

Available online at www.sciencedirect.com

Journal of Combinatorial Theory _{Series A}

Journal of Combinatorial Theory, Series A 109 (2005) 189-202

www.elsevier.com/locate/jcta

Tangential Tallini sets in finite Grassmannians of lines

Alessandro Bichara^a, Corrado Zanella^b

^aDipartimento di Metodi e Modelli Matematici, Università "La Sapienza", via Scarpa 16, I-00161 Roma, Italy ^bDipartimento di Matematica Pura ed Applicata, Università di Padova, via Belzoni 7, I-35131 Padova, Italy

Received 7 September 2003

Abstract

A Tallini set in a semilinear space is a set **B** of points, such that each line not contained in **B** intersects **B** in at most two points. In this paper, the following notion of a tangential Tallini set in the Grassmannian $\Gamma_{n,1,q}$, q odd, is investigated: a Tallini set is called tangential when it meets every ruled plane (i.e. the set of lines contained in a plane of PG(n, q)) in either q + 1 or $q^2 + q + 1$ elements. A Tallini set $Q_{\mathbf{B}}$ in PG(n, q) can be associated with each tangential Tallini set **B** in $\Gamma_{n,1,q}$. Each $\ell \in \mathbf{B}$ is a line of PG(n, q) intersecting $Q_{\mathbf{B}}$ in either 0, or 1, or q + 1 points; when $n \neq 4$ and **B** is covered by (n - 2)-dimensional projective subspaces of $\Gamma_{n,1,q}$ the first case does not occur. If **B** is a tangential Tallini set in $\Gamma_{n,1,q}$ covered by (n - 2)-dimensional subspaces, any of which is in PG(n, q) the set of all lines through a point and in a hyperplane, then either $Q_{\mathbf{B}}$ is a quadric, and **B** is the set of all lines contained in, or tangent to, $Q_{\mathbf{B}}$, or **B** is a linear complex.

Keywords: Tallini set; Grassmannian; Quadric; Finite; Projective space

1. Introduction

1.1. Outline

In [10–13], Tallini developed the theory of k-sets in Grassmann manifolds as a natural extension of the combinatorial investigations of the finite projective spaces. This was the

E-mail addresses: bichara@dmmm.uniroma1.it (A. Bichara), zanella@math.unipd.it (C. Zanella).

starting point for further work on sets of lines in particular positions with respect to quadrics, such as the secant lines and the self-conjugate lines, i.e. lines which are tangent to, or contained in, a quadric. If Q is a possibly singular quadric and π is a plane in the projective space PG(n, q), the self-conjugate lines of Q which are contained in π form either a pencil, or a dual conic, or the whole dual plane. This motivated us to carry out a general investigation on the sets of lines satisfying such property, and to call them tangential Tallini sets. They include the linear complexes. It is shown in Theorems 8 and 10 that any tangential Tallini set **B** is related to a Tallini set $Q_{\mathbf{B}}$ in PG(n, q). We characterize by means of a common property the set of self-conjugate lines of a quadric in PG(n, q), including singular quadrics, and the linear complexes: see Theorem 24. So, several results, given by de Resmini [5,6], Tallini [11] and Venezia [15,16], are unified, improved and generalized. Similar characterizations of different sets of lines related to a quadric to a quadric are due to de Resmini, Ferri, and Tallini [4,7,10].

1.2. Notation

Let PG(n, q) = (\mathcal{P}, \mathcal{R}), $n \ge 3$, be the *n*-dimensional projective space over the Galois field \mathbb{F}_q , *q* odd, and $\Gamma_{n,1,q} = (\mathcal{R}, \mathcal{F})$ the Grassmann space representing the lines of PG(n, q). Here, \mathcal{P}, \mathcal{R} and \mathcal{F} are the sets of all points, all lines and all pencils in PG(n, q), respectively, a *pencil* being the set of all lines through a point in a plane. Since $\Gamma_{n,1,q}$ is a semilinear space, the elements of \mathcal{R} and \mathcal{F} are also called *g*-*points* and *g*-*lines*, respectively. In a similar way the *g*-*planes* and *g*-*subspaces*, that is, projective planes and subspaces contained in $\Gamma_{n,1,q}$, are defined. For background on semilinear spaces, also called partial line spaces, the reader is referred to [14].

If π is a plane of PG(n, q), denote by T_{π} the set of lines of π . Such a T_{π} is called a *ruled* plane, and is a g-plane. The set of all ruled planes will be denoted by \mathcal{T} . A star of lines, star for short, is the set S_A of all lines in PG(n, q) through a point A, the *center* of the star. We denote by \mathcal{S} the set of all stars. A *d*-dimensional star is the set of all lines belonging to a common star and contained in a (d + 1)-dimensional subspace of PG(n, q). So, a star is a (n - 1)-dimensional star, a pencil is a one-dimensional star.

In this paper, **B** will always denote a *tangential Tallini set*, i.e. a set of g-points, such that

- (i) for any $\varphi \in \mathcal{F}$, there holds $|\varphi \cap \mathbf{B}| \in \{0, 1, 2, q+1\}$;
- (ii) for any $T \in \mathcal{T}$, there holds $|T \cap \mathbf{B}| \in \{q+1, q^2+q+1\}$.

So, for every $T \in \mathcal{T}$, either $T \subseteq \mathbf{B}$, or $T \cap \mathbf{B}$ is a g-line or a g-(q + 1)-arc, where a g-k-arc is a set of k g-points, no three of them collinear. An example of a set of g-points satisfying (i) and (ii) is given by the set of self-conjugate lines of a quadric in PG(n, q).

An element φ of \mathcal{F} is called an *exterior*, *tangent* or *secant* g-line when $|\varphi \cap \mathbf{B}|$ is equal to 0, 1 or 2, respectively.

The number of points in an *i*-dimensional projective space is denoted by $\theta_i = (q^{i+1} - 1)/(q-1)$, $i \in \mathbb{N}$. Let S_0 be the set of all stars S such that either $S \subseteq \mathbf{B}$, or $S \cap \mathbf{B}$ is a g-prime of S; that is, $S \cap \mathbf{B}$ is a hyperplane of the projective space S. Let $Q_{\mathbf{B}}$ be the set of the centers of all stars in S_0 , and $V_{\mathbf{B}} \subseteq Q_{\mathbf{B}}$ the set of the centers of all stars which are contained in \mathbf{B} . Finally, let \mathcal{T}^* be the set of all ruled planes which are contained in \mathbf{B} .

2. General properties of tangential Tallini sets

Proposition 1. The cardinality of **B** is equal to

$$\frac{\theta_n \theta_{n-1}}{\theta_2} + |\mathcal{T}^*| \frac{q^2}{\theta_{n-2}}.$$
(1)

Proof. Computing in two ways the pairs (ℓ, T) with $T \in \mathcal{T}$ and $\ell \in \mathbf{B} \cap T$ gives

$$|\mathbf{B}|\theta_{n-2} = |\mathcal{T}^*|\theta_2 + \left(\frac{\theta_n \theta_{n-1} \theta_{n-2}}{\theta_2 \theta_1} - |\mathcal{T}^*|\right) \theta_1. \qquad \Box$$

By Proposition 1, if $n \equiv 0, 2 \pmod{3}$, then θ_{n-2} divides $|\mathcal{T}^*|$.

