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Abstract

We consider linear stochastic differential-algebraic equations with constant coefficients and
additive white noise. Due to the nature of this class of equations, the solution must be defined
as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions
for the law of the variables of the solution process to be absolutely continuous with respect to
Lebesgue measure.

1 Introduction

A Differential-Algebraic Equation (DAE) is, essentially, an Ordinary Differential Equation
(ODE) F (x, ẋ) = 0 that cannot be solved for the derivative ẋ. The name comes from the fact
that in some cases they can be reduced to a two-part system: A usual differential system plus
a “nondifferential” one (hence “algebraic”, with some abuse of language), that is

{

ẋ1 = f(x1, x2)

0 = g(x1, x2)
(1)

for some partitioning of the vector x into vectors x1 and x2. In general, however, such a
splitting need not exist.
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In comparison with ODE’s, these equations present at least two major difficulties: the first
lies in the fact that it is not possible to establish general existence and uniqueness results, due
to their more complicate structure; the second one is that DAE’s do not regularise the input
(quite the contrary), since solving them typically involves differentiation in place of integration.
At the same time, DAE’s are very important objects, arising in many application fields; among
them we mention the simulation of electrical circuits, the modelling of multibody mechanisms,
the approximation of singular perturbation problems arising e.g. in fluid dynamics, the dis-
cretisation of partial differential equations, the analysis of chemical processes, and the problem
of protein folding. We refer to Rabier and Rheinboldt [10] for a survey of applications.
The class of DAE’s most treated in the literature is, not surprisingly, that of linear equations,
which have the form

A(t)ẋ(t) + B(t)x(t) = f(t) ,

with x, f : R+ → Rn and A, B : R+ → Rn×n. When A and B are constant matrices the
equation is said to have constant coefficients. Note that these equations cannot in general be
split as in (1).
Recently, there has been some incipient work (Schein and Denk [12] and Winkler [14]) on
Stochastic Differential-Algebraic Equations (SDAE). In view to incorporate to the model a
random external perturbation, an additional term is attached to the differential-algebraic
equation, in the form of an additive noise (white or coloured). The solution will then be
a stochastic process instead of a single function.
Since the focus in [12] and [14] is on numerical solving and the particular applications, some
interesting theoretical questions have been left aside in these papers. Our long-term purpose is
to put SDAE into the mainstream of stochastic calculus, developing as far as possible a theory
similar to that of stochastic differential equations. In this first paper our aim is to investigate
the solution of linear SDAE with constant coefficients and an additive white noise, that means

Aẋ(t) + Bx(t) = f(t) + Λξ(t) ,

where ξ is a white noise and A, B, Λ are constant matrices of appropriate dimensions. We shall
first reduce the equation to the so-called Kronecker Canonical Form (KCF), which is easy to
analyse, and from whose solution one can recover immediately the solution to the original
problem. Unfortunately, it is not possible to extend this approach to the case of linear SDAE
with varying coefficients, just as happens in the deterministic case, where several different
approaches have been proposed. Among these, the most promising in our opinion is that of
Rabier and Rheinboldt [9].
Due to the simple structure of the equations considered here, it is not a hard task to establish
the existence of a unique solution in the appropriate sense. However, as mentioned before, a
DAE does not regularise the input f(t) in general. If white noise, or a similarly irregular noise
is used as input, then the solution process to a SDAE will not be a usual stochastic process,
defined as a random vector at every time t, but instead a “generalised process”, the random
analogue of a Schwartz generalised function.
The paper is organised as follows: in the next section we shall provide a short introduction to
linear DAE’s and to generalised processes. In the third section we shall define what we mean
by a solution to a linear SDAE and in Section 4 we shall provide a sufficient condition for the
existence of a density of the law of the solution. In the final Section 5 we shall discuss a simple
example arising in the modelling of electrical circuits.
Superscripts in parentheses mean order of derivation. The superscript " stands for transpo-
sition. All function and vector norms throughout the paper will be L2 norms, and the inner
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product will be denoted by 〈·, ·〉 in both cases. Covariance matrices of random vectors will be
denoted by Cov(·). The Kronecker delta notation δij := 1{i=j} will be used throughout.

2 Preliminaries on DAE and generalised processes

In this section we briefly introduce two topics: the (deterministic) differential-algebraic equa-
tions and the generalised processes. An exhaustive introduction on the first topic can be found
in Rabier and Rheinboldt [10], while the basic theory of generalised processes can be found in
Dawson [1], Fernique [2], or Chapter 3 in Gel’fand and Vilenkin [3].

2.1 Differential-Algebraic Equations

Consider an implicit autonomous ODE,

F (x, ẋ) = 0 , (2)

where F := F (x, p) : Rn×n → Rn is a sufficiently smooth function. If the partial differential
DpF (x, p) is invertible at every point (x0, p0), one can easily prove that the implicit ODE is
locally reducible to an explicit ODE. If DpF (x0, p0) is not invertible, two cases are possible:
either the total derivative DF (x0, p0) is onto Rn or it is not. In the first case, and assuming
that the rank of DpF (x, p) is constant in a neighbourhood of (x0, p0), (2) is called a differential-
algebraic equation, while in the remaining cases one speaks of an ODE with a singularity at
(x0, p0).
A linear DAE is a system of the form

A(t)ẋ + B(t)x = f(t) , t ≥ 0 , (3)

where A(t), B(t) ∈ Rn×n and f(t) ∈ Rn. The matrix function A(t) is assumed to have a
constant (non-full) rank for any t in the interval of interest. (Clearly, if A(t) has full rank for
all t in an interval, then the DAE reduces locally to an ODE.) In the simplest case, when A
and B do not depend on t, we have a linear DAE with constant coefficients, and an extensive
study of these problems has been developed. Since we want to allow solutions of DAE in the
distributional sense, let us make precise the definition of a solution.
Let D′ be the space of distributions (generalised functions) on some open set U ⊂ R, that is,
the dual of the space D = C∞

c (U) of smooth functions with compact support defined on U .
An n-dimensional distribution is an element of (D′)n, and, for x = (x1, . . . , xn) ∈ (D′)n and
φ ∈ D, we denote by 〈x,φ〉, the column vector (〈x1,φ〉, . . . , 〈xn,φ〉)", the action of x on φ.
We will always assume, without loss of generality, U =]0, +∞[.

