
Information and Computation 204 (2006) 376–407

www.elsevier.com/locate/ic

Incompleteness of states w.r.t. traces in model checking

Roberto Giacobazzi a, Francesco Ranzato b,∗
aDipartimento di Informatica, Università di Verona, Italy

bDipartimento di Matematica Pura ed Applicata, Università di Padova, Italy

Received 23 April 2004; revised 4 August 2005
Available online 20 February 2006

Abstract

Cousot and Cousot introduced and studied a general past/future-time specification language, called
-calculus, featuring a natural time-symmetric trace-based semantics. The standard state-based semantics

of the -calculus is an abstract interpretation of its trace-based semantics, which turns out to be incomplete,
that is trace-incomplete, even for finite systems. As a consequence, standard state-based model checking of
the -calculus is incomplete w.r.t. trace-based model checking. This paper shows that any refinement or ab-
straction of the domain of sets of states induces a corresponding semantics which is still trace-incomplete for
any propositional fragment of the -calculus. This derives from a number of results, one for each incom-
plete logical/temporal connective of the -calculus, that characterize the structure of models, i.e., transition
systems, whose corresponding state-based semantics of the -calculus is trace-complete.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Temporal specification languages used in automatic verification by model checking can be clas-
sified in two broad classes: linear and branching time languages. Linear time languages allow to
express properties of computation paths of the model, called traces, while specifications in branch-
ing time languages describe properties that depend on the branching structure of the model. LTL

∗ Corresponding author.
E-mail addresses: roberto.giacobazzi@univr.it (R. Giacobazzi), francesco.ranzato@unipd.it (F. Ranzato).

0890-5401/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2006.01.001

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 377

and CTL are the most commonly used languages for, respectively, linear and branching time model
checking. The relationship between linear and branching time languages has been the subject of
thorough investigation since the 1980s (see [26] for a survey). In particular, it is well known that
LTL and CTL have incomparable expressive powers [2,11,18].
Given a linear specification �, the standard universal model checking problem consists in charac-

terizing the setMC∀M(�)of states s of amodelM , i.e., a transition system (or aKripke structure), such
that any trace inM whose present time is s satisfies �. Hence, if [[�]] = {〈i, �〉 ∈ TracesM | 〈i, �〉 |= �}
denotes the trace semantics of �, where in a trace 〈i, �〉, � is a Z-indexed sequence of states and
i ∈ Zdenotes present time, thenMC∀M(�) = {s ∈ States| ∀〈i, �〉 ∈ TracesM . (�i = s)⇒ 〈i, �〉 ∈ [[�]]}.
Cousot and Cousot showed in their POPL’00 paper [10] that this can be formalized as a step of
abstraction within the standard abstract interpretation framework [8,9]. In fact, Cousot and Cou-
sot [10] consider the universal path quantifier 	∀M : ℘(Traces)→ ℘(States) which maps any set T
of traces to the set of states s such that any trace in M with present state s belongs to T and
show that 	∀M is an approximation map in the abstract interpretation sense. Hence, 	∀M is called
the universal model checking abstraction because MC∀M(�) = 	∀M([[�]]). Dually, one can define an
existential model checking abstraction 	∃M : ℘(Traces)→ ℘(States) that formalizes the standard
existential model checking problem: 	∃M(T) provides the set of states s such that there exists a
trace in M with present state s which belongs to T . According to the standard abstract interpre-
tation methodology, this universal abstraction gives rise to an abstract state semantics of a linear
language and thus transforms the trace-based universal model checking problem to a state-based
universal model checking problem. The universal state-based semantics [[�]]∀state of a linear for-
mula � is obtained by abstracting each linear temporal operator appearing in �, like next-time
or sometime operators, to its best correct approximation on ℘(States) through the abstraction
map 	∀M . This abstract semantics [[�]]∀state of � coincides with the state semantics of the branch-
ing time formula �∀ obtained from � by preceding each linear temporal operator occurring in �
by the universal path quantifier. Hence, this allows to transform the trace-based model checking
problem M , s |=trace �, i.e. s ∈ 	∀M([[�]]), to a state-based model checking problem M , s |=state �, i.e.
s ∈ [[�]]∀state.
It should be clear that state-basedmodel checking is a sound approximation of trace-basedmodel

checking, namely:

M , s |=state � ⇒ M , s |=trace �.

It should be noted that in abstract interpretation soundness is guaranteed by construction, namely
[[�]]∀state ⊆ 	∀M([[�]]) holds by abstract interpretation. However, it turns out that this approximation
is incomplete, that is, the reverse direction does not hold, even for finite-state systems. We will pro-
vide later an example for this phenomenon. Let us remark that when [[�]]∀state = 	∀M([[�]]) holds for
some linear formula �, Kupferman and Vardi [17,25] say that the formula � is branchable. Branch-
able formulae have been used by Kupferman and Vardi for studying howmodel checking of a LTL
formula � can be reduced to an equivalent model checking of the corresponding CTL formula �∀.
The above incompleteness means that universal model checking of linear formulae cannot be

reduced with no loss of precision to universal model checking on states through the universal ab-
straction. This also means that standard state-based model checking algorithms (e.g., for CTL) do
not provide exact information w.r.t. a trace-based interpretation. This opens the question whether

378 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

it is possible to find some different approximation A of the trace-based model checking problem
which (1) is still related to states, namely A refines or abstracts from sets of states, and (2) induces
an approximated model checking which is instead equivalent to trace-based model checking: for
any s ∈ States and any linear formula �,

M , s |=A � ⇔ M , s |=trace �. (∗)
It is important to remark that we do not consider generic approximations of traces, but only ap-
proximations that can be obtained by refinements or simplifications of sets of states, namely of
the domain ℘(States). Let us notice that the trivial abstraction Trivial def= {⊥}, i.e. the abstraction
carrying no information at all by confusing all the traces, i.e., 	Trivial(T) = ⊥ for any set T of
traces, satisfies the above equivalence because we always have that [[�]]Trivial = ⊥ = 	Trivial([[�]]).
More precisely, the paper answers the following question: is it possible to minimally refine/abstract
the state-based semantics of a general temporal languages so that this refinement/abstraction in-
duces a corresponding approximated model checking which is trace-complete, i.e. equivalent to
trace-based model checking? In our approach, refinements and abstractions of a semantics are in-
tended to be specified by standard abstract interpretation [8,9]. This paper provides the following
results:

(i) the only refinement of the state-based semantics that induces a trace-complete model checking
is the trace-based semantics itself;

(ii) on the opposite direction, the only abstraction of the state-based semantics that induces a
trace-complete model checking is the trivial semantics carrying no information at all;

(iii) for each basic temporal/logical operator of a past- and future-time extension of Kozen’s
�-calculus we characterize the least refinements and abstractions of the state-based semantics
which are trace-complete.

