Tangential Tallini sets in finite Grassmannians of lines

Alessandro Bichara ${ }^{\text {a }}$, Corrado Zanella ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Metodi e Modelli Matematici, Università "La Sapienza", via Scarpa 16, I-00161 Roma, Italy
${ }^{\mathrm{b}}$ Dipartimento di Matematica Pura ed Applicata, Università di Padova, via Belzoni 7, I-35131 Padova, Italy

Received 7 September 2003

Abstract

A Tallini set in a semilinear space is a set \mathbf{B} of points, such that each line not contained in \mathbf{B} intersects \mathbf{B} in at most two points. In this paper, the following notion of a tangential Tallini set in the Grassmannian $\Gamma_{n, 1, q}, q$ odd, is investigated: a Tallini set is called tangential when it meets every ruled plane (i.e. the set of lines contained in a plane of $\operatorname{PG}(n, q)$) in either $q+1$ or $q^{2}+q+1$ elements. A Tallini set $Q_{\mathbf{B}}$ in $\operatorname{PG}(n, q)$ can be associated with each tangential Tallini set \mathbf{B} in $\Gamma_{n, 1, q}$. Each $\ell \in \mathbf{B}$ is a line of $\operatorname{PG}(n, q)$ intersecting $Q_{\mathbf{B}}$ in either 0 , or 1 , or $q+1$ points; when $n \neq 4$ and \mathbf{B} is covered by ($n-2$)-dimensional projective subspaces of $\Gamma_{n, 1, q}$ the first case does not occur. If \mathbf{B} is a tangential Tallini set in $\Gamma_{n, 1, q}$ covered by $(n-2)$-dimensional subspaces, any of which is in $\operatorname{PG}(n, q)$ the set of all lines through a point and in a hyperplane, then either $Q_{\mathbf{B}}$ is a quadric, and \mathbf{B} is the set of all lines contained in, or tangent to, $Q_{\mathbf{B}}$, or \mathbf{B} is a linear complex.

© 2004 Elsevier Inc. All rights reserved.
Keywords: Tallini set; Grassmannian; Quadric; Finite; Projective space

1. Introduction

1.1. Outline

In [10-13], Tallini developed the theory of k-sets in Grassmann manifolds as a natural extension of the combinatorial investigations of the finite projective spaces. This was the

[^0]starting point for further work on sets of lines in particular positions with respect to quadrics, such as the secant lines and the self-conjugate lines, i.e. lines which are tangent to, or contained in, a quadric. If Q is a possibly singular quadric and π is a plane in the projective space $\operatorname{PG}(n, q)$, the self-conjugate lines of Q which are contained in π form either a pencil, or a dual conic, or the whole dual plane. This motivated us to carry out a general investigation on the sets of lines satisfying such property, and to call them tangential Tallini sets. They include the linear complexes. It is shown in Theorems 8 and 10 that any tangential Tallini set \mathbf{B} is related to a Tallini set $Q_{\mathbf{B}}$ in $\operatorname{PG}(n, q)$. We characterize by means of a common property the set of self-conjugate lines of a quadric in $\mathrm{PG}(n, q)$, including singular quadrics, and the linear complexes: see Theorem 24. So, several results, given by de Resmini [5,6], Tallini [11] and Venezia [15,16], are unified, improved and generalized. Similar characterizations of different sets of lines related to a quadric are due to de Resmini, Ferri, and Tallini [4,7,10].

1.2. Notation

Let $\mathrm{PG}(n, q)=(\mathcal{P}, \mathcal{R}), n \geqslant 3$, be the n-dimensional projective space over the Galois field \mathbb{F}_{q}, q odd, and $\Gamma_{n, 1, q}=(\mathcal{R}, \mathcal{F})$ the Grassmann space representing the lines of $\operatorname{PG}(n, q)$. Here, \mathcal{P}, \mathcal{R} and \mathcal{F} are the sets of all points, all lines and all pencils in $\operatorname{PG}(n, q)$, respectively, a pencil being the set of all lines through a point in a plane. Since $\Gamma_{n, 1, q}$ is a semilinear space, the elements of \mathcal{R} and \mathcal{F} are also called g-points and g-lines, respectively. In a similar way the g-planes and g-subspaces, that is, projective planes and subspaces contained in $\Gamma_{n, 1, q}$, are defined. For background on semilinear spaces, also called partial line spaces, the reader is referred to [14].

If π is a plane of $\mathrm{PG}(n, q)$, denote by T_{π} the set of lines of π. Such a T_{π} is called a ruled plane, and is a g-plane. The set of all ruled planes will be denoted by \mathcal{T}. A star of lines, star for short, is the set S_{A} of all lines in $\operatorname{PG}(n, q)$ through a point A, the center of the star. We denote by \mathcal{S} the set of all stars. A d-dimensional star is the set of all lines belonging to a common star and contained in a $(d+1)$-dimensional subspace of $\operatorname{PG}(n, q)$. So, a star is a $(n-1)$-dimensional star, a pencil is a one-dimensional star.

In this paper, \mathbf{B} will always denote a tangential Tallini set, i.e. a set of g-points, such that
(i) for any $\varphi \in \mathcal{F}$, there holds $|\varphi \cap \mathbf{B}| \in\{0,1,2, q+1\}$;
(ii) for any $T \in \mathcal{T}$, there holds $|T \cap \mathbf{B}| \in\left\{q+1, q^{2}+q+1\right\}$.

So, for every $T \in \mathcal{T}$, either $T \subseteq \mathbf{B}$, or $T \cap \mathbf{B}$ is a g-line or a g- $(q+1)$-arc, where a $\mathrm{g}-k$-arc is a set of $k \mathrm{~g}$-points, no three of them collinear. An example of a set of g -points satisfying (i) and (ii) is given by the set of self-conjugate lines of a quadric in $\operatorname{PG}(n, q)$.

An element φ of \mathcal{F} is called an exterior, tangent or secant g -line when $|\varphi \cap \mathbf{B}|$ is equal to 0,1 or 2 , respectively.

The number of points in an i-dimensional projective space is denoted by $\theta_{i}=\left(q^{i+1}-\right.$ 1)/ $(q-1), i \in \mathbb{N}$. Let \mathcal{S}_{0} be the set of all stars S such that either $S \subseteq \mathbf{B}$, or $S \cap \mathbf{B}$ is a g-prime of S; that is, $S \cap \mathbf{B}$ is a hyperplane of the projective space S. Let $Q_{\mathbf{B}}$ be the set of the centers of all stars in \mathcal{S}_{0}, and $V_{\mathbf{B}} \subseteq Q_{\mathbf{B}}$ the set of the centers of all stars which are contained in B. Finally, let \mathcal{T}^{*} be the set of all ruled planes which are contained in B.

2. General properties of tangential Tallini sets

Proposition 1. The cardinality of \mathbf{B} is equal to

$$
\begin{equation*}
\frac{\theta_{n} \theta_{n-1}}{\theta_{2}}+\left|\mathcal{T}^{*}\right| \frac{q^{2}}{\theta_{n-2}} \tag{1}
\end{equation*}
$$

Proof. Computing in two ways the pairs (ℓ, T) with $T \in \mathcal{T}$ and $\ell \in \mathbf{B} \cap T$ gives

$$
|\mathbf{B}| \theta_{n-2}=\left|\mathcal{T}^{*}\right| \theta_{2}+\left(\frac{\theta_{n} \theta_{n-1} \theta_{n-2}}{\theta_{2} \theta_{1}}-\left|\mathcal{T}^{*}\right|\right) \theta_{1}
$$

By Proposition 1, if $n \equiv 0,2(\bmod 3)$, then θ_{n-2} divides $\left|\mathcal{T}^{*}\right|$.
Proposition 2. If $S \in \mathcal{S}$ and $\ell \in \mathcal{R} \backslash S$, then there exists precisely one $T \in \mathcal{T}$ such that $\ell \in T$ and $T \cap S \in \mathcal{F}$.