Proposition 2. If $S \in S$ and $\ell \in \mathcal{R} \setminus S$, then there exists precisely one $T \in \mathcal{T}$ such that $\ell \in T$ and $T \cap S \in \mathcal{F}$.

Lemma 3. Assume n = 3 and let $S \in S$. Then one of the following holds:

- (a) $|S \cap \mathbf{B}| = 1$ and, in this case, $|\mathcal{T}^*| = q + 1$;
- (b) $S \cap \mathbf{B}$ is a g-line, and $|\mathcal{T}^*| \in \{0, q+1\}$; also, $|\mathcal{T}^*| = q+1$ if, and only if, the g-line $S \cap \mathbf{B}$ is contained in an element of \mathcal{T}^* ;
- (c) $S \cap \mathbf{B}$ is a g-(q + 1)-arc, and $\mathcal{T}^* = \emptyset$;
- (d) $S \cap \mathbf{B} = \varphi_1 \cup \varphi_2$, where φ_1 and φ_2 are two distinct g-lines; in this case $|\mathcal{T}^*| = q + 1$, and each of both g-lines is a subset of an element of \mathcal{T}^* ;
- (e) $S \subseteq \mathbf{B}$, and $\mathcal{T}^* \neq \emptyset$.

Proof. We apply Proposition 2 in order to compute the number of elements of **B**.

Case 1: $S \cap \mathbf{B}$ *is a g–k-arc* $(0 \le k \le q+1)$. For every $T \in \mathcal{T}$ having non-empty intersection with *S*, we have $|T \cap \mathbf{B}| = q + 1$. This gives the following properties.

- 1. On the k(k-1)/2 ruled planes which meet *S* in a secant g-line there are exactly (q-1)k(k-1)/2 g-points of **B** \ *S*.
- 2. On the k(q+2-k) ruled planes which meet *S* in a tangent g-line there are qk(q+2-k) g-points of **B** \ *S*.
- 3. On the $\theta_2 k(k-1)/2 k(q+2-k)$ ruled planes which meet *S* in an exterior g-line, there are $(q+1)(\theta_2 k(k-1)/2 k(q+2-k))$ g-points of **B** \ *S*.

By adding the k g-points of $S \cap \mathbf{B}$, we obtain $|\mathbf{B}| = q^3 + 2q^2 + (2 - k)q + 1$. Let $a = |\mathcal{T}^*|/(q+1)$. By Proposition 1, a is a natural number such that q(1-a) = k - 1. Therefore, we have either (a) or (c).

Case 2: $S \cap \mathbf{B}$ *is not a g-arc, and* $S \not\subseteq \mathbf{B}$. In this case $S \cap \mathbf{B}$ contains a g-line φ . If a g-point $\ell \in S \setminus \varphi$ such that $S \cap \mathbf{B} = \varphi \cup \{\ell\}$ exists, then, computing as in Case 1, $|\mathbf{B}| = q^3 + 2q^2 + 1$ when φ is contained in an element of \mathcal{T}^* , $|\mathbf{B}| = q^3 + q^2 + 1$ otherwise, contradicting Proposition 1. Therefore, $S \cap \mathbf{B}$ is either a g-line, or the union of two distinct g-lines φ_1 and φ_2 . In the latter case, computing once more as in Case 1 gives $|\mathbf{B}| = q^3 + bq^2 + q + 1$, where $b \in \{0, 1, 2\}$ is the number of elements of \mathcal{T}^* among the ruled planes containing φ_1 or φ_2 . Proposition 1 implies b = 2 and $|\mathcal{T}^*| = q + 1$.

If $S \cap \mathbf{B}$ is a g-line, then $|\mathbf{B}| = q^3 + (c+1)q^2 + q + 1$, where $c \in \{0, 1\}$ is the number of elements of \mathcal{T}^* containing $S \cap \mathbf{B}$. This implies (b).

Case 3: $S \subseteq \mathbf{B}$. Since there is a g-point ℓ in $\mathbf{B} \setminus S$, the ruled plane through ℓ meeting S is contained in \mathbf{B} . \Box

Notation. 1. The set of all g-points collinear with $\ell \in \mathcal{R}$, including ℓ , is denoted by ℓ^{\perp} .

2. Let ε be a two-dimensional star; that is, ε is the set of all lines in a star in a threedimensional subspace of PG(n, q), say U_{ε} . Let $\mathcal{P}_{\varepsilon}$, $\mathcal{R}_{\varepsilon}$ and $\Gamma_{\varepsilon} = (\mathcal{R}_{\varepsilon}, \mathcal{F}_{\varepsilon})$ be the point set, the line set and the Grassmannian of lines of U_{ε} , respectively. Let $\mathbf{B}_{\varepsilon} = \mathcal{R}_{\varepsilon} \cap \mathbf{B}$. Clearly \mathbf{B}_{ε} is a tangential Tallini set in Γ_{ε} .

Proposition 4. Let $S \in S$. If S is not contained in **B**, then $S \cap \mathbf{B}$ is a g-quadric in S. When $V_{\mathbf{B}} = \emptyset$, such a g-quadric cannot be the union of two distinct g-primes of S.

Proof. Let ε be a two-dimensional star contained in *S*. By Lemma 3, applied to the Grassmannian Γ_{ε} , either $\varepsilon \subseteq \mathbf{B}$, or $\varepsilon \cap \mathbf{B}$ is a possibly singular g-conic. Any set of points *K* in a projective space, such that every plane section not contained in *K* is a conic, is a quadric or the whole space [3,8].

Next, assume that $S \cap \mathbf{B}$ is the union of two distinct g-primes of *S*, say V_1 and V_2 , and $V_{\mathbf{B}} = \emptyset$. Let $\ell_0 \in V_1 \cap V_2$. We now obtain two bounds for $|\ell_0^{\perp} \cap \mathbf{B}|$.

Let φ be a g-line through ℓ_0 . Assume that for an $i \in \{1, 2\}$, φ is contained in V_i and intersects V_{3-i} only in ℓ_0 . Then there is a g-plane η in *S* that contains φ and such that $\eta \cap \mathbf{B}$ is the union of two distinct lines. By Lemma 3, applied to Γ_{η} , the unique ruled plane containing φ is a subset of **B**. The ruled planes through ℓ_0 meet pairwise only in ℓ_0 , and there exist $2q^{n-3}$ such g-planes meeting *S* in a line that is contained in exactly one of the primes V_1 and V_2 . Each of the remaining ruled planes through ℓ_0 intersects **B** in at least q + 1 g-points. Therefore

$$|\ell_0^{\perp} \cap \mathbf{B}| \ge 1 + 2q^{n-3}(q^2 + q) + (\theta_{n-2} - 2q^{n-3})q$$

= $\theta_{n-1} + 2q^{n-1}$. (2)

Next, every g-point collinear with ℓ_0 belongs to one of the q + 1 stars through ℓ_0 . By the assumption $V_{\mathbf{B}} = \emptyset$, every star intersects **B** in at most $\theta_{n-2} + q^{n-2}$ g-points (the cardinality of two g-primes). Hence

$$|\ell_0^{\perp} \cap \mathbf{B}| \leq 1 + (q+1)(\theta_{n-2} + q^{n-2} - 1) = 2\theta_{n-1} + q^{n-2} - q - 1.$$
(3)

From (2) and (3),

$$q^{n-1} - \theta_{n-2} - q^{n-2} + q + 1 \leq 0,$$

a contradiction. \Box

Proposition 5. Let $\ell^* \in \mathbf{B}$, $S \in S$ and S_1 , $S_2 \in S_0$ such that $S_1 \neq S_2$ and $S \cap S_1 \cap S_2 = \{\ell^*\}$. Then $S \in S_0$.

