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Abstract. We consider T–shaped, two–dimensional quantum waveguides containing attractive or repulsive
impurities with a smooth, realistic shape, and study how the resonance behavior of the total conductance
depends upon the strength of the defect potential and the geometry of the device. The resonance parameters
are determined locating the relevant S–matrix poles in the Riemann energy surface. The total scattering
operator is obtained from the S–matrices of the various constituent segments of the device through the
�–product composition rule. This allows for a numerically stable evaluation of the scattering matrix and
of the resonance parameters.

PACS. 73.63.Nm Quantum wires – 73.23.Ad Ballistic transport – 72.10.Fk Scattering by point defects,
dislocations, surfaces, and other imperfections (including Kondo effect)

1 Introduction

The discovery of conductance quantization in micro-
costrictions [1,2] has prompted a great deal of theoretical
and experimental activity on electron transport in such
systems [3–5]. It has been soon realized that the presence
of an impurity in the waveguide can modify the shape of
the conductance dramatically, especially near the thresh-
olds where propagation modes are opened. These effects
have been investigated in many model calculations, for
both point–like defects [6–9] and more realistic, finite–
range defect shapes [6,10–12]. The scattering of the elec-
tron wave off the impurity produces resonance phenomena
in the conductance; in particular, for attractive impurities
one has deep transmission minima, which can be inter-
preted as due to the coupling of a propagation mode in
one subbband with a localized state formed from another
subband. This resonant suppression of ballistic conduc-
tance is similar to the Fano resonances one observes in
atomic and nuclear physics, and has been the subject of
detailed numerical [10–12] and theoretical [13,14] inves-
tigations. Needless to say, whereas theoretical arguments
can give insight into the general mechanisms underlying
the formation of resonances, only detailed numerical ex-
periments can provide information about the dependence
of resonance parameters upon the strength, shape, and po-
sition of the impurity potential inside the quantum waveg-
uide.

a e-mail: giorgio.cattapan@pd.infn.it

The step–wise structure of conductance can be deeply
influenced also when the waveguide boundary is modified,
with respect to an idealized, straight shape. In particular,
the effects of a sidearm, or stub, attached to the duct have
been the subject of several investigations [15–21] since the
pioneering papers of Sols et al. [22,23], where a T–shaped
waveguide was considered as a possible candidate for tran-
sistor action based on quantum interference. The conduc-
tance as a function of the Fermi energy exhibits deep
transmission minima, which can be again interpreted as
reflection resonances due to the excitation of quasi–bound
states in the cavity region [19]. A great deal of theoreti-
cal activity has been devoted to disentangle the physical
factors influencing Fano line shapes in these mesoscopic
systems. Indeed, Fano resonances are interesting in them-
selves, because they are extremely sensitive to the details
of the scattering process, and may be exploited to probe
the degree of coherence in the scattering device [24–27]; at
the same time, their strong dependence upon the energy
of the scattered particle make them promising candidates
for practical applications, such as the spin filtering ac-
tion when spin degeneracy is removed by the application
of an external magnetic field or by use of the Rashba ef-
fect [28]. At low level densities, and for systems coupled to
very few channels, quantum interference between quantum
states plays a prominent role, and a detailed quantum-
mechanical study of the scattering device is required. The
dependence of the spectral properties of quantum dots at-
tached to quantum waveguides upon the dot’s dimensions



52 The European Physical Journal B

has been the subject of detailed analysis in recent
years [29,30].

To the best of our knowledge, up to now an analysis of
the simultaneous effects of impurities and stubs in quan-
tum interference devices has never been accomplished. It
is the purpose of this paper to provide a first contribu-
tion, in order to fill this gap. In particular, we have stud-
ied how the resonance features of the conductance depend
upon the strength of an embedded defect, and the size of
the stub. To this end, we have determined how the reso-
nance poles of the scattering operator for the device move
on the multi–sheeted Riemann energy surface, as the de-
vice parameters are varied. For stubbed waveguides with
realistic defects, this requires an accurate numerical so-
lution of the two–dimensional Schrödinger equation, in a
large range of values for the stub’s dimensions. This is
made possible combining mode–matching techniques with
an S–matrix approach. The device is regarded as a cas-
cade of uniform waveguide sections, connected through
interfaces or junctions, where a change in the transverse
dimensions occurs, or the electron experiences a variation
in the strength of the interaction. The scattering param-
eters of the device can be then determined starting from
the scattering properties of the various building blocks
through the �–product composition rule for the partial
scattering operators [3,31,32]. Since forward and back-
ward states are treated separately by the S–matrix, so
that the propagating and less localized components play
a prominent role, numerical stability is guaranteed as some
dimension of the system becomes large. At the same time,
a varying number of basis functions can be accommodated
in a natural way in the scattering matrix approach; this is
particularly important in non–uniform waveguides, where
one expects that a different number of wave–function com-
ponents has to be considered as the transverse size of the
device changes. Thus, the employment of the scattering
operator, together with the �–product composition rule,
opens the way to an accurate description of devices with
a fairly large number of different constituent segments, as
required when dealing with impurities having a smooth
profile along the propagation direction. They are in fact
approximated by a cascade of several thin layers, in which
the dependence upon the propagation coordinate is ne-
glected.