Lemma 3. Assume $n=3$ and let $S \in \mathcal{S}$. Then one of the following holds:
(a) $|S \cap \mathbf{B}|=1$ and, in this case, $\left|\mathcal{T}^{*}\right|=q+1$;
(b) $S \cap \mathbf{B}$ is a g-line, and $\left|\mathcal{T}^{*}\right| \in\{0, q+1\}$; also, $\left|\mathcal{T}^{*}\right|=q+1$ if, and only if, the g-line $S \cap \mathbf{B}$ is contained in an element of \mathcal{T}^{*};
(c) $S \cap \mathbf{B}$ is a $g-(q+1)$-arc, and $\mathcal{T}^{*}=\emptyset$;
(d) $S \cap \mathbf{B}=\varphi_{1} \cup \varphi_{2}$, where φ_{1} and φ_{2} are two distinct g-lines; in this case $\left|\mathcal{T}^{*}\right|=q+1$, and each of both g-lines is a subset of an element of \mathcal{T}^{*};
(e) $S \subseteq \mathbf{B}$, and $\mathcal{T}^{*} \neq \emptyset$.

Proof. We apply Proposition 2 in order to compute the number of elements of \mathbf{B}.
Case 1: $S \cap \mathbf{B}$ is a $g-k$-arc $(0 \leqslant k \leqslant q+1)$. For every $T \in \mathcal{T}$ having non-empty intersection with S, we have $|T \cap \mathbf{B}|=q+1$. This gives the following properties.

1. On the $k(k-1) / 2$ ruled planes which meet S in a secant g-line there are exactly ($q-$ 1) $k(k-1) / 2$ g-points of $\mathbf{B} \backslash S$.
2. On the $k(q+2-k)$ ruled planes which meet S in a tangent g-line there are $q k(q+2-k)$ g-points of $\mathbf{B} \backslash S$.
3. On the $\theta_{2}-k(k-1) / 2-k(q+2-k)$ ruled planes which meet S in an exterior g-line, there are $(q+1)\left(\theta_{2}-k(k-1) / 2-k(q+2-k)\right)$ g-points of $\mathbf{B} \backslash S$.
By adding the k g-points of $S \cap \mathbf{B}$, we obtain $|\mathbf{B}|=q^{3}+2 q^{2}+(2-k) q+1$. Let $a=\left|\mathcal{T}^{*}\right| /(q+1)$. By Proposition 1, a is a natural number such that $q(1-a)=k-1$. Therefore, we have either (a) or (c).

Case 2: $S \cap \mathbf{B}$ is not a g-arc, and $S \nsubseteq \mathbf{B}$. In this case $S \cap \mathbf{B}$ contains a g-line φ. If a g-point $\ell \in S \backslash \varphi$ such that $S \cap \mathbf{B}=\varphi \cup\{\ell\}$ exists, then, computing as in Case $1,|\mathbf{B}|=q^{3}+2 q^{2}+1$ when φ is contained in an element of $\mathcal{T}^{*},|\mathbf{B}|=q^{3}+q^{2}+1$ otherwise, contradicting Proposition 1. Therefore, $S \cap \mathbf{B}$ is either a g-line, or the union of two distinct g -lines φ_{1} and φ_{2}. In the latter case, computing once more as in Case 1 gives
$|\mathbf{B}|=q^{3}+b q^{2}+q+1$, where $b \in\{0,1,2\}$ is the number of elements of \mathcal{T}^{*} among the ruled planes containing φ_{1} or φ_{2}. Proposition 1 implies $b=2$ and $\left|\mathcal{T}^{*}\right|=q+1$.

If $S \cap \mathbf{B}$ is a g-line, then $|\mathbf{B}|=q^{3}+(c+1) q^{2}+q+1$, where $c \in\{0,1\}$ is the number of elements of \mathcal{T}^{*} containing $S \cap \mathbf{B}$. This implies (b).

Case 3: $S \subseteq \mathbf{B}$. Since there is a g-point ℓ in $\mathbf{B} \backslash S$, the ruled plane through ℓ meeting S is contained in \mathbf{B}.

Notation. 1. The set of all g-points collinear with $\ell \in \mathcal{R}$, including ℓ, is denoted by ℓ^{\perp}.
2. Let ε be a two-dimensional star; that is, ε is the set of all lines in a star in a threedimensional subspace of $\mathrm{PG}(n, q)$, say U_{ε}. Let $\mathcal{P}_{\varepsilon}, \mathcal{R}_{\varepsilon}$ and $\Gamma_{\varepsilon}=\left(\mathcal{R}_{\varepsilon}, \mathcal{F}_{\varepsilon}\right)$ be the point set, the line set and the Grassmannian of lines of U_{ε}, respectively. Let $\mathbf{B}_{\varepsilon}=\mathcal{R}_{\varepsilon} \cap \mathbf{B}$. Clearly \mathbf{B}_{ε} is a tangential Tallini set in Γ_{ε}.

Proposition 4. Let $S \in \mathcal{S}$. If S is not contained in \mathbf{B}, then $S \cap \mathbf{B}$ is a g-quadric in S. When $V_{\mathbf{B}}=\emptyset$, such a g-quadric cannot be the union of two distinct g-primes of S.

Proof. Let ε be a two-dimensional star contained in S. By Lemma 3, applied to the Grassmannian Γ_{ε}, either $\varepsilon \subseteq \mathbf{B}$, or $\varepsilon \cap \mathbf{B}$ is a possibly singular g-conic. Any set of points K in a projective space, such that every plane section not contained in K is a conic, is a quadric or the whole space $[3,8]$.

Next, assume that $S \cap \mathbf{B}$ is the union of two distinct g-primes of S, say V_{1} and V_{2}, and $V_{\mathbf{B}}=\emptyset$. Let $\ell_{0} \in V_{1} \cap V_{2}$. We now obtain two bounds for $\left|\ell_{0}^{\perp} \cap \mathbf{B}\right|$.

Let φ be a g-line through ℓ_{0}. Assume that for an $i \in\{1,2\}, \varphi$ is contained in V_{i} and intersects V_{3-i} only in ℓ_{0}. Then there is a g-plane η in S that contains φ and such that $\eta \cap \mathbf{B}$ is the union of two distinct lines. By Lemma 3, applied to Γ_{η}, the unique ruled plane containing φ is a subset of \mathbf{B}. The ruled planes through ℓ_{0} meet pairwise only in ℓ_{0}, and there exist $2 q^{n-3}$ such g-planes meeting S in a line that is contained in exactly one of the primes V_{1} and V_{2}. Each of the remaining ruled planes through ℓ_{0} intersects \mathbf{B} in at least $q+1$ g-points. Therefore

$$
\begin{align*}
\left|\ell_{0}^{\perp} \cap \mathbf{B}\right| & \geqslant 1+2 q^{n-3}\left(q^{2}+q\right)+\left(\theta_{n-2}-2 q^{n-3}\right) q \\
& =\theta_{n-1}+2 q^{n-1} \tag{2}
\end{align*}
$$

Next, every g-point collinear with ℓ_{0} belongs to one of the $q+1$ stars through ℓ_{0}. By the assumption $V_{\mathbf{B}}=\emptyset$, every star intersects \mathbf{B} in at most $\theta_{n-2}+q^{n-2}$ g-points (the cardinality of two g-primes). Hence

$$
\begin{align*}
\left|\ell_{0}^{\perp} \cap \mathbf{B}\right| & \leqslant 1+(q+1)\left(\theta_{n-2}+q^{n-2}-1\right) \\
& =2 \theta_{n-1}+q^{n-2}-q-1 . \tag{3}
\end{align*}
$$

From (2) and (3),

$$
q^{n-1}-\theta_{n-2}-q^{n-2}+q+1 \leqslant 0
$$

a contradiction.

Proposition 5. Let $\ell^{*} \in \mathbf{B}, S \in \mathcal{S}$ and $S_{1}, S_{2} \in \mathcal{S}_{0}$ such that $S_{1} \neq S_{2}$ and $S \cap S_{1} \cap S_{2}=\left\{\ell^{*}\right\}$. Then $S \in \mathcal{S}_{0}$.

Proof. First, we prove the statement under the assumption $n=3$. It is convenient to deal with four cases.