Definition 2.1 Let f be an n-dimensional distribution on U , and A, B two n × n constant
matrices. A solution to the linear DAE with constant coefficients

Aẋ + Bx = f (4)

is an n-dimensional distribution x on U such that, for every test function φ ∈ D, the following
equality holds:

A〈ẋ,φ〉 + B〈x,φ〉 = 〈f,φ〉

The theory of linear DAE starts with the definition of a regular matrix pencil:
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Definition 2.2 Given two matrices A, B ∈ Rn×n, the matrix pencil (A, B) is the function
λ )→ λA + B, for λ ∈ R. It is called a regular matrix pencil if det(λA + B) *= 0 for some λ.

If the matrices A and B in equation (4) form a regular matrix pencil, then a solution exists.
This is a consequence of the following classical result due to Weierstrass and Kronecker, which
states that A and B can be simultaneously transformed into a convenient canonical form (see
e.g. Griepentrog and März [4] for the proof).

Lemma 2.3 Given a regular matrix pencil (A, B), there exist nonsingular n × n matrices P
and Q and integers 0 ≤ d, q ≤ n, with d + q = n, such that

PAQ =

(

Id 0
0 N

)

and PBQ =

(

J 0
0 Iq

)

where Id, Iq are identities of dimensions d and q, N = blockdiag(N1, . . . , Nr), with Ni the
qi × qi matrix

Ni =

















0 1 0 . . . 0
0 0 1 · · · 0
...

. . .
. . .

...
...

. . . 1
0 · · · · · · · · · 0

















,

and J is in Jordan canonical form.

Proposition 2.4 If (A, B) is a regular pencil, x is a solution to the DAE (4) if and only if
y = Q−1x is a solution to

PAQẏ + PBQy = Pf , (5)

where P and Q are the matrices of Proposition 2.3.

Proof: The result is obvious, since (5) is obtained from (4) multiplying from the left by the
invertible matrix P .

System (5) is said to be in Kronecker Canonical Form (KCF) and splits into two parts. The
first one is a linear differential system of dimension d, and the second one is an “algebraic
system” of dimension q. Denoting by u and v the variables in the first and the second part
respectively, and by b and c the related partitioning of the vector distribution Pf we can write
the two systems as follows:







u̇1
...

u̇d






+ J







u1
...

ud






=







b1
...
bd






, (6)

N







v̇1
...
v̇q






+







v1
...
vq






=







c1
...
cq






. (7)

We refer to u as the differential variables and to v as the algebraic variables.
The differential system has a unique solution once an initial condition, i.e. the value of the
solution at some suitable test function φ0, is given. The function must have a nonvanishing
integral (see Schwartz [13], p.51 and p.130). It can be assumed without any loss of generality
that

∫∞
0 φ0 = 1.
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On the other hand, system (7) consists of a number of decoupled blocks, which are easily and
uniquely solved by backward substitution, without the need of any additional condition. For
instance, for the first block,

N1







v̇1
...

v̇q1






+







v1
...

vq1






=







c1
...

cq1






, (8)

a recursive calculation gives the following distributional solution:

〈vj ,φ〉 =
q1
∑

k=j

〈

ck,φ(k−j)
〉

, j = 1, . . . , q1 , φ ∈ D (9)

We can thus state the following proposition and corollary:

Proposition 2.5 Assume (A, B) is a regular matrix pencil. Then, for every u0 = (u0
1, . . . , u

0
d) ∈

Rd, and every fixed test function φ0 with
∫∞
0 φ0 = 1, there exists a unique solution y to (5)

such that
〈y,φ0〉i = u0

i , i = 1, . . . , d .

Corollary 2.6 Assume (A, B) is a regular matrix pencil. Then, for every u0 = (u0
1, . . . , u

0
d) ∈

Rd, and every fixed test function φ0 with
∫∞
0 φ0 = 1, there exists a unique solution x to (4)

such that
〈Q−1x,φ0〉i = u0

i , i = 1, . . . , d .

Note that the matrix N is nilpotent, with nilpotency index given by the dimension of its largest
block. The nilpotency index of N in this canonical form is a characteristic of the matrix pencil
and we shall call it the index of the equation (4). The regularity of the solution depends
directly on the index of the equation.

Remark 2.7 Without the hypothesis of regularity of the pencil, a linear DAE may possess an
infinity of solutions or no solution at all, depending on the right-hand side. This is the case,
for instance, of

(

0 0
1 1

)

ẋ(t) +

(

1 1
0 0

)

x(t) =

(

f1(t)
f2(t)

)

with any fixed initial condition.

2.2 Generalised processes

As before, let D′ be the space of distributions on an open set U . A random distribution on U ,
defined in the probability space (Ω,F , P ), is a measurable mapping X : (Ω,F) → (D′,B(D′)),
where B(D′) denotes the Borel σ-field, relative to the weak-& topology (equivalently, the strong
dual topology, see Fernique [2]). Denoting by 〈X(ω),φ〉 the action of the distribution X(ω) ∈
D′ on the test function φ ∈ D, it holds that the mapping ω )→ 〈X(ω),φ〉 is measurable from
(Ω,F) into (R,B(R)), hence a real random variable 〈X,φ〉 on (Ω,F ,P). The law of X is
determined by the law of the finite-dimensional vectors (〈X,φ1〉, . . . , 〈X,φn〉), φi ∈ D, n ∈ N.
The sum of random distributions X and Y on (Ω,F ,P), defined in the obvious manner, is again
a random distribution. The product of a real random variable α and a random distribution,
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defined by 〈αX,φ〉 := α〈X,φ〉, is also a random distribution. The derivative of a random
distribution, defined by 〈Ẋ,φ〉 := −〈X, φ̇〉, is again a random distribution.
Given a random distribution X , the mapping X : D → L0(Ω) defined by φ )→ 〈X,φ〉 is called a
generalised stochastic process. This mapping is linear and continuous with the usual topologies
in D and in the space of all random variables L0(Ω). Note that we can safely overload the
meaning of the symbol X .
The mean functional and the correlation functional of a random distribution are the determin-
istic distribution φ )→ E[〈X,φ〉] and the bilinear form (φ,ψ) )→ E[〈X,φ〉〈X,ψ〉], respectively,
provided they exist.
A simple example of random distribution is white noise ξ, characterised by the fact that 〈ξ,φ〉
is centred Gaussian, with correlation functional E[〈ξ,φ〉〈ξ,ψ〉] =

