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Abstract

A Tallini set in a semilinear space is a setB of points, such that each line not contained inB
intersectsB in at most two points. In this paper, the following notion of a tangential Tallini set in the
Grassmannian�n,1,q ,qodd, is investigated: a Tallini set is called tangential when it meets every ruled
plane (i.e. the set of lines contained in a plane of PG(n, q)) in eitherq + 1 orq2 + q + 1 elements. A
Tallini setQB in PG(n, q) can be associated with each tangential Tallini setB in �n,1,q . Each� ∈ B
is a line of PG(n, q) intersectingQB in either 0, or 1, orq+1 points; whenn �= 4 andB is covered by
(n − 2)-dimensional projective subspaces of�n,1,q the first case does not occur. IfB is a tangential
Tallini set in�n,1,q covered by(n − 2)-dimensional subspaces, any of which is in PG(n, q) the set
of all lines through a point and in a hyperplane, then eitherQB is a quadric, andB is the set of all
lines contained in, or tangent to,QB, orB is a linear complex.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Outline

In [10–13], Tallini developed the theory ofk-sets in Grassmann manifolds as a natural
extension of the combinatorial investigations of the finite projective spaces. This was the
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starting point for further work on sets of lines in particular positions with respect to quadrics,
such as the secant lines and the self-conjugate lines, i.e. lines which are tangent to, or con-
tained in, a quadric. IfQ is a possibly singular quadric and� is a plane in the projective space
PG(n, q), the self-conjugate lines ofQwhich are contained in� form either a pencil, or a
dual conic, or the whole dual plane. This motivated us to carry out a general investigation
on the sets of lines satisfying such property, and to call them tangential Tallini sets. They
include the linear complexes. It is shown in Theorems8 and10 that any tangential Tallini
setB is related to a Tallini setQB in PG(n, q). We characterize by means of a common
property the set of self-conjugate lines of a quadric in PG(n, q), including singular quadrics,
and the linear complexes: see Theorem24. So, several results, given by de Resmini[5,6],
Tallini [11] and Venezia[15,16], are unified, improved and generalized. Similar charac-
terizations of different sets of lines related to a quadric are due to de Resmini, Ferri, and
Tallini [4,7,10].

1.2. Notation

Let PG(n, q) = (P,R),n�3, be then-dimensional projective space over the Galois field
Fq , q odd, and�n,1,q = (R,F) the Grassmann space representing the lines of PG(n, q).
Here,P, R andF are the sets of all points, all lines and all pencils in PG(n, q), respectively,
apencilbeing the set of all lines through a point in a plane. Since�n,1,q is a semilinear space,
the elements ofR andF are also calledg-pointsandg-lines, respectively. In a similar way
theg-planesandg-subspaces, that is, projective planes and subspaces contained in�n,1,q ,
are defined. For background on semilinear spaces, also called partial line spaces, the reader
is referred to[14].

If � is a plane of PG(n, q), denote byT� the set of lines of�. Such aT� is called aruled
plane, and is a g-plane. The set of all ruled planes will be denoted byT . A star of lines,
star for short, is the setSA of all lines in PG(n, q) through a pointA, thecenterof the star.
We denote byS the set of all stars. Ad-dimensional staris the set of all lines belonging to
a common star and contained in a(d + 1)-dimensional subspace of PG(n, q). So, a star is
a (n− 1)-dimensional star, a pencil is a one-dimensional star.

In this paper,B will always denote atangential Tallini set, i.e. a set of g-points, such that

(i) for any� ∈ F , there holds|� ∩ B| ∈ {0,1,2, q + 1};
(ii) for any T ∈ T , there holds|T ∩ B| ∈ {q + 1, q2 + q + 1}.

So, for everyT ∈ T , eitherT ⊆ B, or T ∩ B is a g-line or a g-(q + 1)-arc, where a
g–k-arc is a set ofk g-points, no three of them collinear. An example of a set of g-points
satisfying (i) and (ii) is given by the set of self-conjugate lines of a quadric in PG(n, q).

An element� of F is called anexterior, tangentor secantg-line when|� ∩ B| is equal
to 0, 1 or 2, respectively.

The number of points in ani-dimensional projective space is denoted by�i = (qi+1 −
1)/(q − 1), i ∈ N. Let S0 be the set of all starsS such that eitherS ⊆ B, or S ∩ B
is a g-prime ofS; that is,S ∩ B is a hyperplane of the projective spaceS. Let QB be
the set of the centers of all stars inS0, andVB ⊆ QB the set of the centers of all stars
which are contained inB. Finally, letT ∗ be the set of all ruled planes which are contained
in B.
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2. General properties of tangential Tallini sets

Proposition 1. The cardinality ofB is equal to

�n�n−1

�2
+ |T ∗| q2

�n−2
. (1)

Proof. Computing in two ways the pairs(�, T ) with T ∈ T and� ∈ B ∩ T gives

|B|�n−2 = |T ∗|�2 +
(

�n�n−1�n−2

�2�1
− |T ∗|

)
�1. �

By Proposition1, if n ≡ 0,2 (mod 3), then�n−2 divides|T ∗|.

