = F�

1 X−1
s (I −B1R

−1
1 B�

1 (P−1
s −X−1

s ))−1Fy − L�
1 R

−1L1.(2.54)

Proof. First we establish the following useful identity:

Fy = (I −B1R
−1
1 B�

1 P−1
s )F1.(2.55)

To show identity (2.55), we write F1 in the form

F1 = (I + B1V
−1M�R−1MB�

1 P−1
s )Fa + B1V

−1M�R−1L

= (I + B1V
−1M�R−1MB�

1 P−1
s )(I −B1B

�
1 P−1

s )−1F + B1V
−1M�R−1L,(2.56)

which gives

(I −B1R
−1
1 B�

1 P−1
s )F1

= (I −B1R
−1
1 B�

1 P−1
s )(I + B1V

−1M�R−1MB�
1 P−1

s )(I −B1B
�
1 P−1

s )−1F

+ (I −B1R
−1
1 B�

1 P−1
s )B1V

−1M�R−1L,(2.57)

so that, taking (2.51) into account, it is sufficient to prove that

(I −B1R
−1
1 B�

1 P−1
s )(I + B1V

−1M�R−1MB�
1 P−1

s )(I −B1B
�
1 P−1

s )−1 = I(2.58)

and

(I −B1R
−1
1 B�

1 P−1
s )B1V

−1M�R−1 = −B1M
�(MM� − γ2I)−1.(2.59)

As for (2.58), we have

(I−B1R
−1
1 B�

1 P−1
s )(I+B1V

−1M�R−1MB�
1 P−1

s )(I −B1B
�
1 P−1

s )−1

=(I−B1R
−1
1 B�

1 P−1
s )(I−B1B

�
1 P−1

s +B1(I+V −1M�R−1M)B�
1 P−1

s )(I−B1B
�
1 P−1

s )−1

=(I−B1R
−1
1 B�

1 P−1
s )

[
I−B1B

�
1 P−1

s + B1

(
V − M�M

γ2

)−1

V B�
1 P−1

s

]
(I−B1B

�
1 P−1

s )−1

=(I−B1R
−1
1 B�

1 P−1
s )

[
I+B1

(
V − M�M

γ2

)−1

V B�
1 P−1

s (I −B1B
�
1 P−1

s )−1

]

=(I−B1R
−1
1 B�

1 P−1
s )

[
I+B1

(
V − M�M

γ2

)−1

B�
1 P−1

s

]
=(I−B1R

−1
1 B�

1 P−1
s )(I−B1R

−1
1 B�

1 P−1
s )−1 = I.

(2.60)
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As for (2.59), we have

(I −B1R
−1
1 B�

1 P−1
s )B1V

−1M�R−1 = B1(I −R−1
1 B�

1 P−1
s B1)V

−1M�R−1

= B1R
−1
1 (R1 −B�

1 P−1
s B1︸ ︷︷ ︸

V−M�M
γ2

)V −1M�R−1

= B1R
−1
1 M�

(
I − MV −1M�

γ2

)
R−1

= −B1M
�(MM� − γ2I)−1.(2.61)

Since Xs is a solution of the ARE (2.43), as a direct consequence of standard
equivalence of Riccati equations [15, p. 271], we have the following identity:

Xs = F1XsF
�
1 − F1XsL

�
1 (L1XsL

�
1 + R)−1L1XsF

�
1 −B1

(
V − M�M

γ2

)−1

B�
1

(2.62)

with F1 being defined in (2.53). The closed-loop matrix may thus be written in the
form

Γa = F1 − F1XsL
�
1 (L1XsL

�
1 + R)−1L1 = F1(I + XsL

�
1 R

−1L1)
−1.(2.63)

Notice that V − M�M
γ2 is nonsingular because V and R are such. In the same way,

X−1
s +L�

1 R
−1L1, and hence (I+XsL

�
1 R

−1L1), are nonsingular because Xs, L1XsL
�
1 +

R, and R are such. From (2.62) we easily get

Xs + B1

(
V − M�M

γ2

)−1

B�
1 = F1(Xs −XsL

�
1 (L1XsL

�
1 + R)−1L1Xs)F

�
1 .(2.64)