The paper is organized as follows. In Section 2 we re-
view the scattering matrix approach to ballistic transport
in quantum waveguides. In particular, we point out the
compatibility between the �–product composition rule
and the non–trivial block–wise structure of the partial
S–matrices, when a different number of basis functions
is chosen in different slices of the device. With reference
to this point, we would like to point out that, whereas the
numerical stability of the S–matrix has been widely rec-
ognized in the literature [3,31], its flexibility with respect
to the number of wave function components has been less
stressed in the past, with the exception of reference [33]. In
Section 3 we give several examples of how the device pa-
rameters influence the pole location in the energy–plane,
and how this affects the resonant behavior of the conduc-
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Fig. 1. A stubbed quantum waveguide of width b and infinite
length, with a stub of width c and length ls. The stub contains
a defect with dimensions w × ld.

tance. Our main conclusions are briefly summarized in
Section 4.

2 Scattering formalism for quantum transport
in stubbed waveguides

We consider the T–shaped device illustrated in Figure 1.
It consists of a uniform guide of indefinite length and
width b, with a sidearm (stub) having width c and length
ls. We shall assume simple hard wall boundary conditions,
so that the two–dimensional electron wave function has
to vanish on the boundary of the device. The stub may
contain a region, where there is a defect, or an external
applied field. This region, to which we shall simply refer
as “defect”, is exhibited by the shaded area in Figure 1.
The electron’s wave function Ψ(x, y) is then the solution
of the two–dimensional Schrödinger equation for a given
total energy E, the electron in the conduction band being
endowed with an effective mass m∗. In the present paper
we have chosen for m∗ the value 0.067me, which is appro-
priate for the AlxGa1−xAs/GaAs interface. The potential
field due to the defect will be represented by an interaction
term V (x, y), whereas the effect of the confining potential
is taken into account through the boundary conditions
that Ψ(x, y) vanishes along the edge of the straight duct
and of the stub. Because of the presence of the poten-
tial term V (x, y), the full Schrödinger equation is not in
general separable. As is well-known [5], one can reduce it
to an (in principle) infinite set of one–dimensional differ-
ential equations by expanding its solution into the trans-
verse mode eigenfunctions φ

(r)
n (y) in the leads (r = l) and

in the stub (r = s). Under the assumption of hard-wall
boundary conditions, these basis functions are just the
eigenfunctions of infinite square wells in the transverse di-
rection, with widths b and c in the leads and in the stub,
respectively.

The whole device can be divided into five regions; the
left and right ducts, the two empty cavities in the sidearm,
and the defect. The total wave function in the different re-
gions of the stub can be piecewise expanded in terms of
the basis functions φ

(s)
n . Once this expansion is inserted

into the Schrödinger equation, one immediately finds that
the expansion coefficients satisfy uncoupled differential
equations, and can be written in terms of forward and
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backward propagating waves in the regions of the stub
where the potential V (x, y) is negligible; the correspond-
ing wave numbers k

(s)
n are related to the total energy E

and to the transverse eigenenergies by

k(s)
n =

√
2m∗

�2
E −

(nπ

c

)2

≡
√

2m∗(E − ε
(s)
n )

�2
. (1)

These relations essentially express the conservation of en-
ergy; once the nth transverse eigenmode has been excited,

only the energy (�2/2m∗)k(s)
n

2
is left for the electron prop-

agation along the x–direction. If E < ε
(s)
n , the wave num-

ber has to be taken as purely imaginary, i.e., k
(s)
n ≡ iκ

(s)
n ,

with

κ(s)
n =

√(nπ

c

)2

− 2m∗

�2
E. (2)

The associated propagating waves become then real, ex-
ponentially decaying or growing wave functions, and one
has an evanescent mode, or closed channel.

In presence of the defect a somewhat more involved
procedure is required, since one gets coupled equations
for the expansion coefficients. These equations can be
straightforwardly uncoupled, and the coefficients written
in terms of forward and backward propagating waves, if
one assumes for the potential V (x, y) the simple form

V (x, y) = V0f(y)Θ(x − x2)Θ(x3 − x), (3)

where Θ(x − xi) is the Heaviside step function. In such
a case one arrives at the required result diagonalizing the
Hamiltonian

[
− �

2

2m∗
d2

dy2 + V0f(y)
]

for the transverse mo-
tion, in the model space spanned by the basis functions
φ

(s)
n (y) [6]. In the potential region of the stub the expan-

sion coefficients can then be written as linear superposi-
tions of plane–wave components e±ik(d)

n (x−x2), with wave
vectors

k(d)
n =

√
2m∗ (E − En)

�
, (4)

the quantities En being the eigenvalues of the transverse
Hamiltonian. Here also, if E < En, the wave number is
purely imaginary, in completely analogy to equation (2),
and one has evanescent, non propagating modes in pres-
ence of the defect interaction.

Similar considerations can be repeated for the wave
function in the leads, the only difference being that now
the transverse eigenmodes φ

(l)
n have to be used. The wave

vectors in the leads are given by expressions quite sim-
ilar to equations (1) and (2) for open and closed chan-
nels, respectively, with the stub transverse eigenenergies
ε
(s)
n replaced by the lead corresponding quantities ε

(l)
n ≡

�
2

2m∗
(nπ

b

)2

. For the time being, we shall not specify the
actual boundary conditions the wave function has to sat-
isfy asymptotically, and we let the presence of incoming
and outgoing waves from both the left and from the right
in the ducts. We just limit ourselves to observe that, in

correspondence to closed channels, one must exclude in-
coming waves from the left or from the right, in order to
avoid divergent components in the wave function.