Points (i) and (ii) prove that states are, so to say, “intrinsically trace-incomplete”, since there is no
way to obtain a trace-complete model checking by modifying, through refinements or abstractions,
the state-based semantics.

The scenario. As mentioned above, our results are formulated and shown within the Cousot and
Cousot’s [10] abstract interpretation-based approach to model checking called temporal abstract
interpretation. Cousot and Cousot [10] introduced an enhanced past- and future-time temporal cal-
culus, called -calculus, which is inspired by Kozen’s �-calculus [16]. The trace-based semantics of
the -calculus is time-symmetric: this means that execution traces have potentially infinite length
both in the future and in the past. Time symmetry is not the only feature of the -calculus. The -
calculus also provides a tight combination of linear and branching time, allowing to derive classical
specification languages like LTL, CTL, CTL∗ and Kozen’s �-calculus itself, as suitable fragments.
One main achievement in [10] is that state-based model checking of transition systems (or Kripke

structures) can be viewed as an abstract interpretation of the trace-based semantics. It is worth
mentioning that this abstract interpretation-based approach has been applied to a number of tem-
poral languages by Schmidt [24] and also to modal Kripke transition systems by Schmidt [24] and
Huth et al. [15]. The semantics [[�]]trace of a temporal specification � ∈ is the set of traces in the

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 379

model M making � true. States are viewed as a universal abstract interpretation of traces through
the universal concretization ∀M : ℘(States)→ ℘(Traces) defined by

∀M(S) = {〈i, �〉 ∈ TracesM | �i ∈ S}.
This maps ∀M induces an abstract interpretation together with its adjoint universal abstraction
	∀M : ℘(Traces)→ ℘(States) defined by

	∀M(T) = {s ∈ S | for any trace 〈i, �〉 ∈ TracesM , if �i = s then 〈i, �〉 ∈ T }.
This abstract interpretation systematically induces a state-based semantics [[·]]∀state : → ℘(States).
For example, for an atomic proposition p ,

[[p]]∀state def= 	∀M([[p]]trace)
[[AXp]]∀state def= 	∀M ◦ X ◦ ∀M([[p]]∀state) = p̃re→([[p]]∀state)

whereX is the next-time transformer on traces and p̃re→ is the standard “universal pre” transform-
er of states w.r.t. the transition relation→ of the model M . The abstract interpretation approach
ensures that [[·]]∀state is sound by construction with respect to the trace semantics: for any � ∈ ,

[[�]]∀state ⊆ 	∀M([[�]]trace).
However, as proved in [10], this inclusion may be strict meaning that state-based model checking
of the -calculus is trace-incomplete, namely the above equivalence (∗) does not hold. Let us recall
an example of incompleteness from [10].

Example 1.1. Consider the following minimal transition systemM :

and consider the linear formula � = Gp ∨ FGq. We have that:

[[Gp]]trace = {〈i, �〉 ∈ TracesM | ∀j � i. 〈j, �〉 ∈ [[p]]trace}
= {〈i, · · · 1 1 1 · · ·〉 ∈ TracesM | i ∈ Z}

[[FGq]]trace = {〈i, �〉 ∈ TracesM | ∃j � i. ∀k � j. 〈k , �〉 ∈ [[p]]trace}
= {〈i, · · · 1 1 1 2 2 2 · · ·〉 ∈ TracesM | i ∈ Z}
∪ {〈i, · · · 2 2 2 · · ·〉 ∈ TracesM | i ∈ Z}.

Thus, [[�]]trace = TracesM , so that 	∀M([[�]]trace) = {1, 2}. On the other hand, we have that the state
semantics [[�]]∀state is given by the state semantics of the CTL formula �∀ = AGp ∨AFAGq. Thus,
it turns out that [[�]]∀state = {2} because inM : (i) it is possible to jump from state 1 to state 2 so that
[[AGp]]state = ∅ and (ii) it is possible to stay forever in state 1 so that [[AFAGq]]state = {2}. Hence,

M , 1 |=trace � while M , 1 �|=state �

that is, universal state-based model checking for � is trace-incomplete.

380 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

The same phenomenon holds even for standard, i.e., partition-based [6,7], or generic, i.e., ab-
stract domain-based [10,13,21,22], abstract model checking where the abstraction map actually
is a state-abstraction and can be modeled as a further abstract interpretation step of [[·]]state.
It is therefore important in order to understand the limits of state-based (concrete or abstract)
model checking with respect to properties of traces, to investigate whether it is possible to find
a semantics [[·]]? as a refinement or abstraction of [[·]]state which is complete for the trace-based
semantics [[·]]trace.
Complete core and shell. Our main goal is that of isolating the least refinements and abstractions
of state-based model checking, i.e., of ℘(States) viewed as abstract domain of ℘(Traces) through
the universal abstraction 	∀M , which are trace-complete.
Let us recall that an abstract domain A = 	(Concrete) together with an abstract semantics