Proof. First, we prove the statement under the assumption n = 3. It is convenient to deal with four cases.

Case 1: *there exist* $S', S'' \in S$ *such that* $S' \cap S'' = \{\ell^*\}$ *and* $S' \subseteq \mathbf{B}, S'' \subseteq \mathbf{B}$. Each g-line φ in S through ℓ^* is contained in precisely one ruled plane T. The intersections $T \cap S'$, $T \cap S''$ are two distinct g-lines contained in \mathbf{B} . Thus $T \subseteq \mathbf{B}$ and $\varphi \subseteq \mathbf{B}$. As a consequence, $S \subseteq \mathbf{B}$.

Case 2: there exist $S', \tilde{S} \in S$ such that $S' \cap \tilde{S} = \{\ell^*\}, S' \subseteq \mathbf{B}$, and $\tilde{S} \cap \mathbf{B}$ is a g-line, say ϕ . Let T_{ϕ} be the ruled plane containing ϕ . The g-lines ϕ and $T_{\phi} \cap S'$ are distinct and contained in $T_{\phi} \cap \mathbf{B}$, so $T_{\phi} \subseteq \mathbf{B}$. Consider a ruled plane $T \neq T_{\phi}$ such that $\ell^* \in T$. The g-line $T \cap S'$ is contained in \mathbf{B} , whereas $T \cap \tilde{S} \cap \mathbf{B} = \{\ell^*\}$, hence $T \cap \mathbf{B} \subseteq S'$. Therefore, any g-line ψ through ℓ^* either is contained in \mathbf{B} , when $\psi \subseteq S'$ or $\psi \subseteq T_{\phi}$, or is tangent to \mathbf{B} . This implies that any star through the g-point ℓ^* and other than S' meets \mathbf{B} in a g-line.

Case 3: *there exists* $T \in \mathcal{T}^*$ *such that* $\ell^* \in T$. Any $\ell \in (\ell^*)^{\perp}$ belongs to a ruled plane through ℓ^* . Then $|(\ell^*)^{\perp} \cap \mathbf{B}| \ge 2q^2 + q + 1$. Assume we are neither in Case 1 nor in Case 2. Then $|(\ell^*)^{\perp} \cap \mathbf{B} \cap S_i| = q + 1$ for i = 1, 2, and, for every star *S*^{*ii*} through ℓ^* other than S_1 and S_2 , $|(\ell^*)^{\perp} \cap \mathbf{B} \cap S^{$ *ii* $}| \le 2q + 1$. Therefore $|(\ell^*)^{\perp} \cap \mathbf{B}| \le 1 + 2q + (q - 1)2q = 2q^2 + 1$, a contradiction.

Case 4: *otherwise*. Let \tilde{T} be a ruled plane through ℓ^* . The g-lines $\tilde{T} \cap S_1$ and $\tilde{T} \cap S_2$ are distinct and tangent to, or contained in, **B**, hence $\tilde{T} \cap \mathbf{B}$ is a g-line. This implies that any g-line through ℓ^* is tangent to, or contained in, **B**. If two of the q + 1 g-lines through ℓ^* are contained in a common star, then, by Lemma 3, Case 3 occurs, which is impossible. Therefore, the intersection of **B** with every star containing ℓ^* is a g-line.

Next, assume n > 3. Let ε be any g-plane contained in S and such that $\ell^* \in \varepsilon$. The intersection $\varepsilon_i = \mathcal{R}_{\varepsilon} \cap S_i$ is a g-plane for i = 1, 2. Thus $\mathbf{B}_{\varepsilon} \cap \varepsilon_i = \mathbf{B} \cap \mathcal{R}_{\varepsilon} \cap S_i$ either is a g-line in ε_i , or is equal to ε_i . Since Proposition 5 has already been proved for n = 3, either $\varepsilon \subseteq \mathbf{B}$, or $\varepsilon \cap \mathbf{B}$ is a g-line.

Assume ℓ_1 and ℓ_2 are two distinct g-points in $S \cap \mathbf{B}$. If ε is a g-plane through ℓ_1, ℓ_2 and ℓ^* , then, by the previous argument, the g-line $\ell_1 \ell_2$ is contained in $S \cap \mathbf{B}$. Consequently $S \cap \mathbf{B}$ is a g-subspace of S.

Every g-line φ' in *S* lies on a g-plane of *S* through ℓ^* , so $\varphi' \cap S \cap \mathbf{B} \neq \emptyset$. Therefore, either $S \subseteq \mathbf{B}$, or $S \cap \mathbf{B}$ is a g-prime of *S*. \Box

Definition. For a subspace *V* of a projective space *P* and a set $I \subset P \setminus V$, the *cone VI* with *vertex V* is the set of all points on the lines joining a point of *V* to a point of *I*.

Proposition 6. Let Θ be the set of all lines in PG(n, q) which are incident with V_B. Then

- (i) $Q_{\mathbf{B}}$ is a cone with vertex $V_{\mathbf{B}}$;
- (ii) for every $S \in S$, $S \cap \mathbf{B}$ is a cone with vertex $S \cap \Theta$.

193

Proof. (i) Let $A, B \in V_{\mathbf{B}}, A \neq B$, and $\{\ell\} = S_A \cap S_B$. Each ruled plane *T* through ℓ meets **B** in at least two distinct g-lines $T \cap S_A$ and $T \cap S_B$; therefore, $T \subseteq \mathbf{B}$. Consequently, the line of PG(n, q) joining *A* and *B* is contained in **B** and $V_{\mathbf{B}}$ is a subspace of PG(n, q). On the other hand, by Proposition 5, every line of PG(n, q) intersecting $V_{\mathbf{B}}$ is either tangent to, or contained in, $Q_{\mathbf{B}}$.

(ii) Clearly $\Theta \subseteq \mathbf{B}$. Since $V_{\mathbf{B}}$ is a subspace of PG(n, q), $S \cap \Theta$ is a g-subspace of S. Assume $\ell_0 \in S \cap \Theta$, $\ell_1 \in S \setminus \Theta$. Let φ be the g-line $\ell_0 \ell_1$ and C a point of PG(n, q) incident with both ℓ_0 and $V_{\mathbf{B}}$. There is exactly one ruled plane containing φ , say T. The g-line $T \cap S_C$ is contained in \mathbf{B} . Thus, either $T \cap \mathbf{B} = T \cap S_C$, and $\varphi \cap \mathbf{B} = \{\ell_0\}$, or $T \subseteq \mathbf{B}$, and $\varphi \subseteq \mathbf{B}$. So, every g-line in S incident with $S \cap \Theta$ either intersects \mathbf{B} in exactly one point, or is contained in \mathbf{B} . \Box

Proposition 7. Let V and V' be complementary subspaces of PG(n, q) such that $V \subseteq V_{\mathbf{B}}$, and dim $V' \ge 3$. Let $\Gamma' = (\mathcal{R}', \mathcal{F}')$ be the Grassmannian of the lines of V', and $\mathbf{B}' = \mathcal{R}' \cap \mathbf{B}$. Then

- (i) **B**' is a tangential Tallini set of Γ' ; if $V = V_{\mathbf{B}}$, then no star of Γ' is contained in **B**'.
- (ii) Let $Q_{\mathbf{B}'}$ be the set of points of V' which are centers of stars of Γ' intersecting \mathbf{B}' in *g*-subspaces of dimension $d \ge \dim V' 2$. Then the following hold.
 - (a) $Q_{\mathbf{B}'} = Q_{\mathbf{B}} \cap V';$
 - (b) for any line ℓ disjoint to V, the line ℓ belongs to B if, and only if, the projection in PG(n, q) of ℓ from V onto V' is a g-point of B'.