Case 1: there exist $S^{\prime}, S^{\prime \prime} \in \mathcal{S}$ such that $S^{\prime} \cap S^{\prime \prime}=\left\{\ell^{*}\right\}$ and $S^{\prime} \subseteq \mathbf{B}, S^{\prime \prime} \subseteq \mathbf{B}$. Each g-line φ in S through ℓ^{*} is contained in precisely one ruled plane T. The intersections $T \cap S^{\prime}$, $T \cap S^{\prime \prime}$ are two distinct g-lines contained in \mathbf{B}. Thus $T \subseteq \mathbf{B}$ and $\varphi \subseteq \mathbf{B}$. As a consequence, $S \subseteq \mathbf{B}$.

Case 2: there exist $S^{\prime}, \tilde{S} \in \mathcal{S}$ such that $S^{\prime} \cap \tilde{S}=\left\{\ell^{*}\right\}, S^{\prime} \subseteq \mathbf{B}$, and $\tilde{S} \cap \mathbf{B}$ is a g-line, say ϕ. Let T_{ϕ} be the ruled plane containing ϕ. The g -lines ϕ and $T_{\phi} \cap S^{\prime}$ are distinct and contained in $T_{\phi} \cap \mathbf{B}$, so $T_{\phi} \subseteq \mathbf{B}$. Consider a ruled plane $T \neq T_{\phi}$ such that $\ell^{*} \in T$. The g-line $T \cap S^{\prime}$ is contained in \mathbf{B}, whereas $T \cap \tilde{S} \cap \mathbf{B}=\left\{\ell^{*}\right\}$, hence $T \cap \mathbf{B} \subseteq S^{\prime}$. Therefore, any g-line ψ through ℓ^{*} either is contained in \mathbf{B}, when $\psi \subseteq S^{\prime}$ or $\psi \subseteq T_{\phi}$, or is tangent to B. This implies that any star through the g-point ℓ^{*} and other than S^{\prime} meets \mathbf{B} in a g-line.

Case 3: there exists $T \in \mathcal{T}^{*}$ such that $\ell^{*} \in T$. Any $\ell \in\left(\ell^{*}\right)^{\perp}$ belongs to a ruled plane through ℓ^{*}. Then $\left|\left(\ell^{*}\right)^{\perp} \cap \mathbf{B}\right| \geqslant 2 q^{2}+q+1$. Assume we are neither in Case 1 nor in Case 2. Then $\left|\left(\ell^{*}\right)^{\perp} \cap \mathbf{B} \cap S_{i}\right|=q+1$ for $i=1,2$, and, for every star $S \prime \prime \prime$ through ℓ^{*} other than S_{1} and $S_{2},\left|\left(\ell^{*}\right)^{\perp} \cap \mathbf{B} \cap S \prime \prime \prime\right| \leqslant 2 q+1$. Therefore $\left|\left(\ell^{*}\right)^{\perp} \cap \mathbf{B}\right| \leqslant 1+2 q+(q-1) 2 q=2 q^{2}+1$, a contradiction.

Case 4: otherwise. Let \tilde{T} be a ruled plane through ℓ^{*}. The g-lines $\tilde{T} \cap S_{1}$ and $\tilde{T} \cap S_{2}$ are distinct and tangent to, or contained in, \mathbf{B}, hence $\tilde{T} \cap \mathbf{B}$ is a g-line. This implies that any g -line through ℓ^{*} is tangent to, or contained in, \mathbf{B}. If two of the $q+1 \mathrm{~g}$-lines through ℓ^{*} are contained in a common star, then, by Lemma 3, Case 3 occurs, which is impossible. Therefore, the intersection of \mathbf{B} with every star containing ℓ^{*} is a g-line.

Next, assume $n>3$. Let ε be any g-plane contained in S and such that $\ell^{*} \in \varepsilon$. The intersection $\varepsilon_{i}=\mathcal{R}_{\varepsilon} \cap S_{i}$ is a g-plane for $i=1,2$. Thus $\mathbf{B}_{\varepsilon} \cap \varepsilon_{i}=\mathbf{B} \cap \mathcal{R}_{\varepsilon} \cap S_{i}$ either is a g -line in ε_{i}, or is equal to ε_{i}. Since Proposition 5 has already been proved for $n=3$, either $\varepsilon \subseteq \mathbf{B}$, or $\varepsilon \cap \mathbf{B}$ is a g-line.

Assume ℓ_{1} and ℓ_{2} are two distinct g-points in $S \cap \mathbf{B}$. If ε is a g-plane through ℓ_{1}, ℓ_{2} and ℓ^{*}, then, by the previous argument, the g-line $\ell_{1} \ell_{2}$ is contained in $S \cap \mathbf{B}$. Consequently $S \cap \mathbf{B}$ is a g-subspace of S.

Every g-line φ^{\prime} in S lies on a g-plane of S through ℓ^{*}, so $\varphi^{\prime} \cap S \cap \mathbf{B} \neq \emptyset$. Therefore, either $S \subseteq \mathbf{B}$, or $S \cap \mathbf{B}$ is a g-prime of S.

Definition. For a subspace V of a projective space P and a set $I \subset P \backslash V$, the cone $V I$ with vertex V is the set of all points on the lines joining a point of V to a point of I.

Proposition 6. Let Θ be the set of all lines in $\mathrm{PG}(n, q)$ which are incident with $V_{\mathbf{B}}$. Then
(i) $Q_{\mathbf{B}}$ is a cone with vertex $V_{\mathbf{B}}$;
(ii) for every $S \in \mathcal{S}, S \cap \mathbf{B}$ is a cone with vertex $S \cap \Theta$.

Proof. (i) Let $A, B \in V_{\mathbf{B}}, A \neq B$, and $\{\ell\}=S_{A} \cap S_{B}$. Each ruled plane T through ℓ meets B in at least two distinct g-lines $T \cap S_{A}$ and $T \cap S_{B}$; therefore, $T \subseteq \mathbf{B}$. Consequently, the line of $\operatorname{PG}(n, q)$ joining A and B is contained in \mathbf{B} and $V_{\mathbf{B}}$ is a subspace of $\operatorname{PG}(n, q)$. On the other hand, by Proposition 5, every line of $\operatorname{PG}(n, q)$ intersecting $V_{\mathbf{B}}$ is either tangent to, or contained in, $Q_{\mathbf{B}}$.
(ii) Clearly $\Theta \subseteq \mathbf{B}$. Since $V_{\mathbf{B}}$ is a subspace of $\operatorname{PG}(n, q), S \cap \Theta$ is a g-subspace of S. Assume $\ell_{0} \in S \cap \Theta, \ell_{1} \in S \backslash \Theta$. Let φ be the g-line $\ell_{0} \ell_{1}$ and C a point of $\operatorname{PG}(n, q)$ incident with both ℓ_{0} and $V_{\mathbf{B}}$. There is exactly one ruled plane containing φ, say T. The g -line $T \cap S_{C}$ is contained in \mathbf{B}. Thus, either $T \cap \mathbf{B}=T \cap S_{C}$, and $\varphi \cap \mathbf{B}=\left\{\ell_{0}\right\}$, or $T \subseteq \mathbf{B}$, and $\varphi \subseteq$ B. So, every g-line in S incident with $S \cap \Theta$ either intersects \mathbf{B} in exactly one point, or is contained in \mathbf{B}.

Proposition 7. Let V and V^{\prime} be complementary subspaces of $\mathrm{PG}(n, q)$ such that $V \subseteq V_{\mathbf{B}}$, and $\operatorname{dim} V^{\prime} \geqslant 3$. Let $\Gamma^{\prime}=\left(\mathcal{R}^{\prime}, \mathcal{F}^{\prime}\right)$ be the Grassmannian of the lines of V^{\prime}, and $\mathbf{B}^{\prime}=\mathcal{R}^{\prime} \cap \mathbf{B}$. Then
(i) \mathbf{B}^{\prime} is a tangential Tallini set of Γ^{\prime}; if $V=V_{\mathbf{B}}$, then no star of Γ^{\prime} is contained in \mathbf{B}^{\prime}.
(ii) Let $Q_{\mathbf{B}^{\prime}}$ be the set of points of V^{\prime} which are centers of stars of Γ^{\prime} intersecting \mathbf{B}^{\prime} in g-subspaces of dimension $d \geqslant \operatorname{dim} V^{\prime}-2$. Then the following hold.
(a) $Q_{\mathbf{B}^{\prime}}=Q_{\mathbf{B}} \cap V^{\prime}$;
(b) for any line ℓ disjoint to V, the line ℓ belongs to \mathbf{B} if, and only if, the projection in $\operatorname{PG}(n, q)$ of ℓ from V onto V^{\prime} is a g-point of \mathbf{B}^{\prime}.