∫

U φ(s)ψ(s) ds. In particular,
〈ξ,φ〉 and 〈ξ,ψ〉 are independent if the supports of φ and ψ are disjoint. In this paper we will
use as the base set the open half-line U =]0, +∞[. White noise on U coincides with the Wiener
integral with respect to a Brownian motion W : Indeed, if φ is a test function, then

〈ξ,φ〉 =

∫ ∞

0
φ(t) dW (t) (10)

in the sense of equality in law. More precisely, the Wiener integral is defined as the extension
to L2(R+) of white noise (see Kuo [7] for a construction of the Wiener integral as extension of
white noise). Now, integrating by parts in (10), we can write

〈ξ,φ〉 = −

∫ ∞

0
W (t)φ̇(t) dt = −〈W, φ̇〉 ,

so that ξ is the derivative of the Brownian motion W as random distributions. A random
distribution is Gaussian if every finite-dimensional projection is a Gaussian random vector.
This is the case of white noise and Brownian motion.
Further results on random distributions and generalised stochastic processes can be found for
instance in the classical papers by Dawson [1] and Fernique [2]. We will also use in Section 3 the
following facts about deterministic distributions, which apply as well to random distributions.
The hyperplane H of D consisting of those functions whose integral on U is equal to zero
coincides with the set of test functions which are derivatives of other test functions. There-
fore, fixing a test function φ0 ∈ D such that

∫

U φ0(t) dt = 1, every φ ∈ D can be uniquely

decomposed as φ = λφ0 + ψ̇, for some ψ ∈ D and λ =
∫

U φ(t) dt.

If f ∈ D′ is a distribution, the equation Ṫ = f has an infinite number of solutions (the
primitives of f): T is completely determined on H by 〈T, ψ̇〉 = −〈f,ψ〉 whereas 〈T,φ0〉 can be
arbitrarily chosen (for more details see Schwartz [13], II.4).

3 The generalised process solution

Consider the linear stochastic differential-algebraic equation (SDAE) with constant coefficients

Aẋ + Bx = f + Λξ , (11)

where A and B are n × n real matrices, f is an n-dimensional distribution, Λ is an n × m
constant matrix, and ξ is an m-dimensional white noise: ξ = (ξ1, . . . , ξm), with ξi independent
one-dimensional white noises. Recall that we will always take U =]0, +∞[ as the base set for
all distributions.
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Definition 3.1 A solution to the SDAE

Aẋ + Bx = f + Λξ (12)

is an n-dimensional random distribution x such that, for almost all ω ∈ Ω, x(ω) is a solution
to the deterministic equation

Aẋ(ω) + Bx(ω) = f + Λξ(ω) , (13)

in the sense of Definition 2.1.

Theorem 3.2 Assume (A, B) is a regular matrix pencil. Then, for every u0 = (u0
1, . . . , u

0
d) ∈

Rd, and every fixed test function φ0, there exists an almost surely unique random distribution
x, solution to (12), such that

〈Q−1x,φ0〉i = u0
i , i = 1, . . . , d ,

where Q is the matrix in the reduction to KCF. Furthermore, the solution is measurable with
respect to the σ-field generated by ξ.

Proof: For every ω ∈ Ω, we have a linear DAE with constant coefficients, given by (13), and
we know from Corollary 2.6 that there exists a unique solution x(ω) ∈ D′, satisfying

〈Q−1x(ω),φ0〉i = u0
i , i = 1, . . . , d .

In order to prove that the mapping ω )→ x(ω) is measurable with respect to the σ-field
generated by the white noise ξ, we will explicitly construct the solution as much as possible
with a variation of constants argument.
Let P and Q be the invertible matrices of Lemma 2.3. Multiplying (12) from the left by P
and setting y = Qx we obtain the SDAE in Kronecker Canonical Form

(

Id 0
0 N

)

ẏ +

(

J 0
0 Iq

)

y = Pf + PΛξ , (14)

System (14) splits into a stochastic differential system of dimension d and an“algebraic stochas-
tic system” of dimension q, with d + q = n. Denoting by u and v the variables in the first and
the second systems respectively, by b and c the related partitioning of the vector distribution

Pf =

(

b
c

)

, and by S = (σij) and R = (ρij) the corresponding splitting of PΛ into matrices

of dimensions d × m and q × m, so that PΛ =

(

S
R

)

, we can write the two systems as







u̇1
...

u̇d






+ J







u1
...

ud






=







b1
...
bd






+ S







ξ1
...
ξm






, (15)

N







v̇1
...
v̇q






+







v1
...
vq






=







c1
...
cq






+ R







ξ1
...
ξm






. (16)
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Fixing a test function φ0 with
∫∞
0 φ0 = 1 and a vector u0 ∈ Rd, we have for the first one the

distributional stochastic initial value problem

u̇ + Ju = η

〈u,φ0〉 = u0

}

(17)

where η := b + Sξ.
Consider the matrix system

Φ̇ + JΦ = 0
∫∞
0 Φ(t) · φ0(t) dt = Id

}

, (18)

whose distributional solution exists and is unique, and it is a C∞ matrix function Φ : R → Rd×d

(see Schwartz [13], V.6). Define T := Φ−1u. From (17), it follows that η−Ju = u̇ = Φ̇T +ΦṪ =
−JΦT + ΦṪ = −Ju + ΦṪ , and therefore Ṫ = Φ−1η. Let

Φij(t)φ(t) = λijφ0(t) + ψ̇ij(t)

be the unique decomposition of the function Φij · φ ∈ D into a multiple of φ0 and an element
of the hyperplane of derivatives H (see Subsection 2.2).
Then,

〈ui,φ〉 =
〈

d
∑

j=1

ΦijTj,φ
〉

=
〈

d
∑

j=1

Tj , Φijφ
〉

=
d
∑

j=1

[

λij〈Tj ,φ0〉 − 〈(Φ−1η)j ,ψij〉
]

=
d
∑

j=1

[

λij〈Tj ,φ0〉 −
〈

d
∑

k=1

Φ−1
jk ηk,ψij

〉]

=
d
∑

j=1

λij〈Tj ,φ0〉 −
d
∑

k=1

〈

ηk,

d
∑

j=1

ψijΦ
−1
jk

〉

.