The unknown coefficients appearing in the expansion
of the wave function in the various regions can be related
to one another by matching the wave function and its first
derivative at the various interfaces. The linear transforma-
tion yielding the coefficients on one side of an interface in
terms of those on the other side represents what is usually
referred to as the transfer matrix [5]. It is well–known that
the transfer matrix suffers from several limitations [31,34].
First of all, its generalization to the case where there is a
different number NL of basis functions on the left of the
matching surface with respect to the right is not straight-
forward. This is particularly relevant at the lead/stub or
stub/lead interfaces, where a different number of open and
closed channels may occur in the cavity with respect to
the lead. A second problem arises in presence of evanes-
cent modes, whose occurrence makes the inversion of the
transfer matrix numerically troublesome when one evalu-
ates the transmission coefficients as the dimensions of the
device get large. The above shortcomings can be all over-
come resorting to the scattering matrix [3,4]. In such a
case, one expresses the outgoing amplitudes in terms of
the incoming ones, to get

(
S11 S12

S21 S22

)
=

(
Γ(L)

+ S(I)
11 Γ(L)

+ Γ(L)
+ S(I)

12

S(I)
21 Γ(L)

+ S(I)
22

)
, (5)

where the sub-matrices S(I)
ij are given by

S(I)
11 = F

(
A21 − B21B−1

11 A11

)
, (6a)

S(I)
12 = F

(
B22 + B21B−1

11 B12

)
, (6b)

S(I)
21 = F

(
A11 + A12A−1

22 A21

)
, (6c)

S(I)
22 = F

(−B12 + A12A−1
22 B22

)
, (6d)

with

F ≡ (
A22 + B21B−1

11 A12

)−1
(7a)

F ≡ (B11 + A12A−1
22 B21

)−1
. (7b)

The actual structure of the matrices Aij and Bij depends
upon the matching conditions one is considering. What-
soever these conditions may be, one does not need to as-
sume the same number of basis functions on the two sides
of the matching surface, since the building blocks of the
total S–matrix are not required to be square. As a matter
of fact, if NL wave function components are retained on
the left, whereas NR basis functions are considered on the
right, the whole sub-matrix S11 has dimensions NL ×NL,
and S22 is a square NR × NR array, whereas S12 and S21

have dimensions NL × NR and NR × NL, respectively.
Overall, the total S–matrix expresses the NL +NR outgo-
ing amplitudes in terms of the NL +NR coefficients of the
incoming waves. As for the diagonal matrix Γ(L)

+ , it takes
into account the propagation of the wave function in the
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slice on the left of the matching surface, and is defined
according to

{Γ(L)
+ }nm = e+ik(L)

n ∆xδnm, (8)

where ∆x is the width of the slice, and k
(L)
n are the cor-

responding propagation wave numbers. It is worth to ob-
serve that in the scattering matrix only the phase fac-
tors e+ik(L)

n ∆x appear. In correspondence to an evanescent
mode, one actually has the exponentially decaying factors
e−κ(L)

n ∆x, which are no longer mixed up with the growing
functions eκ(L)

n ∆x. As the numerical calculations confirm,
these features make the whole formalism numerically sta-
ble even when some characteristic length of the system,
and in particular the stub’s width c, gets large.

Finally, we give the actual structure of the matrices
Aij and Bij at the lead/stub and cavity/defect interfaces.
For the former one has A11 = A12 = J, B11 = B12 =
1, and A21 = A22 = K(l), B21 = B22 = J̃K(s). The
NR × NL matrix J contains the overlap integrals among
the different basis functions on the left and on the right
of the discontinuity,

Jmn =
∫ b

0

φ(l)
n (y)φ(s)

m (y)dy, (9)

J̃ is the transpose of J, while K(l) and K(s) are NL × NL

and NR ×NR diagonal matrices, whose diagonal elements
represent the wave vectors k

(l)
n and k

(s)
n , in the lead and in

the stub, respectively. For the cavity/defect interface, on
the other hand, one has A11 = A12 = 1, B11 = B12 = Z,
and A21 = A22 = K(s), B21 = B22 = ZK(d), where Z
is the matrix diagonalizing the transverse Hamiltonian in
the interaction region, and the diagonal matrix K(d) con-
tains the wave vectors k

(d)
n defined by equation (4). For

the sake of simplicity, we have assumed an equal num-
ber of basis functions on the left and on the right of the
cavity/defect boundary; as a matter of fact, the poten-
tial V (x, y) in general is not so strong, as to perturb the
transverse eigenvalues in an essential way, and good con-
vergence can be achieved with an equal number of wave
function components outside and inside the defect.