Proposition 2. If S ∈ S and� ∈ R \ S, then there exists precisely oneT ∈ T such that
� ∈ T andT ∩ S ∈ F .

Lemma 3. Assumen = 3 and letS ∈ S. Then one of the following holds:

(a) |S ∩ B| = 1 and, in this case, |T ∗| = q + 1;
(b) S ∩ B is a g-line, and |T ∗| ∈ {0, q + 1}; also, |T ∗| = q + 1 if, and only if, the g-line

S ∩ B is contained in an element ofT ∗;
(c) S ∩ B is a g-(q + 1)-arc, andT ∗ = ∅;
(d) S ∩B = �1 ∪ �2,where�1 and�2 are two distinct g-lines; in this case|T ∗| = q + 1,

and each of both g-lines is a subset of an element ofT ∗;
(e) S ⊆ B, andT ∗ �= ∅.

Proof. We apply Proposition2 in order to compute the number of elements ofB.
Case1:S∩B is a g–k-arc (0�k�q+1). For everyT ∈ T having non-empty intersection

with S, we have|T ∩ B| = q + 1. This gives the following properties.

1. On thek(k − 1)/2 ruled planes which meetS in a secant g-line there are exactly(q −
1)k(k − 1)/2 g-points ofB \ S.

2. On thek(q+2−k) ruled planes which meetSin a tangent g-line there areqk(q+2−k)

g-points ofB \ S.
3. On the�2 − k(k − 1)/2− k(q + 2− k) ruled planes which meetS in an exterior g-line,

there are(q + 1)(�2 − k(k − 1)/2 − k(q + 2 − k)) g-points ofB \ S.

By adding thek g-points ofS ∩ B, we obtain|B| = q3 + 2q2 + (2 − k)q + 1. Let
a = |T ∗|/(q + 1). By Proposition1, a is a natural number such thatq(1 − a) = k − 1.
Therefore, we have either (a) or (c).
Case2: S ∩ B is not a g-arc, and S �⊆ B. In this caseS ∩ B contains a g-line�.

If a g-point � ∈ S \ � such thatS ∩ B = � ∪ {�} exists, then, computing as in Case
1, |B| = q3 + 2q2 + 1 when� is contained in an element ofT ∗, |B| = q3 + q2 + 1
otherwise, contradicting Proposition1. Therefore,S ∩ B is either a g-line, or the union of
two distinct g-lines�1 and�2. In the latter case, computing once more as in Case 1 gives
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|B| = q3 + bq2 + q + 1, whereb ∈ {0,1,2} is the number of elements ofT ∗ among the
ruled planes containing�1 or �2. Proposition1 impliesb = 2 and|T ∗| = q + 1.

If S ∩ B is a g-line, then|B| = q3 + (c + 1)q2 + q + 1, wherec ∈ {0,1} is the number
of elements ofT ∗ containingS ∩ B. This implies (b).
Case3: S ⊆ B. Since there is a g-point� in B \ S, the ruled plane through� meetingS

is contained inB. �

Notation. 1. The set of all g-points collinear with� ∈ R, including�, is denoted by�⊥.
2. Let ε be a two-dimensional star; that is,ε is the set of all lines in a star in a three-

dimensional subspace of PG(n, q), sayUε. LetPε, Rε and�ε = (Rε,Fε) be the point set,
the line set and the Grassmannian of lines ofUε, respectively. LetBε = Rε ∩ B. Clearly
Bε is a tangential Tallini set in�ε.

Proposition 4. LetS ∈ S. If S is not contained inB, thenS ∩ B is a g-quadric in S.When
VB = ∅, such a g-quadric cannot be the union of two distinct g-primes of S.

Proof. Let ε be a two-dimensional star contained inS. By Lemma3, applied to the Grass-
mannian�ε, eitherε ⊆ B, or ε ∩ B is a possibly singular g-conic. Any set of pointsK in a
projective space, such that every plane section not contained inK is a conic, is a quadric or
the whole space[3,8].

Next, assume thatS ∩ B is the union of two distinct g-primes ofS, sayV1 andV2, and
VB = ∅. Let �0 ∈ V1 ∩ V2. We now obtain two bounds for|�⊥

0 ∩ B|.
Let � be a g-line through�0. Assume that for ani ∈ {1,2}, � is contained inVi and

intersectsV3−i only in �0. Then there is a g-plane� in S that contains� and such that
� ∩B is the union of two distinct lines. By Lemma3, applied to��, the unique ruled plane
containing� is a subset ofB. The ruled planes through�0 meet pairwise only in�0, and
there exist 2qn−3 such g-planes meetingS in a line that is contained in exactly one of the
primesV1 andV2. Each of the remaining ruled planes through�0 intersectsB in at least
q + 1 g-points. Therefore

|�⊥
0 ∩ B| � 1 + 2qn−3(q2 + q)+ (�n−2 − 2qn−3)q

= �n−1 + 2qn−1. (2)

Next, every g-point collinear with�0 belongs to one of theq + 1 stars through�0. By the
assumptionVB = ∅, every star intersectsB in at most�n−2 +qn−2 g-points (the cardinality
of two g-primes). Hence

|�⊥
0 ∩ B| � 1 + (q + 1)(�n−2 + qn−2 − 1)

= 2�n−1 + qn−2 − q − 1. (3)

From (2) and (3),

qn−1 − �n−2 − qn−2 + q + 1�0,

a contradiction. �
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Proposition 5. Let�∗ ∈ B,S ∈ S andS1, S2 ∈ S0 such thatS1 �= S2andS∩S1∩S2 = {�∗}.
ThenS ∈ S0.