f � : A→ A is complete for a semantic functionf : Concrete → Concrete when	(f(c))=f �((c))
holds for any concrete c. Thus, completeness means that abstract computations by f � are as pre-
cise as possible in the abstract domain A. Giacobazzi et al. [12] observed that completeness ac-
tually depends on the abstract domain A only, because it is enough to consider the best correct
approximation 	 ◦ f ◦ of f as abstract semantics. Thus, it turns out that completeness is an ab-
stract domain property: A is complete for f iff the equation 	 ◦ f = 	 ◦ f ◦ ◦ 	 holds. Hence,
this opens up the key question of making an abstract interpretation complete by minimally ex-
tending or restricting the underlying abstract domain. Following the terminology in [12], we call
complete shell/core of A the most abstract/concrete domain, when this exists, which refines/abstracts
A and is complete for f . Thus, complete shells add to an abstract domain the minimal amount
of information in order to make it complete, while complete cores act in the opposite direction
by removing the minimal amount of information in order to achieve completeness. As shown in
[12], complete cores always exist, while complete shells exist under the weak hypothesis that the
concrete semantics f is Scott-continuous. Furthermore, complete cores and shells enjoy a con-
structive fixpoint characterization. While it should be clear that completeness could be achieved
by refining abstract domains, perhaps it is somehow surprising that also by removing information
from an abstract domain one could obtain the completeness property. In this case the abstraction
is intended to remove from an incomplete abstract domain exactly the source of incompleteness.
Let us consider a simple example to illustrate this. Consider the following abstract domain of signs
Sign+ def= {Z, [0,+∞], [−∞, 0], [0, 9], [0]}, which additionally to sign information also represents pre-
cisely the interval [0, 9]. It turnsout thatSign+ is not complete for integermultiplication: for example,
2× 3 is approximated in Sign+ by [0, 9] while the abstract multiplication 	Sign+(2)×Sign+ 	Sign+(3)

gives [0,+∞]. However, Sign = {Z, [0,+∞], [−∞, 0], [0]}, which is an abstraction of Sign+, turns
out to be complete for multiplication. Even more, Sign is the most concrete domain which abstracts
Sign+ and is complete for multiplication, namely Sign is the complete core of Sign+ for multipli-
cation. Hence, the complete core isolated and removed from Sign+ the abstract value [0, 9], which
was the unique source of incompleteness for integer multiplication.

Main results. We characterize the complete core and shell of the universal state domain ℘(States)
for all the trace transformers of the -calculus which are sources of incompleteness: negation,
next-time, time-reversal and disjunction. We also characterize the structure of transition systems
such that universal state-based model checking is complete for next-time and time-reversal. In

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 381

particular, disjunction turns out to be the crucial connective. In fact, the trace-complete shell of the
universalstate domain for the disjunction operation is (essentially) the domain of traces itself, while
the trace-complete core is the trivial abstraction of states carrying no information at all. Let us
point out that one remarkable feature of our abstract interpretation-based approach lies in the fact
that it is fully constructive, namely we exploit general abstract interpretation results that always
provide complete cores and shells in fixpoint form.
On the basis of this analysis, we show that for the -calculus:

(1) The most abstract refinement of the domain of states that induces a trace-complete model
checking results to be the domain of traces itself.

(2) The straightforward abstraction to a noninformative singleton is the unique abstraction of the
domain of states (and hence of the domain of traces) which induces a trace-complete model
checking.

(3) For each basic temporal/logical operator of the -calculus we constructively characterize the
complete core and shell of the state abstraction for traces. These results provide the basis for
isolating fragments of the -calculus which have nonstraightforward trace-complete shells
and cores of states.

These results prove that there is noway toget a complete approximationof the trace-based seman-
tics by either refining or approximating the state-based model checking for the entire
-calculus, emphasizing the intrinsic limits of precision of state-based model checking with respect

to the trace-based semantics. Moreover, since abstract model checking can be viewed as abstract
interpretation of [[·]]state (cf. [10]), this also implies that any abstract model checking is intrinsically
incomplete with respect to the trace-semantics of the -calculus.

2. Abstract interpretation and model checking

2.1. Notation

If X is any set then Cl∩, Cl∪ : ℘(℘(X))→ ℘(℘(X)) denote, respectively, the operators that close
any subset Y ∈ ℘(℘(X)) under arbitrary intersections and unions, e.g., Cl∩(Y) def= {∩S | S ⊆ Y }. Note
that X ∈ Cl∩(Y) and ∅ ∈ Cl∪(Y) because X = ∩∅ and ∅ = ∪∅. If S ⊆ X then¬S denotes the com-
plement of S in X .
A poset P w.r.t. a partial ordering � is denoted by 〈P ,�〉 or P�. We use the symbol � to denote

pointwise ordering between functions: if X is any set, P� a poset, and f , g : X → P then f � g if for
all x ∈ X , f(x) � g(x). If P is a poset and X ⊆ P then max(X) def= {x ∈ X | ∀y ∈ X. x � y ⇒ x = y}.
We denote by lfp(f) and gfp(f) (or by lfp�(f) and gfp�(f) to emphasize the partial ordering �),
respectively, the least and greatest fixpoints, when they exist, of an operator f : P → P on a poset
P�. It is well known that if 〈C ,�,∨,∧, ,⊥〉 is a complete lattice (actually, a CPOwould be enough)
and f : C → C is monotone then both lfp(f) and gfp(f) exist and the following characterizations
hold:

lfp(f) = ∧{x ∈ C | f(x) � x}, gfp(f) = ∨{x ∈ C | x � f(x)}.

382 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

It is also well known that if f is continuous—i.e., f preserves lub’s of directed subsets or, equiv-
alently, of ascending chains—then lfp(f) = ∨i∈Nf

i(⊥), where the sequence {f i(x)}i∈N, for any x ∈
C , is inductively defined by f 0(x)

def= x and f i+1(x) def= f(f i(x)). Dually, if f is co-continuous then
gfp(f) = ∧i∈Nf

i(). A function f : C → C is (finitely) additive when f preserves lub’s of (finite)
arbitrary subsets of C , while co-additivity is dually defined.