As an immediate consequence of (2.55) we have that F1 is nonsingular, so that the
right-hand side of (2.64) (which may be written in the form F1(I+XsL

�
1 R

−1L1)
−1F�

1 )

is nonsingular. Hence Xs + B1(V − M�M
γ2 )−1B�

1 is nonsingular as well and then
M�M

γ2 − V − B�
1 X−1

s B1 = −
(
R1 −B�

1 (P−1
s −X−1

s )B1

)
is such. (Actually, a more

detailed analysis allows to conclude that
(
R1 −B�

1 (P−1
s −X−1

s )B1

)
> 0.) Then we

have[
Xs + B1

(
V − M�M

γ2

)−1

B�
1

]−1

= [F1(Xs −XsL
�
1 (L1XsL

�
1 + R)−1L1Xs)F

�
1 ]−1,

(2.65)

which yields

X−1
s +X−1

s B1

(
M�M

γ2
− V −B�

1 X−1
s B1

)−1

B�
1 X−1

s = F−�
1 (X−1

s +L�
1 R

−1L1)F
−1
1

(2.66)
and hence

X−1
s = F�

1 X−1
s F1 − F�

1 X−1
s B1

(
R1 −B�

1 (P−1
s −X−1

s )B1

)−1
B�

1 X−1
s F1 − L�

1 R
−1L1

(2.67a)

= F�
1 X−1

s (I −B1R
−1
1 B�

1 (P−1
s −X−1

s ))−1(I −B1R
−1
1 B�

1 P−1
s )F1 − L�

1 R
−1L1.

(2.67b)
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Finally, by plugging (2.55) in (2.67b) we obtain (2.54).
Proposition 2.1. Let γ > γ0 and γ �∈ G1. Then the ARE (2.52) admits the

(necessarily unique) antistabilizing solution. In fact, such solution is given by3

Ya := P−1
s −X−1

s .(2.68)

Proof. We have to show that when Y = Ya, (2.52) is an identity and that all the
eigenvalues of

Γy := F −B1(B
�
1 YaB1 −R1)

−1

(
B�

1 YaF +
M�L

γ2

)
(2.69)

lay in {z ∈ C : |z| > 1}.
We first prove that Ya is a solution of the ARE

Y = F�
y Y Fy + F�

y Y B1(R1 −B�
1 Y B1)

−1B�
1 Y Fy −H�

0 J−1
1 H0.(2.70)

From (2.23) we get

(Ps −B1B
�
1 )−1 = F−�(Ps − PsC

�(CPsC
� + DD�)−1CPs)

−1F−1,(2.71)

which, using the same procedure that lead to (2.67a), yields

P−1
s = F�P−1

s F − F�P−1
s B1(B

�
1 P−1

s B1 − I)−1B�
1 P−1

s F − C�(DD�)−1C,

(2.72)

which, taking (2.42) into account, may be also written in the form

P−1
s = F�

a P−1
s F − C�(DD�)−1C(2.73)

and, finally, in the form

P−1
s = F�

1 P−1
s Fy + F�

a P−1
s (F − Fy) − (F1 − Fa)

�P−1
s Fy − C�(DD�)−1C.

(2.74)

By subtracting (2.54) from (2.74) we now get

Ya = F�
1 [P−1

s −X−1
s (I −B1R

−1
1 B�

1 Ya)
−1]Fy + R2(2.75)

with

R2 := F�
a P−1

s (F − Fy) − (F1 − Fa)
�P−1

s Fy − C�(DD�)−1C + L�
1 R

−1L1.(2.76)

We may rewrite (2.75) as follows:

Ya = F�
1 [(Ya − P−1

s B1R
−1
1 B�

1 Ya)(I −B1R
−1
1 B�

1 Ya)
−1]Fy + R2

= F�
1 (I − P−1

s B1R
−1
1 B�

1 )Ya(I −B1R
−1
1 B�

1 Ya)
−1Fy + R2

= F�
y Ya(I −B1R

−1
1 B�

1 Ya)
−1Fy + R2

= F�
y YaFy + F�

y YaB1(R1 −B�
1 YaB1)

−1B�
1 YaFy + R2,(2.77)

where we have taken (2.55) into account.