Proof. First, we prove the statement under the assumptionn = 3. It is convenient to deal
with four cases.
Case1: there existS′, S′′ ∈ S such thatS′ ∩S′′ = {�∗} andS′ ⊆ B, S′′ ⊆ B. Each g-line

� in S through�∗ is contained in precisely one ruled planeT. The intersectionsT ∩ S′,
T ∩ S′′ are two distinct g-lines contained inB. ThusT ⊆ B and� ⊆ B. As a consequence,
S ⊆ B.
Case2: there existS′, S̃ ∈ S such thatS′ ∩ S̃ = {�∗}, S′ ⊆ B, and S̃ ∩ B is a g-line,

say�. Let T� be the ruled plane containing�. The g-lines� andT� ∩ S′ are distinct and
contained inT� ∩ B, soT� ⊆ B. Consider a ruled planeT �= T� such that�∗ ∈ T . The

g-lineT ∩ S′ is contained inB, whereasT ∩ S̃ ∩ B = {�∗}, henceT ∩ B ⊆ S′. Therefore,
any g-line� through�∗ either is contained inB, when� ⊆ S′ or � ⊆ T�, or is tangent to
B. This implies that any star through the g-point�∗ and other thanS′ meetsB in a g-line.
Case3: there existsT ∈ T ∗ such that�∗ ∈ T . Any � ∈ (�∗)⊥ belongs to a ruled plane

through�∗. Then|(�∗)⊥ ∩B|�2q2 +q+1. Assume we are neither in Case 1 nor in Case 2.
Then|(�∗)⊥ ∩B∩Si | = q + 1 for i = 1,2, and, for every starS′′′ through�∗ other thanS1
andS2, |(�∗)⊥ ∩B∩S′′′|�2q+1. Therefore|(�∗)⊥ ∩B|�1+2q+ (q−1)2q = 2q2 +1,
a contradiction.
Case4: otherwise. Let T̃ be a ruled plane through�∗. The g-linesT̃ ∩ S1 and T̃ ∩ S2

are distinct and tangent to, or contained in,B, henceT̃ ∩ B is a g-line. This implies that
any g-line through�∗ is tangent to, or contained in,B. If two of theq + 1 g-lines through
�∗ are contained in a common star, then, by Lemma3, Case 3 occurs, which is impossible.
Therefore, the intersection ofB with every star containing�∗ is a g-line.

Next, assumen > 3. Let ε be any g-plane contained inS and such that�∗ ∈ ε. The
intersectionεi = Rε ∩ Si is a g-plane fori = 1,2. ThusBε ∩ εi = B ∩ Rε ∩ Si either is a
g-line inεi , or is equal toεi . Since Proposition5 has already been proved forn = 3, either
ε ⊆ B, or ε ∩ B is a g-line.

Assume�1 and�2 are two distinct g-points inS ∩ B. If ε is a g-plane through�1, �2 and
�∗, then, by the previous argument, the g-line�1�2 is contained inS ∩ B. Consequently
S ∩ B is a g-subspace ofS.

Every g-line�′ in S lies on a g-plane ofS through�∗, so�′ ∩ S ∩ B �= ∅. Therefore,
eitherS ⊆ B, or S ∩ B is a g-prime ofS. �

Definition. For a subspaceV of a projective spaceP and a setI ⊂ P \V , thecone VIwith
vertex Vis the set of all points on the lines joining a point ofV to a point ofI.

Proposition 6. Let� be the set of all lines inPG(n, q) which are incident withVB. Then

(i) QB is a cone with vertexVB;
(ii) for everyS ∈ S, S ∩ B is a cone with vertexS ∩ �.
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Proof. (i) Let A,B ∈ VB,A �= B, and{�} = SA ∩ SB . Each ruled planeT through� meets
B in at least two distinct g-linesT ∩ SA andT ∩ SB ; therefore,T ⊆ B. Consequently, the
line of PG(n, q) joiningAandB is contained inB andVB is a subspace of PG(n, q). On the
other hand, by Proposition5, every line of PG(n, q) intersectingVB is either tangent to, or
contained in,QB.