The unperturbed propagation along the slice preced-
ing the interface can be put in better evidence by re-
writing equation (5) as a suitable combination of elemen-
tary scattering operators. This can be achieved through
the �–product of S–matrices [3,31,32], which expresses
the overall scattering matrix S in terms of the partial scat-
tering matrices S(a) and S(b) as

S =

(
S11 S12

S21 S22

)
= S(a)�S(b), (10)

where

S11 = S(a)
11 + S(a)

12 S(b)
11

(
1− S(a)

22 S(b)
11

)−1

S(a)
21 , (11a)

S12 = S(a)
12

(
1− S(b)

11 S(a)
22

)−1

S(b)
12 , (11b)

S21 = S(b)
21

(
1− S(a)

22 S(b)
11

)−1

S(a)
21 , (11c)

S22 = S(b)
22 + S(b)

21 S(a)
22

(
1− S(b)

11 S(a)
22

)−1

S(b)
12 . (11d)

It is worth to observe that this composition rule does not
require the sub-matrices S(a)

ij and S(b)
ij to be square matri-

ces. In particular, the S–matrix appearing in equation (5)
can be factorized as follows

S =

(
0 Γ(L)

+

Γ(L)
+ 0

)
�
(

S(I)
11 S(I)

12

S(I)
21 S(I)

22

)
≡ Γ(L)�S(I) (12)

where the block–wise anti–diagonal factor Γ(L) takes into
account the free propagation through the slice on the left
of the interface, and the reduced S–matrix S(I) exhibits
the effects on the wave function of the matching at the
interface between the two considered regions of the device.
The former is a 2NL×2NL matrix, whereas the latter has
dimensions (NL + NR) × (NL + NR), as detailed above.

Equations (10) and (12) have been systematically em-
ployed to evaluate the total S–matrix, starting from the
partial S–matrices at the lead/stub and cavity/defect
boundaries, as well as from the scattering operators for the
free propagation of the electron along the various slices of
the device. As noted above, while there are physical rea-
sons to choose a different number Nl of transverse basis
functions in the lead with respect to the sidearm, one can
choose the same number Ns of components in the empty
slices of the stub and inside the defect. Thus, one has
an (Nl + Ns) × (Nl + Ns) partial S–matrix S(l|s) at the
lead/stub boundary, and a (2Ns × 2Ns) partial S–matrix
S(c|d) for the cavity/defect propagation. One can verify
by inspection that, when the two operators are combined
through the composition rule (10), one gets again a ma-
trix with dimensions (Nl + Ns) × (Nl + Ns). Things are
a bit different when one considers the stub/lead interface
on the right of the device. We shall not enter here into the
detailed structure of the stub/lead interface S–matrix. We
limit ourselves to note that, once the lead/stub S–matrix
S(l|s)(I) has been evaluated, the corresponding S–matrix
S(s|l)(I) on the right can be obtained without further com-
putational effort, through the correspondence rule
⎛
⎝S(s|l)(I)

11 S(s|l)(I)
12

S(s|l)(I)
21 S(s|l)(I)

22

⎞
⎠ =

⎛
⎝S(l|s)(I)

22 S(l|s)(I)
21

S(l|s)(I)
12 S(l|s)(I)

11

⎞
⎠ . (13)

A similar result holds for the S–matrices at the cav-
ity/defect and defect/cavity interfaces. As a consequence
of equation (13), once the (Nl + Ns) × (Nl + Ns) partial
S–matrix describing the propagation inside the device is
combined with the (Ns +Nl)× (Ns +Nl) S–matrix S(s|l)
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through the �-product composition rule (10), one gets
an overall 2Nl × 2Nl scattering operator S(T ), which ef-
fectively takes into account the flux percolation through
open and closed channels in the sidearm.

Potentials having a non–trivial x dependence can be
accommodated in our approach through a slicing tech-
nique [12,17]. This is particularly easy to do for interac-
tions which are factorisable in their x and y dependence,
such as the double Gaussian

V (x, y) = V0e
−β2(x−xc)

2−α2(y−yc)
2
. (14)

If x0 and xF are two points, where the value of the po-
tential is negligible, we divide the interval [x0, xF ] into
N sub–intervals of equal width ∆x = (xF − x0) /N , and
mimic the smooth potential V (x, y) by a sequence of
pseudo–defects, each of width ∆x and strength

V0(i) ≡ V0e
−β2(xi−xc)

2
(i = 0, . . . , N),

with xi = x0 + i∆x. The conductance of the waveguide in
presence of the smooth potential (14) is then evaluated for
increasing N , until convergence of the results is obtained.

Let us finally fix the actual boundary conditions un-
der which we are solving the scattering problem. We shall
assume that an electron impinges on the device moving
from the left, with no flux coming from the right. If one
assumes an incoming wave of unit flux in a given propaga-
tion mode, then the matrix elements

(
S(T )

11

)
nm

represent
the reflection coefficients toward the left from the initial
channel m into the final propagation mode n, while the
quantities

(
S(T )

21

)
nm

give the transmission amplitudes to
the right from mode m into mode n. Finally, for a two–
probe device the total conductance G can be evaluated
through the Büttiker formula [3,4,35]

G =
2e2

h

∑
m,n

k
(l)
n

k
(l)
m

∣∣∣(S(T )
21

)
nm

∣∣∣2 , (15)

where the summation is restricted to the open channels in
the leads.