Proof. (i) It is clear that \mathbf{B}^{\prime} is a tangential Tallini set of Γ^{\prime}. Now assume that $V=V_{\mathbf{B}}$ and there is a star of Γ^{\prime} contained in \mathbf{B}^{\prime}. Hence a point A of V^{\prime} exists such that $S_{A} \cap \mathcal{R}^{\prime} \subseteq \mathbf{B}^{\prime}$. In S_{A} the g-subspaces $S_{A} \cap \mathcal{R}^{\prime}$ and $S_{A} \cap \Theta$ are complementary. Then, by Proposition 6(ii), $S_{A} \subseteq \mathbf{B}$, a contradiction.
(iia) Let $C \in Q_{\mathbf{B}^{\prime}}$. Either $S_{C} \cap \mathbf{B}^{\prime}$ is a g-prime of $S_{C} \cap \mathcal{R}^{\prime}$, or $S_{C} \cap \mathcal{R}^{\prime} \subseteq \mathbf{B}^{\prime}$. This implies, by Proposition 6(ii), that $S_{C} \in \mathcal{S}_{0}$.

Conversely, if $D \in Q_{\mathbf{B}} \cap V^{\prime}$, then $S_{D} \cap \mathbf{B}$ is a g-prime of S_{D} or $S_{D} \subseteq \mathbf{B}$, thus $S_{D} \cap \mathbf{B}^{\prime}$ is a g-prime of $S_{D} \cap \mathcal{R}^{\prime}$ or $S_{D} \cap \mathcal{R}^{\prime} \subseteq \mathbf{B}^{\prime}$.
(iib) Let ℓ^{\prime} be the projection of ℓ on V^{\prime}. If ℓ and ℓ^{\prime} have a common point, then there is a plane π in $\operatorname{PG}(n, q)$ containing ℓ, ℓ^{\prime} and a point E of V. The pencil of lines φ with center E on π is a subset of \mathbf{B}. Then either $T_{\pi} \subseteq \mathbf{B}$, and $\ell, \ell^{\prime} \in \mathbf{B}$, or $T_{\pi} \cap \mathbf{B}=\varphi$ and $\ell, \ell^{\prime} \notin \mathbf{B}$.

Now assume that ℓ and ℓ^{\prime} are skew. Take a line m incident with both ℓ and ℓ^{\prime}, but not with V. Let π_{1} be the plane containing the lines ℓ and m, and π_{2} the plane containing ℓ^{\prime} and m. Each π_{i} meets V in a point, $i=1,2$. The same argument as above proves that $\ell \in \mathbf{B}$ if, and only if, $m \in \mathbf{B}$, as well as $m \in \mathbf{B}$ if, and only if, $\ell^{\prime} \in \mathbf{B}$.

Theorem 8. (i) Every $\ell \in \mathbf{B}$ is a line of $\operatorname{PG}(n, q)$ that intersects $Q_{\mathbf{B}}$ in either 0 , or 1 , or $q+1$ points.
(ii) If $\operatorname{dim} V_{\mathbf{B}} \neq n-3, n \neq 4$ and \mathbf{B} is covered by g-subspaces of dimension $n-2$, then each g-point of \mathbf{B} is a line of $\operatorname{PG}(n, q)$ contained in, or tangent to, $Q_{\mathbf{B}}$.

Proof. (i) is a straightforward consequence of Proposition 5. As to (ii), it is enough to prove that any g-point ℓ in $\mathbf{B} \backslash \Theta$ is on a star S^{*} such that $S^{*} \in \mathcal{S}_{0}$.

Assume $\operatorname{dim} V_{\mathbf{B}}>n-3$ and let π be a plane through ℓ. Since π meets $V_{\mathbf{B}}$, it contains $q+1$ lines of \mathbf{B} other than ℓ. Thus $T_{\pi} \subseteq \mathbf{B}$. Hence, any star containing ℓ is in \mathcal{S}_{0}.

Next, assume $\operatorname{dim} V_{\mathbf{B}}<n-3$. Let U be a g-subspace of dimension $n-2$ such that $\ell \in U \subseteq \mathbf{B}$. Since $\operatorname{dim} U \neq 2$, there is a star S_{A} such that $\ell \in U \subseteq S_{A} \cap \mathbf{B}$. Let V^{\prime} be a subspace of $\operatorname{PG}(n, q)$ containing ℓ and complementary to $V_{\mathbf{B}}$. We have $\operatorname{dim} V^{\prime} \geqslant 3$. By Propositions 7 and 4, keeping the notation in Proposition 7 (with $V=V_{\mathbf{B}}$), $S_{A} \cap \mathcal{R}^{\prime} \cap \mathbf{B}$ is a g-quadric in $S_{A} \cap \mathcal{R}^{\prime}$ containing the g-prime $U \cap \mathcal{R}^{\prime}$. By Proposition $4, A \in Q_{\mathbf{B}^{\prime}}$, then Proposition 7 gives $A \in Q_{\mathbf{B}}$.

It will turn out that $\operatorname{dim} V_{\mathbf{B}}=n-3$ is no real exception (cf. Proposition 18).
Proposition 9. Let $\ell^{*} \in \mathcal{R}, S \in \mathcal{S}$ and $S_{1}, S_{2}, S_{3} \in \mathcal{S}_{0}$ such that $S_{1} \neq S_{2} \neq S_{3} \neq S_{1}$ and $\ell^{*} \in S \cap S_{1} \cap S_{2} \cap S_{3}$. Then $S \in \mathcal{S}_{0}$.

Proof. By Proposition 5 we may assume $\ell^{*} \notin \mathbf{B}$. Let T be a ruled plane through ℓ^{*}. By assumption, the g -lines $T \cap S_{i}$ are three distinct tangent g -lines to \mathbf{B}. Thus $T \cap \mathbf{B}$ is a g-line. Therefore, any g-line containing ℓ^{*} is a tangent g -line to the g-quadric $S \cap \mathbf{B}$. The statement follows.

Theorem 10. The set $Q_{\mathbf{B}}$ is a Tallini set in $\operatorname{PG}(n, q)$.

Proof. If A, B, C are three distinct points in $Q_{\mathbf{B}}$ on a line $\ell^{*} \in \mathcal{R}$, then $S_{A}, S_{B}, S_{C} \in \mathcal{S}_{0}$. The statement follows from Proposition 9.

Theorem 11. If $\mathbf{B} \neq \mathcal{R}$ and there are no secant g-lines, then \mathbf{B} is a linear complex. Conversely, every linear complex is a tangential Tallini set admitting no secant g-lines.

Proof. Any g-line φ is contained in precisely one ruled plane T. By assumption, either $T \subseteq \mathbf{B}$, or $T \cap \mathbf{B}$ is a g-line. Thus, any $\varphi \in \mathcal{F}$ is either contained in \mathbf{B}, or intersects \mathbf{B} in exactly one g-point. This property implies that \mathbf{B} is a linear complex [11,2].

3. The case $\boldsymbol{n}=3$

Proposition 12. Let $n=3$ and $T \in \mathcal{T}^{*}$. Then there exists a star S^{*} such that $S^{*} \subseteq \mathbf{B}$ and $S^{*} \cap T \neq \emptyset$.

Proof. By Proposition 1, a $T^{\prime} \in \mathcal{T}^{*}$ such that $T^{\prime} \neq T$ exists. Let $\left\{\ell^{*}\right\}=T \cap T^{\prime}$. Let $T^{\prime \prime}$ be a further ruled plane through ℓ^{*}, and $\ell \in T^{\prime \prime} \cap \mathbf{B} \backslash\left\{\ell^{*}\right\}$. Let S^{*} be the star containing both ℓ and ℓ^{*}; it meets T, T^{\prime} in two g-lines contained in \mathbf{B}. Then $\left|S^{*} \cap \mathbf{B}\right|>2 q+1$.

