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Abstract

A Tallini set in a semilinear space is a $&tof points, such that each line not containedBin
intersects in at most two points. In this paper, the following notion of a tangential Tallini set in the
Grassmanniah’, 1 4,godd, is investigated: a Tallini set s called tangential when it meets every ruled
plane (i.e. the set of lines contained in a plane ofG)) in eitherg + 1 orq2 + ¢ + 1 elements. A
Tallini set Qg in PG(n, ¢) can be associated with each tangential TallinBsetI',, 1 ,. Each? € B
is aline of PGn, ¢) intersectingQpg in either 0, or 1, og + 1 points; whem # 4 andB is covered by
(n — 2)-dimensional projective subspaceslof 1 , the first case does not occurHfis a tangential
Tallini setinI’,, 1 , covered by(n — 2)-dimensional subspaces, any of which is in(RGy) the set
of all lines through a point and in a hyperplane, then eiifgris a quadric, and is the set of all
lines contained in, or tangent t@pg, or B is a linear complex.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Outline

In [10-13] Tallini developed the theory d&sets in Grassmann manifolds as a natural
extension of the combinatorial investigations of the finite projective spaces. This was the
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starting point for further work on sets of lines in particular positions with respect to quadrics,
such as the secant lines and the self-conjugate lines, i.e. lines which are tangent to, or con-
tained in, a quadric. IR is a possibly singular quadric ands a plane in the projective space
PG(n, q), the self-conjugate lines @ which are contained in form either a pencil, or a

dual conic, or the whole dual plane. This motivated us to carry out a general investigation
on the sets of lines satisfying such property, and to call them tangential Tallini sets. They
include the linear complexes. It is shown in Theore3vd 10 that any tangential Tallini

setB is related to a Tallini seQg in PG(n, ¢). We characterize by means of a common
property the set of self-conjugate lines of a quadric i#,G), including singular quadrics,

and the linear complexes: see Theor2tnSo, several results, given by de Resnfinb],

Tallini [11] and Venezigd15,16] are unified, improved and generalized. Similar charac-
terizations of different sets of lines related to a quadric are due to de Resmini, Ferri, and
Tallini [4,7,10]

1.2. Notation

LetPGn, q) = (P, R),n >3, be ther-dimensional projective space over the Galois field
F,, godd, andl’, 1, = (R, F) the Grassmann space representing the lines ¢ PG.
Here,P, R andF are the sets of all points, all lines and all pencils inRG), respectively,
apencilbeing the set of all lines through a pointin a plane. Singe , is a semilinear space,
the elements oR and.F are also called-pointsandg-lines respectively. In a similar way
theg-planesandg-subspaceghat is, projective planes and subspaces containgy i, ,
are defined. For background on semilinear spaces, also called partial line spaces, the reader
is referred tq14].

If 7 is a plane of PGz, ¢), denote byr; the set of lines ofc. Such a7, is called aruled
plang and is a g-plane. The set of all ruled planes will be denote@ b star of lines
star for short, is the se4 of all lines in PGn, ¢) through a poin, thecenterof the star.
We denote bys the set of all stars. Al-dimensional stais the set of all lines belonging to
a common star and contained iia+ 1)-dimensional subspace of P& ¢). So, a star is
a(n — 1)-dimensional star, a pencil is a one-dimensional star.

In this paperB will always denote @gangential Tallini seti.e. a set of g-points, such that

(i) forany ¢ € F, there holdgp NB| € {0, 1, 2, ¢ + 1};
(ii) forany T e T, there hold$7 NB| € {g + 1,¢% + g + 1}.

So, for everyT' € T, eitherT € B, orT N B is a g-line or a gy + 1)-arc, where a
g—k-arc is a set ok g-points, no three of them collinear. An example of a set of g-points
satisfying (i) and (ii) is given by the set of self-conjugate lines of a quadric imP§g.

An elementp of F is called arexterior, tangentor secantg-line when|p N B| is equal
to 0, 1 or 2, respectively.

The number of points in ardimensional projective space is denoteddby= (¢’ 1 —
1)/(g —1),i € N. Let Sg be the set of all star§S such that eitheS € B, or SN B
is a g-prime ofS; that is, S N B is a hyperplane of the projective spaSelLet Qg be
the set of the centers of all starsdia, andVg C Qg the set of the centers of all stars
which are contained iB. Finally, let7* be the set of all ruled planes which are contained
in B.
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2. General properties of tangential Tallini sets

Proposition 1. The cardinality o is equal to

Gn Bn—l
02

47 2

0)172 . (1)

Proof. Computing in two ways the pailg, 7) with T € 7 and¢ € BN T gives

Hn 9n710n72

—|T* . O
0201 T |) o

Bl0,_2 = |7"*|92+(

By Proposition, if n = 0, 2(mod 3, thend,_» divides|T*|.