(ii) Clearly � ⊆ B. SinceVB is a subspace of PG(n, q), S ∩ � is a g-subspace ofS.
Assume�0 ∈ S ∩ �, �1 ∈ S \ �. Let � be the g-line�0�1 andC a point of PG(n, q)
incident with both�0 andVB. There is exactly one ruled plane containing�, sayT. The
g-lineT ∩SC is contained inB. Thus, eitherT ∩B = T ∩SC , and�∩B = {�0}, orT ⊆ B,
and� ⊆ B. So, every g-line inS incident withS ∩ � either intersectsB in exactly one
point, or is contained inB. �

Proposition 7. Let V andV ′ be complementary subspaces ofPG(n, q) such thatV ⊆ VB,
anddimV ′ �3.Let�′ = (R′,F ′) be theGrassmannian of the lines ofV ′,andB′ = R′ ∩B.
Then

(i) B′ is a tangential Tallini set of�′; if V = VB, then no star of�′ is contained inB′.
(ii) LetQB′ be the set of points ofV ′ which are centers of stars of�′ intersectingB′ in

g-subspaces of dimensiond� dimV ′ − 2.Then the following hold.
(a) QB′ = QB ∩ V ′;
(b) for any line� disjoint to V, the line� belongs toB if, and only if, the projection in

PG(n, q) of � from V ontoV ′ is a g-point ofB′.

Proof. (i) It is clear thatB′ is a tangential Tallini set of�′. Now assume thatV = VB and
there is a star of�′ contained inB′. Hence a pointA of V ′ exists such thatSA ∩ R′ ⊆ B′.
In SA the g-subspacesSA ∩ R′ andSA ∩ � are complementary. Then, by Proposition6(ii),
SA ⊆ B, a contradiction.

(iia) LetC ∈ QB′ . EitherSC ∩B′ is a g-prime ofSC ∩R′, orSC ∩R′ ⊆ B′. This implies,
by Proposition6(ii), that SC ∈ S0.

Conversely, ifD ∈ QB ∩ V ′, thenSD ∩ B is a g-prime ofSD or SD ⊆ B, thusSD ∩ B′
is a g-prime ofSD ∩ R′ or SD ∩ R′ ⊆ B′.

(iib) Let �′ be the projection of� onV ′. If � and�′ have a common point, then there is a
plane� in PG(n, q) containing�, �′ and a pointE of V. The pencil of lines� with centerE
on� is a subset ofB. Then eitherT� ⊆ B, and�, �′ ∈ B, or T� ∩ B = � and�, �′ �∈ B.

Now assume that� and�′ are skew. Take a linem incident with both� and�′, but not
withV. Let�1 be the plane containing the lines� andm, and�2 the plane containing�′ and
m. Each�i meetsV in a point,i = 1,2. The same argument as above proves that� ∈ B if,
and only if,m ∈ B, as well asm ∈ B if, and only if,�′ ∈ B. �

Theorem 8. (i) Every� ∈ B is a line ofPG(n, q) that intersectsQB in either0, or 1, or
q + 1 points.

(ii) If dimVB �= n− 3,n �= 4 andB is covered by g-subspaces of dimensionn− 2, then
each g-point ofB is a line ofPG(n, q) contained in, or tangent to, QB.
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Proof. (i) is a straightforward consequence of Proposition5. As to (ii), it is enough to prove
that any g-point� in B \ � is on a starS∗ such thatS∗ ∈ S0.

Assume dimVB > n − 3 and let� be a plane through�. Since� meetsVB, it contains
q + 1 lines ofB other than�. ThusT� ⊆ B. Hence, any star containing� is in S0.

Next, assume dimVB < n − 3. LetU be a g-subspace of dimensionn − 2 such that
� ∈ U ⊆ B. Since dimU �= 2, there is a starSA such that� ∈ U ⊆ SA ∩ B. Let V ′ be
a subspace of PG(n, q) containing� and complementary toVB. We have dimV ′ �3. By
Propositions7 and4, keeping the notation in Proposition7 (with V = VB), SA ∩ R′ ∩B is
a g-quadric inSA ∩ R′ containing the g-primeU ∩ R′. By Proposition4, A ∈ QB′ , then
Proposition7 givesA ∈ QB. �

It will turn out that dimVB = n− 3 is no real exception (cf. Proposition18).

Proposition 9. Let �∗ ∈ R, S ∈ S andS1, S2, S3 ∈ S0 such thatS1 �= S2 �= S3 �= S1 and
�∗ ∈ S ∩ S1 ∩ S2 ∩ S3. ThenS ∈ S0.

Proof. By Proposition5 we may assume�∗ �∈ B. Let T be a ruled plane through�∗. By
assumption, the g-linesT ∩Si are three distinct tangent g-lines toB. ThusT ∩B is a g-line.
Therefore, any g-line containing�∗ is a tangent g-line to the g-quadricS∩B. The statement
follows. �

Theorem 10. The setQB is a Tallini set inPG(n, q).

Proof. If A, B, C are three distinct points inQB on a line�∗ ∈ R, thenSA, SB, SC ∈ S0.
The statement follows from Proposition9. �

Theorem 11. If B �= R and there are no secant g-lines, thenB is a linear complex.
Conversely, every linear complex is a tangential Tallini set admitting no secant
g-lines.