Proposition 13. Assume $n=3$ and $V_{\mathbf{B}}=\emptyset$. Then $|U \cap \mathbf{B}|=q+1$ for any $U \in \mathcal{S} \cup \mathcal{T}$. Also, $|\mathbf{B}|=\theta_{3}$.

Proof. The statement follows from Propositions 1, 12 and Lemma 3.
We now consider a ruled tangential Tallini set \mathbf{B}; this means that each g-point in \mathbf{B} lies on a g-line contained in \mathbf{B}.

Proposition 14. Assume that \mathbf{B} is ruled, $n=3$ and $V_{\mathbf{B}}=\emptyset$. Then $\left|Q_{\mathbf{B}}\right| \geqslant q^{2}+1$. The equality holds if, and only if, each g-point in \mathbf{B} lies on precisely one g-line contained in \mathbf{B}.

Proof. Compute in two ways the number N of pairs (A, ℓ) such that $A \in Q_{\mathbf{B}}$ and $\ell \in S_{A} \cap \mathbf{B}$. Clearly, $N=\left|Q_{\mathbf{B}}\right| \theta_{1}$. By Theorem 8(ii), we have $N \geqslant|\mathbf{B}|$, thus the statement follows from Proposition 13.

Proposition 15. Assume $n=3$ and $V_{\mathbf{B}}=\emptyset$. Let $\ell \in \mathbf{B}$ be a line in $\mathrm{PG}(3, q)$ and contained in $Q_{\mathbf{B}}$. For any point X on ℓ, let $\alpha(X)$ be the plane of the pencil $S_{X} \cap \mathbf{B}$. Then α is a one-to-one map defined on the set of points of ℓ.

Proof. If $X \neq Y$ and $\alpha(X)=\alpha(Y)$, then the plane $\alpha(X)$ contains at least $2 q+1$ lines in B, a contradiction.

Proposition 16. Assume $n=3, V_{\mathbf{B}}=\emptyset$ and $Q_{\mathbf{B}} \neq \mathcal{P}$. Then no plane in $\operatorname{PG}(3, q)$ is contained in $Q_{\mathbf{B}}$.

Proof. Assume on the contrary that there is a plane π contained in $Q_{\mathbf{B}}$ and a point A in $\operatorname{PG}(3, q)$ not belonging to $Q_{\mathbf{B}}$. Thus A is not on π.

For any point X on π, the lines through X which belong to \mathbf{B} form a pencil. Further, since $\left|T_{\pi} \cap \mathbf{B}\right|=q+1$, so $T_{\pi} \cap \mathbf{B}$ is a pencil with a center point on π, say C.

The lines of \mathbf{B} passing through A intersect π in the points of a $(q+1)$-arc Ω. Let ℓ be a line through C intersecting Ω in two distinct points D and E. Let ε be the plane through A, D and E. Among the lines of $T_{\varepsilon} \cap \mathbf{B}$ there are: (i) ℓ and $A D$, hence all lines of the pencil on ε with center D; (ii) ℓ and $A E$, hence all lines of the pencil with center E. Therefore, $\left|T_{\varepsilon} \cap \mathbf{B}\right| \geqslant 2 q+1$, a contradiction.

Theorem 17. Assume that $\mathbf{B} \neq \mathcal{R}$, that \mathbf{B} is ruled and that $n=3$. Then one of the following holds: (i) $Q_{\mathbf{B}}$ is a quadric of $\mathrm{PG}(3, q)$ and \mathbf{B} is the set of all self-conjugate lines of $Q_{\mathbf{B}}$; (ii) $Q_{\mathbf{B}}=\mathcal{P}$ and \mathbf{B} is a linear complex.

Proof. By Theorem 11, we may deal with just the case in which there exist secant g-lines.
Case 1.1: $\operatorname{dim} V_{\mathbf{B}}=-1,\left|Q_{\mathbf{B}}\right| \leqslant q^{2}+1$. By Theorem 10 and Proposition 14, $Q_{\mathbf{B}}$ is a Tallini set in $\operatorname{PG}(3, q)$ of size $q^{2}+1$ and not containing lines; hence [1] an elliptic quadric. The g-points in \mathbf{B} are tangent lines to $Q_{\mathbf{B}}$ (cf. Theorem 8). A cardinality argument implies the converse.

Case 1.2: $\operatorname{dim} V_{\mathbf{B}}=-1,\left|Q_{\mathbf{B}}\right|>q^{2}+1$. Since there are secant g-lines, $\left|Q_{\mathbf{B}}\right|<\theta_{3}$. By Propositions 14,13 and 5 , there is a g-point $\ell^{*} \in \mathbf{B}$ such that each star S containing ℓ^{*} intersects \mathbf{B} in a g-line. As a line of $\operatorname{PG}(3, q), \ell^{*}$ is contained in $Q_{\mathbf{B}}$. Let A be a point of $Q_{\mathbf{B}}$ not on ℓ^{*}. The g-line $S_{A} \cap \mathbf{B}$ is a pencil of lines which are non-secant to $Q_{\mathbf{B}}$. One line in the pencil, say ℓ, intersects ℓ^{*} in a point A^{\prime}. Thus ℓ is contained in $Q_{\mathbf{B}}$. Since $\ell \cup \ell^{*} \neq Q_{\mathbf{B}}$, there are a point B in $Q_{\mathbf{B}}$ but not on $\ell \cup \ell^{*}$, and a line m that is contained in $Q_{\mathbf{B}}$ and is incident with both B and ℓ^{*}, by the above argument. If B is on the plane $A \ell^{*}$, then by Theorem 10 the whole plane is contained in $Q_{\mathbf{B}}$, contradicting Proposition 16. Thus m is not on the plane $A \ell^{*}$. On the other hand, since $\ell^{*}, \ell \in \mathbf{B}$, so $S_{A^{\prime}} \cap \mathbf{B}$ is the pencil on the plane $A \ell^{*}$ with center A^{\prime}. Therefore A^{\prime} and m are not incident, and ℓ and m are skew lines.

By a similar argument, any point X on ℓ belongs to a line of \mathbf{B}, which is contained in $Q_{\mathbf{B}}$ and meets m. More precisely, such a line is contained in $\alpha(X)$ (cf. Proposition 15). Since α is a one-to-one map, we obtain $q+1$ lines contained in $Q_{\mathbf{B}}$ which are pairwise skew. So, $\left|Q_{\mathbf{B}}\right| \geqslant \theta_{1}^{2}$.

In [9] it is proved that a Tallini set K in $\operatorname{PG}(n, q)(q$ odd, $n \geqslant 3)$, distinct from $\operatorname{PG}(n, q)$ and such that $|K| \geqslant \theta_{n-1}$ is either the union of a prime and a t-dimensional subspace $(-1 \leqslant t \leqslant n-1)$, or a non-singular quadric in a space of even dimension, or a cone projecting such a quadric, or a non-singular hyperbolic quadric in a space of odd dimension, or a cone projecting a non-singular hyperbolic quadric. Since $Q_{\mathbf{B}}$ contains $q+1$ pairwise skew lines, $Q_{\mathbf{B}}$ is a non-singular hyperbolic quadric. The self-conjugate lines of such quadric are exactly θ_{3}; so they are precisely the elements of \mathbf{B}.

Case 2: $\operatorname{dim} V_{\mathbf{B}}=0$. Since in this case Theorem 8 does not apply, we have to prove that every g-point in \mathbf{B} is a line of $\operatorname{PG}(3, q)$ that meets $Q_{\mathbf{B}}$. This is clear for the g-points in Θ. If $\tilde{\ell} \in \mathbf{B} \backslash \Theta$ and $\tilde{\ell}$ is external to $Q_{\mathbf{B}}$, then by Proposition 6(ii) each star intersects \mathbf{B} in the union of two lines. This implies $\left|\tilde{\ell}^{\perp} \cap \mathbf{B}\right|=2 q^{2}+2 q+1$. On the other hand, writing α for the number of ruled planes through $\tilde{\ell}$ which are contained in \mathbf{B}, one obtains $\left|\tilde{\ell}^{\perp} \cap \mathbf{B}\right|=(\alpha+1) q^{2}+q+1$, contradicting the previous equality. Thus $\tilde{\ell}$ is a line in $\operatorname{PG}(3, q)$ that is either tangent to or contained in $Q_{\mathbf{B}}$.