Proposition 2. If § € Sand? € R \ S, then there exists precisely offee 7 such that
teTandT NS e F.

Lemma 3. Assume: = 3and letS € S. Then one of the following holds

(@) |SNB| =1and inthiscase|T*| =¢ + 1;

(b) SNBisag-lingand|7T*| € {0,q + 1}; alsa |T*| = ¢ + 1if, and only if the g-line
S N B is contained in an element &t*;

(c) SNBisag(g + 1)-arc,and7* = ¢;

(d) SNB = ¢4 U @5, wherep,; and ¢, are two distinct g-linesin this cas¢7*| = ¢ + 1,
and each of both g-lines is a subset of an elemefft'of

(e) SCB,and7T* £ @.

Proof. We apply Propositior2 in order to compute the number of element$8of
Casel: SNBisagk-arc(0<k<g+1). Forevenf € T having non-empty intersection
with S we havelT N B| = ¢ + 1. This gives the following properties.

1. On thek(k — 1)/2 ruled planes which me&in a secant g-line there are exactly —
Dk(k — 1)/2 g-points ofB \ S.

2. Onthek(g 42— k) ruled planes which me&in a tangent g-line there atg (¢ +2— k)
g-points ofB \ S.

3. Onthely — k(k — 1)/2 — k(q + 2 — k) ruled planes which me&in an exterior g-line,
there argg + 1)(02 — k(k — 1)/2 — k(¢ + 2 — k)) g-points ofB \ S.

By adding thek g-points ofS N B, we obtain|B| = ¢° 4+ 2¢° + (2 — k)q + 1. Let
a = |T*|/(g +1). By Propositionl, a is a natural number such thatl — a) = k — 1.
Therefore, we have either (a) or (c).

Case2: SN Bis not a g-ar¢c and S £ B. In this caseS N B contains a g-linep.
If a g-point¢ € S\ ¢ such thatS N B = ¢ U {¢} exists, then, computing as in Case
1, |B| = ¢% + 29 + 1 wheng is contained in an element 6%, B| = ¢ +¢% + 1
otherwise, contradicting Propositidn Therefore,S N B is either a g-line, or the union of
two distinct g-linesp, andg,. In the latter case, computing once more as in Case 1 gives
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IB| = ¢ + bg? + g + 1, whereb € {0, 1, 2} is the number of elements Gf* among the
ruled planes containing, or ¢,. Propositionl impliesb = 2 and|7*| = ¢ + 1.

If SNBisag-line, thenB| = ¢% + (¢ + 1)¢° + ¢ + 1, wherec € {0, 1} is the number
of elements off * containingS N B. This implies ).

Case3: S C B. Since there is a g-poiritin B \ S, the ruled plane throughmeetingS
is contained irB. [

Notation. 1. The set of all g-points collinear withe R, including?, is denoted by .

2. Lete be a two-dimensional star; that is|s the set of all lines in a star in a three-
dimensional subspace of P& g), sayU,. LetP,, R, andl’, = (R, F¢) be the point set,
the line set and the Grassmannian of lined/pf respectively. LeB. = R. N B. Clearly
B. is a tangential Tallini set ifh,.

Proposition 4. LetS € S. If S is not contained iB, thenS N B is a g-quadric in S. When
VB = @, such a g-quadric cannot be the union of two distinct g-primes of S

Proof. Lete be a two-dimensional star contained3rBy Lemma3, applied to the Grass-
mannianl’, eithere C B, ore N B is a possibly singular g-conic. Any set of poit{sn a
projective space, such that every plane section not contairt€dsia conic, is a quadric or
the whole spacs,8].

Next, assume thaf N B is the union of two distinct g-primes & say Vi and V,, and
Ve = 0. Let£g € V1 N V,. We now obtain two bounds f(fpfol N Bj.