Proof. (i) It is clear that \mathbf{B}' is a tangential Tallini set of Γ' . Now assume that $V = V_{\mathbf{B}}$ and there is a star of Γ' contained in \mathbf{B}' . Hence a point A of V' exists such that $S_A \cap \mathcal{R}' \subseteq \mathbf{B}'$. In S_A the g-subspaces $S_A \cap \mathcal{R}'$ and $S_A \cap \Theta$ are complementary. Then, by Proposition 6(ii), $S_A \subseteq \mathbf{B}$, a contradiction.

(iia) Let $C \in Q_{\mathbf{B}'}$. Either $S_C \cap \mathbf{B}'$ is a g-prime of $S_C \cap \mathcal{R}'$, or $S_C \cap \mathcal{R}' \subseteq \mathbf{B}'$. This implies, by Proposition 6(ii), that $S_C \in S_0$.

Conversely, if $D \in Q_{\mathbf{B}} \cap V'$, then $S_D \cap \mathbf{B}$ is a g-prime of S_D or $S_D \subseteq \mathbf{B}$, thus $S_D \cap \mathbf{B}'$ is a g-prime of $S_D \cap \mathcal{R}'$ or $S_D \cap \mathcal{R}' \subseteq \mathbf{B}'$.

(iib) Let ℓ' be the projection of ℓ on V'. If ℓ and ℓ' have a common point, then there is a plane π in PG(n, q) containing ℓ , ℓ' and a point E of V. The pencil of lines φ with center E on π is a subset of **B**. Then either $T_{\pi} \subseteq \mathbf{B}$, and ℓ , $\ell' \in \mathbf{B}$, or $T_{\pi} \cap \mathbf{B} = \varphi$ and ℓ , $\ell' \notin \mathbf{B}$.

Now assume that ℓ and ℓ' are skew. Take a line *m* incident with both ℓ and ℓ' , but not with *V*. Let π_1 be the plane containing the lines ℓ and *m*, and π_2 the plane containing ℓ' and *m*. Each π_i meets *V* in a point, i = 1, 2. The same argument as above proves that $\ell \in \mathbf{B}$ if, and only if, $m \in \mathbf{B}$, as well as $m \in \mathbf{B}$ if, and only if, $\ell' \in \mathbf{B}$. \Box

Theorem 8. (i) Every $\ell \in \mathbf{B}$ is a line of PG(n, q) that intersects $Q_{\mathbf{B}}$ in either 0, or 1, or q + 1 points.

(ii) If dim $V_{\mathbf{B}} \neq n-3$, $n \neq 4$ and **B** is covered by g-subspaces of dimension n-2, then each g-point of **B** is a line of PG(n, q) contained in, or tangent to, $Q_{\mathbf{B}}$.

Proof. (i) is a straightforward consequence of Proposition 5. As to (ii), it is enough to prove that any g-point ℓ in $\mathbf{B} \setminus \Theta$ is on a star S^* such that $S^* \in S_0$.

Assume dim $V_{\mathbf{B}} > n - 3$ and let π be a plane through ℓ . Since π meets $V_{\mathbf{B}}$, it contains q + 1 lines of **B** other than ℓ . Thus $T_{\pi} \subseteq \mathbf{B}$. Hence, any star containing ℓ is in S_0 .

Next, assume dim $V_{\mathbf{B}} < n - 3$. Let U be a g-subspace of dimension n - 2 such that $\ell \in U \subseteq \mathbf{B}$. Since dim $U \neq 2$, there is a star S_A such that $\ell \in U \subseteq S_A \cap \mathbf{B}$. Let V' be a subspace of PG(n, q) containing ℓ and complementary to $V_{\mathbf{B}}$. We have dim $V' \ge 3$. By Propositions 7 and 4, keeping the notation in Proposition 7 (with $V = V_{\mathbf{B}}$), $S_A \cap \mathcal{R}' \cap \mathbf{B}$ is a g-quadric in $S_A \cap \mathcal{R}'$ containing the g-prime $U \cap \mathcal{R}'$. By Proposition 4, $A \in Q_{\mathbf{B}'}$, then Proposition 7 gives $A \in Q_{\mathbf{B}}$.

It will turn out that dim $V_{\mathbf{B}} = n - 3$ is no real exception (cf. Proposition 18).

Proposition 9. Let $\ell^* \in \mathcal{R}$, $S \in S$ and $S_1, S_2, S_3 \in S_0$ such that $S_1 \neq S_2 \neq S_3 \neq S_1$ and $\ell^* \in S \cap S_1 \cap S_2 \cap S_3$. Then $S \in S_0$.

Proof. By Proposition 5 we may assume $\ell^* \notin \mathbf{B}$. Let *T* be a ruled plane through ℓ^* . By assumption, the g-lines $T \cap S_i$ are three distinct tangent g-lines to **B**. Thus $T \cap \mathbf{B}$ is a g-line. Therefore, any g-line containing ℓ^* is a tangent g-line to the g-quadric $S \cap \mathbf{B}$. The statement follows. \Box

Theorem 10. The set $Q_{\mathbf{B}}$ is a Tallini set in PG(n, q).

Proof. If *A*, *B*, *C* are three distinct points in $Q_{\mathbf{B}}$ on a line $\ell^* \in \mathcal{R}$, then $S_A, S_B, S_C \in S_0$. The statement follows from Proposition 9. \Box

Theorem 11. If $\mathbf{B} \neq \mathcal{R}$ and there are no secant g-lines, then **B** is a linear complex. Conversely, every linear complex is a tangential Tallini set admitting no secant g-lines.

Proof. Any g-line φ is contained in precisely one ruled plane *T*. By assumption, either $T \subseteq \mathbf{B}$, or $T \cap \mathbf{B}$ is a g-line. Thus, any $\varphi \in \mathcal{F}$ is either contained in **B**, or intersects **B** in exactly one g-point. This property implies that **B** is a linear complex [11,2]. \Box

3. The case n = 3

Proposition 12. Let n = 3 and $T \in \mathcal{T}^*$. Then there exists a star S^* such that $S^* \subseteq \mathbf{B}$ and $S^* \cap T \neq \emptyset$.

Proof. By Proposition 1, a $T' \in \mathcal{T}^*$ such that $T' \neq T$ exists. Let $\{\ell^*\} = T \cap T'$. Let T'' be a further ruled plane through ℓ^* , and $\ell \in T'' \cap \mathbf{B} \setminus \{\ell^*\}$. Let S^* be the star containing both ℓ and ℓ^* ; it meets T, T' in two g-lines contained in \mathbf{B} . Then $|S^* \cap \mathbf{B}| > 2q + 1$. \Box

Proposition 13. Assume n = 3 and $V_{\mathbf{B}} = \emptyset$. Then $|U \cap \mathbf{B}| = q + 1$ for any $U \in S \cup T$. Also, $|\mathbf{B}| = \theta_3$.