Proof. Any g-line � is contained in precisely one ruled planeT. By assumption, either
T ⊆ B, or T ∩ B is a g-line. Thus, any� ∈ F is either contained inB, or intersectsB in
exactly one g-point. This property implies thatB is a linear complex[11,2]. �

3. The casen = 3

Proposition 12. Letn = 3 andT ∈ T ∗. Then there exists a starS∗ such thatS∗ ⊆ B and
S∗ ∩ T �= ∅.



196 A. Bichara, C. Zanella / Journal of Combinatorial Theory, Series A 109 (2005) 189–202

Proof. By Proposition1, aT ′ ∈ T ∗ such thatT ′ �= T exists. Let{�∗} = T ∩ T ′. Let T ′′
be a further ruled plane through�∗, and� ∈ T ′′ ∩ B \ {�∗}. Let S∗ be the star containing
both� and�∗; it meetsT, T ′ in two g-lines contained inB. Then|S∗ ∩ B| > 2q + 1. �

Proposition 13. Assumen = 3 andVB = ∅. Then|U ∩ B| = q + 1 for anyU ∈ S ∪ T .
Also, |B| = �3.

Proof. The statement follows from Propositions1, 12and Lemma3. �

We now consider aruled tangential Tallini setB; this means that each g-point inB lies
on a g-line contained inB.

Proposition 14. Assume thatB is ruled, n = 3 andVB = ∅. Then|QB|�q2 + 1. The
equality holds if, and only if, each g-point inB lies on precisely one g-line contained inB.

Proof. Compute in two ways the numberNof pairs(A, �) such thatA ∈ QB and� ∈ SA∩B.
Clearly,N = |QB|�1. By Theorem8(ii), we haveN� |B|, thus the statement follows from
Proposition13. �

Proposition 15. Assumen = 3andVB = ∅. Let� ∈ B be a line inPG(3, q) and contained
inQB.For any point X on�, let�(X) be the plane of the pencilSX∩B.Then� is a one-to-one
map defined on the set of points of�.

Proof. If X �= Y and�(X) = �(Y ), then the plane�(X) contains at least 2q + 1 lines in
B, a contradiction. �

Proposition 16. Assumen = 3, VB = ∅ andQB �= P. Then no plane inPG(3, q) is
contained inQB.

Proof. Assume on the contrary that there is a plane� contained inQB and a pointA in
PG(3, q) not belonging toQB. ThusA is not on�.

For any pointXon�, the lines throughXwhich belong toB form a pencil. Further, since
|T� ∩ B| = q + 1, soT� ∩ B is a pencil with a center point on�, sayC.

The lines ofB passing throughA intersect� in the points of a(q + 1)-arc�. Let � be
a line throughC intersecting� in two distinct pointsD andE. Let 	 be the plane through
A, D andE. Among the lines ofT	 ∩ B there are: (i)� andAD, hence all lines of the pencil
on 	 with centerD; (ii) � andAE, hence all lines of the pencil with centerE. Therefore,
|T	 ∩ B|�2q + 1, a contradiction. �
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Theorem 17. Assume thatB �= R, thatB is ruled and thatn = 3.Then one of the following
holds: (i) QB is a quadric ofPG(3, q) andB is the set of all self-conjugate lines ofQB; (ii)
QB = P andB is a linear complex.

Proof. By Theorem11, we may deal with just the case in which there exist secant g-lines.
Case1.1: dimVB = −1, |QB|�q2 + 1. By Theorem10 and Proposition14, QB is a

Tallini set in PG(3, q) of sizeq2 + 1 and not containing lines; hence[1] an elliptic quadric.
The g-points inB are tangent lines toQB (cf. Theorem8). A cardinality argument implies
the converse.
Case1.2: dimVB = −1, |QB| > q2 + 1. Since there are secant g-lines,|QB| < �3. By

Propositions14, 13 and5, there is a g-point�∗ ∈ B such that each starS containing�∗
intersectsB in a g-line. As a line of PG(3, q), �∗ is contained inQB. LetAbe a point ofQB
not on�∗. The g-lineSA ∩ B is a pencil of lines which are non-secant toQB. One line in
the pencil, say�, intersects�∗ in a pointA′. Thus� is contained inQB. Since�∪ �∗ �= QB,
there are a pointB in QB but not on� ∪ �∗, and a linem that is contained inQB and is
incident with bothB and�∗, by the above argument. IfB is on the planeA�∗, then by
Theorem10 the whole plane is contained inQB, contradicting Proposition16. Thusm is
not on the planeA�∗. On the other hand, since�∗, � ∈ B, so SA′ ∩ B is the pencil on
the planeA�∗ with centerA′. ThereforeA′ andm are not incident, and� andm are skew
lines.