Let ¢ be a g-line througtfg. Assume that for an € {1, 2}, ¢ is contained inV; and
intersectsVa_; only in £o. Then there is a g-plang in Sthat containsp and such that
n N B is the union of two distinct lines. By Lemn& applied tol',;, the unique ruled plane
containinge is a subset oB. The ruled planes througly meet pairwise only irtg, and
there exist 2”2 such g-planes meetirgin a line that is contained in exactly one of the
primesVy and V,. Each of the remaining ruled planes throughintersectsB in at least
q + 1 g-points. Therefore

€6 NBI > 142" 3¢ + @) + (042 — 24" %)
=0p1+2¢""". )
Next, every g-point collinear witlig belongs to one of the + 1 stars througlig. By the
assumptiorVg = 4, every star intersec®in at mostf), _» + ¢" 2 g-points (the cardinality
of two g-primes). Hence
g NBI <1+ (@ +D0h2+q" %=1
= 20;1—14‘61”72—61 -1 (3)
From @) and @),

n—1

q _ 6,172 _ qn—2

+q + 1<0,

a contradiction. [
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Proposition 5. Let¢* € B, S € SandSi, S2 € SgpsuchthatS; # S>andSNS1NS, = {£*}.
ThenS € Sp.

Proof. First, we prove the statement under the assumptien3. It is convenient to deal
with four cases.

Casel.: there existS’, S” € S such thats’ N S” = {¢*} andS’ € B, §” € B. Each g-line
¢ in Sthrough¢* is contained in precisely one ruled plafeThe intersectiong” N S,
T N S” are two distinct g-lines contained B ThusT C B andg C B. As a consequence,
S CB.

Case2: there exists’, S € S such thats' N S = {¢*}, § < B, and S N B is a g-line
say¢. Let T, be the ruled plane containinfy The g-linesp and7, N §” are distinct and
contained inTy N B, soT, < B. Consider a ruled plang # T, such that* € 7. The
g-line T N §’ is contained irB, whereas’ N S N B = {¢*}, hencel' N B C §’. Therefore,
any g-liney through¢* either is contained iB, wheny C S” oryy C T, or is tangent to
B. This implies that any star through the g-poifitand other thar$’ meetsB in a g-line.

Case3: there exists” € 7* such thatt* e T. Any ¢ e (£*)* belongs to a ruled plane
through¢*. Then|(¢*)L NB| > 2%+ g + 1. Assume we are neither in Case 1 nor in Case 2.
Then|(¢*)LNBNS;| = g+ 1fori = 1,2, and, for every stas/ through¢* other thansy
andsy, |(£*)- NBN S| <2 +1. Thereforg(¢*)- NB|<1+29+ (¢ — 1)2g = 2% +1,

a contradiction.

Case4: otherwise Let 7 be a ruled plane througtt. The g-linesT N Sy and7 N S,
are distinct and tangent to, or containedBy,hencel N B is a g-line. This implies that
any g-line throught* is tangent to, or contained iB, If two of theg + 1 g-lines through
£* are contained in a common star, then, by Len8n@ase 3 occurs, which is impossible.
Therefore, the intersection 8fwith every star containing* is a g-line.

Next, assume > 3. Lete be any g-plane contained Band such that* € ¢. The
intersectiore; = R. N S; isag-plane fo¥ = 1,2. ThusB, Ng; = BNR, NS, eitheris a
g-line ing;, or is equal te;. Since Propositiod has already been proved for= 3, either
£ CB,orenNBisag-line.

Assumet; and{; are two distinct g-points i N B. If ¢ is a g-plane through;, ¢> and
¢*, then, by the previous argument, the g-lix#, is contained inS N B. Consequently
SN Bisag-subspace &

Every g-line¢’ in Slies on a g-plane o8 through¢*, so¢’ N S N B # @. Therefore,
eitherS C B,orSNBisag-primeofS O

Definition. For a subspac¥ of a projective spack and a sef c P\V, thecone Viwith
vertex Vis the set of all points on the lines joining a point\bofo a point ofl.

Proposition 6. Let® be the set of all lines iPG(n, ¢) which are incident with/g. Then

(i) O is acone with verte¥s;
(i) foreveryS € S, SN B is acone with vertef N ©.
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Proof. (i) Let A, B € Vg, A # B, and{¢} = S4 N Sp. Each ruled plan& through? meets
B in at least two distinct g-lineg N S4 andT N Sg; therefore,I' C B. Consequently, the
line of PG(n, ¢) joining AandB is contained irB and Vg is a subspace of F@, ¢). On the
other hand, by Propositids every line of PGn, ¢) intersectingVz is either tangent to, or
contained inQg.