(19)

The terms 〈Tj ,φ0〉 should be defined in order to fulfil the initial condition. Using the decom-
position

Φij(t)φ0(t) = δijφ0(t) + ψ̇0
ij(t)

and applying formula (19) to φ = φ0, it is easily found that we must define

〈Tj,φ0〉 = u0
j +

d
∑

k=1

〈

ηk,
d
∑

!=1

ψ0
j!Φ

−1
!k

〉

.

Therefore,

〈ui,φ〉 =
d
∑

j=1

λij

[

u0
j +

d
∑

k=1

〈

ηk,
d
∑

!=1

ψ0
j!Φ

−1
!k

〉]

−
d
∑

k=1

〈

ηk,
d
∑

j=1

ψijΦ
−1
jk

〉

=
d
∑

j=1

λiju
0
j +

d
∑

k=1

〈

ηk,

d
∑

j=1

λij

d
∑

!=1

ψ0
j!Φ

−1
!k −

d
∑

j=1

ψijΦ
−1
jk

〉

=
d
∑

j=1

λiju
0
j +

d
∑

k=1

〈

ηk,

d
∑

!=1

(

d
∑

j=1

λijψ
0
j! − ψi!

)

Φ−1
!k

〉

.
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Taking into account that

ψ0
j!(t) =

∫ t

0

(

Φj!(s)φ0(s) − δj!φ0(s)
)

ds ,

ψi!(t) =

∫ t

0

(

Φi!(s)φ(s) − λi!φ0(s)
)

ds ,

we obtain finally

〈ui,φ〉 =
d
∑

j=1

λiju
0
j +

d
∑

k=1

〈

ηk,

d
∑

!=1

(

∫ t

0

(

d
∑

j=1

λijΦj!(s)φ0(s) − Φi!(s)φ(s)
)

ds
)

Φ−1
!k

〉

=
d
∑

j=1

λiju
0
j +

d
∑

k=1

〈

ηk,

d
∑

!=1

(

∫ t

0
(λΦφ0 − Φφ)(s) ds

)

i!
Φ−1

!k

〉

=
d
∑

j=1

λiju
0
j +

d
∑

k=1

〈

ηk,
(

∫ t

0
(λΦφ0 − Φφ)(s) ds · Φ−1

)

ik

〉

. (20)

On the other hand, the algebraic part (16) consists of a number of decoupled blocks, which
are easily solved by backward substitution. Any given block can be solved independently of
the others and a recursive calculation gives, e.g. for a first block of dimension q1, the following
generalised process solution

〈vj ,φ〉 =
q1
∑

k=j

〈

ck +
m
∑

!=1

ρk!ξ!,φ
(k−j)

〉

, j = 1, . . . q1 , φ ∈ D . (21)

By (20) and (21), we have (u, v) = G(ξ), for some deterministic function G : (D′)m → (D′)n.
Given generalized sequence {ηα}α ⊂ (D′)m converging to η in the product of weak-& topologies,
it is immediate to see that G(ηα) converges to G(η), again in the product of weak-& topologies.
This implies that the mapping G is continuous and therefore measurable with respect to the
Borel σ-fields. Thus, the solution process x is measurable with respect to the σ-field generated
by ξ.

Remark 3.3 In the case where b = 0 (or even if b is a function), so that the right hand side
in (17) is simply Sξ, it is well known that the solution of the differential system is a classical
stochastic process which can be expressed as a functional of a standard m-dimensional Wiener
process. Indeed, we have, in the sense of equality in law, from (20),

〈ui,φ〉 =
d
∑

j=1

λiju
0
j +

d
∑

k=1

m
∑

!=1

∫ ∞

0

(

∫ t

0

(

λΦφ0 − Φφ
)

(s) ds · Φ−1(t)
)

ik
σk! dW!(t) .

Fix an initial time t0 ∈]0,∞[. Take a sequence {φn
0 }n ⊂ D converging in D′ to the Dirac

delta δt0 , and with suppφn
0 ⊂ [t0 −

1
n , t0 + 1

n ], and let {Φn}n be the corresponding sequence of

solutions to the matrix system (18). Then, limn→∞

∫ t
0 Φnφn

0 = Id · 1[t0,∞[(t) a.e. and we get

〈ui,φ〉 =
d
∑

j=1

λiju
0
j +

d
∑

k=1

m
∑

!=1

∫ ∞

t0

(

λΦ−1
)

ik
(s)σk! dW!(s)

−
d
∑

k=1

m
∑

!=1

∫ ∞

0

(

∫ s

0

(

Φ · φ
)

(u) du · Φ−1(s)
)

ik
σk! dW!(s) ,
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where Φ = limn→∞ Φn and λ = limn→∞

∫∞
0 Φnφ =

∫∞
0 Φφ.

Now collapsing in the same way φ to δt, with t ∈ R fixed, λ converges to Φ(t) and
∫ s
0 Φφ

converges to Φ(t) · 1[t,∞[(s) a.e. We arrive at

ui(t) =
d
∑

j=1

Φiju
0
j +

d
∑

k=1

m
∑

!=1

∫ t

t0

(

Φ(t)Φ−1(s)
)

ik
σk! dW!(s) .

Finally, using that the solution to (18) with δt0 in place of φ0 is known to be Φ(t) = e−J(t−t0),
we obtain

u(t) = e−J(t−t0)
[

u0 +

∫ t

t0

e−J(s−t0)S dW (s)
]

.

In a similar way we can express the first block of the algebraic part, if c = 0, as

〈vj ,φ〉 =
q1
∑

k=j

m
∑

!=1

ρk!

∫ ∞

0
φ(k−j)(t) dW!(t) , j = 1, . . . q1 , (22)

and analogously for any other block.