2.2. Abstract interpretation and completeness

2.2.1. The lattice of abstract domains
In standard abstract interpretation [8,9], abstract domains can be equivalently specified either

by Galois connections/insertions (GCs/GIs) or by (upper) closure operators (uco’s). These two
approaches are equivalent, modulo isomorphic representations of domain’s objects. The closure
operator approach enjoys the advantage of being independent from the representation of domain’s
objects because an abstract domain is given as a function on the concrete domain of computation.
This feature makes closures appropriate for reasoning on abstract domains independently from
their representation. Given a complete lattice C�, playing the role of concrete domain, recall that
: C → C is a uco when # is monotone, idempotent and extensive (viz. x � #(x)). We denote by
uco(C) the set of uco’s on C . Let us recall that each # ∈ uco(C) is uniquely determined by the set
of its fixpoints, which is its image, i.e., img(#) = {x ∈ C | #(x) = x}, because # = $x. ∧ {y ∈ C | y ∈
img(#), x � y}.Moreover, a subsetX ⊆ C is the set of fixpoints of someucoonC iffX ismeet-closed,
i.e., X =M(X)

def= {∧Y | Y ⊆ X } (note that C = ∧∅ ∈M(X)). Note that when C = ℘(S)⊆/⊇, for
some set S , thenM = Cl∩/Cl∪. Often, we will identify closures with their sets of fixpoints. This does
not give rise to ambiguity, sinceone candistinguish their use as functionsor sets according to the con-
text. It is well known that uco(C) endowed with the pointwise ordering� gives rise to the complete
lattice 〈uco(C),�,",#, $x. , id〉. It turns out that the pointwise ordering between uco’s corresponds
to superset ordering of the corresponding sets of fixpoints, i.e., # � � iff img(�) ⊆ img(#). Let us
also recall that for any # ∈ uco(C) and X ⊆ C , #(∨X) = #(∨x∈X #(x)), and for any set of closures
{#i}i∈I ⊆ uco(C):

"i∈I #i = ∩i∈I #i; #i∈I #i =M(∪i∈I #i); #i∈I #i = $x. ∧i∈I #i(x).
We denote by (,C ,A,) a GC/GI of the abstract domain A into the concrete domain C through

the abstraction and concretization maps 	 : C → A and : A→ C . Thus, it is required that 	 and
 form an adjunction between C and A: 	(c) �C a⇔ a �A (a). The map 	 () is called the left
(right) adjoint of (). Let us recall that it is enough to specify either the abstraction or the con-
cretization map because in any GC the left/right adjoint map uniquely determines the right/left
adjoint map: on the one hand, any 	 : C → A admits a necessarily unique right adjoint : A→ C

defined by (a) = ∨C{c ∈ C |	(c) �A a} iff 	 is additive; on the other hand, any : A→ C admits
a necessarily unique left adjoint 	 : C → A defined by 	(c) = ∧A{a ∈ A | c �C (a)} iff is co-ad-
ditive. Recall that a GC is a GI when 	 is onto or, equivalently, is 1–1. In abstract interpretation
terms, this means that A does not contain useless abstract values, namely objects in A which are not
abstractions of some concrete object in C . Let us recall that #A

def= ◦ 	 is the uco corresponding to
the GC (,C ,A,) and, conversely, any # ∈ uco(C) induces a GI (#,C , img(#), id). Moreover, these
two constructions are one the inverse of each other. By this equivalence, throughout the paper,

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 383

〈uco(C),�〉 will play the role of the (complete) lattice of abstract domains of the concrete domain
C . The pointwise ordering on uco(C) corresponds to the standard order used to compare abstract
domains with regard to their precision: A1 � A2 in uco(C) encodes the fact that A1 is more precise
or concrete than A2 or, equivalently, A2 is less precise or more abstract than A1; in this case, we also
say that A1 is a refinement of A2 and A2 is a simplification or abstraction of A1. Lub’s and glb’s on
uco(C)have therefore the following reading as operators on abstract domains. Let {Ai}i∈I ⊆ uco(C):
(i) "i∈IAi is the most concrete among the domains which are abstractions of all the Ai’s; (ii) #i∈IAi is
the most abstract among the domains which are more concrete than every Ai—this domain is also
known as reduced product of all the Ai’s.

2.2.2. Complete abstract domains
Let (,C ,A,) be a GI, f : C → C be some concrete semantic function—for simplicity of no-

tation, we consider here unary functions—and f � : A→ A be a corresponding abstract semantic
function. Then, 〈A, f �〉 is a sound abstract interpretation, or f � is a correct approximation of f
on A, when 	 ◦ f � f � ◦ 	. The abstract function f A def= 	 ◦ f ◦ : A→ A is called the best correct
approximation of f in A. Completeness in abstract interpretation [8,12] corresponds to require the
following strengthening of soundness: 	 ◦ f = f � ◦ 	. Hence, in addition to soundness, complete-
ness corresponds to require that no loss of precision is introduced by the abstract function f � on
an approximation 	(c) of a concrete object c ∈ C with respect to approximating by 	 the concrete
computation f(c). As a very simple example, let us consider again the following abstract domain
Sign representing the sign of an integer variable.

Let us also consider the binary concrete operations of integer addition andmultiplication, point-
wise lifted to sets of integers in ℘(Z), e.g., X + Y = {x + y | x ∈ X , y ∈ Y }. Hence, it turns out that
the best correct approximation+Signon Sign of integer addition is sound but not complete because
	({−1} + {1}) = 	({0}) = [0] <Sign Z = Z�0 +Sign Z�0 = 	({−1})+Sign	({1}). On the other hand, it is
immediate to note that the best correct approximation of integer multiplication is instead complete.
Let us also recall that, by a well-known result (see, e.g., [9, Theorem 7.1.0.4] and [10, Section 6])

completeness lifts to least fixpoints, i.e., if 〈A, f �〉 is complete then 	(lfp(f)) = lfp(f �). Completeness
is an abstract domain property because it only depends on the abstract domain: in fact, it turns
out that 〈A, f �〉 is complete iff 〈A, f A〉 is complete. Thus, completeness can be equivalently stated
as a property of closures: A is complete iff 	 ◦ f = f A ◦ 	 iff ◦ 	 ◦ f = ◦ 	 ◦ f ◦ ◦ 	. Thus,
for abstract domains specified as closure operators, an abstract domain # ∈ uco(C) is defined to be
complete for f if # ◦ f = # ◦ f ◦ #. More in general, the definition of completeness is extended to
any set F of semantic functions by requiring completeness for each f ∈ F . Throughout the paper,
we will adopt the following notation: *(C , f) def= {# ∈ uco(C) | # is complete for f }, so that for a set
F , *(C , F) = ∩f∈F *(C , f). The following property will be useful later on.