(ii) Clearly ® C B. SinceVp is a subspace of P@, g), S N © is a g-subspace &.
Assumelp € SN O, ¢1 € S\ O. Let ¢ be the g-linetg¢1 andC a point of PGn, g)
incident with both¢g and Vz. There is exactly one ruled plane containipgsayT. The
g-lineT NS¢ is contained irB. Thus, eithe NB = T NS¢, andpNB = {¢p}, orT C B,
ande C B. So, every g-line irSincident with.S N ® either intersect8 in exactly one
point, or is contained iB. [

Proposition 7. LetV andV’ be complementary subspace®@(n, ¢) such thatV C Vg,
anddim V' >3.LetI” = (R/, ') be the Grassmannian of the linesiof andB’ = R’ NB.
Then

() B’ is atangential Tallini set of ’; if V = Vg, then no star of” is contained irB’.
(i) Let Qp' be the set of points df” which are centers of stars df intersectingB’ in
g-subspaces of dimensidr> dim V' — 2. Then the following hold
(@ Qg = 08NV,
(b) for any line¢ disjoint to V, the line£ belongs tdB if, and only if the projection in
PG(n, q) of ¢ from V ontoV’ is a g-point ofB’.

Proof. (i) Itis clear thatB’ is a tangential Tallini set df’. Now assume thalt = Vg and
there is a star of" contained inB’. Hence a poinf of V' exists such thas, N R’ € B'.
In §4 the g-subspace$y N'R’ andS4 N O are complementary. Then, by Proposit&fii),
S4 C B, a contradiction.

(ila) LetC € Qp. EitherS¢ NB’ is a g-prime ofSc NR’, or Sc "R’ C B’. This implies,
by Propositior6(ii), that S¢ € Sp.

Conversely, ifD € Qg N V’, thenSp N B is a g-prime ofSp or Sp € B, thusSp N B’
is a g-prime ofSp "R orSp N R’ € B'.

(iib) Let ¢’ be the projection of on V'. If £ and¢’ have a common point, then there is a
planer in PG(n, ¢) containing¢, ¢’ and a poinE of V. The pencil of linesp with centerE
on is a subset oB. Then eithell; € B, and¢, ¢/ € B,orT, NB = ¢ and¢, ¢’ ¢ B.

Now assume that and ¢’ are skew. Take a line incident with both¢ and¢’, but not
with V. Let 1 be the plane containing the linésandm, andn, the plane containing’ and
m. Eachr; meetsV in a point,i = 1, 2. The same argument as above provesthaB if,
and only if,m € B, aswellasn € Bif,and only if, ¢’ ¢ B. O

Theorem 8. (i) Every¢ € B is a line ofPG(n, ¢) that intersect0g in eitherO, or 1, or
g + 1points

(i) If dim Vg # n — 3,n # 4andB is covered by g-subspaces of dimension 2, then
each g-point oB is a line ofPG(n, ¢) contained inor tangent to Og.
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Proof. (i) is a straightforward consequence of ProposiBoAs to (ii), it is enough to prove
that any g-point in B \ ® is on a staS* such thatS* € Sp.

Assume dimVg > n — 3 and letr be a plane through. Sincenr meetsVg, it contains
g + 1 lines ofB other thar?. ThusT,; € B. Hence, any star containirgs in So.

Next, assume diffig < n — 3. LetU be a g-subspace of dimensian- 2 such that
¢ € U C B. Since dimUU # 2, there is a staf4 such thatt ¢ U € S, NB. Let V' be
a subspace of P@, g) containing? and complementary t&. We have din¥’ > 3. By
Propositions and4, keeping the notation in Propositign(with V = Vg), SANR' NBis
a g-quadric inS4 N R’ containing the g-primé&/ N R’. By Propositiord, A € Qg/, then
Proposition7 givesA € QOg. [

It will turn out that dimVg = n — 3 is no real exception (cf. Propositids).

Proposition 9. Let¢* € R, S € S and S1, S2, S3 € Sp such thatS, # S> # S3 # S; and
e SNS1NS2NS3. Thens € Sp.

Proof. By Proposition5 we may assumé* ¢ B. Let T be a ruled plane througti. By
assumption, the g-lineBN §; are three distinct tangent g-linesBoThusT NB is a g-line.
Therefore, any g-line containirtj is a tangent g-line to the g-quadi§ec B. The statement
follows. O

Theorem 10. The setQg is a Tallini set inPG(n, q).

Proof. If A, B, C are three distinct points ig on a line¢* € R, thenS,, S, Sc € So.
The statement follows from Propositi& [

Theorem 11.If B # R and there are no secant g-linethenB is a linear complex.
Conversely every linear complex is a tangential Tallini set admitting no secant
g-lines

Proof. Any g-line ¢ is contained in precisely one ruled plafieBy assumption, either
T € B,orT NBisag-line. Thus, any € F is either contained i, or intersectd in
exactly one g-point. This property implies thais a linear complef11,2]. O

3. The casen = 3

Proposition 12. Letn = 3andT e 7*. Then there exists a st&* such thatS* < B and
S*NT #40.
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Proof. By Propositionl, a7’ € 7* such thatl’ # T exists. Let({*} =T NT'. LetT”
be a further ruled plane throudti, and¢ € 77 N B\ {¢*}. Let $* be the star containing
both¢ and¢*; it meetsT, T’ in two g-lines contained iB. Then|S*NB| > 2¢ + 1. O

Proposition 13. Assume: = 3andVg = . Then|lU NB| =g + 1foranyU e SUT.
Alsg |B| = 0s.