4 The law of the solution

In the previous section we have seen that the solution to a linear SDAE with regular pencil
and additive white noise can be explicitly given as a functional of the input noise. From the
modelling viewpoint, the law of the solution is the important output of the model. Using the
explicit form of the solution, one can try to investigate the features of the law in which one
might be interested.

To illustrate this point, we shall study the absolute continuity properties of the joint law of
the vector solution evaluated at a fixed arbitrary test function φ. We will assume throughout
this section that the base probability space is the canonical space of white noise: Ω = D′,
F = B(D′), and P is the law of white noise. This will be used in Theorem 4.5, to ensure the
existence of conditional probabilities (see Dawson [1], Theorem 2.12). The main assumptions
in Theorem 4.5 are that the dimensions in (11) satisfy m ≥ n and that the rank of the matrix
Λ is equal to the number of rows n.

Let us start by considering separately the solutions to the decoupled equations (15) and (16).
From the explicit calculation in the previous section (equation (20) for the differential part
and equation (21) for the first algebraic block), we get that for any given test function φ the
random vectors 〈u,φ〉 and 〈v,φ〉 have a Gaussian distribution with expectations

E[〈ui,φ〉] =
d
∑

j=1

λiju
0
j +

d
∑

k=1

〈

bk,
(

∫ t

0
(λΦφ0 − Φφ)(s) ds · Φ−1(t)

)

ik

〉

, i = 1, . . . , d ,

E[〈vi,φ〉] =
q1
∑

k=i

〈ck,φ(k−i)〉 , i = 1, . . . , q1 ,
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and covariances

Cov
(

〈u,φ〉
)

ij
=

m
∑

!=1

∫ ∞

0

[

d
∑

k=1

∫ t

0
(λΦφ0 − Φφ)(s) ds · Φ−1(t))ikσkl

]2
(23)

×
[

d
∑

k=1

∫ t

0
(λΦφ0 − Φφ)(s) ds · Φ−1(t))jkσkl

]2
ds , i, j = 1, . . . , d ,

and

Cov
(

〈v,φ〉
)

=











ρ1 ρ2 · · · ρq1−1 ρq1

ρ2 ρ3 · · · ρq1
0

...
...

ρq1
0 · · · 0 0











× Cov
(

〈ξ,φ〉, 〈ξ, φ̇〉, . . . , 〈ξ,φ(q1−1)〉
)











ρ1 ρ2 · · · ρq1−1 ρq1

ρ2 ρ3 · · · ρq1
0

...
...

ρq1
0 · · · 0 0











"

, (24)

where ρi denotes the i-th row of the matrix R and Cov
(

〈ξ,φ〉, . . . , 〈ξ,φ(q1−1)〉
)

is a square ma-
trix of dimension mq1. We refer the reader to [6] for a comprehensive study of multidimensional
Gaussian laws.
For the differential variables u alone, we are faced with a usual linear stochastic differential
equation (see Remark 3.3), and there are well-known results on sufficient conditions for its
absolute continuity, involving the matrices S and J (see e.g. Nualart [8], Section 2.3).
For the algebraic variables v, their absolute continuity depends in part on the invertibility of
the covariance matrix of the white noise and its derivatives that appear in (24). We will use
the following auxiliary result concerning the joint distribution of a one-dimensional white noise
and its first k derivatives. This is a vector distribution with a centred Gaussian law and a
covariance that can be expressed in full generality as (cf. Subsection 2.2)

Cov
(

〈ξ,φ〉, . . . , 〈ξ(k),φ〉
)

ij
= Re

[

(−1)
|i−j|

2

]

‖φ((i+j)/2)‖2 , (25)

where Re means the real part. We can prove the absolute continuity of this vector for k ≤ 3.

Lemma 4.1 For all φ ∈ D−{0}, and a one-dimensional white noise ξ, the vector 〈(ξ, ξ̇, ξ̈,
...
ξ ),φ〉

is absolutely continuous.

Proof: The covariance matrix of the vector 〈(ξ, ξ̇, ξ̈,
...
ξ ),φ〉 is









‖φ‖2 0 −‖φ̇‖2 0
0 ‖φ̇‖2 0 −‖φ̈‖2

−‖φ̇‖2 0 ‖φ̈‖2 0
0 −‖φ̈‖2 0 ‖

...
φ‖2









whose determinant is equal to

det

(

‖φ‖2 −‖φ̇‖2

−‖φ̇‖2 ‖φ̈‖2

)

· det

(

‖φ̇‖2 −‖φ̈‖2

−‖φ̈‖2 ‖
...
φ‖2

)

.
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Both factors are strictly positive, in view of the chain of strict inequalities

‖φ‖

‖φ̇‖
>

‖φ̇‖

‖φ̈‖
>

‖φ̈‖

‖
...
φ‖

> · · · , φ ∈ D, φ *≡ 0 (26)

These follow from integration by parts and Cauchy-Schwarz inequality, e.g.

‖φ̇‖2 =

∫ ∞

0
φ̇ · φ̇ = −

∫ ∞

0
φ · φ̈ ≤ ‖φ‖ · ‖φ̈‖ ,

and the inequality is strict unless φ̈ = Kφ for some K, which implies φ ≡ 0.

Remark 4.2 The proof above does not work for higher order derivatives and we do not know
if the result is true or false.

Consider, as in the previous section, only the first algebraic block, and assume momentarily
that its dimension is q1 = 2. From (24), the covariance matrix of the random vector 〈(v1, v2),φ〉
is

(

‖φ‖2‖ρ1‖2 + ‖φ̇‖2‖ρ2‖2 ‖φ‖2〈ρ1, ρ2〉

‖φ‖2〈ρ1, ρ2〉 ‖φ‖2‖ρ2‖2

)

,

with determinant

‖φ‖4
(

‖ρ1‖
2‖ρ2‖

2 − 〈ρ1, ρ2〉
2
)

+ ‖φ‖2‖φ̇‖2‖ρ2‖
4 .