Proof. The statement follows from Propositions 1, 12 and Lemma 3. \Box

We now consider a *ruled* tangential Tallini set **B**; this means that each g-point in **B** lies on a g-line contained in **B**.

Proposition 14. Assume that **B** is ruled, n = 3 and $V_{\mathbf{B}} = \emptyset$. Then $|Q_{\mathbf{B}}| \ge q^2 + 1$. The equality holds if, and only if, each g-point in **B** lies on precisely one g-line contained in **B**.

Proof. Compute in two ways the number *N* of pairs (A, ℓ) such that $A \in Q_{\mathbf{B}}$ and $\ell \in S_A \cap \mathbf{B}$. Clearly, $N = |Q_{\mathbf{B}}|\theta_1$. By Theorem 8(ii), we have $N \ge |\mathbf{B}|$, thus the statement follows from Proposition 13. \Box

Proposition 15. Assume n = 3 and $V_{\mathbf{B}} = \emptyset$. Let $\ell \in \mathbf{B}$ be a line in PG(3, q) and contained in $Q_{\mathbf{B}}$. For any point X on ℓ , let $\alpha(X)$ be the plane of the pencil $S_X \cap \mathbf{B}$. Then α is a one-to-one map defined on the set of points of ℓ .

Proof. If $X \neq Y$ and $\alpha(X) = \alpha(Y)$, then the plane $\alpha(X)$ contains at least 2q + 1 lines in **B**, a contradiction. \Box

Proposition 16. Assume n = 3, $V_{\mathbf{B}} = \emptyset$ and $Q_{\mathbf{B}} \neq \mathcal{P}$. Then no plane in PG(3, q) is contained in $Q_{\mathbf{B}}$.

Proof. Assume on the contrary that there is a plane π contained in $Q_{\mathbf{B}}$ and a point A in PG(3, q) not belonging to $Q_{\mathbf{B}}$. Thus A is not on π .

For any point *X* on π , the lines through *X* which belong to **B** form a pencil. Further, since $|T_{\pi} \cap \mathbf{B}| = q + 1$, so $T_{\pi} \cap \mathbf{B}$ is a pencil with a center point on π , say *C*.

The lines of **B** passing through *A* intersect π in the points of a (q + 1)-arc Ω . Let ℓ be a line through *C* intersecting Ω in two distinct points *D* and *E*. Let ε be the plane through *A*, *D* and *E*. Among the lines of $T_{\varepsilon} \cap \mathbf{B}$ there are: (i) ℓ and *AD*, hence all lines of the pencil on ε with center *D*; (ii) ℓ and *AE*, hence all lines of the pencil with center *E*. Therefore, $|T_{\varepsilon} \cap \mathbf{B}| \ge 2q + 1$, a contradiction. \Box

Theorem 17. Assume that $\mathbf{B} \neq \mathcal{R}$, that **B** is ruled and that n = 3. Then one of the following holds: (i) $Q_{\mathbf{B}}$ is a quadric of PG(3, q) and **B** is the set of all self-conjugate lines of $Q_{\mathbf{B}}$; (ii) $Q_{\mathbf{B}} = \mathcal{P}$ and **B** is a linear complex.

Proof. By Theorem 11, we may deal with just the case in which there exist secant g-lines.

Case 1.1: dim $V_{\mathbf{B}} = -1$, $|Q_{\mathbf{B}}| \leq q^2 + 1$. By Theorem 10 and Proposition 14, $Q_{\mathbf{B}}$ is a Tallini set in PG(3, q) of size $q^2 + 1$ and not containing lines; hence [1] an elliptic quadric. The g-points in **B** are tangent lines to $Q_{\mathbf{B}}$ (cf. Theorem 8). A cardinality argument implies the converse.

Case 1.2: dim $V_{\mathbf{B}} = -1$, $|Q_{\mathbf{B}}| > q^2 + 1$. Since there are secant g-lines, $|Q_{\mathbf{B}}| < \theta_3$. By Propositions 14, 13 and 5, there is a g-point $\ell^* \in \mathbf{B}$ such that each star *S* containing ℓ^* intersects **B** in a g-line. As a line of PG(3, q), ℓ^* is contained in $Q_{\mathbf{B}}$. Let *A* be a point of $Q_{\mathbf{B}}$ not on ℓ^* . The g-line $S_A \cap \mathbf{B}$ is a pencil of lines which are non-secant to $Q_{\mathbf{B}}$. One line in the pencil, say ℓ , intersects ℓ^* in a point *A'*. Thus ℓ is contained in $Q_{\mathbf{B}}$. Since $\ell \cup \ell^* \neq Q_{\mathbf{B}}$, there are a point *B* in $Q_{\mathbf{B}}$ but not on $\ell \cup \ell^*$, and a line *m* that is contained in $Q_{\mathbf{B}}$ and is incident with both *B* and ℓ^* , by the above argument. If *B* is on the plane $A\ell^*$, then by Theorem 10 the whole plane is contained in $Q_{\mathbf{B}}$, contradicting Proposition 16. Thus *m* is not on the plane $A\ell^*$. On the other hand, since ℓ^* , $\ell \in \mathbf{B}$, so $S_{A'} \cap \mathbf{B}$ is the pencil on the plane $A\ell^*$ with center *A'*. Therefore *A'* and *m* are not incident, and ℓ and *m* are skew lines.

By a similar argument, any point *X* on ℓ belongs to a line of **B**, which is contained in $Q_{\mathbf{B}}$ and meets *m*. More precisely, such a line is contained in $\alpha(X)$ (cf. Proposition 15). Since α is a one-to-one map, we obtain q + 1 lines contained in $Q_{\mathbf{B}}$ which are pairwise skew. So, $|Q_{\mathbf{B}}| \ge \theta_1^2$.

In [9] it is proved that a Tallini set *K* in PG(*n*, *q*) (*q* odd, $n \ge 3$), distinct from PG(*n*, *q*) and such that $|K| \ge \theta_{n-1}$ is either the union of a prime and a *t*-dimensional subspace $(-1 \le t \le n-1)$, or a non-singular quadric in a space of even dimension, or a cone projecting such a quadric, or a non-singular hyperbolic quadric in a space of odd dimension, or a cone projecting a non-singular hyperbolic quadric. Since $Q_{\mathbf{B}}$ contains q + 1 pairwise skew lines, $Q_{\mathbf{B}}$ is a non-singular hyperbolic quadric. The self-conjugate lines of such quadric are exactly θ_3 ; so they are precisely the elements of **B**.

Case 2: dim $V_{\mathbf{B}} = 0$. Since in this case Theorem 8 does not apply, we have to prove that every g-point in **B** is a line of PG(3, q) that meets $Q_{\mathbf{B}}$. This is clear for the g-points in Θ . If $\tilde{\ell} \in \mathbf{B} \setminus \Theta$ and $\tilde{\ell}$ is external to $Q_{\mathbf{B}}$, then by Proposition 6(ii) each star intersects **B** in the union of two lines. This implies $|\tilde{\ell}^{\perp} \cap \mathbf{B}| = 2q^2 + 2q + 1$. On the other hand, writing α for the number of ruled planes through $\tilde{\ell}$ which are contained in **B**, one obtains $|\tilde{\ell}^{\perp} \cap \mathbf{B}| = (\alpha + 1)q^2 + q + 1$, contradicting the previous equality. Thus $\tilde{\ell}$ is a line in PG(3, q) that is either tangent to or contained in $Q_{\mathbf{B}}$.