Proof. The statement follows from Propositiohs12 and Lemme3. [

We now consider auled tangential Tallini seB; this means that each g-pointBlies
on a g-line contained iB.

Proposition 14. Assume thaB is ruled n = 3 and Vg = #. Then|Qg|>¢2 + 1. The
equality holds ifand only if each g-point irB lies on precisely one g-line containedin

Proof. Compute in two ways the numbiiof pairs(A, ¢) suchthatd € Qg andé € S4NB.
Clearly, N = |Qg|01. By Theoren8(ii), we haveN > |B|, thus the statement follows from
Propositiont3. [

Proposition 15. Assume = 3andVg = @. Let¢ € B be aline inPG(3, ¢) and contained
in Og. Forany point X ort, leta(X) be the plane of the pendl NB. Thenx is a one-to-one
map defined on the set of pointstof

Proof. If X # Y anda(X) = «(Y), then the plane(X) contains at least@+ 1 lines in
B, a contradiction. [J

Proposition 16. Assumen = 3, Vg = ¢ and Qg # P. Then no plane irPG(3, ¢) is
contained inQg.

Proof. Assume on the contrary that there is a planeontained inQg and a pointA in
PG(3, g) not belonging taQg. ThusA is not on.

For any pointX on r, the lines througlX which belong tdB form a pencil. Further, since
|T NB| =¢q + 1, soT; N B is a pencil with a center point an, sayC.

The lines ofB passing through intersectr in the points of al¢g + 1)-arc (2. Let ¢ be
a line throughC intersecting® in two distinct pointsD andE. Let ¢ be the plane through
A, D andE. Among the lines of, N B there are: (iY andAD, hence all lines of the pencil
on ¢ with centerD; (ii) ¢ andAE, hence all lines of the pencil with centér Therefore,
|T; N B|>2g + 1, a contradiction. [J
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Theorem 17. Assume thaB # R,thatB isruled and tha = 3. Then one of the following
holds (i) O is a quadric ofPG(3, ¢) andB is the set of all self-conjugate lines Of; (ii)
Qg = P andB is a linear complex

Proof. By Theoremll, we may deal with just the case in which there exist secant g-lines.

Casel.l: dimVg = -1, |0sg| ng + 1. By Theoreml0O and Propositiori4, Qg is a
Tallini setin PG3, ¢) of sizeq? 4 1 and not containing lines; henfH an elliptic quadric.
The g-points irB are tangent lines t@g (cf. TheorenB). A cardinality argument implies
the converse.

Casel.2: dimVg = —1, |Qg| > ¢2 + 1. Since there are secant g-line@g| < 03. By
Propositionsl4, 13 and5, there is a g-point* € B such that each st& containing¢*
intersectdB in a g-line. As aline of P@3, ¢), £* is contained iDg. LetA be a point ofQg
not on¢*. The g-lineS4 N B is a pencil of lines which are non-secant@®g. One line in
the pencil, say, intersectg™* in a pointA’. Thus¢ is contained inQDg. Sincel U £* # QOg,
there are a poinB in Qg but not on¢ U ¢*, and a linem that is contained iDg and is
incident with bothB and ¢*, by the above argument. B is on the planeA¢*, then by
Theorem10 the whole plane is contained B, contradicting Propositiod6. Thusm is
not on the planeA¢*. On the other hand, sind&, ¢ € B, so S4 N B is the pencil on
the planeA¢* with centerA’. ThereforeA” andm are not incident, and andm are skew
lines.

By a similar argument, any poiiton ¢ belongs to a line oB, which is contained irQg
and meetsn. More precisely, such a line is containedfX) (cf. Propositionl5). Sincex
is a one-to-one map, we obtajri- 1 lines contained i which are pairwise skew. So,
Q8| > 05.