Hence, assuming φ *≡ 0, we see that the joint law of 〈v1,φ〉 and 〈v2,φ〉 is absolutely continuous
with respect to Lebesgue measure in R2 if ρ2 is not the zero vector. When ‖ρ2‖ = 0 but ‖ρ1‖ *=
0, then 〈v2,φ〉 is degenerate and 〈v1,φ〉 is absolutely continuous, whereas ‖ρ2‖ = ‖ρ1‖ = 0
makes the joint law degenerate to a point.
This sort of elementary analysis, with validity for any test function φ, can be carried out for
algebraic blocks of any nilpotency index, as it is proved in the next proposition. Let us denote
by E(k) the subset of test functions φ such that the covariance Cov

(

〈ξ,φ〉, . . . , 〈ξ(k−1),φ〉
)

is
nonsingular. With an m-dimensional white noise, the covariance is a matrix with (k + 1)2

square m × m blocks, where the block (i, j) is Re

[

(−1)
|i−j|

2

]

‖φ((i+j)/2)‖2 times the identity

Im.

Proposition 4.3 Let (v1, . . . , vq1
) be the generalised process solution to the first block of the

algebraic system (16) and r the greatest row index such that ‖ρr‖ *= 0, and fix φ ∈ E(q1).
Then 〈(v1, . . . , vr),φ〉 is a Gaussian absolutely continuous random vector and 〈(vr+1, . . . , vq1

),φ〉
degenerates to a point.

Proof: We can assume that c = 0, since the terms
∑q1

k=j〈ck,φ(k−j)〉 in (21) only contribute as
additive constants. Then we can write







〈v1,φ〉
...

〈vq1
,φ〉






=











ρ1 ρ2 · · · ρq1−1 ρq1

ρ2 ρ3 · · · ρq1
0

...
...

ρq1
0 · · · 0 0





















〈ξ,φ〉
〈ξ, φ̇〉

...
〈ξ,φ(q1−1)〉











.
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If r is the greatest row index with ‖ρr‖ *= 0, it is clear that the q1 × mq1 matrix











ρ1 ρ2 · · · ρq1−1 ρq1

ρ2 ρ3 · · · ρq1
0

...
ρq1

0 · · · 0 0











,

has rank r. The linear transformation given by this matrix is onto Rr × {0}q1−r. From this
fact and the absolute continuity of the vector (〈ξ,φ〉, . . . , 〈ξ(q1−1),φ〉), it is immediate that the
vector (〈v1,φ〉, . . . , 〈vr,φ〉) is absolutely continuous, while (〈vr+1,φ〉, . . . , 〈vq1

,φ〉) degenerates
to a point.

Let us now consider the solution x to the whole SDAE (12). We will state a sufficient condition
for the absolute continuity of 〈x,φ〉, φ ∈ D. The following standard result in linear algebra
will be used (see e.g. Horn and Johnson [5], page 21).

Lemma 4.4 Let the real matrix M read blockwise

M =

(

A B
C D

)

where A ∈ Rd×d, B ∈ Rd×q, C ∈ Rq×d, D ∈ Rq×q and D is invertible. Then the d × d matrix

A − BD−1C

is called the Schur complement of D in M and it holds that

det M = detD · det(A − BD−1C) .

A natural application of this lemma is in solving a system of linear equations:

Ax + By = u

Cx + Dy = v

}

where x, u ∈ Rd, y, v ∈ Rq. We have

u = (A − BD−1C)x + BD−1v (27)

and, if M is in addition invertible, the solution to the linear system is given by

x = (A − BD−1C)−1(u − BD−1v)

y = D−1(v − C(A − BD−1C)−1(u − BD−1)) .

We now state and prove the main result of this section.

Theorem 4.5 Assume (A, B) is a regular matrix pencil and that the n × m matrix Λ of
equation (11) has full rank equal to n, and call r the nilpotency index of the SDAE (11). Then
the law of the unique solution to the SDAE (11) at any test function φ ∈ E(r) is absolutely
continuous with respect to Lebesgue measure on Rn.
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Corollary 4.6 Under the assumptions of Theorem 4.5, if the nilpotency index is r ≤ 4, then
the law is absolutely continuous at every test function φ ∈ D − {0}.

Proof of Theorem 4.5: It will be enough to prove that the random vector 〈(u, v),φ〉, solution
to (15) and (16), admits an absolutely continuous law at any test function φ ∈ E , since the
solution to the original system is then obtained through the non-singular transformation Q.

We shall proceed in two steps: first we shall prove that 〈v,φ〉 admits an absolutely continuous
law, and then that the conditional law of 〈u,φ〉, given 〈v,φ〉, is also absolutely continuous,
almost surely with respect to the law of 〈v,φ〉. Note that the assumptions that Λ has full
rank with m ≥ n, implies that both submatrices of PΛ, S and R, have full rank equal to their
respective number of rows.
Step 1: We can assume c = 0 in (16). By Proposition 4.3, the solution to any algebraic block is
separately absolutely continuous. Assume now that there are exactly two blocks of dimensions
q1 and q2, with q2 ≤ q1, and q1 + q2 = q; the case with an arbitrary number of blocks does not
pose additional difficulties.
As in Proposition 4.3, we have





















〈v1,φ〉
...

〈vq1
,φ〉

〈vq1+1,φ〉
...

〈vq1+q2
,φ〉





















=





























ρ1 ρ2 · · · · · · ρq1−1 ρq1

ρ2 ρ3 · · · · · · ρq1
0

...
...

ρq1
0 · · · 0 0 0

ρq1+1 ρq1+2 · · · · · · ρq1+q2
0

ρq1+2 ρq1+3 · · · ρq1+q2
0 0

...
...

ρq1+q2
0 · · · 0 0 0







































〈ξ,φ〉
〈ξ, φ̇〉

...
〈ξ,φ(q1−1)〉











(28)

Since the (q1 + q2) × m matrix R = (ρ1, . . . , ρq1+q2
)" has, by the hypothesis on Λ, full rank

equal to q1 + q2, the transformation defined by (28) is onto Rq. From the absolute continuity
of the vector (〈ξ,φ〉, . . . , 〈ξ(q1−1),φ〉), we deduce that of 〈v,φ〉.
Step 2: Since the n×m matrix PΛ has full rank we can assume, reordering columns if necessary,
that the submatrix made of its first n rows and columns is invertible, and that

PΛ =

(

S
R

)

=

(

A B E
C D F

)

,

where A ∈ Rd×d, B ∈ Rd×q, C ∈ Rq×d, D ∈ Rq×q, E ∈ Rd×(m−n), F ∈ Rq×(m−n), with
invertible D. Let us define

w := (v1, . . . , vq, v1 + v̇2, . . . , vq1−1 + v̇q1
, vq1+1 + v̇q1+2, . . . , vq1+q2−1 + v̇q1+q2

, ξn+1, . . . , ξm) .