∈ *(C , f) iff # ∈ *(C , {f n}n∈N) (∗)
In fact, let us show by induction on n ∈ N that if # ∈ *(C , f) then for any n ∈ N, # ∈ *(C , f n). The
case n = 0 amounts to # ∈ *(C , $x.x)which is trivially true. For n+ 1 we have that: # ◦ f n+1 = (since

384 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

∈ *(C , f))= # ◦ f ◦ # ◦ f n = (by inductive hypothesis)= # ◦ f ◦ # ◦ f n ◦ # = (since # ∈ *(C , f))
= # ◦ f ◦ f n ◦ # = # ◦ f n+1 ◦ #.
Let us also recall how completeness lifts to least/greatest fixpoints for abstract domains specified

by uco’s. If # ∈ *(C , f), where f is monotone, then lfp(# ◦ f) = #(lfp(f)). Moreover, if either #
does not contain infinite descending chains or # is co-continuous then this also holds for greatest
fixpoints, namely gfp(# ◦ f) = #(gfp(f)).

2.2.3. Complete core and shell
The fact that completeness is an abstract domain property opens the question of making an

abstract interpretation complete by minimally extending or, dually, restricting the underlying ab-
stract domain. Following [12], given a set of concrete semantic functions F ⊆ C → C and an ab-
stract domain A ∈ uco(C), the complete shell (respectively, core) of A for F , when it exists, is the
most abstract (respectively, concrete) domain As ∈ uco(C) (respectively, Ac ∈ uco(C)) which ex-
tends (respectively, restricts) A and is complete for F . In other terms, the complete shell, respectively
core, of A characterizes the least amount of information to be added to, respectively removed
from, A in order to get completeness, when this can be done. Complete shell and core of A for
F are denoted, respectively, by ShellF (A) and CoreF (A). Thus, a complete shell ShellF (A) exists
when "{A′ ∈ uco(C) |A′ � A, A′ ∈ *(C , F)} ∈ *(C , F), while a complete core CoreF (A) exists when
#{A′ ∈ uco(C) |A � A′, A′ ∈ *(C , F)} ∈ *(C , F).
These problems were solved by Giacobazzi et al. [12] who gave a constructive characterization of

complete shells and cores. Given a set of functions F ⊆ C → C , the abstract domain transformers
LF ,RF : uco(C)→ uco(C) are defined as follows:

LF (-)
def= {y ∈ C | ∪f∈F max({x ∈ C | f(x) � y}) ⊆ -}

RF (-)
def= M(∪f∈F ,y∈-max({x ∈ C | f(x) � y})).

Theorem 2.1 (Giacobazzi et al. [12]). Let F be a set of continuous functions and # ∈ uco(C). Then,
∈ *(C , F) iff LF (#) � # iff # � RF (#). Moreover, the complete shell and core of # for F exist and
are constructively characterized as follows:

ShellF (#) = #i∈NR
i
F (#), CoreF (#) = "i∈NL

i
F (#).

Thus, the complete shell of # for F can be obtained by iteratively adding to # the image of the
transformer RF on the current domain, while the complete core can be obtained by iteratively
removing from # the elements that are not in the image of the transformer LF on the current
domain.

Example 2.2.Let us consider again the abstract domainSign+which abstracts℘(Z)⊆ and the square
operation on sets of integers sq : ℘(Z)→ ℘(Z) defined by sq(X) = {x2 | x ∈ X }.

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 385

It turns out that Sign+ is not complete for sq: in fact, #Sign+(sq(#Sign+([0, 3])))=#Sign+(sq([0, 9])) =
Z, while #Sign+(sq([0, 3])) = #Sign+({0, 1, 4, 9}) = [0, 9]. Theorem 2.1 tells us that the abstract ele-
ment [0, 9] is a source of incompleteness: in fact, we have that max({X ∈ ℘(Z) | sq(X) ⊆ [0, 9]}) =
[−3, 3] �∈ #Sign+ so that Rsq(#Sign+) �⊆ #Sign+ . Moreover, [0, 9] is the unique source of incompleteness
in Sign+ because:

max({X ∈ ℘(Z) | sq(X) ⊆ Z}) = Z ∈ #Sign+
max({X ∈ ℘(Z) | sq(X) ⊆ Z�0}) = {0} ∈ #Sign+
max({X ∈ ℘(Z) | sq(X) ⊆ Z�0}) = Z ∈ #Sign+
max({X ∈ ℘(Z) | sq(X) ⊆ {0}}) = {0} ∈ #Sign+

Thus, by Theorem 2.1, we have that Coresq(Sign+) = Sign.

When f : C → C is merely monotone, in general the complete shell of an abstract domain for f
may not exist, while the complete core of an abstract domain for f always exists even if it cannot
be constructively characterized by Theorem 2.1.

Remark 2.3. Let F be a set of additive functions. Then, any F & f : C → C admits a right adjoint
f r : C → C defined by f r(y) = ∨{x ∈ C | f(x) � y}. In this case, the above operators LF and RF
can be simplified as follows:

LF (-) = {y ∈ C | {f r(y) | f ∈ F } ⊆ -}; RF (-) =M({f r(y) | y ∈ -, f ∈ F }).