3 Selected numerical examples

Our aim is to study the dependence of resonance parame-
ters in a stubbed quantum wave guide upon the strength
of an embedded defect and the geometry of the device,
with particular reference to the stub height. We shall do
this by locating the relevant S–matrix poles in the multi-
sheeted energy plane, with cuts starting along the real
axis from the various scattering thresholds.From now on,
all lengths are measured in units of the waveguide width
b, and energies in terms of the waveguide’s fundamental

mode ε
(l)
1 =

�
2

2m∗
(π

b

)2

, so that the various thresholds are

Ẽn = 1, 4, 9, . . . Sheets will be specified giving the sign of
the imaginary part of the lead’s momenta in each chan-
nel [36]. Thus, referring to a four–channel situation, the

symbol (+ + ++) denotes the physical sheet, where the
imaginary parts of all the channel momenta k

(l)
i are posi-

tive, whereas on sheet (− + ++) one has Imk
(l)
1 < 0, and

Imk
(l)
i > 0 for the other three channels. Our calculations

refer to a duct with a double Gaussian defect described by
equation (14). In all cases we have chosen x̃0 ≡ x0/b = 0,
and x̃f = 1, so that the region where the potential acts
has a length l̃d = 1. Moreover, we have set w̃ = 0.3; for a
wave guide of width b = 100 Å, the interaction region is
therefore 30 Å wide and 100 Å long. The defect is placed
at Ỹ0 = 0.1 from the lower edge of the guide. The de-
cay constants along the transverse and the propagation
direction have been fixed at α̃ ≡ bα = 15 and β̃ = 10,
respectively, so as to ensure that the potential is negligi-
ble outside the interaction region. We have checked the
convergence of the slicing method, and found that quite
stable results are obtained with N = 10÷15 sub–intervals.

For a waveguide attached to a stub of height c̃ ≡ c/b

and length l̃s ≡ ls/b = 1, one can expect that a larger
number of basis functions is required in the stub than in
the guide to achieve convergence, this difference increasing
with increasing c̃. As a matter of fact, for a given electron’s
energy Ẽ there are less open channels in the waveguide
than in the stub, the thresholds in the two regions being
Ẽ

(l)
n = n2 and Ẽ

(s)
n = Ẽ

(l)
n /c̃2 respectively. It follows that,

for a given energy Ẽ, the number of open channels in
the stub scales as c̃

√
Ẽ, whereas in the guide it scales as√

Ẽ. Since a sensible calculation has to include at least all
the propagating modes, a larger number of basis functions
is required in the stubbed region. As for the evanescent
modes, one may recall that a closed–channel component
is the less effective the shorter its attenuation length ξ̃n ≡
1/ (bκn) [17]. The attenuation lengths in the lead and in
the cavity are given in terms of the total energy Ẽ by

ξ̃(l)
n =

1

π
√

n2 − Ẽ
, ξ̃(s)

n =
1

π

√(
n
c̃

)2 − Ẽ
. (16)

From equations (16), one has that two evanescent modes
n and m, in the external region and in the stub, respec-
tively, have the same attenuation length if the correspond-
ing quantum numbers are related by m = c̃n. As a con-
sequence, if 3 ÷ 4 components are required in the lead,
∼12 closed channels have to be included in the stub, to
assure convergence. Our numerical results are consistent
with these estimates for both the conductance and the
pole locations in the complex energy plane. We have ob-
tained stable results with four components in the lead,
and 10 ÷ 12 basis functions in the stub for 1 ≤ c̃ ≤ 4. In
these conditions, the position of the resonance poles in the
E-plane can be guaranteed with an accuracy of the order
10−5. Only the bound–state poles turned out to be more
sensitive to the number of employed basis functions in the
interaction region, which was to be expected. In this lat-
ter case, we employed four channels in the duct and up to
20 modes in the internal region.

The conductance of stubbed waveguides is character-
ized by a more or less complex pattern of transmission
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Fig. 2. Conductance (in units 2e2/h) of a waveguide with
a stub c̃ = 2 high and a double–Gaussian defect of strength
Ṽ◦ = 20, in the energy region 1 ≤ Ẽ ≤ 9. The vertical lines
show the value of the real part of the pole positions in the
complex energy plane. The poles lie in the (− + ++) and
(−−++) sheet in correspondence to the first and second sub-
band,respectively.

maxima and minima when considered as a function of the
electron’s energy. In Figure 2 we give the conductance
of a waveguide having c̃ = 2, with a repulsive defect of
strength Ṽ◦ = 20, in the energy region corresponding to
the first two subbands (1 ≤ Ẽ ≤ 9). One notes two trans-
mission zeros in the first subband, and a non-trivial oscil-
latory behavior with two large dips in the second one. We
looked for poles of the S–matrix in the unphysical sheets
(−+++) and (−−++) and found two resonance poles at
Ẽ � 1.75−0.19i and Ẽ � 3.31−0.26i on the former sheet,
and two pairs of neighboring poles in the (−−++) sheet.
The value of their real parts is exhibited by the vertical
dashed lines in Figure 2. The two poles close to the first
subband, together with the two transmission zeros, concur
to produce the strong variations in the conductance one
observes there. As for the poles on the (−−++) sheet, the
first pair corresponds to the two almost overlapping peaks
one sees just above the lower edge of the second subband,
whereas the other two poles give rise to the broad reso-
nances at the top of this energy region. It is worth to note
that the maxima of the conductance are not aligned with
the pole positions, which are very close to the transmission
zeros in the first subband. The conductance behavior in
the lowest subband is consistent with what one observes
in simple, single–channel models for stubbed waveguides,
where transmission resonances arise because of the pres-
ence of zero–pole pairs in the complex energy plane [37].
In the higher subband, one clearly has a strong coupling
between the occurring resonances.