We can write then

〈(w, ξ1, . . . , ξd),φ〉
" =













G1

G2

G3

G4

G5























〈ξ,φ〉
〈ξ, φ̇〉

...
〈ξ,φ(q1−1))〉











, (29)
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where G1 is the matrix in (28),

G2 :=







ρ1 0 · · · 0
...

...
...

ρq1−1 0 · · · 0






, G3 :=







ρq1+1 0 · · · 0
...

...
...

ρq1+q2−1 0 · · · 0






,

G4 :=







ed+q+1 0 · · · 0
...

...
...

em 0 · · · 0






, G5 :=







e1 0 · · · 0
...

...
...

ed 0 · · · 0






,

and ei ∈ R1×m, with (ei)j = δij .
By the invertibility of D and the fact that the rows ρq1

and ρq1+q2
have at least one element

different from zero, it is easy to see that the matrix in (29) has itself full rank. Indeed,
reordering its rows and columns, we can get a matrix with the first q1 + q2 − 2 rows given by
G1, without its q1-th and (q1 + q2)-th rows. The lower part of this matrix has a block of zeros
in the last (q1 − 1)m columns, while the first m columns can be reordered as a block lower
triangular matrix, with diagonal blocks given by Im−q and D.
Since (28) has full rank, the vector 〈(w, ξ1, . . . , ξd),φ〉 has itself an absolutely continuous Gaus-
sian law.
Applying Lemma 4.4 and (27) to the system (15)-(16), with u̇ + Ju in place of u, Nv̇ + v in
place of v, (A, E) instead of A and (C, F ) instead of C, we obtain







u̇1
...

u̇d






+J







u1
...

ud






= (A−BD−1C)







ξ1
...
ξd






+BD−1





























v1 + v̇2

v2 + v̇3
...

vq1

vq1+1 + v̇q1+2

vq1+2 + v̇q1+3
...

vq1+q2





























+(E−BD−1F )







ξn+1
...
ξm






.

(30)
It is obvious that both Definition 3.1 and Theorem 3.2 continue to hold with any gener-
alised process θ in place of the white noise ξ in the right-hand side. From Theorem 3.2 we
have in particular that the solution u to the differential system (30) is a measurable function
G : (D′)m → (D′)d of its right-hand side θ, that is, u = G(θ). Let

p : B(D′) ×D′ −→ [0, 1] and q : B(D′) ×D′ −→ [0, 1]

be conditional laws of u given w, and of θ given w, respectively. That means that

P
(

{u ∈ B} ∩ {w ∈ C}
)

=

∫

C
p(B, w)µ(dw)

and

P
(

{θ ∈ B} ∩ {w ∈ C}
)

=

∫

C
q(B, w)µ(dw) ,

for any B, C ∈ B(D′), where µ is the law of w.
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For every x ∈ D′, let Zx be a random distribution Zx : Ω → D′ with law P{Zx ∈ B} = q(B, x).
Then

∫

C
P{G(Zx) ∈ B}µ(dx) =

∫

C
P{Zx ∈ G−1(B)}µ(dx)

=

∫

C
q(G−1(B), x)µ(dx) = P

(

{θ ∈ G−1(B)} ∩ {x ∈ C}
)

= P
(

{G(θ) ∈ B} ∩ {x ∈ C}
)

= P
(

{u ∈ B} ∩ {x ∈ C}
)

=

∫

C
p(B, x)µ(dx)

Therefore P{G(Zx) ∈ B} = p(B, x) almost surely with respect to the law of x, for all B ∈
B(D′). We have proved that if the right-hand side of the differential system has the law of θ
conditioned to x, then its solution has the law of u conditioned to x. It remains to show that
this conditional law is absolutely continuous, almost surely with respect to the law of x.
Now, for each x, we can take Zx to be

Zx = (A − BD−1C)ηx + ax

where ax is a constant d-dimensional distribution, and 〈ηx,φ〉 is, for each φ ∈ D, a Gaussian
d-dimensional vector. This random vector is absolutely continuous: Indeed, its law is that
of the d first components of the m-dimensional white noise (ξ1, . . . , ξm) conditioned to lie
in an (m − d)-dimensional linear submanifold. Let Lx,φ be its covariance matrix. Then

〈ηx,φ〉 = L
1/2
x,φ〈ζ,φ〉, for some d-dimensional white noise ζ = (ζ1, . . . , ζd).

Consider now the (ordinary) stochastic differential equation






〈u̇1,φ〉
...

〈u̇d,φ〉






+ J







〈u1,φ〉
...

〈ud,φ〉






= ax + (A − BD−1C)L1/2

x,φ







〈ζ1,φ〉
...

〈ζd,φ〉






. (31)

By hypothesis, the Schur complement A − BD−1C is non-singular, and therefore the matrix

(A − BD−1C)L1/2
x,φ is itself non-singular. But in the situation of (31), it is well-know that the

solution 〈(u1, . . . , ud),φ〉 is a stochastic process with absolutely continuous law for any test
function φ *≡ 0.
We conclude that the law of 〈u,φ〉 conditioned to 〈w,φ〉, which coincides with the law of
〈u,φ〉, is absolutely continuous almost surely with respect to the law of w. This is sufficient to
conclude that 〈(u1, . . . , ud, v1, . . . , vq),φ〉 has an absolutely continuous law, which completes
the proof.