3We shall denote such a solution by Ya(γ) when we want to stress its dependence upon γ.
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To prove that Ya is a solution of the ARE (2.70), it remains only to show that

R2 = −H�
0 J−1

1 H0.(2.78)

Indeed, taking into account (2.51), (2.53), and the first of (2.41), we have

R2 + H�
0 J−1

1 H0

= F�
a P−1

s (F − Fy) − (F1 − Fa)
�P−1

s Fy + L�
1 R

−1L1 + L�(MM� − γ2I)−1L

= F�
a P−1

s B1M
�(MM� − γ2I)−1L− L�

1 R
−1MV −1B�

1 P−1
s F

+ L�
1 R

−1M V −1B�
1 P−1

s B1︸ ︷︷ ︸
V −1−I

M�(MM� − γ2I)−1L

+ L�
1 R

−1L1 + L�(MM� − γ2I)−1L

= F�
a P−1

s B1M
�(MM� − γ2I)−1L− L�

1 R
−1MV −1B�

1 P−1
s F

+ L�
1 R

−1 MV −1M�︸ ︷︷ ︸
−R+γ2I

(MM� − γ2I)−1L

− L�
1 R

−1 MM�︸ ︷︷ ︸
(MM�−γ2I)+γ2I

(MM� − γ2I)−1L

+ L�
1 R

−1L1 + L�(MM� − γ2I)−1L

= F�
a P−1

s B1M
�(MM� − γ2I)−1L− L�

1 R
−1MV −1B�

1 P−1
s F

+ (L� − L�
1 )︸ ︷︷ ︸

−F�
a P−1

s B1M�

(MM� − γ2I)−1L + L�
1 R

−1 (L1 − L)︸ ︷︷ ︸
MB�

1 P−1
s Fa

= L�
1 R

−1M(B�
1 P−1

s Fa − V −1B�
1 P−1

s F )

= L�
1 R

−1M(B�
1 P−1

s Fa −B�
1 P−1

s (I −B1B
�
1 P−1

s )−1F︸ ︷︷ ︸
Fa

) = 0.

(2.79)

We now prove that Ya is a solution of (2.52) as well. In fact, we have

Fy = F −B1M
�(MM� − γ2I)−1L = F + B1M

�
(

I

γ2
+

MR−1
1 M�

γ4

)
L

= F + B1R
−1
1

M�L

γ2
(2.80)

and

H�
0 J−1

1 H0 = C�(DD�)−1C + L�(MM� − γ2I)−1L

= C�(DD�)−1C − L�L

γ2
− L�M

γ2
R−1

1

M�L

γ2
(2.81)

so that, by using standard manipulations [15, p. 271], (2.70) may be rewritten in the
form (2.52).

It remains to prove that the solution Ya is indeed antistabilizing, i.e., that all the
eigenvalues of Γy lay in {z ∈ C : |z| > 1}. Notice that Γy may be written in the form

Γy = Fy + B1(R1 −B�
1 YaB1)

−1B�
1 YaFy = (I −B1R

−1
1 B�

1 Ya)
−1Fy.(2.82)

Moreover, we rewrite (2.54) in the form

X−1
s + L�

1 R
−1L1 = F�

1 X−1
s Γy,(2.83)
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which, together with (2.63) yields

I = Xs(I + L�
1 R

−1L1Xs)
−1F�

1 X−1
s Γy = XsΓ

�
a X

−1
s Γy,(2.84)

so that Γy is clearly antistable.