In [9] it is proved that a Tallini sei in PG(n, ¢) (g odd,n > 3), distinct from PGn, ¢)
and such thatkK|>0,_; is either the union of a prime andtadimensional subspace
(—=1<t<n—1), oranon-singular quadric in a space of even dimension, or a cone project-
ing such a quadric, or a non-singular hyperbolic quadric in a space of odd dimension, or a
cone projecting a non-singular hyperbolic quadric. Si@gecontaingy + 1 pairwise skew
lines, Qg is a non-singular hyperbolic quadric. The self-conjugate lines of such quadric are
exactlyfs; so they are precisely the elementBof

Case2: dimVg = 0. Since in this case Theoregndoes not apply, we have to prove
that every g-point irB is a line of PG3, ¢) that meetsDg. This is clear for the g-points
in®. If £ € B\ ® and/{ is external toQg, then by Propositio(ii) each star intersects
B in the union of two lines. This implied N B| = 242 + 2 + 1. On the other hand,
writing o for the number of ruled planes througtwhich are contained iB, one obtains
i+ N B| = (« + 1)¢2 + g + 1, contradicting the previous equality. Théiss a line in
PG(3, ¢) that is either tangent to or contained@g.

By Propositionl and LemmaB, |B| = 03 + ¢°. By assumption there is a secant g-line,
which is contained in a ruled plarfg. ThusTp N B is a dual(g + 1)-arc on a planer. Let
Lo € Top N B. Any g-line which containgg and is secant t@p N B is contained in a star
not in Sp. In this way we obtain thaf points on¢g do not belong taQg. So, in PGS, ¢)

Lo is tangent toQp. The lines of P@3, ¢) belonging toTy N B are tangent tQYg, and
C = m N Qg is a non-singular conic. By Propositi@(i), Og is a cone projecting. The
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number of self-conjugate lines of such a conésis- ¢2, i.e. they are precisely the elements
of B.
Case3: dimVg = 1. In this caseB| = 03 + qz. The lines incident with/g are exactly
03+ ¢2. ThusB is a special linear complex (contradicting the existence of secant g-lines).
Case4: dimVg > 1. This impliesB = R, a contradiction. [

For more information on the case in whiBhs not ruled the reader is referred[idb,16]
It is an open problem, however, whether such a possibility occurs.

Proposition 18. The assumptiodim Vg # n — 3 in Theorens(ii) is superfluous

Proof. Assume thaB is covered by g-subspaces of dimension 2 and dimVg = n — 3.
Also assume that there are secant g-lines.\Lahd V' be complementary subspaces of
PG(n, q) such thatV € Vg and dimV = n — 4, dimV’ = 3. Let Qg be defined as
in Proposition7. By Theoreml7, Qg is a quadric and by Propositiotsand7, Qg is a
singular quadric. By Propositior{iib), B is the set of all self-conjugate lines ¢fs. [

4. The general case

Proposition 19. LetS € S. (i) If S N B is a g-subspace of dimensian- 3, then for each
¢ € SNBthereis as* € S such thatt € $* C B. (i) If Vg = @, then0,_» — ¢"3<|SN
BI< 0n72 + qnig'

Proof. (i) We prove the statement by induction onFirst, letn = 3. If S N B is a g-point,
then, by Lemma3, 7* # (. By Propositionl12 there existsS* € S such thatS* C B.
Obviously,S* NS = SN B.

Next, assume > 3. LetS N B be a g-subspace of dimensionr- 3. Let Sy, S», ..., S,
be the stars throughother tharS Such stars arg + 1 g-subspaces of dimensian- 1.

Denote byl{ the set of all g-primes o through¢ which do not contair§ N B. There
are 0,,_% g-primes of S through ¢. Exactly ¢ 4+ 1 of these g-primes contaifi N B, so
Ul =q On—a.

ForanyZ e U, the lines of PGn, ¢) belonging ta> are contained in a prime of R@, ¢),
sayf(X2). We obtain a one-to-one mgjdefined ori/.

LetW, bethe setofallg-primes ¢f,i =1, 2, ..., g.Leta; (2) be the set of all g-points
in S; which are lines contained if(2). We obtainqmapsx; : U - W; (i =1,2,...,q).
Eacho; is one-to-one, and if # j, 2, 2" € U, theno; (2) # o;(2"). For anyX € U, let
I's = (Rx, Fx) be the Grassmannian of the linegig). InT'x, X isastar,and NBis a
g-subspace of dimensian— 4. By induction assumption, ii'y there is a stak™* such that
¢ e Z* C Ry NB. SuchX* is of typew; (X) for somei. Therefore there are at leagll,,_4
distinct g-subspaces of this kind which are containe8.imhis implies that for somég
S; N B contains at least0,_4 > 2 distinct g-primes and the$} C B (cf. Propositiord).
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(i) The g-quadricS N B is different from the union of two distinct primes, whether
rational overl, (cf. Propositiord) or not (by the above arguments). Then the statement
is a consequence of the following general property of the quadried:iff a quadric in
PG(d, q) (d >2) andQ is different from the union of two distinct primes (rational oVgr
or in a quadratic extension), thép_1 — ¢¢2<|Q|<04_1 + ¢?2. This may be seen by
induction ond. If @ is a non-singular quadric in R@, ¢), d > 2, then|Q| = 0,_1 for q
even andQ| = 0,_1 + ¢“¢~Y/2 for d odd, and the assertion holds dfis singular, then it
is a cone[P}Q’, whereP is a point and?’ is a quadric in a prime for which, by induction
assumptionfly_» — g?3<|Q/|<04_2 + ¢?~3. In this case the statement follows from
1Ql =1+¢|Q]. O