5 Example: An electrical circuit

In this last section we shall present an example of linear SDAE’s arising from a problem of
electrical circuit simulation.
An electrical circuit is a set of devices connected by wires. Each device has two or more
connection ports. A wire connects two devices at specific ports. Between any two ports of a
device there is a flow (current) and a tension (voltage drop). Flow and tension are supposed
to be the same at both ends of a wire; thus wires are just physical media for putting together
two ports and they play no other role.
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The circuit topology can be conveniently represented by a network, i.e. a set of nodes and
a set of directed arcs between nodes, in the following way: Each port is a node (taking into
account that two ports connected by a wire collapse to the same node), and any two ports of
a device are joined by an arc. Therefore, flow and tension will be two quantities circulating
through the arcs of the network.
It is well known that a network can be univocally described by an incidence matrix A = (aij).
If we have n nodes and m arcs, A is the m × n matrix defined by

aij =







+1, if arc j has node i as origin
−1, if arc j has node i as destiny

0, in any other case.

At every node i, a quantity di (positive, negative or null) of flow may be supplied from the
outside. This quantity, added to the total flow through the arcs leaving the node, must equal
the total flow arriving to the node. This conservation law leads to the system of equations
Ax = d, where xj , j = 1, . . . , n, is the flow through arc j.
A second conservation law relates to tensions and the cycles formed by the flows. A cycle is a
set of arcs carrying nonzero flow when all external supplies are set to zero. The cycle space is
thus kerA ⊂ Rn. Let B be a matrix whose columns form a basis of the cycle space, and let
c ∈ Rn be the vector of externally supplied tensions to the cycles of the chosen basis. Then
we must impose the equalities B"u = c, where uj , j = 1, . . . , n, is the tension through arc j.
Once we have the topology described by a network, we can put into play the last element
of the circuit modelling. Every device has a specific behaviour, which is described by an
equation ϕ(x, u, ẋ, u̇) = 0 involving in general flows, tensions, and their derivatives. The
system Φ(x, u, ẋ, u̇) = 0 consisting of all of these equations is called the network characteristic.
For instance, typical simple two-port (linear) devices are the resistor, the inductor and the
capacitor, whose characteristic (noiseless) equations, which involve only their own arc j, are
uj = Rxj , uj = Lẋj , and xj = Cu̇j, respectively, for some constants R, L, C. Also, the current
source (xj constant) and the voltage source (uj constant) are common devices.
Solving an electrical circuit therefore means finding the currents x and voltage drops u deter-
mined by the system







Ax = d
B"u = c
Φ(x, u, ẋ, u̇) = 0

Example 5.1 Let us write down the equations corresponding to the circuit called LL-cutset
(see [11], pag. 60), formed by two inductors and one resistor, which we assume submitted to
random perturbations, independently for each device. This situation can be modelled, following
the standard procedure described above, by the stochastic system























x1 = −x2 = x3

u1 − u2 + u3 = 0
u1 = L1ẋ1 + τ1ξ1
u2 = L2ẋ2 + τ2ξ2
u3 = Rx3 + τ3ξ3

(32)

where ξ1, ξ2, ξ3 are independent white noises, and τ1, τ2, τ3 are non-zero constants which mea-
sure the magnitude of the perturbations. With a slight obvious simplification, we obtain from
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(32) the following linear SDAE:









0 0 0 0
0 0 0 0
0 0 L1 0
0 0 0 L2

















u̇1

u̇2

ẋ1

ẋ2









+









R−1 −R−1 1 0
−R−1 R−1 0 1
−1 0 0 0
0 −1 0 0

















u1

u2

x1

x2









=









0 0 −τ3R−1

0 0 τ3R
−1

−τ1 0 0
0 −τ2 0













ξ1
ξ2
ξ3



 ,

(33)
Let us now reduce the equation to KCF. To simplify the exposition, we shall fix to 1 the values
of τi, R and Li. (A physically meaningful magnitude for R and Li would be of order 10−6

for the first and of order 104 for the latter. Nevertheless the structure of the problem does not
change with different constants.) The matrices P and Q, providing the desired reduction (see
Lemma 2.3), are

P =











1
2 − 1

2 1 −1

0 −1 1 1

1 1 0 0

−1 0 0 0











, Q =











− 1
4 − 1

2 − 3
4 −1

1
4 − 1

2 − 1
4 0

1
2 0 1

2 0

− 1
2 0 1

2 0











.

Indeed, multiplying (33) by P from the left and defining y = Q−1x, we arrive to









1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









ẏ(t) +









1
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









y(t) =









−τ1 τ2 −τ3
−τ1 −τ2 −τ3
0 0 0
0 0 τ3













ξ1
ξ2
ξ3



 , (34)

We see that the matrix N of Section 3 has here two blocks: A single zero in the last position
(ẏ4) and a 2-nilpotent block affecting ẏ2 and ẏ3. We have therefore an index 2 SDAE. From
Propositions 4.3 and Theorem 4.5, we can already say that, when applied to any test function
φ *= 0, the variables y4, y2 and y1, as well as the vectors (y1, y2) and (y1, y4), will be absolutely
continuous, whereas y3 degenerates to a point.
In fact, in this case, we can of course solve completely the system: The differential part is the
one-dimensional classical SDE

ẏ1 +
1

2
y1 = −τ1ξ1 + τ2ξ2 − τ3ξ3 , (35)

and the algebraic part reads simply






ẏ3 + y2 = −τ1ξ1 − τ2ξ2 − τ3ξ3
y3 = 0
y4 = τ3ξ3 .

(36)

The solution to (34) can thus be written as

y1(t) = e−(t−t0)/2
[

y(t0) +

∫ t

t0

e−(s−t0)/2(−τ1dW1 + τ2dW2 − τ3dW3)(s)
]

y2 = −τ1ξ1 − τ2ξ2 − τ3ξ3

y3 = 0

y4 = τ3ξ3 ,
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where W1, W2, W3 are independent Wiener processes whose generalised derivatives are ξ1, ξ2
and ξ3. Multiplying by the matrix Q we finally obtain the value of the original variables:

x1(t) = −x2(t) = − 1
2y1(t)

u1 = − 1
4y1 −

1
2y2 −

3
4y4

u2 = 1
4y1 − 1

2y2 ,

with x1(t0) = − 1
4y1(t0) a given intensity at time t0.

It is clear that the current intensities, which have almost surely continuous paths, are much
more regular than the voltage drops, which are only random distributions.
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