By Proposition 1 and Lemma 3, $|\mathbf{B}| = \theta_3 + q^2$. By assumption there is a secant g-line, which is contained in a ruled plane T_0 . Thus $T_0 \cap \mathbf{B}$ is a dual (q + 1)-arc on a plane π . Let $\ell_0 \in T_0 \cap \mathbf{B}$. Any g-line which contains ℓ_0 and is secant to $T_0 \cap \mathbf{B}$ is contained in a star not in S_0 . In this way we obtain that q points on ℓ_0 do not belong to $Q_{\mathbf{B}}$. So, in PG(3, q) ℓ_0 is tangent to $Q_{\mathbf{B}}$. The lines of PG(3, q) belonging to $T_0 \cap \mathbf{B}$ are tangent to $Q_{\mathbf{B}}$, and $\mathcal{C} = \pi \cap Q_{\mathbf{B}}$ is a non-singular conic. By Proposition 6(i), $Q_{\mathbf{B}}$ is a cone projecting \mathcal{C} . The number of self-conjugate lines of such a cone is $\theta_3 + q^2$, i.e. they are precisely the elements of **B**.

Case 3: dim $V_{\mathbf{B}} = 1$. In this case $|\mathbf{B}| = \theta_3 + q^2$. The lines incident with $V_{\mathbf{B}}$ are exactly $\theta_3 + q^2$. Thus **B** is a special linear complex (contradicting the existence of secant g-lines). *Case* 4: dim $V_{\mathbf{B}} > 1$. This implies $\mathbf{B} = \mathcal{R}$, a contradiction. \Box

For more information on the case in which **B** is not ruled the reader is referred to [15,16]. It is an open problem, however, whether such a possibility occurs.

Proposition 18. The assumption dim $V_{\mathbf{B}} \neq n - 3$ in Theorem 8(ii) is superfluous.

Proof. Assume that **B** is covered by g-subspaces of dimension n - 2 and dim $V_{\mathbf{B}} = n - 3$. Also assume that there are secant g-lines. Let *V* and *V'* be complementary subspaces of PG(n, q) such that $V \subseteq V_{\mathbf{B}}$ and dim V = n - 4, dim V' = 3. Let $Q_{\mathbf{B}'}$ be defined as in Proposition 7. By Theorem 17, $Q_{\mathbf{B}'}$ is a quadric and by Propositions 6 and 7, $Q_{\mathbf{B}}$ is a singular quadric. By Proposition 7(iib), **B** is the set of all self-conjugate lines of $Q_{\mathbf{B}}$. \Box

4. The general case

Proposition 19. Let $S \in S$. (i) If $S \cap \mathbf{B}$ is a g-subspace of dimension n - 3, then for each $\ell \in S \cap \mathbf{B}$ there is a $S^* \in S$ such that $\ell \in S^* \subseteq \mathbf{B}$. (ii) If $V_{\mathbf{B}} = \emptyset$, then $\theta_{n-2} - q^{n-3} \leq |S \cap \mathbf{B}| \leq \theta_{n-2} + q^{n-3}$.

Proof. (i) We prove the statement by induction on *n*. First, let n = 3. If $S \cap \mathbf{B}$ is a g-point, then, by Lemma 3, $\mathcal{T}^* \neq \emptyset$. By Proposition 12 there exists $S^* \in S$ such that $S^* \subseteq \mathbf{B}$. Obviously, $S^* \cap S = S \cap \mathbf{B}$.

Next, assume n > 3. Let $S \cap \mathbf{B}$ be a g-subspace of dimension n - 3. Let S_1, S_2, \ldots, S_q be the stars through ℓ other than S. Such stars are q + 1 g-subspaces of dimension n - 1.

Denote by \mathcal{U} the set of all g-primes of *S* through ℓ which do not contain $S \cap \mathbf{B}$. There are θ_{n-2} g-primes of *S* through ℓ . Exactly q + 1 of these g-primes contain $S \cap \mathbf{B}$, so $|\mathcal{U}| = q^2 \theta_{n-4}$.

For any $\Sigma \in \mathcal{U}$, the lines of PG(*n*, *q*) belonging to Σ are contained in a prime of PG(*n*, *q*), say $\beta(\Sigma)$. We obtain a one-to-one map β defined on \mathcal{U} .

Let W_i be the set of all g-primes of S_i , i = 1, 2, ..., q. Let $\alpha_i(\Sigma)$ be the set of all g-points in S_i which are lines contained in $\beta(\Sigma)$. We obtain q maps $\alpha_i : U \to W_i$ (i = 1, 2, ..., q). Each α_i is one-to-one, and if $i \neq j, \Sigma, \Sigma' \in U$, then $\alpha_i(\Sigma) \neq \alpha_j(\Sigma')$. For any $\Sigma \in U$, let $\Gamma_{\Sigma} = (\mathcal{R}_{\Sigma}, \mathcal{F}_{\Sigma})$ be the Grassmannian of the lines of $\beta(\Sigma)$. In Γ_{Σ}, Σ is a star, and $\Sigma \cap \mathbf{B}$ is a g-subspace of dimension n - 4. By induction assumption, in Γ_{Σ} there is a star Σ^* such that $\ell \in \Sigma^* \subseteq \mathcal{R}_{\Sigma} \cap \mathbf{B}$. Such Σ^* is of type $\alpha_i(\Sigma)$ for some *i*. Therefore there are at least $q^2\theta_{n-4}$ distinct g-subspaces of this kind which are contained in **B**. This implies that for some *i*, $S_i \cap \mathbf{B}$ contains at least $q\theta_{n-4} > 2$ distinct g-primes and then $S_i \subseteq \mathbf{B}$ (cf. Proposition 4). (ii) The g-quadric $S \cap \mathbf{B}$ is different from the union of two distinct primes, whether rational over \mathbb{F}_q (cf. Proposition 4) or not (by the above arguments). Then the statement is a consequence of the following general property of the quadrics: if Q is a quadric in PG(d, q) ($d \ge 2$) and Q is different from the union of two distinct primes (rational over \mathbb{F}_q or in a quadratic extension), then $\theta_{d-1} - q^{d-2} \le |Q| \le \theta_{d-1} + q^{d-2}$. This may be seen by induction on d. If Q is a non-singular quadric in PG(d, q), d > 2, then $|Q| = \theta_{d-1}$ for q even and $|Q| = \theta_{d-1} \pm q^{(d-1)/2}$ for d odd, and the assertion holds. If Q is singular, then it is a cone $\{P\}Q'$, where P is a point and Q' is a quadric in a prime for which, by induction assumption, $\theta_{d-2} - q^{d-3} \le |Q'| \le \theta_{d-2} + q^{d-3}$. In this case the statement follows from |Q| = 1 + q|Q'|. \Box

Proposition 20. If $V_{\mathbf{B}} = \emptyset$ and $\ell \in \mathbf{B}$, then

$$1 + (q+1)(\theta_{n-2} - q^{n-3} - 1) \leq |\ell^{\perp} \cap \mathbf{B}| \leq 1 + (q+1)(\theta_{n-2} + q^{n-3} - 1).$$
(4)

Proof. Each g-point in $\ell^{\perp} \setminus \{\ell\}$ belongs to precisely one star *S* such that $\ell \in S$, and there are q + 1 stars through *S*. Then the statement follows from Proposition 19(ii). \Box

Proposition 21. If $n \ge 4$, $V_{\mathbf{B}} = \emptyset$ and $S \in S$, then the singular g-subspace W (i.e. the set of singular g-points) of the g-quadric $S \cap \mathbf{B}$ is of dimension different from n - 4.