Proposition 20. If Vg = # and¢ € B, then
14+ @+ DOz —¢" 3= NBISI+ @+ D0h2+¢"3-1D. (4

Proof. Each g-point ing+ \ {¢} belongs to precisely one st@isuch that e S, and there
areq + 1 stars througls. Then the statement follows from Propositib®(ii). [

Proposition 21. If n >4, Vg = ¥ and S € S, then the singular g-subspace {\e. the set
of singular g-pointysof the g-quadricS N B is of dimension different from — 4.

Proof. Assume on the contrary thatn B is a cone projecting fromV a non-singular
g-conic of a 2-dimensional star The vertexVis non-empty, so let be a g-point of\V.

Now, if ¢ is a g-line suchthat € ¢ C Bande £ W, then the ruled plang, containing
¢ is contained irB. This may be seen in this wal ¢, the span of¥ U ¢, is a g-subspace
that meets in a g-point¢1 € B. If U is a g-subspace of dimensian— 3 containingwW
and intersecting in a g-pointé, € B, ¢2 # 1, and¢’ is a g-line such that € ¢’ C U
and¢’ € W, theng’ C B. The intersectioiW ¢¢’) N ¢ is a g-line and is secant & As a
consequence, the g-plane= ¢¢’ satisfies) "B = ¢ U ¢’. By Lemma3, with respect to
I';, (cf. Section 2)7, < B.

In each of they + 1 g-subspaces joining/ with a g-point ine N B there are;”~* g-lines
through¢ which are contained iB but not inW. All these lines are contained in elements
of 7*. Each of the remaining” 2 + 0,_s g-lines through in Sis contained in a ruled
plane that shares at least+ 1 g-points withB. This allows to give a bound on the size of
¢+ N B. Since any two distinct ruled planes througmeet only in¢, we have

16ENBl > 14¢"*g+ D@2+ q) + @2+ 0,_5)q
= on—l + 61"72(61 + 1) (5)

The right-hand inequality in4) and 6) together giveg" 1 + ¢ + 1<0,_2 + ¢" 3, a
contradiction. O

We now state, for future reference, a simple general property of the quadrics.



200 A. Bichara, C. Zanella / Journal of Combinatorial Theory, Series A 109 (2005) 189-202

Proposition 22. LetQ and H be a quadric and a prime G(d, ¢), respectivelylf QN H
is a(d — 2)-dimensional subspace Bf3(d, q), then the singular space @ has dimension
at leastd — 3.

Proof. LetA be the matrix associated wit@. The linear mapping. : F4*t — Fo*

related toA maps ad — 1)-dimensional subspace Efl (the one associated with N H)
onto a subspace of dimension at most one. Then the kerhélad dimension at leagt— 2.
O

Theorem 23. If B is covered byn — 2)-dimensional stars and there are secant g-lines
thenQg is a quadric andB is the set of all self-conjugate lines Ofs.

Proof. Forn = 3 the result is contained in Theorehd. Then assume that the theorem
holds forn — 1> 3.

Casel: Vg = (. LetU be any prime in PG, ¢). LetT'y = (Ry, Fy) be the Grass-
mannian of lines o). WhenXis a pointinU, Sx.y = Sx N Ry will denote the set of all
lines throughX and contained itJ. Also defineBy = Ry N B. Let Qp be the set of all
pointsX in U such thatSx ¢ N B either is a g-prime ofx iy or is equal taSx 1.