3. A monotonicity result. In this section we prove that the values of γ for
which Ya(γ) is singular are finitely many. This will be usefull in order to prove
existence of the stabilizing solution of (1.14).

Proposition 3.1. Let Ya(γ) be as in (2.68). The set

G2 := {γ > γ0 : Ya(γ) is singular}(3.1)

contains, at most, n points.
Proof. The solution Xs of (2.43) is a continuous function of γ and its first deriva-

tive with respect to γ2 exists and is continuous; see, e.g., [15, Theorem 14.2.2]. Since
Ps does not depend on γ, the derivative dYa

dγ2 exists and is continuos as well. Consider

an open set I = (a, b) such that a ≥ γ0, b > a (possibly b = ∞) and I ∩ G1 = ∅.
(Notice that the set {γ ∈ R : γ > γ0} may be written as the union of a finite number
of sets of this form and of a finite number of isolated points.) For γ ∈ I, we may take
derivatives in both sides of (2.52) and, by defining

Yγ :=
dYa

dγ2
,(3.2)

we get

Yγ = F�YγF −
(
F�YγB1 −

L�M

γ4

)
(R1 −B�

1 YaB1)
−1

(
B�

1 YaF +
M�L

γ2

)
−
(
F�YaB1 +

L�M

γ2

)
(R1 −B�

1 YaB1)
−1

(
B�

1 YγF − M�L

γ4

)
−
(
F�YaB1 +

L�M

γ2

)
(R1 −B�

1 YaB1)
−1M

�M

γ4

(R1 −B�
1 YaB1)

−1

(
B�

1 YaF +
M�L

γ2

)
+

(
F�YaB1 +

L�M

γ2

)
(R1 −B�

1 YaB1)
−1B�

1 YγB1

(R1 −B�
1 YaB1)

−1

(
B�

1 YaF +
M�L

γ2

)
−L�L

γ4
(3.3)

and, taking (2.69) into account,

Yγ = Γ�
y YγΓy −

L�
2 L2

γ4
(3.4)

with

L2 := L−M(R1 −B�
1 YaB1)

−1

(
B�

1 YaF +
M�L

γ2

)
.(3.5)
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Taking (2.82) into account, we may rewrite (2.70) (with Y + Ya) in the form

Ya = Γ�
y YaΓy − Γ�

y YaB1R
−1
1 B�

1 YaΓy −H�
0 J−1

1 H0.(3.6)

Define

Z := Ya + γ2Yγ .(3.7)

By adding (3.4) multiplied by γ2 to (3.6), we get

Z = Γ�
y ZΓy − Γ�

y YaB1R
−1
1 B�

1 YaΓy −H�
0 J−1

1 H0 −
L�

2 L2

γ2
.(3.8)

By taking into account the definitions (2.69) and (3.5) of Γy and L2, respectively, and
identity (2.81), it is not difficult to see that

−Γ�
y YaB1R

−1
1 B�

1 YaΓy −H�
0 J−1

1 H0 −
L�

2 L2

γ2
= −C�

1 C1 − C�(DD�)−1C(3.9)

with

C1 := (R1 −B�
1 YaB1)

−1

(
B�

1 YaF +
M�L

γ2

)
.(3.10)

Therefore, Z satisfies

Z = Γ�
y ZΓy − C�

1 C1 − C�(DD�)−1C.(3.11)

Notice that since Γy is antistable, (3.4) and (3.11) imply that

Yγ ≥ 0,(3.12a)

Z ≥ 0.(3.12b)

Moreover, by multiplying (3.4) and (3.11) on the left side by Γ−�
y and on the right

side by Γ−1
y , it is easy to see that both kerYγ and kerZ are invariant for Γ−1

y and
hence for Γy. Then

kerYγ ⊆ kerL2(3.13)

and

kerZ ⊆ ker

[
C1

C

]
.(3.14)