We have studied how the resonance poles move as the
defect strength varies with respect to the unperturbed sit-
uation, with the interaction switched off. Limiting our-
selves to the first subband, for the sake of simplicity, we
give the outcome of our calculations in Figure 3, for a
stub of height c̃ = 2 and the strength varying in the in-

Fig. 3. Trajectories of the S–matrix poles in the (− + ++)
sheet of the complex energy plane for −60 ≤ Ṽ◦ ≤ 200 and a
stub’s height c̃ = 2. The full and empty dots mark the empty–
stub positions of the resonance poles and their complex conju-
gates, respectively. The arrows display the movement direction
of the poles as the interaction strength Ṽ◦ decreases or increases
from the unperturbed value Ṽ◦ = 0.

terval −60 ≤ Ṽ◦ ≤ 200. For each resonance pole in the
fourth quadrant of the energy plane, one observes a com-
plex conjugate pole in the first quadrant. This is a con-
firmation of the correctness of our calculations. Indeed,
the multichannel S–matrix, when regarded as a func-
tion of the channel momenta ki, has the basic property
S(ki) = S∗(−k∗

i ) [38], which implies that to a pole lo-
cated at Ẽ = Ẽ(p) there corresponds a pole at the com-
plex conjugate energy Ẽ = Ẽ(p)∗ . As the defect strength
becomes more and more repulsive, both resonance poles
in the fourth quadrant move upwards in energy, starting
from the empty-stub positions, marked by the full dots
in Figure 3. At the same time they move away from the
real axis; the presence of a repulsive interaction displaces
the resonance peaks at higher energy, as it was to be ex-
pected. The broadening of the resonances with increasing
defect strength is consistent with the calculations of refer-
ence [25], where the effects of an impurity near the opening
of a quantum dot was considered, in an attempt to simu-
late the non-monotonic resonance width found in a previ-
ous experiment [24]. This effect can be attributed to the
deflection of more and more electrons into the dot, as Ṽ◦
increases, so that the coupling between the waveguide and
the cavity gets stronger [25]. Stated in equivalent terms,
one may say that the wave function trapping in the region
where the waveguide and the duct match decreases at the
defect becomes more repulsive. In the range of strengths
we have explored (0 ≤ Ṽ◦ ≤ 200), on the other hand,
we found no evidence of a non-monotonic behavior of the
resonance width. For Ṽ◦ > 200 the pole at higher energy
moves above the upper edge of the first subband Ẽ2, and
becomes a shadow pole [39]. As for the low–lying pole, we
have pushed the strength Ṽ◦ up to 1000, finding no sig-
nal of a decreasing width. The reason for this difference
with respect to [25] can be traced back to the different role
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Fig. 4. Motion of a pair of bound-state/anti-bound-state poles

in the complex k
(l)
1 –plane with varying strength in a stubbed

waveguide with c̃ = 2. The arrows display the movement di-
rection as the potential becomes more and more attractive.

played by backscattering in the two cases. In reference [25]
the impurity is near the opening of the dot, whereas in
our case it is embedded in the lower half of the waveg-
uide. The pole trajectories in the complex energy plane
depend in a rather sensitive way upon the position of the
defect in the device, as we have found in previous model
calculations [40]. If the defect is displaced closer to the
dot, backscattering can have an increased role, and a non-
monotonic behavior of the resonance width may emerge.

For negative strengths, the two poles become closer
and closer to the real axis; the first pole touches the real
axis at Ẽ � 1.45 for Ṽ◦ � −15.6, while the higher pole tra-
jectory touches it at Ẽ � 2.76 when Ṽ◦ � −8.4. Within the
accuracy of the numerical calculations, we found that each
pole lies just on the real axis in these conditions, at ener-
gies in the continuum of the first transmission band. This
is an indication that for Ṽ◦ � −8.4 and Ṽ◦ � −15.6 one
has a bound state embedded in the continuum (BIC) in
the first subband. For increasingly negative strengths, the
S–matrix poles move away again from the real energy axis.
The behavior of the low-lying pole is particularly worth of
attention. As the defect becomes more and more attrac-
tive, its trajectory bends towards the real axis, which is
reached for Ṽ◦ � −39.6, at Ẽ � 0.93. At this point, the
complex conjugate pole coming from the first quadrant
collides with the resonance pole, giving rise thereby to a
double pole below the scattering threshold Ẽn = 1. What
is happening can be most clearly perceived in the com-
plex k

(l)
1 plane, as exemplified in Figure 4. As the absolute

value of the strength Ṽ◦ increases, the pole in the fourth
quadrant of the momentum plane moves downwards to-
wards the imaginary axis, the corresponding pole at −k

(l)
1

∗

in the third quadrant doing the same; the two poles col-
lide at Imk

(l)
1 � −0.83, when Ṽ◦ � −39.6. Decreasing the

strength further, one has two anti–bound–state poles, one
moving downwards along the negative imaginary axis, the
other moving upwards, until, for Ṽ◦ � −46.5 it crosses

the real axis, and passes into the upper half of the com-
plex k–plane as a bound state pole. Had we looked at the
corresponding poles in the energy plane, we would have
seen two poles moving on the real axis on the unphysi-
cal (− + ++) sheet, one of the poles reaching the first
scattering threshold Ẽ1, and going back as a bound–state
pole on the physical (+ + ++) sheet. This situation is
strongly reminiscent of what happens in standard poten-
tial scattering theory, and has been found also in idealized,
one–dimensional models of stubbed waveguides [40].