By Proposition 1 and Lemma 3, $|\mathbf{B}|=\theta_{3}+q^{2}$. By assumption there is a secant g-line, which is contained in a ruled plane T_{0}. Thus $T_{0} \cap \mathbf{B}$ is a dual $(q+1)$-arc on a plane π. Let $\ell_{0} \in T_{0} \cap \mathbf{B}$. Any g-line which contains ℓ_{0} and is secant to $T_{0} \cap \mathbf{B}$ is contained in a star not in \mathcal{S}_{0}. In this way we obtain that q points on ℓ_{0} do not belong to $Q_{\mathbf{B}}$. So, in $\operatorname{PG}(3, q)$ ℓ_{0} is tangent to $Q_{\mathbf{B}}$. The lines of $\operatorname{PG}(3, q)$ belonging to $T_{0} \cap \mathbf{B}$ are tangent to $Q_{\mathbf{B}}$, and $\mathcal{C}=\pi \cap Q_{\mathbf{B}}$ is a non-singular conic. By Proposition 6(i), $Q_{\mathbf{B}}$ is a cone projecting \mathcal{C}. The
number of self-conjugate lines of such a cone is $\theta_{3}+q^{2}$, i.e. they are precisely the elements of \mathbf{B}.

Case 3: $\operatorname{dim} V_{\mathbf{B}}=1$. In this case $|\mathbf{B}|=\theta_{3}+q^{2}$. The lines incident with $V_{\mathbf{B}}$ are exactly $\theta_{3}+q^{2}$. Thus \mathbf{B} is a special linear complex (contradicting the existence of secant g -lines).

Case 4: $\operatorname{dim} V_{\mathbf{B}}>1$. This implies $\mathbf{B}=\mathcal{R}$, a contradiction.
For more information on the case in which \mathbf{B} is not ruled the reader is referred to $[15,16]$. It is an open problem, however, whether such a possibility occurs.

Proposition 18. The assumption $\operatorname{dim} V_{\mathbf{B}} \neq n-3$ in Theorem 8(ii) is superfluous.

Proof. Assume that \mathbf{B} is covered by g-subspaces of dimension $n-2$ and $\operatorname{dim} V_{\mathbf{B}}=n-3$. Also assume that there are secant g -lines. Let V and V^{\prime} be complementary subspaces of $\mathrm{PG}(n, q)$ such that $V \subseteq V_{\mathbf{B}}$ and $\operatorname{dim} V=n-4, \operatorname{dim} V^{\prime}=3$. Let $Q_{\mathbf{B}^{\prime}}$ be defined as in Proposition 7. By Theorem 17, $Q_{\mathbf{B}^{\prime}}$ is a quadric and by Propositions 6 and $7, Q_{\mathbf{B}}$ is a singular quadric. By Proposition 7(iib), \mathbf{B} is the set of all self-conjugate lines of $Q_{\mathbf{B}}$.

4. The general case

Proposition 19. Let $S \in \mathcal{S}$. (i) If $S \cap \mathbf{B}$ is a g-subspace of dimension $n-3$, then for each $\ell \in S \cap \mathbf{B}$ there is a $S^{*} \in \mathcal{S}$ such that $\ell \in S^{*} \subseteq \mathbf{B}$. (ii) If $V_{\mathbf{B}}=\emptyset$, then $\theta_{n-2}-q^{n-3} \leqslant \mid S \cap$ $\mathbf{B} \mid \leqslant \theta_{n-2}+q^{n-3}$.

Proof. (i) We prove the statement by induction on n. First, let $n=3$. If $S \cap \mathbf{B}$ is a g-point, then, by Lemma 3, $\mathcal{T}^{*} \neq \emptyset$. By Proposition 12 there exists $S^{*} \in \mathcal{S}$ such that $S^{*} \subseteq \mathbf{B}$. Obviously, $S^{*} \cap S=S \cap \mathbf{B}$.

Next, assume $n>3$. Let $S \cap \mathbf{B}$ be a g-subspace of dimension $n-3$. Let $S_{1}, S_{2}, \ldots, S_{q}$ be the stars through ℓ other than S. Such stars are $q+1 \mathrm{~g}$-subspaces of dimension $n-1$.

Denote by \mathcal{U} the set of all g-primes of S through ℓ which do not contain $S \cap \mathbf{B}$. There are θ_{n-2} g-primes of S through ℓ. Exactly $q+1$ of these g-primes contain $S \cap \mathbf{B}$, so $|\mathcal{U}|=q^{2} \theta_{n-4}$.

For any $\Sigma \in \mathcal{U}$, the lines of $\operatorname{PG}(n, q)$ belonging to Σ are contained in a prime of $\operatorname{PG}(n, q)$, say $\beta(\Sigma)$. We obtain a one-to-one map β defined on \mathcal{U}.

Let \mathcal{W}_{i} be the set of all g-primes of $S_{i}, i=1,2, \ldots, q$. Let $\alpha_{i}(\Sigma)$ be the set of all g-points in S_{i} which are lines contained in $\beta(\Sigma)$. We obtain q maps $\alpha_{i}: \mathcal{U} \rightarrow \mathcal{W}_{i}(i=1,2, \ldots, q)$. Each α_{i} is one-to-one, and if $i \neq j, \Sigma, \Sigma^{\prime} \in \mathcal{U}$, then $\alpha_{i}(\Sigma) \neq \alpha_{j}\left(\Sigma^{\prime}\right)$. For any $\Sigma \in \mathcal{U}$, let $\Gamma_{\Sigma}=\left(\mathcal{R}_{\Sigma}, \mathcal{F}_{\Sigma}\right)$ be the Grassmannian of the lines of $\beta(\Sigma)$. In Γ_{Σ}, Σ is a star, and $\Sigma \cap \mathbf{B}$ is a g -subspace of dimension $n-4$. By induction assumption, in Γ_{Σ} there is a star Σ^{*} such that $\ell \in \Sigma^{*} \subseteq \mathcal{R}_{\Sigma} \cap \mathbf{B}$. Such Σ^{*} is of type $\alpha_{i}(\Sigma)$ for some i. Therefore there are at least $q^{2} \theta_{n-4}$ distinct g-subspaces of this kind which are contained in \mathbf{B}. This implies that for some i, $S_{i} \cap \mathbf{B}$ contains at least $q \theta_{n-4}>2$ distinct g-primes and then $S_{i} \subseteq \mathbf{B}$ (cf. Proposition 4).
(ii) The g-quadric $S \cap \mathbf{B}$ is different from the union of two distinct primes, whether rational over \mathbb{F}_{q} (cf. Proposition 4) or not (by the above arguments). Then the statement is a consequence of the following general property of the quadrics: if \mathcal{Q} is a quadric in $\operatorname{PG}(d, q)(d \geqslant 2)$ and \mathcal{Q} is different from the union of two distinct primes (rational over \mathbb{F}_{q} or in a quadratic extension), then $\theta_{d-1}-q^{d-2} \leqslant|\mathcal{Q}| \leqslant \theta_{d-1}+q^{d-2}$. This may be seen by induction on d. If \mathcal{Q} is a non-singular quadric in $\operatorname{PG}(d, q), d>2$, then $|\mathcal{Q}|=\theta_{d-1}$ for q even and $|\mathcal{Q}|=\theta_{d-1} \pm q^{(d-1) / 2}$ for d odd, and the assertion holds. If \mathcal{Q} is singular, then it is a cone $\{P\} \mathcal{Q}^{\prime}$, where P is a point and \mathcal{Q}^{\prime} is a quadric in a prime for which, by induction assumption, $\theta_{d-2}-q^{d-3} \leqslant\left|\mathcal{Q}^{\prime}\right| \leqslant \theta_{d-2}+q^{d-3}$. In this case the statement follows from $|\mathcal{Q}|=1+q\left|\mathcal{Q}^{\prime}\right|$.