Proof. Assume on the contrary that $S \cap \mathbf{B}$ is a cone projecting from W a non-singular g-conic of a 2-dimensional star ε . The vertex W is non-empty, so let ℓ be a g-point of W.

Now, if φ is a g-line such that $\ell \in \varphi \subseteq \mathbf{B}$ and $\varphi \not\subseteq W$, then the ruled plane T_{φ} containing φ is contained in **B**. This may be seen in this way: $W\varphi$, the span of $W \cup \varphi$, is a g-subspace that meets ε in a g-point $\ell_1 \in \mathbf{B}$. If U is a g-subspace of dimension n - 3 containing W and intersecting ε in a g-point $\ell_2 \in \mathbf{B}$, $\ell_2 \neq \ell_1$, and φ' is a g-line such that $\ell \in \varphi' \subseteq U$ and $\varphi' \notin W$, then $\varphi' \subseteq \mathbf{B}$. The intersection $(W\varphi\varphi') \cap \varepsilon$ is a g-line and is secant to **B**. As a consequence, the g-plane $\eta = \varphi\varphi'$ satisfies $\eta \cap \mathbf{B} = \varphi \cup \varphi'$. By Lemma 3, with respect to Γ_{η} (cf. Section 2), $T_{\varphi} \subseteq \mathbf{B}$.

In each of the q + 1 g-subspaces joining W with a g-point in $\varepsilon \cap \mathbf{B}$ there are q^{n-4} g-lines through ℓ which are contained in \mathbf{B} but not in W. All these lines are contained in elements of \mathcal{T}^* . Each of the remaining $q^{n-2} + \theta_{n-5}$ g-lines through ℓ in S is contained in a ruled plane that shares at least q + 1 g-points with \mathbf{B} . This allows to give a bound on the size of $\ell^{\perp} \cap \mathbf{B}$. Since any two distinct ruled planes through ℓ meet only in ℓ , we have

$$|\ell^{\perp} \cap \mathbf{B}| \ge 1 + q^{n-4}(q+1)(q^2+q) + (q^{n-2}+\theta_{n-5})q$$

= $\theta_{n-1} + q^{n-2}(q+1).$ (5)

The right-hand inequality in (4) and (5) together give $q^{n-1} + q + 1 \leq \theta_{n-2} + q^{n-3}$, a contradiction. \Box

We now state, for future reference, a simple general property of the quadrics.

Proposition 22. Let Q and H be a quadric and a prime in PG(d, q), respectively. If $Q \cap H$ is a (d-2)-dimensional subspace of PG(d, q), then the singular space of Q has dimension at least d - 3.

Proof. Let *A* be the matrix associated with Q. The linear mapping $L : \mathbb{F}_q^{d+1} \to \mathbb{F}_q^{d+1}$ related to *A* maps a (d-1)-dimensional subspace of \mathbb{F}_q^{d+1} (the one associated with $Q \cap H$) onto a subspace of dimension at most one. Then the kernel of *L* has dimension at least d-2. \Box

Theorem 23. If **B** is covered by (n - 2)-dimensional stars and there are secant g-lines, then $Q_{\mathbf{B}}$ is a quadric and **B** is the set of all self-conjugate lines of $Q_{\mathbf{B}}$.

Proof. For n = 3 the result is contained in Theorem 17. Then assume that the theorem holds for $n - 1 \ge 3$.

Case 1: $V_{\mathbf{B}} = \emptyset$. Let *U* be any prime in PG(*n*, *q*). Let $\Gamma_U = (\mathcal{R}_U, \mathcal{F}_U)$ be the Grassmannian of lines of *U*. When *X* is a point in *U*, $S_{X,U} = S_X \cap \mathcal{R}_U$ will denote the set of all lines through *X* and contained in *U*. Also define $\mathbf{B}_U = \mathcal{R}_U \cap \mathbf{B}$. Let Q_U be the set of all points *X* in *U* such that $S_{X,U} \cap \mathbf{B}$ either is a g-prime of $S_{X,U}$ or is equal to $S_{X,U}$.

We claim that $Q_U = Q_{\mathbf{B}} \cap U$. For, if $X \in Q_{\mathbf{B}} \cap U$, then $S_{X,U} \cap \mathbf{B} = \mathcal{R}_U \cap S_X \cap \mathbf{B}$ is a g-subspace of dimension at least n - 3. So, the inclusion $Q_{\mathbf{B}} \cap U \subseteq Q_U$ is clear. Next, let $Y \in Q_U$. The set $S_{Y,U}$ is a g-prime of S_Y , and either $S_{Y,U} \subseteq \mathbf{B}$, or $S_{Y,U} \cap \mathbf{B}$ is a g-prime of $S_{Y,U}$. In the former case the g-quadric $S_Y \cap \mathbf{B}$ contains the g-prime $S_{Y,U}$, so it is a g-prime (cf. Proposition 4), and $Y \in Q_{\mathbf{B}}$. In the latter case, by Proposition 22 the singular g-space of the g-quadric $S_Y \cap \mathbf{B}$ has dimension $\delta \ge n - 4$. The equality is ruled out by Proposition 21. Since the g-quadric can be neither the union of two distinct g-primes (Proposition 4), nor a g-subspace of dimension n - 3 (Proposition 19(i)), so $\delta \ne n - 3$. Therefore $\delta = n - 2$, $S_Y \cap \mathbf{B}$ is a g-prime of S_Y , and $Y \in Q_{\mathbf{B}}$.

Next, we prove that $Q_U \neq U$. There is a secant g-line to **B**, say φ . The plane π of PG(*n*, *q*) containing the pencil φ shares with *U* at least one line ℓ^* . Furthermore $T_{\pi} \cap \mathbf{B}$ is a g-(*q* + 1)-arc. If $Q_U = U$, then all stars through ℓ^* intersect **B** in g-subspaces of dimension n - 2. On the other hand, such stars intersect T_{π} in exactly the q + 1 g-lines on T_{π} through ℓ^* . Among such g-lines there are secant g-lines, a contradiction. So, $Q_U \neq U$. In particular Γ_U contains g-lines that are secant to \mathbf{B}_U .

Let $\tilde{\ell} \in \mathbf{B}_U$. The g-point $\tilde{\ell}$ belongs to a (n-2)-dimensional star contained in **B**. So, $\tilde{\ell}$ belongs to a (n-3)-dimensional star contained in **B**_U.