We have studied how the bound-state energy changes
when the strength of the defect or the stub’s height c̃
varies. The possibility of bound–state solutions for an
empty stub has been known since several years ago [5].
For an empty stub, the increasing of c̃ has a binding effect,
the binding energy ẼBS becoming substantially indepen-
dent upon the stub’s size for c̃ > 2. This can be easily
explained, since the bound-state wave function is mainly
concentrated in the region where the duct matches the
stub, and for large cavities a change in the transverse di-
mension cannot affect the wave function in a substantial
way. When the interaction is switched on, one observes
that the bound state appears for increasing values of c̃
for repulsive defects; for a given c̃, the binding energy is
shifted upwards. In correspondence to an attractive defect,
the (ẼBS , c̃) curve is shifted downwards, and a bound
state is possible even for a smooth wave guide, when the
potential is able to support a bound state by itself.

The asymmetric line shapes one observes in the
conductance of quantum waveguides are generally
parametrized in terms of the Fano function

TF = T0
(ε + q)2

1 + ε2
,

where T0 is the amplitude of the Fano resonance, ε ≡(
Ẽ − Ẽ(R)

)
/Γ̃ represents the reduced energy, and the

pole location Ẽ(p) in the energy plane has been written
as Ẽ(p) ≡ Ẽ(R) − iΓ̃ . The Fano parameter q is a mea-
sure of the ratio between the resonant and non–resonant
transmission amplitudes, and is related to the asymmetry
of the line shape. For strictly one–dimensional systems,
q can be evaluated starting from the positions Ẽ(o) and
Ẽ(p) of the S–matrix zeros and poles in the energy plane,
i.e., [41]

q =
Ẽ(R) − Ẽ(o)

Γ̃
. (17)

Equation (17) can be used in the present multi–channel
situation below the second scattering threshold, since in
the first subband only one propagation mode really con-
tributes to the conductance. To this end we have studied
how the zeros of the scattering amplitude move as the
strength varies. As expected, as the interaction becomes
more and more repulsive the zeros move towards the up-
per threshold, whereas they are displaced towards lower
energies for more and more negative strengths. In Figure 5
we plot the resulting q parameter for the two resonances
observed in the first subband, when the strength varies in
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Fig. 5. Fano parameter q for the two resonances in the first
subband for 0 ≤ Ṽ◦ ≤ 100 in a waveguide attached to a stub
with c̃ = 2.

the range 0 ≤ Ṽ◦ ≤ 100 and c̃ = 2. The Fano parameter
of the low–lying resonance is always positive, whereas for
the second resonance it turns out to be negative. This im-
plies that the two line shapes have opposite asymmetries
for all the considered strengths, as confirmed by the cal-
culated conductance. In both cases the absolute value of
the asymmetry parameter remains always different from
zero, with a rather smooth dependence upon Ṽ◦ in a rather
large range of strength values.

We have also studied how the position of the S–matrix
poles and zeros depends upon the stub’s height c̃. The
“binding” effect of an increasing c̃ observed for the bound–
state energies is clearly perceivable in the scattering region
also. As the stub becomes longer, poles and zeros move to-
wards the lower edge of the first subband, the trajectories
of the first and second pole moving away from the real
axis for c̃ < 1.5 and c̃ < 2.2, respectively. As c̃ is increased
further, the two poles come closer and closer to the real
axis, giving rise to narrower and narrower resonances, until
they leave the scattering region. We looked for the possible
presence of BICs with varying c̃. No positive-energy states
with a vanishing width emerged from our calculations,
both in presence of an impurity and for an empty stub.
BICs for various values of the total transverse width have
been found on the other hand in reference [30], for a quan-
tum billiard with a transverse hyperbolic profile coupled
symmetrically to a quantum waveguide. There, arguments
have been also given in favor of a rather widespread pres-
ence of BICs in mesoscopic systems. The fact that such
zero-width states do not appear in the present calculations
in a rather large range of stub’s heights c̃ (1 ≤ c̃ ≤ 5)
can be explained by the geometry we have chosen. Our
stub represents a rather narrow resonator, with l̃s = 1;
the quantum billiard considered in reference [30], on the
other hand, has l̃s = 4 and c̃ ∼ 4 ÷ 5. The possible pres-
ence and location of BICs is strictly related to the cavity’s
eigenenergies, whose values and spacings depend in a cru-
cial way upon the cavity’s dimensions. As a matter of fact,
we verified that for an empty stub symmetrically coupled

Fig. 6. Fano parameter q (upper panel) and width Γ̃ (lower
panel) for the first (solid line) and second (dashed line) reso-
nance in the first subband for 1 ≤ c̃ ≤ 5 and Ṽ◦ = 20.