2.3. Temporal abstract interpretation

Let us recall the basic notions and definitions of Cousot and Cousot’s [10] temporal abstract
interpretation framework (see also Schimdt’s paper [24]). S is any given, possibly infinite, set of
states. Discrete time is modeled by the whole set of integers and therefore paths of states are time-
symmetric, in particular are infinite also in the past: P

def= Z → S is the set of paths. As usual, an
execution path with an initial state s can be encoded by repeating forever in the past the state s.
Traces keep track of present time, so that T

def= Z× P is defined to be the set of traces. We denote
by �i ∈ S the present state of a trace 〈i, �〉 ∈ T. The trace-semantics of a temporal formula � will
be a temporal model, namely the set of traces making � true.
Temporal models will be generated by transition systems or Kripke structures, encoding some

reactive system. The transition relation→⊆ S× S is assumed to be (backward and forward) total,
i.e., ∀s ∈ S.∃s′ ∈ S. s→s′ and ∀s′ ∈ S.∃s ∈ S. s→s′. This is not restrictive, since any transition rela-
tion can be lifted to a total transition relation by adding transitions s→s for any state swhich is not
reachable (i.e., an initial state) orwhich cannot reachany state (i.e., a final state). Themodel generated
by a transition system 〈S,→〉 is therefore defined asM→

def= {〈i, �〉 ∈ T | i ∈ Z, ∀k ∈ Z. �k→�k+1}.
The pre/post transformers on ℘(S) induced by 〈S,→〉 are defined as usual:

• pre→(Y) def= {a ∈ S | ∃b ∈ Y. a→ b};
• p̃re→(Y) def= ¬(pre→(¬Y)) = {a ∈ S | ∀b ∈ S.(a→ b⇒ b ∈ Y)};
• post→(Y) def= {b ∈ S | ∃a ∈ Y. a→ b};
• p̃ost→(Y) def= ¬(post→(¬Y)) = {b ∈ S | ∀a ∈ S.(a→ b⇒ a ∈ Y)}.

386 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

The forward closure Fd : ℘(T)→ ℘(T) is defined as Fd(X) def= {〈i, �〉 ∈ T | ∃〈i, /〉 ∈ X.∀j � i.

�j = /j}. Dually, Bd(X) def= {〈i, �〉 ∈ T | ∃〈i, /〉 ∈ X.∀j � i. �j = /j} is the backward closure of X ∈
℘(T). A set of traces X is forward (backward) closed when Fd(X) = X (Bd(X) = X), while X is state
closed when X is both forward and backward closed. Thus, X is forward (backward) closed when
the past (future) does not matter, while X is state closed when the present only matters.
The reversible -calculus was introduced by Cousot and Cousot [10] as a past and future time-

symmetric generalization of the �-calculus, with a trace-based semantics. Formulae � of the revers-
ible -calculus are inductively defined as follows:

� ::= �S | �t |X | ⊕ � |�� |�1 ∨ �2 | ¬� | �X.� | �X.� | ∀�1 :�2
where S ∈ ℘(S), t ∈ ℘(S× S) and X ∈ X, for an infinite set X of logical variables. The set of
-calculus formulae is denoted by .
Let us give the intuition for the operators of the -calculus. �S stands for a state atomic proposi-

tion which holds in traces whose present state is in S . �t stands for a transition atomic proposition
which holds in traces whose next step is a transition in t. � is time-reversal that allows to express
past/future timemodalities from corresponding future/past timemodalities.⊕ is the linear temporal
next operator (usually denoted by X). Finally, ∀ is a generalized universal quantification with two
arguments.
Let us recall the trace-semantics for the -calculus. E

def= X → ℘(T) denotes the set of environ-
ments over X. Given 0 ∈ E, X ∈ X and N ∈ ℘(T), 0[X/N] ∈ E is the environment that acts as 0
in X�{X } and maps X to N . The -calculus semantics [[·]] : → E → ℘(T) is inductively and
partially—because least or greatest fixpoints could not exist—defined as follows:

[[�S]]0 def= �{|S|} [[�1 ∨ �2]]0 def= [[�1]]0 ∪ [[�2]]0
[[�t]]0 def= �{|t|} [[¬�]]0 def= ¬([[�]]0)
[[X]]0 def= 0(X) [[�X.�]]0 def= lfp($N ∈ ℘(T).[[�]]0[X/N])
[[⊕�]]0 def= ⊕([[�]]0) [[�X.�]]0 def= gfp($N ∈ ℘(T).[[�]]0[X/N])
[[��]]0 def= �([[�]]0) [[∀�1 :�2]]0 def= ∀([[�1]]0, [[�2]]0)

where the corresponding temporal transformers are defined as follows:

• For any S ∈ ℘(S), �{|S|}
def= {〈i, �〉 ∈ T | �i ∈ S} is the S-state model, i.e., the set of traces whose

current state belongs to S .
• For any t ∈ ℘(S× S), �{|t|}

def= {〈i, �〉 ∈ T | (�i, �i+1) ∈ t} is the t-transition model, i.e., the set of
traces whose next step is a t-transition.
• ⊕ : ℘(T)→ ℘(T) is the next-time or predecessor transformer:
⊕(X) def= {〈i − 1, �〉 ∈ T | 〈i, �〉 ∈ X } = {〈i, �〉 ∈ T | 〈i + 1, �〉 ∈ X }.
• � : ℘(T)→ ℘(T) is the reversal transformer:

�(X)
def= {〈−i, $k.�−k〉 ∈ T | 〈i, �〉 ∈ X }.

• ¬ : ℘(T)→ ℘(T) is the complement:
¬X def= T�X .
• Given s ∈ S, (·)↓s : ℘(T)→ ℘(T) is the state projection operator:
X↓s

def= {〈i, �〉 ∈ X | �i = s}.

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 387

• ∀ : ℘(T)× ℘(T)→ ℘(T) is the universal quantifier:
∀(X , Y) def= {〈i, �〉 ∈ X |X↓�i ⊆ Y }.

If � ∈ is a closed formula then the semantics [[�]]0 is independent from the environment 0 and
thus we simply write [[�]].
The time-reversal operator of the -calculus allows to express both backward and forward time

modalities. Standard linear and branching temporal specification languages like (past and future)
LTL, linear �-calculus, CTL∗, CTL, etc., can all be expressed as suitable fragments of the -cal-
culus, since the standard missing operators can be defined as derived operators. Let us see some
examples.