Therefore,

K := ker

[
Ya

Yγ

]
= ker

[
Z
Yγ

]
(3.15)

is Γy-invariant and satisfies

K ⊆ ker

⎡⎣ C
C1

L2

⎤⎦ .(3.16)
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We now prove that K = {0}. To this end it is sufficient to show that

ker

⎡⎢⎢⎣
Γy − λI

C
C1

L2

⎤⎥⎥⎦ = {0} ∀λ ∈ C.(3.17)

Assume by contradiction that there exist v �= 0 and λ ∈ C such that⎡⎢⎢⎣
Γy − λI

C
C1

L2

⎤⎥⎥⎦ v = 0.(3.18)

Then, since Γy is antistable, |λ| > 1. Moreover, the definitions (1.6) of F and (2.69)
of Γy yield

Γy = A−BD�(DD�)−1C −B1C1(3.19)

so that Γyv = Av and we get[
A− λI

C

]
v = 0, |λ| > 1,(3.20)

which is in contradiction with detectability of the pair (A,C). Therefore K = 0 and
then, when one eigenvalue of Ya (that is a continuous function of Ya and hence of
γ) is zero, its derivative with respect to γ is positive. Thus, if Ya(γ̄) is singular and
(counting with multiplicity) has, say, k+ positive, k0 zero, and k− negative eigenvalues,
then there exists a positive value δ such that Ya(γ) has k+ positive and k0+k− negative
eigenvalues for γ ∈ (γ̄ − δ, γ̄) and k+ + k0 positive and k− negative eigenvalues for
γ ∈ (γ̄, γ̄ + δ). Clearly, this may happen for, at most, n different values of γ.

So far we have assumed that γ ∈ I. As already observed, the set {γ ∈ R : γ > γ0}
may be written as the union of a finite number of sets of the same type of I and
of a finite number of values of γ. In correspondence of such values, Ya remains
a continuous function of γ so that we can extend the conclusion to the whole set
{γ ∈ R : γ > γ0}.

4. Existence of a stabilizing solution of the ARE (1.14). Next we show
that when Ya is nonsingular, then Y −1

a is the (necessarily unique) stabilizing solution
of (1.14), so that, in view of Propositions 2.1 and 3.1, we get that, except for a finite
number of values of γ > γ0, the ARE (1.14) admits the stabilizing solution. We shall
prove in the next section that such solution is also feasible.

Consider the set G1 ∪ G2 and observe that it contains, at most, 2[n + rank(M)]
points. Then, the set of regular values of γ defined as

Gr := {γ > γ0 : γ �∈ G1 ∪ G2}(4.1)

is generic in {γ ∈ R : γ > γ0}.
The following theorem is our main result.
Theorem 4.1. Let γ ∈ Gr and let Ya(γ) be the corresponding antistabilizing

solution of (2.52). Then (1.14) admits a unique symmetric stabilizing solution. Such
solution is given by

Δs = Y −1
a .(4.2)
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Proof. As shown in Proposition 2.1, Ya is a solution of (2.70) so that we have

Ya + H�
0 J−1

1 H0 = F�
y YaFy + F�

y YaB1(R1 −B�
1 YaB1)

−1B�
1 YaFy

= F�
y (Ya + YaB1(R1 −B�

1 YaB1)
−1B�

1 Ya)Fy.(4.3)

Since γ ∈ Gr, Ya, R1 and (R1 − B�
1 YaB1) are nonsingular so that Ya + YaB1(R1 −

B�
1 YaB1)

−1B�
1 Ya is such. Moreover, Fy is nonsingular so that the left-hand side of

(4.3) is nonsingular and the same procedure that led to (2.67a) gives

Y −1
a = FyY

−1
a F�

y − FyY
−1
a H�

0 (J1 + H0Y
−1
a H�

0 )−1H0Y
−1
a F�

y + B1R
−1
1 B�

1 ,(4.4)

which, taking (4.2) into account, yields, after some standard manipulations [15, p.
271]

Δs = AΔsA
� + BB� − (AΔsH

�
0 + BJ�

0 )(J1 + H0ΔsH
�
0 )−1(H0ΔsA

� + J0B
�).