to the leads, and of dimensions comparable to the quan-
tum billiard of reference [30] there is a BIC at Ẽ � 1.420
for c̃ = 4.6, in remarkable agreement with [30], given the
different shape of the confining potential. We checked the
effect of a host impurity on the presence and energy of
BICs. To this end, we introduced a double–Gaussian de-
fect centered in the cavity, having l̃d = w̃ = 1. We found
that BICs are a rather “robust” feature of the system,
since for Ṽ◦ = 20 the zero-width state survives the switch-
ing on the interaction. When the strength is increased up
to Ṽ◦ = 100, one has a BIC at a slightly higher energy
(ẼBIC � 1.465), provided that the stub’s height is ad-
justed to c̃ = 4.55, which means a variation of the order
of 1%. Bound states in the continuum may appear also
in more complicated systems. Recently, they have been
found for two open quantum dots, coupled through a con-
necting bridge [42]. In this case also we verified that when
the strength of a host interaction is increased from 0 up to
100, the BIC survives, being slightly displaced upwards in
energy, at price of a small adjustment in the neck’s length
l̃b. More precisely, one has ẼBIC � 3.30, l̃b = 3.59 for
Ṽ◦ = 0, and ẼBIC � 3.36, l̃b = 3.73 for Ṽ◦ = 100. Both for
the single and the coupled quantum dots the underlying
mechanism, as viewed in the complex energy plane, is the
same; when the strength of the interaction changes, both
the pole and the transmission zeros move away from their
original positions and are shifted upwards in energy; since
they move at different speeds, however, if they coincided
for a given value of the strength, they do not coincide any
longer for the new strength. Their relative position can be
adjusted to zero by a change of some characteristic length
of the system, so as to have a BIC at a somewhat higher
energy.

In analogy with Figure 5, in Figure 6 we plot the Fano
parameter q (upper panel) and the width Γ̃ (lower panel)
for the considered poles as functions of c̃. Note that the q
parameter for the higher–energy resonance is not given
for c̃ < 1.6; as a matter of fact, for stubs of smaller
width, this zero-pole pair cannot develop any longer in
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the considered energy region. For stubs having c̃ < 1.6
one actually finds that the considered S–matrix pole in
the (−+++) sheet is located above the scattering thresh-
old Ẽ2, thereby becoming a shadow pole. The asymmetry
parameters turns out to be rather sensitive functions of
c̃, and can change sign as c̃ varies in between 1 and 5.
As a consequence, one expects a rather marked variation
in the dependence of conductance upon the energy for
stubs of different width, an expectation which is confirmed
by our calculations. The origin of Fano lineshape reversal
has been studied in a model coupled-channel calculation
in reference [43]. There, the sign change of q for the reso-
nances appearing in the electron transmission spectrum of
a quantum dot has been attributed to the coupling among
shape and Feshbach resonances originating from open and
closed channels; this effect turned out to be very sensitive
to slight modifications of the quantum-dot geometry. A
similar mechanism is presumably at work here, since as
c̃ increases, the poles move in the energy plane and new
propagating modes open up in the cavity region; as a con-
sequence. with varying c̃, the q parameter of each reso-
nance changes sign, and the Fano profiles one observes in
the first subband may or may not have the same asymme-
try, depending upon the stub’s height one is considering.

Finally, we observe that the analysis of the pole tra-
jectories can be extended to the (−−++) sheet, in corre-
spondence to the second subband. Similarly to what has
been found below the second threshold, one finds a strong
repulsive effect with decreasing c̃. Poles, determining a
resonance behavior for a given c̃, move up in energy until
they cross the third threshold and become shadow poles;
at the same time new poles may come into play, moving
from lower energies.

4 Conclusions

We have studied the poles in the complex energy plane
of the multi–channel S–matrix for a waveguide attached
to a resonant cavity. We have allowed for the presence of
a defect in the waveguide. Our main aim was to to get a
quantitative insight into the dependence of the resonance
parameters upon the defect strength and stub’s height. We
found that a decrease of the stub’s size as an increase of the
positive strength has a repulsive effect on the poles, which
move in both cases to higher energies in the E–plane. In
particular, as the stub gets shorter, the S–matrix poles
pass the upper edge of the considered subband, becoming
thereby shadow poles; at the same time, poles at lower
energies come up, cross the lower threshold of the sub-
band, and are therefore able to influence the resonant be-
havior of the conductance. For attractive defects, poles in
the first and fourth quadrant move towards the real axis
as the strength is made more negative; with reference to
the lowest energy region, there are indications that bound
states embedded in the continuum occur for critical values
of the strength. As the defect becomes more and more at-
tractive, resonance and anti-resonance poles collide on the
real axis, giving rise to anti-bound state poles moving on

opposite directions, until a bound state pole appears on
the physical sheet, in close analogy with what happens in
one–dimensional models of stubbed waveguides [40]. For
repulsive defects, zero-width scattering states appear for
both single and coupled quantum dots, provided that the
resonating cavity has the proper geometry, and represent
a “robust” phenomenon with respect to the presence of
an embedded interaction.

For the lowest subband, where only one open channel
contributes to the conductance, one can relate the param-
eters appearing in the Fano function for the line shape
to the poles and zeros of the scattering amplitude in the
energy plane. The asymmetry parameter q turns out to
be a rather smooth function of the strength, whereas it
depends more sensitively upon the stub’s size, and may
even change sign with varying c̃. As a consequence, one
may or may not observe a reversal of the Fano line shape
for the resonances in the first subband, depending upon
the value of the stub’s height.

Some issues deserve certainly further investigations.
The role of shadow to dominant pole transitions in ex-
plaining the changes of the total conductance near thresh-
olds as c̃ varies has been discussed elsewhere [44]. There
is evidence of strong resonance overlapping in higher sub-
bands. A quantitative study of resonance coupling effects,
and their dependence upon the dynamical and geometrical
parameters of the quantum device can be performed re-
sorting to modern effective–Hamiltonian techniques [45],
in analogy to what has been done for microwave bil-
liards [46]. These issues are currently under consideration.
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