By a similar argument, any pointX on� belongs to a line ofB, which is contained inQB
and meetsm. More precisely, such a line is contained in�(X) (cf. Proposition15). Since�
is a one-to-one map, we obtainq + 1 lines contained inQB which are pairwise skew. So,
|QB|��2

1.
In [9] it is proved that a Tallini setK in PG(n, q) (q odd,n�3), distinct from PG(n, q)

and such that|K|��n−1 is either the union of a prime and at-dimensional subspace
(−1� t�n− 1), or a non-singular quadric in a space of even dimension, or a cone project-
ing such a quadric, or a non-singular hyperbolic quadric in a space of odd dimension, or a
cone projecting a non-singular hyperbolic quadric. SinceQB containsq + 1 pairwise skew
lines,QB is a non-singular hyperbolic quadric. The self-conjugate lines of such quadric are
exactly�3; so they are precisely the elements ofB.
Case2: dimVB = 0. Since in this case Theorem8 does not apply, we have to prove

that every g-point inB is a line of PG(3, q) that meetsQB. This is clear for the g-points
in �. If �̃ ∈ B \ � and �̃ is external toQB, then by Proposition6(ii) each star intersects
B in the union of two lines. This implies|�̃⊥ ∩ B| = 2q2 + 2q + 1. On the other hand,
writing � for the number of ruled planes through�̃ which are contained inB, one obtains
|�̃⊥ ∩ B| = (� + 1)q2 + q + 1, contradicting the previous equality. Thus�̃ is a line in
PG(3, q) that is either tangent to or contained inQB.

By Proposition1 and Lemma3, |B| = �3 + q2. By assumption there is a secant g-line,
which is contained in a ruled planeT0. ThusT0 ∩ B is a dual(q + 1)-arc on a plane�. Let
�0 ∈ T0 ∩ B. Any g-line which contains�0 and is secant toT0 ∩ B is contained in a star
not in S0. In this way we obtain thatq points on�0 do not belong toQB. So, in PG(3, q)
�0 is tangent toQB. The lines of PG(3, q) belonging toT0 ∩ B are tangent toQB, and
C = � ∩ QB is a non-singular conic. By Proposition6(i), QB is a cone projectingC. The
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number of self-conjugate lines of such a cone is�3 +q2, i.e. they are precisely the elements
of B.
Case3: dimVB = 1. In this case|B| = �3 + q2. The lines incident withVB are exactly

�3 + q2. ThusB is a special linear complex (contradicting the existence of secant g-lines).
Case4: dimVB > 1. This impliesB = R, a contradiction. �

For more information on the case in whichB is not ruled the reader is referred to[15,16].
It is an open problem, however, whether such a possibility occurs.

Proposition 18. The assumptiondimVB �= n− 3 in Theorem8(ii) is superfluous.

Proof. Assume thatB is covered by g-subspaces of dimensionn− 2 and dimVB = n− 3.
Also assume that there are secant g-lines. LetV andV ′ be complementary subspaces of
PG(n, q) such thatV ⊆ VB and dimV = n − 4, dimV ′ = 3. Let QB′ be defined as
in Proposition7. By Theorem17, QB′ is a quadric and by Propositions6 and7, QB is a
singular quadric. By Proposition7(iib), B is the set of all self-conjugate lines ofQB. �

4. The general case

Proposition 19. LetS ∈ S. (i) If S ∩ B is a g-subspace of dimensionn − 3, then for each
� ∈ S ∩B there is aS∗ ∈ S such that� ∈ S∗ ⊆ B. (ii) If VB = ∅, then�n−2 − qn−3� |S ∩
B|��n−2 + qn−3.

Proof. (i) We prove the statement by induction onn. First, letn = 3. If S ∩ B is a g-point,
then, by Lemma3, T ∗ �= ∅. By Proposition12 there existsS∗ ∈ S such thatS∗ ⊆ B.
Obviously,S∗ ∩ S = S ∩ B.

Next, assumen > 3. LetS ∩ B be a g-subspace of dimensionn − 3. LetS1, S2, . . . , Sq
be the stars through� other thanS. Such stars areq + 1 g-subspaces of dimensionn− 1.

Denote byU the set of all g-primes ofS through� which do not containS ∩ B. There
are �n−2 g-primes ofS through�. Exactly q + 1 of these g-primes containS ∩ B, so
|U | = q2�n−4.

For any� ∈ U , the lines of PG(n, q) belonging to
 are contained in a prime of PG(n, q),
say�(
). We obtain a one-to-one map� defined onU .