Proposition 20. If $V_{\mathbf{B}}=\emptyset$ and $\ell \in \mathbf{B}$, then

$$
\begin{equation*}
1+(q+1)\left(\theta_{n-2}-q^{n-3}-1\right) \leqslant\left|\ell^{\perp} \cap \mathbf{B}\right| \leqslant 1+(q+1)\left(\theta_{n-2}+q^{n-3}-1\right) \tag{4}
\end{equation*}
$$

Proof. Each g-point in $\ell^{\perp} \backslash\{\ell\}$ belongs to precisely one star S such that $\ell \in S$, and there are $q+1$ stars through S. Then the statement follows from Proposition 19(ii).

Proposition 21. If $n \geqslant 4, V_{\mathbf{B}}=\emptyset$ and $S \in \mathcal{S}$, then the singular g-subspace W (i.e. the set of singular g-points) of the g-quadric $S \cap \mathbf{B}$ is of dimension different from $n-4$.

Proof. Assume on the contrary that $S \cap \mathbf{B}$ is a cone projecting from W a non-singular g-conic of a 2 -dimensional star ε. The vertex W is non-empty, so let ℓ be a g-point of W.

Now, if φ is a g-line such that $\ell \in \varphi \subseteq \mathbf{B}$ and $\varphi \nsubseteq W$, then the ruled plane T_{φ} containing φ is contained in \mathbf{B}. This may be seen in this way: $W \varphi$, the span of $W \cup \varphi$, is a g-subspace that meets ε in a g-point $\ell_{1} \in \mathbf{B}$. If U is a g-subspace of dimension $n-3$ containing W and intersecting ε in a g-point $\ell_{2} \in \mathbf{B}, \ell_{2} \neq \ell_{1}$, and φ^{\prime} is a g-line such that $\ell \in \varphi^{\prime} \subseteq U$ and $\varphi^{\prime} \notin W$, then $\varphi^{\prime} \subseteq \mathbf{B}$. The intersection $\left(W \varphi \varphi^{\prime}\right) \cap \varepsilon$ is a g-line and is secant to \mathbf{B}. As a consequence, the g-plane $\eta=\varphi \varphi^{\prime}$ satisfies $\eta \cap \mathbf{B}=\varphi \cup \varphi^{\prime}$. By Lemma 3, with respect to Γ_{η} (cf. Section 2), $T_{\varphi} \subseteq \mathbf{B}$.

In each of the $q+1 \overline{\mathrm{~g}}$-subspaces joining W with a g-point in $\varepsilon \cap \mathbf{B}$ there are $q^{n-4} \mathrm{~g}$-lines through ℓ which are contained in \mathbf{B} but not in W. All these lines are contained in elements of \mathcal{T}^{*}. Each of the remaining $q^{n-2}+\theta_{n-5} \mathrm{~g}$-lines through ℓ in S is contained in a ruled plane that shares at least $q+1$ g-points with \mathbf{B}. This allows to give a bound on the size of $\ell^{\perp} \cap \mathbf{B}$. Since any two distinct ruled planes through ℓ meet only in ℓ, we have

$$
\begin{align*}
\left|\ell^{\perp} \cap \mathbf{B}\right| & \geqslant 1+q^{n-4}(q+1)\left(q^{2}+q\right)+\left(q^{n-2}+\theta_{n-5}\right) q \\
& =\theta_{n-1}+q^{n-2}(q+1) . \tag{5}
\end{align*}
$$

The right-hand inequality in (4) and (5) together give $q^{n-1}+q+1 \leqslant \theta_{n-2}+q^{n-3}$, a contradiction.

We now state, for future reference, a simple general property of the quadrics.

Proposition 22. Let \mathcal{Q} and H be a quadric and a prime in $\operatorname{PG}(d, q)$, respectively. If $\mathcal{Q} \cap H$ is a $(d-2)$-dimensional subspace of $\operatorname{PG}(d, q)$, then the singular space of \mathcal{Q} has dimension at least $d-3$.

Proof. Let A be the matrix associated with \mathcal{Q}. The linear mapping $L: \mathbb{F}_{q}^{d+1} \rightarrow \mathbb{F}_{q}^{d+1}$ related to A maps a $(d-1)$-dimensional subspace of \mathbb{F}_{q}^{d+1} (the one associated with $\mathcal{Q} \cap H$) onto a subspace of dimension at most one. Then the kernel of L has dimension at least $d-2$.

Theorem 23. If \mathbf{B} is covered by $(n-2)$-dimensional stars and there are secant g-lines, then $Q_{\mathbf{B}}$ is a quadric and \mathbf{B} is the set of all self-conjugate lines of $Q_{\mathbf{B}}$.

Proof. For $n=3$ the result is contained in Theorem 17. Then assume that the theorem holds for $n-1 \geqslant 3$.

Case 1: $V_{\mathbf{B}}=\emptyset$. Let U be any prime in $\operatorname{PG}(n, q)$. Let $\Gamma_{U}=\left(\mathcal{R}_{U}, \mathcal{F}_{U}\right)$ be the Grassmannian of lines of U. When X is a point in $U, S_{X, U}=S_{X} \cap \mathcal{R}_{U}$ will denote the set of all lines through X and contained in U. Also define $\mathbf{B}_{U}=\mathcal{R}_{U} \cap \mathbf{B}$. Let Q_{U} be the set of all points X in U such that $S_{X, U} \cap \mathbf{B}$ either is a g-prime of $S_{X, U}$ or is equal to $S_{X, U}$.

We claim that $Q_{U}=Q_{\mathbf{B}} \cap U$. For, if $X \in Q_{\mathbf{B}} \cap U$, then $S_{X, U} \cap \mathbf{B}=\mathcal{R}_{U} \cap S_{X} \cap \mathbf{B}$ is a g-subspace of dimension at least $n-3$. So, the inclusion $Q_{\mathbf{B}} \cap U \subseteq Q_{U}$ is clear. Next, let $Y \in Q_{U}$. The set $S_{Y, U}$ is a g-prime of S_{Y}, and either $S_{Y, U} \subseteq \mathbf{B}$, or $S_{Y, U} \cap \mathbf{B}$ is a g-prime of $S_{Y, U}$. In the former case the g-quadric $S_{Y} \cap \mathbf{B}$ contains the g-prime $S_{Y, U}$, so it is a g-prime (cf. Proposition 4), and $Y \in Q_{\mathbf{B}}$. In the latter case, by Proposition 22 the singular g -space of the g -quadric $S_{Y} \cap \mathbf{B}$ has dimension $\delta \geqslant n-4$. The equality is ruled out by Proposition 21. Since the g-quadric can be neither the union of two distinct g-primes (Proposition 4), nor a g-subspace of dimension $n-3$ (Proposition 19(i)), so $\delta \neq n-3$. Therefore $\delta=n-2$, $S_{Y} \cap \mathbf{B}$ is a g-prime of S_{Y}, and $Y \in Q_{\mathbf{B}}$.

Next, we prove that $Q_{U} \neq U$. There is a secant g-line to \mathbf{B}, say φ. The plane π of $\mathrm{PG}(n, q)$ containing the pencil φ shares with U at least one line ℓ^{*}. Furthermore $T_{\pi} \cap \mathbf{B}$ is a g - $(q+1)$-arc. If $Q_{U}=U$, then all stars through ℓ^{*} intersect \mathbf{B} in g-subspaces of dimension $n-2$. On the other hand, such stars intersect T_{π} in exactly the $q+1 \mathrm{~g}$-lines on T_{π} through ℓ^{*}. Among such g-lines there are secant g-lines, a contradiction. So, $Q_{U} \neq U$. In particular Γ_{U} contains g-lines that are secant to \mathbf{B}_{U}.

Let $\tilde{\ell} \in \mathbf{B}_{U}$. The g-point $\tilde{\ell}$ belongs to a $(n-2)$-dimensional star contained in \mathbf{B}. So, $\tilde{\ell}$ belongs to a $(n-3)$-dimensional star contained in \mathbf{B}_{U}.