(4.5)

It remains to show that

Γs := A−(AΔsH
�
0 +BJ�

0 )(J1+H0ΔsH
�
0 )−1H0 = Fy−FyΔsH

�
0 (J1+H0ΔsH

�
0 )−1H0

(4.6)
is stable. To this aim we rewrite (4.4) in the form

Y −1
a −B1R

−1
1 B�

1 = ΓsY
−1
a F�

y ,(4.7)

which, taking (2.82) into account, yields

I = ΓsY
−1
a F�

y (Y −1
a −B1R

−1
1 B�

1 )−1 = ΓsY
−1
a Γ�

y Ya,(4.8)

so that, since Γy is antistable, Γs is stable.
Remark 4.1. It is worth noticing that the computation of the stabilizing solution

of the Riccati equation (1.14) can be numerically obtained by resorting to standard
routines available in most control packages without the need of computing the solution
the auxiliary Riccati equations (2.1) and (2.43). Indeed, those Riccati equations were
only instrumental to the purpose of proving the existence of the stabilizing solution
of (1.14).

5. Construction of the minimum phase J-spectral factor and H∞ es-
timator design. The following important theorem gives a constructive procedure
to obtain, from the solution Δs, a minimum-phase J-spectral factor of Ψ(z) having
a realization with the same state matrix A and the same output matrix H0 of the
realization (1.9) of H(z).

Theorem 5.1. Let

γ ∈ Gr(5.1)

and let Δs be the corresponding stabilizing solution of equation (1.14). Then,
1. The solution Δs is feasible, i.e., J1+H0ΔsH

�
0 has the same inertia of Jp,l(γ)

and hence there exists a nonsingular matrix Λ such that

ΛJp,l(γ)Λ� = J1 + H0ΔsH
�
0 .(5.2)
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2. The transfer matrix

Ωs(z) := H0(zI −A)−1(AΔsH
�
0 + BJ�

0 )(J1 + H0ΔsH
�
0 )−1Λ + Λ(5.3)

is a square J-spectral factor of the J-spectral density Ψ(z).
3. All the zeros of Ωs(z) lay in the open unit disk, i.e., Ωs(z)

−1 is stable.
Proof. The proof of this theorem may be obtained following the same lines of

Theorem 4.1 in [4].
We recall from [3] that there is a simple procedure that, from Ωs(z), furnishes a

realization of an H∞ smoothing filter with attenuation level γ.

6. The critical values of γ: A peculiar feature of the J-spectral factor-
ization. In this section, we analyze the ARE (1.14) and the associated J-spectral
factorization problem in the case when γ ∈ Gs := G1 ∪ G2. To this aim we write the
set Gs as the union of disjoint sets Gs = G′

1 ∪ G2 with G′
1 := G1 ∩ G2 (usually G′

1 = G1)
and we consider the cases γ ∈ G′

1 and γ ∈ G2 separately.
For γ ∈ G′

1, Ya(γ) is still nonsingular and we can define Δs := Ya(γ)−1. In
all the manifold examples that we have worked out, it turns out that, even for γ ∈
G′

1, Δs defined in this way continues to be the stabilizing solution of (1.14). This
leads us to conjecture that Theorem 4.1 holds (possibly with the Moore–Penrose
pseudoinverse in place of the inverse in the ARE (1.14)) for all γ ∈ Gr ∪G′

1. In view of
continutity, to prove this generalization it would be sufficient to show that for γ ∈ G′

1,
(J1 +H0ΔsH

�
0 ) is invertible or (using the pseudoinverse in place of the inverse) that

(AΔsH
�
0 + BJ�

0 )(J1 + H0ΔsH
�
0 )�(H0ΔsA

� + J0B
�) is a continuous function of γ

for each γ ∈ G′
1.