• Previous-time (or successor)*:*(X) def= �(⊕(�(X))) = {〈i + 1, �〉 ∈ T | 〈i, �〉 ∈ X } = {〈i, �〉 ∈ T |
〈i − 1, �〉 ∈ X }.
• Forward sometime (or finally) F: F(X) def= lfp($Y ∈ ℘(T).X ∪ ⊕(Y)) = ∪n∈N⊕n(X).
• Forward globally G: G(X) def= gfp($Y ∈ ℘(T).X ∩ ⊕(Y)) = ∩n∈N⊕n(X).
• Backward sometime F−: F−(X) def= �(F(�(X))) = ∪n∈N*n(X).
• Backward globally G−: G−(X)

def= �(G(�(X))) = ∩n∈N*n(X).

Thus, traces in amodelM→ can be defined as�±�→
def= G(�→) ∧G−(�→), so thatM→ = [[�±�→]].

Therefore, standard universal quantification in M→ can be defined as ∀� def= ∀ (�±�→) :�, while
generalized existential quantification is dually defined by ∃�1 :�2 def= ¬(∀�1 :¬�2).
In this framework, the trace-based model checking problem is as follows. Let M→ be a model

and � ∈ be a closed temporal specification. Then, the universal (existential) model checking
problem consists in determining whetherM→ ⊆ [[�]] (M→ ∩ [[�]] /= ∅).

2.4. State-based model checking abstraction

Cousot and Cousot [10] show how states can be viewed as an abstract interpretation of traces
through universal or existential checking abstractions. This abstraction from traces to states in-
duces a corresponding state-based model checking problem which is a sound approximation of the
concrete trace-based problem.

2.4.1. Universal checking abstraction
For the universal model checking problem, the right notion of approximation is encoded by

the superset relation. In fact, if [[·]]� is an approximated semantics such that [[�]]� ⊆ [[�]] for any
�, then the universal abstract verification M→ ⊆ [[�]]� entails the concrete one M→ ⊆ [[�]]. Thus,
[[·]]�1 ⊆ [[·]]�2 means that [[·]]�2 is a better approximation than [[·]]�1 , so that sets of traces and states are
ordered w.r.t. the superset relation: 〈℘(T),⊇〉 and 〈℘(S),⊇〉 play, respectively, the role of concrete
and abstract domain. Let M ⊆ T be any given model, e.g., generated by a total transition system
〈S,→〉. Traces can be abstracted to states through the universal quantifier: a set of traces X ⊆ T

is abstracted to the set of states s ∈ S such that any trace in the model M whose present state

388 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

is s belongs to X . Formally, the universal checking abstraction 	∀M : ℘(T)→ ℘(S) is defined as
follows:

	∀M(X)
def= {s ∈ S |M↓s ⊆ X }.

Thus, 	∀M abstracts the trace-semantics [[�]] of some temporal specification � ∈ to the set of (pres-
ent) states swhich universally satisfy �, that is, such that any trace ofM with present state s satisfies
�. This map is onto (by totality of→) and preserves arbitrary intersections, therefore it induces a
Galois insertion (∀M ,℘(T)⊇,℘(S)⊇, ∀M)where ∀M is the right adjoint to	∀M . A set of states S ∈ ℘(S)
is viewed through the concretization map ∀M as an abstract representation for the set of traces inM
whose present state belongs to S . Hence, the universal concretization ∀M : ℘(S)→ ℘(T) is defined
as follows:

∀M(S)
def= {〈i, �〉 ∈ M | �i ∈ S}.

For our purposes it is helpful to view the universal abstraction (∀M ,℘(T)⊇,℘(S)⊇, ∀M) as a clo-
sure operator in order to make our analysis independent from specific representations of abstract
domains of ℘(T).

Definition 2.4. The universal checking closure (or simply universal closure) relative to a model M ∈
℘(T) is given by #∀M

def= ∀M ◦ 	∀M ∈ uco(℘(T)⊇). Thus, #∀M = $X.{〈i, �〉 ∈ M |M↓�i ⊆ X }.
Notice that, due to the superset relation,#∀M(X) ⊆ X . The intuition is that#∀M(X) throwsaway from

X all those traces 〈i, �〉 eitherwhicharenot inM—these traces “donotmatter,” since	∀M(¬M) = ∅—
or which are in M but whose present state �i does not universally satisfy X .
Let us observe that, for any S ∈ ℘(S), ∀M(S) = ∪s∈SM↓s and that the set of fixpoints of #∀M can

be also characterized as follows:

#∀M = {∀M(S) | S ⊆ S} (Ð)

because #∀M = {∀M(∀M(T)) | T ∈ T} = {∀M(S) | S ∈ S}.
Example 2.5. Consider the two states transition system in Example 1.1 generating the model M→.
Consider the set of traces depicted below where arrows point to present states:

a = · · · 1 1 1
↓
1 1 1 · · ·

b = · · · 1 1 1
↓
1 1 1 1 2 2 2 · · ·

c = · · · 1 1 1 2 2 2
↓
2 2 2 2 · · ·

d = · · · 2 2 2
↓
2 2 2 2 1 1 1 · · ·

For the set of traces a and b the arrow moves over 1 while in c and d the arrow moves over 2.
Let X = a ∪ b ∪ c ∪ d . It turns out that #∀M→(X) = a ∪ b because:
• the trace · · · 2 2 2

↓
2 2 2 · · ·belongs to (M→)↓2 but it does not belong toX , so that c ∩ #∀M→(X)=∅;

• the traces in d do not belong toM→, so that d ∩ #∀M→(X) = ∅.

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 389

As a further example, let us consider the formula ⊕p ∈ , where p = �1. We have that [[⊕p]] =
⊕(M→)↓1 = (M→)↓1�{〈i, �〉 ∈ (M→)↓1 | �i+1 = 2}. Therefore, it turns out that #∀M→([[⊕p]]) = ∅.