We claimthatQy = Qg NU. For,ifX € Qg NU,thenSx y NB=RyNSxNBisa
g-subspace of dimension at least 3. So, the inclusio®@g N U C Qy is clear. Next, let
Y € Qp. The setSy y is a g-prime ofSy, and eitheSy y < B, or Sy, y N B is a g-prime of
Sy.v- In the former case the g-quadfig N B contains the g-primé&y ¢/, so it is a g-prime
(cf. Propositiord), andY € Qg. In the latter case, by Propositi@@ the singular g-space of
the g-quadricSy N B has dimensioi >n — 4. The equality is ruled out by Propositi@i.
Since the g-quadric can be neither the union of two distinct g-primes (Propo4jtionr
a g-subspace of dimensian— 3 (Propositionl¥(i)), sod # n — 3. Therefored = n — 2,
Sy N B is a g-prime ofSy, andY € QOg.

Next, we prove thaQy # U. There is a secant g-line B, say ¢. The planer of
PG(n, ¢) containing the pencip shares withJ at least one liné*. Furthermorel; NBis a
g-(¢ +D)-arc. If Qy = U, then all stars througti* intersecB in g-subspaces of dimension
n — 2. On the other hand, such stars interggdn exactly theg + 1 g-lines on7;, through
£*. Among such g-lines there are secant g-lines, a contradictior2 $6# U . In particular
I'y contains g-lines that are secanBp.

LetZ € By. The g-point? belongs to an — 2)-dimensional star contained B So,?
belongs to gn — 3)-dimensional star contained By, .

We proved so far thaBy is a tangential Tallini set in the Grassmannian of linesJof
covered by(n — 3)-dimensional stars, that there exist secant g-lineBgoand Qy =
Qg N U. By the induction assumptiom@g N U is a quadric inJ andBy is the set of all
self-conjugate lines oPg N U. SinceU is arbitrary,Qg itself is a quadric. I € B, take
any primeU of PG(n, ¢) containing; sincef is a self-conjugate line oPg N U, € is a
self-conjugate line 00g, too. Conversely, each self-conjugate lingf belongs to some
By, by the induction assumption.
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Case2: Vg # (. Let A € V. Taking the notation of Propositiofy with V = {A}, we
investigate the tangential Tallini sBt. SinceB is covered byn — 2)-dimensional star®’
is covered byn — 3)-dimensional stars.

We claim thatB’ has secant g-lines iR’. By assumption there is a g-ling such that
¢ N B| = 2. Such g-line is a pencil lying on a plape The pointA is not onp, since
otherwiseT, N B would be a g-line or the whol&,. The projection ot from Aonto V" is
a pencil¢’, and by Propositiof(iib) such¢’ is secant td’.

By the induction assumptio@g' is a quadric invV’ andB’ is the set of all self-conjugate
lines of Qg/. By Proposition6, sinceA € Vg, Qg is a cone with verteXA projecting
Q = Qg N V'. Proposition/(iia) states thal = Qg/, thenQp is a quadratic cone.

Now, we claimB is the set of all self-conjugate lines @&. Each line of PG@n, ¢) through
Abelongs td and is self-conjugate with respect@s. Let¢1 € R\ S4, and let¢) be the
projection of¢y fromAontoV’. SinceQg is a cone, the projection éf N Qg is ¢} N Op'.
Hencet; is a self-conjugate line ofg if and only if ¢} € B". By Proposition7(iib) this is
equivalentt’; e B. O

Now we are able to summarize Theorehisand?23.

Theorem 24. If B # R, andB is covered byn — 2)-dimensional starghen either(i) Op
is a quadric andB is the set of all self-conjugate lines ¢fg, or (i) g = P andB is a
linear complex

It is still an open problem, whether the assumption on(the 2)-dimensional stars can
be removed. For = 3 a counterexample could be a #ebf lines such thaK intersects
every ruled plane in a dual conic and every star in the lines of a quadratic cone.

If a setK with the above properties exists, then it is possible to give an interesting
counterexample also far = 4. Assume thaK and PG3, ¢) are embedded in P@, ¢),
and letA be a point in P@&4, ¢) off PG(3, ¢). Next, letK’ be the union ofS4 and the set
of all lines projecting fromA a line belonging td. For a planer of PG(4, ¢) two cases
can occur. (i) IfA belongs tar, then the projection ot on PG3, ¢) is a line, say; in case
¢ € K, we haveTl, C K’', otherwiseT, N K’ is a pencil with centeA. (ii) If A does not lie
on 7, then the projection oft on PG3, ¢) is a planer’, soT; N K’ is a dual conic. This
implies thatK’ is a tangential Tallini set. By (ii), in every stdz # S, there are secant
g-lines. ThereforeD g = {A}. It should be noted that if such a skt exists, then it is
covered by g-planes, so that in Theor2dthe words (n — 2)-dimensional stars” cannot
be replaced by (i — 2)-dimensional g-subspaces”.
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