Much more interesting is the behavior associated with γ ∈ G2. In this case,
as shown in the following example, the ARE does not admit a stabilizing solution
nor does the J-spectral density admit a minimum phase J-spectral factor having a
realization with state matrix equal to A. This is a peculiar (and in the authors’
opinion, rather counterintuitive) feature of the J-spectral factorization. In fact, in
the standard (positive) spectral factorization this phenomenon cannot occur.

Let us consider the following very simple example: A = 2, C = L = 1, B = [1 | 0],
D = [0 | 1], and M = [0 | 0]. In this case W (z) defined in (1.20) is given by

W (z) =
1

2(3 − z − z−1)
(6.1)

so that

γ2
0 = sup

ϑ

∣∣∣∣ 1

2(3 − 2 cos(ϑ))

∣∣∣∣ =
1

2
.(6.2)

Moreover, the stabilizing solution of the ARE (2.1) is easily computed to be Ps =
2 +

√
5 and the ARE (2.43) assumes the form

X2 +

(
3 +

√
5 − γ2(10 + 6

√
5)

4

)
X + γ2

(
3 +

√
5

4

)
= 0,(6.3)

whose stabilizing solution Xs(γ) equals Ps for γ = 1. Moreover, Xs(γ) > Ps for γ > 1
and Xs(γ) < Ps for γ < 1. Thus, in this case, G2 = {1}. The ARE (1.14) assumes
the form

3Δ + 1 − 4Δ2

Δ(1 − γ2) − γ2
(1 − γ2) = 0.(6.4)
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For γ < 1, (6.4) admits a negative stabilizing solution Δs that tends to −∞ as
γ → 1−. For γ > 1, (6.4) admits a positive stabilizing solution Δs that tends to +∞
as γ → 1+.

For γ = 1, the order of such equation collapses and the stabilizing solution does
not exist any more: the only solution is Δa = −1/3 and the corresponding closed-loop
matrix is A− 0 = A = 2. Notice that Δa = −1/3 is feasible. In fact

J1 + H0ΔaH
�
0 =

1

3

[
2 −1
−1 −4

]
(6.5)

has a positive and a negative eigenvalue so that there exists a matrix Λ such that4

J1 + H0ΔaH
�
0 = ΛJ1,1(1)Λ�.(6.6)

The same computation used in the proof of Theorem 5.1 shows that

Ωa(z) := H0(zI −A)−1(AΔaH
�
0 + BJ�

0 )(J1 + H0ΔaH
�
0 )−1Λ + Λ

=

[
1
1

]
(z − 2)−1

[
−2

3
| 2

3

]
Λ + Λ(6.7)

is a J-spectral factor of the J-spectrum Ψ(z) that, in this case, is given by

Ψ(z) =

[
1

(z−2)(z−1−2) + 1 1
(z−2)(z−1−2)

1
(z−2)(z−1−2)

1
(z−2)(z−1−2) − 1

]
.(6.8)

The numerator matrix of Ωa(z) is 2 −
[
− 2

3 | 2
3

]
ΛΛ−1

[
1
1

]
= 2: the unique zero of

Ωa(z) lies outside the closed unit disk. (Such an Ωa(z) is said to be a maximum phase
J-spectral factor.) The set of all J-spectral factors of Ψ(z) having a realization with
state matrix A = 2 may be obtained as follows. We set

Ω(z) =

[
h1

h2

]
(z − 2)−1[g1 | g2] +

[
d11 d12

d21 d22

]
(6.9)

and impose

Ω(z)J1,1(1)Ω̃ (z) = Ψ(z).(6.10)

The corresponding solutions, up to a noninteresting change of basis in the state space,
may be parametrizied as follows:

Ω(z) =

[
1
1

]
(z − 2)−1[g | ±g] +

[ −2−3 g2

6 g ± 2−3 g2

6 g
−1+3 g2

3 g ± 1+3 g2

3 g

]
, g ∈ R \ {0},(6.11)

which is readily seen to be equal to the right-hand side of (6.7) as Λ varies among
the solutions of (6.6). In conclusion, we have produced a maximum-phase J-spectral