We proved so far that \mathbf{B}_U is a tangential Tallini set in the Grassmannian of lines of U covered by (n-3)-dimensional stars, that there exist secant g-lines to \mathbf{B}_U , and $Q_U = Q_{\mathbf{B}} \cap U$. By the induction assumption, $Q_{\mathbf{B}} \cap U$ is a quadric in U and \mathbf{B}_U is the set of all self-conjugate lines of $Q_{\mathbf{B}} \cap U$. Since U is arbitrary, $Q_{\mathbf{B}}$ itself is a quadric. If $\bar{\ell} \in \mathbf{B}$, take any prime \overline{U} of PG(n, q) containing $\bar{\ell}$; since $\bar{\ell}$ is a self-conjugate line of $Q_{\mathbf{B}} \cap \overline{U}$, $\bar{\ell}$ is a self-conjugate line of $Q_{\mathbf{B}}$, too. Conversely, each self-conjugate line of $Q_{\mathbf{B}}$ belongs to some \mathbf{B}_U , by the induction assumption.

Case 2: $V_{\mathbf{B}} \neq \emptyset$. Let $A \in V_{\mathbf{B}}$. Taking the notation of Proposition 7, with $V = \{A\}$, we investigate the tangential Tallini set \mathbf{B}' . Since \mathbf{B} is covered by (n - 2)-dimensional stars, \mathbf{B}' is covered by (n - 3)-dimensional stars.

We claim that **B**' has secant g-lines in \mathcal{R}' . By assumption there is a g-line ϕ such that $|\phi \cap \mathbf{B}| = 2$. Such g-line is a pencil lying on a plane ρ . The point A is not on ρ , since otherwise $T_{\rho} \cap \mathbf{B}$ would be a g-line or the whole T_{ρ} . The projection of ϕ from A onto V' is a pencil ϕ' , and by Proposition 7(iib) such ϕ' is secant to **B**'.

By the induction assumption $Q_{\mathbf{B}'}$ is a quadric in V' and \mathbf{B}' is the set of all self-conjugate lines of $Q_{\mathbf{B}'}$. By Proposition 6, since $A \in V_{\mathbf{B}}$, $Q_{\mathbf{B}}$ is a cone with vertex A projecting $Q = Q_{\mathbf{B}} \cap V'$. Proposition 7(iia) states that $Q = Q_{\mathbf{B}'}$, then $Q_{\mathbf{B}}$ is a quadratic cone.

Now, we claim **B** is the set of all self-conjugate lines of $Q_{\mathbf{B}}$. Each line of PG(n, q) through A belongs to **B** and is self-conjugate with respect to $Q_{\mathbf{B}}$. Let $\ell_1 \in \mathcal{R} \setminus S_A$, and let ℓ'_1 be the projection of ℓ_1 from A onto V'. Since $Q_{\mathbf{B}}$ is a cone, the projection of $\ell_1 \cap Q_{\mathbf{B}}$ is $\ell'_1 \cap Q_{\mathbf{B}'}$. Hence ℓ_1 is a self-conjugate line of $Q_{\mathbf{B}}$ if and only if $\ell'_1 \in \mathbf{B}'$. By Proposition 7(iib) this is equivalent to $\ell_1 \in \mathbf{B}$. \Box

Now we are able to summarize Theorems 11 and 23.

Theorem 24. If $\mathbf{B} \neq \mathcal{R}$, and \mathbf{B} is covered by (n - 2)-dimensional stars, then either (i) $Q_{\mathbf{B}}$ is a quadric and \mathbf{B} is the set of all self-conjugate lines of $Q_{\mathbf{B}}$, or (ii) $Q_{\mathbf{B}} = \mathcal{P}$ and \mathbf{B} is a linear complex.

It is still an open problem, whether the assumption on the (n - 2)-dimensional stars can be removed. For n = 3 a counterexample could be a set *K* of lines such that *K* intersects every ruled plane in a dual conic and every star in the lines of a quadratic cone.

If a set *K* with the above properties exists, then it is possible to give an interesting counterexample also for n = 4. Assume that *K* and PG(3, *q*) are embedded in PG(4, *q*), and let *A* be a point in PG(4, *q*) off PG(3, *q*). Next, let *K'* be the union of *S*_A and the set of all lines projecting from *A* a line belonging to *K*. For a plane π of PG(4, *q*) two cases can occur. (i) If *A* belongs to π , then the projection of π on PG(3, *q*) is a line, say ℓ ; in case $\ell \in K$, we have $T_{\pi} \subseteq K'$, otherwise $T_{\pi} \cap K'$ is a pencil with center *A*. (ii) If *A* does not lie on π , then the projection of π on PG(3, *q*) is a dual conic. This implies that K' is a tangential Tallini set. By (ii), in every star $S_B \neq S_A$ there are secant g-lines. Therefore $Q_{K'} = \{A\}$. It should be noted that if such a set *K'* exists, then it is covered by g-planes, so that in Theorem 24 the words "(n - 2)-dimensional stars" cannot be replaced by "(n - 2)-dimensional g-subspaces".

References

- [1] A. Barlotti, Un'estensione del teorema di Segre-Kustaanheimo, Boll. Un. Mat. Ital. 10 (1955) 498–506.
- [2] A. Bichara, J. Misfeld, G. Tallini, C. Zanella, On the order structure in the line geometry of a projective space, J. Geom. 41 (1991) 16–32.
- [3] F. Buekenhout, Ensembles quadratiques des espaces projectifs, Math. Z. 110 (1969) 306-318.
- [4] M.J. de Resmini, A characterization of the secants of an ovaloid in PG(3, q), q even, q > 2, Ars Combin. 16B (1983) 33–49.

- [5] M.J. de Resmini, A characterization of linear complexes in PG(3, q), Ars Combin. 18 (1984) 99–102.
- [6] M.J. de Resmini, A characterization of the set of lines either tangent to or lying on a nonsingular quadric in PG(4, q), q odd, Lecture Notes in Pure Appl. Math. 103 (1985) 271–288.
- [7] O. Ferri, G. Tallini, A characterization of the family of secant lines of an elliptic quadric in PG(3, q), q odd, Rend. Sem. Mat. Brescia 7 (1984) 297–305.
- [8] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Oxford Science Publications, Oxford, 1991.
- [9] G. Tallini, Sulle k-calotte di uno spazio lineare finito, Ann. Mat. 42 (4) (1956) 119-164.
- [10] G. Tallini, Graphic characterization of algebraic varieties in a Galois space, Atti Convegni Lincei 17: Teorie Combin. II Acc. Naz. Lincei (1976) 153–166.
- [11] G. Tallini, I k-insiemi di rette di uno spazio di Galois studiati rispetto ai fasci di rette, Quaderni del Seminario Geometrie Combinatorie, vol. 28, Roma, Giugno, 1980.
- [12] G. Tallini, The geometry on Grassmann manifolds representing subspaces in a Galois space, Combinatorial and geometric structures and their applications (Trento, 1980), Ann. Discrete Math. 14 (1982) 9–38.
- [13] G. Tallini, On line k-sets of type (0, n) with respect to pencils of lines in PG(d, q), Ann. Discrete Math. 14 (1982) 283–292.
- [14] G. Tallini, Partial line spaces and algebraic varieties, Symp. Math. 28 (1986) 203–217.
- [15] A. Venezia, Sui *k*-insiemi di punti della grassmanniana delle rette di PG(3, q) di tipo (0, 1, 2, q + 1)₁ rispetto alle rette e ad un sol carattere rispetto ai piani, Rend. Mat. Appl. VII Ser. 3 (1983) 9–16.
- [16] A. Venezia, On a characterization of the set of lines which either belong to or are tangent to a non-singular quadric in PG(3, q), q odd, Rend. Semin. Mat. Brescia 7 (1984) 617–623.