LetWi be the set of all g-primes ofSi , i = 1,2, . . . , q. Let�i (
) be the set of all g-points
in Si which are lines contained in�(
). We obtainqmaps�i : U → Wi (i = 1,2, . . . , q).
Each�i is one-to-one, and ifi �= j , 
,
′ ∈ U , then�i (
) �= �j (
′). For any
 ∈ U , let
�
 = (R
,F
) be the Grassmannian of the lines of�(
). In �
, 
 is a star, and
∩B is a
g-subspace of dimensionn− 4. By induction assumption, in�
 there is a star
∗ such that
� ∈ 
∗ ⊆ R
 ∩B. Such
∗ is of type�i (
) for somei. Therefore there are at leastq2�n−4
distinct g-subspaces of this kind which are contained inB. This implies that for somei,
Si ∩ B contains at leastq�n−4 > 2 distinct g-primes and thenSi ⊆ B (cf. Proposition4).
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(ii) The g-quadricS ∩ B is different from the union of two distinct primes, whether
rational overFq (cf. Proposition4) or not (by the above arguments). Then the statement
is a consequence of the following general property of the quadrics: ifQ is a quadric in
PG(d, q) (d�2) andQ is different from the union of two distinct primes (rational overFq
or in a quadratic extension), then�d−1 − qd−2� |Q|��d−1 + qd−2. This may be seen by
induction ond. If Q is a non-singular quadric in PG(d, q), d > 2, then|Q| = �d−1 for q
even and|Q| = �d−1 ± q(d−1)/2 for d odd, and the assertion holds. IfQ is singular, then it
is a cone{P }Q′, whereP is a point andQ′ is a quadric in a prime for which, by induction
assumption,�d−2 − qd−3� |Q′|��d−2 + qd−3. In this case the statement follows from
|Q| = 1 + q|Q′|. �

Proposition 20. If VB = ∅ and� ∈ B, then

1 + (q + 1)(�n−2 − qn−3 − 1)� |�⊥ ∩ B|�1 + (q + 1)(�n−2 + qn−3 − 1). (4)

Proof. Each g-point in�⊥ \ {�} belongs to precisely one starSsuch that� ∈ S, and there
areq + 1 stars throughS. Then the statement follows from Proposition19(ii). �

Proposition 21. If n�4, VB = ∅ andS ∈ S, then the singular g-subspace W(i.e. the set
of singular g-points) of the g-quadricS ∩ B is of dimension different fromn− 4.

Proof. Assume on the contrary thatS ∩ B is a cone projecting fromW a non-singular
g-conic of a 2-dimensional starε. The vertexW is non-empty, so let� be a g-point ofW.

Now, if � is a g-line such that� ∈ � ⊆ B and� �⊆ W , then the ruled planeT� containing
� is contained inB. This may be seen in this way:W�, the span ofW ∪ �, is a g-subspace
that meetsε in a g-point�1 ∈ B. If U is a g-subspace of dimensionn − 3 containingW
and intersectingε in a g-point�2 ∈ B, �2 �= �1, and�′ is a g-line such that� ∈ �′ ⊆ U

and�′ �∈ W , then�′ ⊆ B. The intersection(W��′) ∩ ε is a g-line and is secant toB. As a
consequence, the g-plane� = ��′ satisfies� ∩ B = � ∪ �′. By Lemma3, with respect to
�� (cf. Section 2),T� ⊆ B.

In each of theq + 1 g-subspaces joiningWwith a g-point inε ∩B there areqn−4 g-lines
through� which are contained inB but not inW. All these lines are contained in elements
of T ∗. Each of the remainingqn−2 + �n−5 g-lines through� in S is contained in a ruled
plane that shares at leastq + 1 g-points withB. This allows to give a bound on the size of
�⊥ ∩ B. Since any two distinct ruled planes through� meet only in�, we have

|�⊥ ∩ B| � 1 + qn−4(q + 1)(q2 + q)+ (qn−2 + �n−5)q

= �n−1 + qn−2(q + 1). (5)

The right-hand inequality in (4) and (5) together giveqn−1 + q + 1��n−2 + qn−3, a
contradiction. �

We now state, for future reference, a simple general property of the quadrics.
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Proposition 22. LetQ and H be a quadric and a prime inPG(d, q), respectively. If Q∩H

is a(d−2)-dimensional subspace ofPG(d, q), then the singular space ofQ has dimension
at leastd − 3.

Proof. Let A be the matrix associated withQ. The linear mappingL : Fd+1
q → Fd+1

q

related toAmaps a(d − 1)-dimensional subspace ofFd+1
q (the one associated withQ∩H )

onto a subspace of dimension at most one. Then the kernel ofL has dimension at leastd−2.
�

Theorem 23. If B is covered by(n − 2)-dimensional stars and there are secant g-lines,
thenQB is a quadric andB is the set of all self-conjugate lines ofQB.

Proof. For n = 3 the result is contained in Theorem17. Then assume that the theorem
holds forn− 1�3.
Case1: VB = ∅. LetU be any prime in PG(n, q). Let �U = (RU ,FU) be the Grass-

mannian of lines ofU. WhenX is a point inU, SX,U = SX ∩ RU will denote the set of all
lines throughX and contained inU. Also defineBU = RU ∩ B. LetQU be the set of all
pointsX in U such thatSX,U ∩ B either is a g-prime ofSX,U or is equal toSX,U .