4The set of solutions of (6.6) may be parametrized as

Λ =

[
−2−3 g2

6 g
± 2−3 g2

6 g

−1+3 g2

3 g
± 1+3 g2

3 g

]
, g ∈ R \ {0}

(where the ± signs are either both + or both −).
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factor and have shown that the corresponding minimum-phase one (i.e., a minimum-
phase J-spectral factor having a realization with the same state-space matrix) does
not exist. This is a very peculiar behavior that has no counterpart in the regular
spectral factorization.

Notice that to obtain (6.11) we have imposed the McMillan degree5 of Ω(z) to
be equal to 1 or, equivalently, we have restricted our search to minimal J-spectral
factors, namely, J-spectral factors having the last possible McMillan degree. (Such
McMillan degree is clearly equal to one-half of the McMillan degree of the J-spectrum
Ψ(z).) See [16] for a discussion on the minimality of spectral factors. It is interesting
to observe that extending the search to nonminimal J-spectral factors (i.e., J-spectral
factors having larger McMillan degree), a minimum-phase J-spectral factor having a
unique pole in z = 2 does exist. Indeed, it is not difficult to check that

Ωm(z) = (zI2 − 2I2)
−1

[ −11
2
√

2
−3

2
√

2

− 1√
2

3√
2

]
+

[ −5
√

2
3

−
√

2
3−1

3
√

2
7

3
√

2

]
(6.12)

is a minimal realization of a J-spectral factor of Ψ(z). As H(z), Ωm(z) has a unique
pole in z = 2 and the corresponding numerator matrix

2I2 −
[ −11

2
√

2
−3

2
√

2

− 1√
2

3√
2

] [ −5
√

2
3

−
√

2
3−1

3
√

2
7

3
√

2

]−1

=

[
1
3

1
6

− 1
6

2
3

]
(6.13)

has a unique eigenvalue (of multiplicity 2) in z = 1/2. Again, this fact has no
counterpart in classical spectral factorization.

Eventually, notice that these discrepancies between J-spectral factorization and
classical spectral factorization are associated to very particular J-spectra. In fact
they may occur only for a finite number of values of γ.

6.1. Example with γ ∈ Gr. In the following we consider the previous example
in the case when γ0 < γ < γf and γ ∈ Gr. We design a smoothing filter starting from
the stabilizing solution Δs of (1.14). Let γ2 = 3/4. The stabilizing solution Δs is
then given by −4 −

√
13 and the corresponding J-spectral factor is given by

Ωs(z) =

[
1
1

]
(z − 2)−1

[
2.942 6.374

]
+

[
−0.3124 2.99
0.2785 3.353

]
.(6.14)

From Ωs(z), by following the procedure described in [3], we easily get the following
transfer function of a 1-step lag smoother,

S1(z) = z[0.2063(z − 0.02824)−12.958 + 0.1906],(6.15)

and it is easy to check that

‖S1(z)H1(z) −H2(z)‖ = 0.8383 < γ � 0.8660.(6.16)

7. Conclusions. In this paper a general J-spectral factorization problem was
considered and its relation with the existence of the stabilizing solution of the associ-
ated Riccati equation was investigated. The stabilizing solution depends on a positive

5We recall that the McMillan degree of a rational proper matrix function P (z) is the state-space
dimension of a minimal realization of P (z); see [14] for more details.
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parameter which represents the prescribed attenuation level for the underlying esti-
mation problem. We have shown that the stabilizing solution of the ARE still exists
(except for a finite number of values of γ) as long as a fixed-lag acausal estimator
(smoother) does. A few aspects of the J-spectral factorization problem and the prop-
erties of its solutions are discussed in correspondence to the (finite number of) values
of γ for which the stabilizing solution of the ARE does not exist.
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