We proved so far that \mathbf{B}_{U} is a tangential Tallini set in the Grassmannian of lines of U covered by $(n-3)$-dimensional stars, that there exist secant g-lines to \mathbf{B}_{U}, and $Q_{U}=$ $Q_{\mathbf{B}} \cap U$. By the induction assumption, $Q_{\mathbf{B}} \cap U$ is a quadric in U and \mathbf{B}_{U} is the set of all self-conjugate lines of $Q_{\mathbf{B}} \cap U$. Since U is arbitrary, $Q_{\mathbf{B}}$ itself is a quadric. If $\bar{\ell} \in \mathbf{B}$, take any prime \bar{U} of $\operatorname{PG}(n, q)$ containing $\bar{\ell}$; since $\bar{\ell}$ is a self-conjugate line of $Q_{\mathbf{B}} \cap \bar{U}, \bar{\ell}$ is a self-conjugate line of $Q_{\mathbf{B}}$, too. Conversely, each self-conjugate line of $Q_{\mathbf{B}}$ belongs to some \mathbf{B}_{U}, by the induction assumption.

Case 2: $V_{\mathbf{B}} \neq \emptyset$. Let $A \in V_{\mathbf{B}}$. Taking the notation of Proposition 7, with $V=\{A\}$, we investigate the tangential Tallini set \mathbf{B}^{\prime}. Since \mathbf{B} is covered by $(n-2)$-dimensional stars, \mathbf{B}^{\prime} is covered by $(n-3)$-dimensional stars.

We claim that \mathbf{B}^{\prime} has secant g-lines in \mathcal{R}^{\prime}. By assumption there is a g-line ϕ such that $|\phi \cap \mathbf{B}|=2$. Such g-line is a pencil lying on a plane ρ. The point A is not on ρ, since otherwise $T_{\rho} \cap \mathbf{B}$ would be a g-line or the whole T_{ρ}. The projection of ϕ from A onto V^{\prime} is a pencil ϕ^{\prime}, and by Proposition 7 (iib) such ϕ^{\prime} is secant to \mathbf{B}^{\prime}.

By the induction assumption $Q_{\mathbf{B}^{\prime}}$ is a quadric in V^{\prime} and \mathbf{B}^{\prime} is the set of all self-conjugate lines of $Q_{\mathbf{B}^{\prime}}$. By Proposition 6, since $A \in V_{\mathbf{B}}, Q_{\mathbf{B}}$ is a cone with vertex A projecting $\mathcal{Q}=Q_{\mathbf{B}} \cap V^{\prime}$. Proposition 7(iia) states that $\mathcal{Q}=Q_{\mathbf{B}^{\prime}}$, then $Q_{\mathbf{B}}$ is a quadratic cone.

Now, we claim \mathbf{B} is the set of all self-conjugate lines of $Q_{\mathbf{B}}$. Each line of $\operatorname{PG}(n, q)$ through A belongs to \mathbf{B} and is self-conjugate with respect to $Q_{\mathbf{B}}$. Let $\ell_{1} \in \mathcal{R} \backslash S_{A}$, and let ℓ_{1}^{\prime} be the projection of ℓ_{1} from A onto V^{\prime}. Since $Q_{\mathbf{B}}$ is a cone, the projection of $\ell_{1} \cap Q_{\mathbf{B}}$ is $\ell_{1}^{\prime} \cap Q_{\mathbf{B}^{\prime}}$. Hence ℓ_{1} is a self-conjugate line of $Q_{\mathbf{B}}$ if and only if $\ell_{1}^{\prime} \in \mathbf{B}^{\prime}$. By Proposition 7(iib) this is equivalent to $\ell_{1} \in \mathbf{B}$.

Now we are able to summarize Theorems 11 and 23.
Theorem 24. If $\mathbf{B} \neq \mathcal{R}$, and \mathbf{B} is covered by ($n-2$)-dimensional stars, then either (i) $Q_{\mathbf{B}}$ is a quadric and \mathbf{B} is the set of all self-conjugate lines of $Q_{\mathbf{B}}$, or (ii) $Q_{\mathbf{B}}=\mathcal{P}$ and \mathbf{B} is a linear complex.

It is still an open problem, whether the assumption on the $(n-2)$-dimensional stars can be removed. For $n=3$ a counterexample could be a set K of lines such that K intersects every ruled plane in a dual conic and every star in the lines of a quadratic cone.

If a set K with the above properties exists, then it is possible to give an interesting counterexample also for $n=4$. Assume that K and $\operatorname{PG}(3, q)$ are embedded in $\operatorname{PG}(4, q)$, and let A be a point in $\operatorname{PG}(4, q)$ off $\operatorname{PG}(3, q)$. Next, let K^{\prime} be the union of S_{A} and the set of all lines projecting from A a line belonging to K. For a plane π of $\operatorname{PG}(4, q)$ two cases can occur. (i) If A belongs to π, then the projection of π on $\operatorname{PG}(3, q)$ is a line, say ℓ; in case $\ell \in K$, we have $T_{\pi} \subseteq K^{\prime}$, otherwise $T_{\pi} \cap K^{\prime}$ is a pencil with center A. (ii) If A does not lie on π, then the projection of π on $\operatorname{PG}(3, q)$ is a plane π^{\prime}, so $T_{\pi} \cap K^{\prime}$ is a dual conic. This implies that K^{\prime} is a tangential Tallini set. By (ii), in every star $S_{B} \neq S_{A}$ there are secant g-lines. Therefore $Q_{K^{\prime}}=\{A\}$. It should be noted that if such a set K^{\prime} exists, then it is covered by g-planes, so that in Theorem 24 the words " $(n-2)$-dimensional stars" cannot be replaced by " $(n-2)$-dimensional g-subspaces".

References

[1] A. Barlotti, Un'estensione del teorema di Segre-Kustaanheimo, Boll. Un. Mat. Ital. 10 (1955) 498-506.
[2] A. Bichara, J. Misfeld, G. Tallini, C. Zanella, On the order structure in the line geometry of a projective space, J. Geom. 41 (1991) 16-32.
[3] F. Buekenhout, Ensembles quadratiques des espaces projectifs, Math. Z. 110 (1969) 306-318.
[4] M.J. de Resmini, A characterization of the secants of an ovaloid in $\operatorname{PG}(3, q), q$ even, $q>2$, Ars Combin. 16B (1983) 33-49.
[5] M.J. de Resmini, A characterization of linear complexes in PG(3, q), Ars Combin. 18 (1984) 99-102.
[6] M.J. de Resmini, A characterization of the set of lines either tangent to or lying on a nonsingular quadric in PG(4, q), q odd, Lecture Notes in Pure Appl. Math. 103 (1985) 271-288.
[7] O. Ferri, G. Tallini, A characterization of the family of secant lines of an elliptic quadric in $\mathrm{PG}(3, q), q$ odd, Rend. Sem. Mat. Brescia 7 (1984) 297-305.
[8] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Oxford Science Publications, Oxford, 1991.
[9] G. Tallini, Sulle k-calotte di uno spazio lineare finito, Ann. Mat. 42 (4) (1956) 119-164.
[10] G. Tallini, Graphic characterization of algebraic varieties in a Galois space, Atti Convegni Lincei 17: Teorie Combin. II Acc. Naz. Lincei (1976) 153-166.
[11] G. Tallini, I k-insiemi di rette di uno spazio di Galois studiati rispetto ai fasci di rette, Quaderni del Seminario Geometrie Combinatorie, vol. 28, Roma, Giugno, 1980.
[12] G. Tallini, The geometry on Grassmann manifolds representing subspaces in a Galois space, Combinatorial and geometric structures and their applications (Trento, 1980), Ann. Discrete Math. 14 (1982) 9-38.
[13] G. Tallini, On line k-sets of type $(0, n)$ with respect to pencils of lines in $\operatorname{PG}(d, q)$, Ann. Discrete Math. 14 (1982) 283-292.
[14] G. Tallini, Partial line spaces and algebraic varieties, Symp. Math. 28 (1986) 203-217.
[15] A. Venezia, Sui k-insiemi di punti della grassmanniana delle rette di $\operatorname{PG}(3, q)$ di tipo $(0,1,2, q+1)_{1}$ rispetto alle rette e ad un sol carattere rispetto ai piani, Rend. Mat. Appl. VII Ser. 3 (1983) 9-16.
[16] A. Venezia, On a characterization of the set of lines which either belong to or are tangent to a non-singular quadric in PG(3, q), q odd, Rend. Semin. Mat. Brescia 7 (1984) 617-623.

[^0]: E-mail addresses: bichara@dmmm.uniroma1.it (A. Bichara), zanella@math.unipd.it (C. Zanella).