We claim thatQU = QB ∩U . For, ifX ∈ QB ∩U , thenSX,U ∩ B = RU ∩ SX ∩ B is a
g-subspace of dimension at leastn− 3. So, the inclusionQB ∩U ⊆ QU is clear. Next, let
Y ∈ QU . The setSY,U is a g-prime ofSY , and eitherSY,U ⊆ B, orSY,U ∩B is a g-prime of
SY,U . In the former case the g-quadricSY ∩ B contains the g-primeSY,U , so it is a g-prime
(cf. Proposition4), andY ∈ QB. In the latter case, by Proposition22the singular g-space of
the g-quadricSY ∩B has dimension��n− 4. The equality is ruled out by Proposition21.
Since the g-quadric can be neither the union of two distinct g-primes (Proposition4), nor
a g-subspace of dimensionn − 3 (Proposition19(i)), so� �= n − 3. Therefore� = n − 2,
SY ∩ B is a g-prime ofSY , andY ∈ QB.

Next, we prove thatQU �= U . There is a secant g-line toB, say�. The plane� of
PG(n, q) containing the pencil� shares withU at least one line�∗. FurthermoreT� ∩B is a
g-(q+1)-arc. IfQU = U , then all stars through�∗ intersectB in g-subspaces of dimension
n− 2. On the other hand, such stars intersectT� in exactly theq + 1 g-lines onT� through
�∗. Among such g-lines there are secant g-lines, a contradiction. So,QU �= U . In particular
�U contains g-lines that are secant toBU .

Let �̃ ∈ BU . The g-point�̃ belongs to a(n − 2)-dimensional star contained inB. So,�̃
belongs to a(n− 3)-dimensional star contained inBU .

We proved so far thatBU is a tangential Tallini set in the Grassmannian of lines ofU
covered by(n − 3)-dimensional stars, that there exist secant g-lines toBU , andQU =
QB ∩ U . By the induction assumption,QB ∩ U is a quadric inU andBU is the set of all
self-conjugate lines ofQB ∩ U . SinceU is arbitrary,QB itself is a quadric. If� ∈ B, take
any primeU of PG(n, q) containing�; since� is a self-conjugate line ofQB ∩ U , � is a
self-conjugate line ofQB, too. Conversely, each self-conjugate line ofQB belongs to some
BU , by the induction assumption.
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Case2: VB �= ∅. LetA ∈ VB. Taking the notation of Proposition7, with V = {A}, we
investigate the tangential Tallini setB′. SinceB is covered by(n− 2)-dimensional stars,B′
is covered by(n− 3)-dimensional stars.

We claim thatB′ has secant g-lines inR′. By assumption there is a g-line� such that
|� ∩ B| = 2. Such g-line is a pencil lying on a plane
. The pointA is not on
, since
otherwiseT
 ∩B would be a g-line or the wholeT
. The projection of� fromA ontoV ′ is
a pencil�′, and by Proposition7(iib) such�′ is secant toB′.

By the induction assumptionQB′ is a quadric inV ′ andB′ is the set of all self-conjugate
lines of QB′ . By Proposition6, sinceA ∈ VB, QB is a cone with vertexA projecting
Q = QB ∩ V ′. Proposition7(iia) states thatQ = QB′ , thenQB is a quadratic cone.

Now, we claimB is the set of all self-conjugate lines ofQB. Each line of PG(n, q) through
A belongs toB and is self-conjugate with respect toQB. Let �1 ∈ R \ SA, and let�′

1 be the
projection of�1 fromA ontoV ′. SinceQB is a cone, the projection of�1 ∩QB is �′

1 ∩QB′ .
Hence�1 is a self-conjugate line ofQB if and only if �′

1 ∈ B′. By Proposition7(iib) this is
equivalent to�1 ∈ B. �

Now we are able to summarize Theorems11and23.

Theorem 24. If B �= R, andB is covered by(n− 2)-dimensional stars, then either(i) QB
is a quadric andB is the set of all self-conjugate lines ofQB, or (ii) QB = P andB is a
linear complex.

It is still an open problem, whether the assumption on the(n− 2)-dimensional stars can
be removed. Forn = 3 a counterexample could be a setK of lines such thatK intersects
every ruled plane in a dual conic and every star in the lines of a quadratic cone.

If a setK with the above properties exists, then it is possible to give an interesting
counterexample also forn = 4. Assume thatK and PG(3, q) are embedded in PG(4, q),
and letA be a point in PG(4, q) off PG(3, q). Next, letK ′ be the union ofSA and the set
of all lines projecting fromA a line belonging toK. For a plane� of PG(4, q) two cases
can occur. (i) IfA belongs to�, then the projection of� on PG(3, q) is a line, say�; in case
� ∈ K, we haveT� ⊆ K ′, otherwiseT� ∩K ′ is a pencil with centerA. (ii) If A does not lie
on �, then the projection of� on PG(3, q) is a plane�′, soT� ∩ K ′ is a dual conic. This
implies thatK ′ is a tangential Tallini set. By (ii), in every starSB �= SA there are secant
g-lines. ThereforeQK ′ = {A}. It should be noted that if such a setK ′ exists, then it is
covered by g-planes, so that in Theorem24 the words “(n − 2)-dimensional stars” cannot
be replaced by “(n− 2)-dimensional g-subspaces”.
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