In the paper, we will make the following weak assumption on the universal closure.

Hypothesis 2.6. For any universal checking closure #∀M , the modelM ∈ ℘(T) is such that (i) for any
s ∈ S, |M↓s | > 1 and (ii) ⊕(M) = M = *(M) and ⊕(�(M)) = �(M) = *(�(M)).
Hypothesis (i) means that for any state s, there exist at least two traces in M with present state
s, while hypothesis (ii) means that M and its reversal �(M) are closed for forward and backward
time progresses. These conditions are obviously satisfied by any model M→ generated by a total
transition system 〈S,→〉.

2.4.2. Existential checking abstraction
The existential checking abstraction is defined by duality. In this case, the relation of approxi-

mation is set inclusion, because [[�]] ⊆ [[�]]�1 ⊆ [[�]]�2 and [[�]]�1 ∩M /= ∅ imply [[�]]�2 ∩M /= ∅. The
Galois insertion (∃M ,℘(T)⊆,℘(S)⊆, ∃M) is defined by duality as follows:

	∃M(X)
def= ¬(∀M(¬(X))) = {s ∈ S |M↓s ∩ X /= ∅}

∃M(S)
def= ¬(∀M(¬(X))) = {〈i, �〉 ∈ T | (〈i, �〉 ∈ M) ⇒ (�i ∈ S)}.

The intuition is that 	∃M abstracts a given trace-semantics [[�]] to the set of states which existen-
tially satisfy �. In this case, the existential checking closure relative to a modelM is #∃M

def= ∃M ◦ 	∃M ∈
uco(℘(T)⊆), that is,

#∃M(X) = {〈i, �〉 ∈ T | (〈i, �〉 ∈ M)⇒ M↓�i ∩ X /= ∅} = {〈i, �〉 ∈ M |M↓�i ∩ X /= ∅} ∪ ¬M.

Hence, #∃M(X) adds to X any trace which is not inM—these are meaningless because 	∃M(¬M) =
∅—and any trace in M whose present state existentially satisfies X . #∃M is dual to #∀M since #∃M =¬ ◦ #∀M ◦ ¬. In the following, we will consider the universal abstraction only, since all the results
can be stated and proved by duality in the existential case.

2.4.3. State-based abstract semantics
The universal abstraction for some model M (typically M =M→ for some total transition sys-

tem 〈S,→〉) induces a state-based abstract semantics on ℘(S) of the -calculus which is obtained
by applying standard abstract interpretation. Basically, this amounts to abstract any trace trans-
former on ℘(T) by its corresponding best correct approximation on ℘(S) induced by the universal
abstraction 	∀M/∀M . For example, the next-time transformer ⊕ : ℘(T)→ ℘(T) is abstracted to
	∀M ◦ ⊕ ◦ ∀M : ℘(S)→ ℘(S).
The general scenario is as follows. Es

def= X → ℘(S) is the set of state environments. The state-
based abstract semantics [[·]]∀M : → Es→ ℘(S) is inductively defined by replacing each trace
transformer Tr : ℘(T)→ ℘(T) with its corresponding best correct approximation on states 	∀M ◦
Tr ◦ ∀M : ℘(S)→ ℘(S). The following lemma characterizes these best correct approximations.

390 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

Lemma 2.7.

(1) 	∀M(�{|S|}) = S;
(2) 	∀M→(�{|t|}) = {s ∈ S | ∀s′ ∈ S. s→ s′ ⇒ (s, s′) ∈ t};
(3) 	∀M(∀M(S1) ∪ ∀M(S2)) = S1 ∪ S2;
(4) 	∀M ◦ ¬ ◦ ∀M = ¬;
(5) 	∀M ◦ ⊕ ◦ ∀M = p̃re→
(6) 	∀M(�(∀M(S))) = {s ∈ S |M↓s = (�M)↓s};
(7) 	∀M(∀(∀M(S1), ∀M(S2))) = S1 ∩ S2.

Proof.Point (1) is as follows:	∀M(�{|S|}) = {s ∈ S |M↓s ⊆ {〈i, �〉 ∈ T | �i ∈ S}} = {s ∈ S | (〈i, �〉 ∈ M &
�i = s)⇒ �i ∈ S}. Since, by Hypothesis 2.6, |M↓s | > 1 for any s, we obtain that {s ∈ S | (〈i, �〉 ∈
M & �i = s) ⇒ �i ∈ S} = S .
Point (2) is as follows:	∀M→(�{|t|}) = {s ∈ S | (M→)↓s ⊆ {〈i, �〉 ∈ T | (�i, �i+1) ∈ t}} = {s ∈ S | (〈i, �〉∈
M→ & �i = s) ⇒ (�i, �i+1) ∈ t} = {s ∈ S | ∀s′ ∈ S. s→ s′ ⇒ (s, s′) ∈ t}.
Point (3) is as follows: 	∀M(∀M(S1) ∪ ∀M(S2)) = 	∀M(∀M(S1 ∪ S2)) = S1 ∪ S2.
Let us consider point (4) and let us show that ¬	∀M(¬∀M(S)) = S . By [10, Section 11.7], ¬ ◦ 	∀M =
	∃M ◦ ¬ so that we have that ¬	∀M(¬∀M(S)) = 	∃M(∀M(S)) = {s ∈ S |M↓s ∩ ∀M(S) /= ∅}. By exploit-
ing Hypothesis 2.6 which guarantees that |M↓s | > 1 for any s, it is immediate to prove that
{s ∈ S |M↓s ∩ ∀M(S) /= ∅} = S .
Point (5) is shown in [10, Section 11.2].
Point (6) is as follows. By [10, Section 11.7], 	∀M ◦ � = 	∀�M . Thus, 	∀M(�(∀M(S))) = {t ∈ S | (�M)↓t ⊆
∀M(S)} = {t ∈ S |�(M↓t) ⊆ ∪s∈SM↓s}. Since �(M↓t) ⊆ M↓t iff �(M↓t) = M↓t , we obtain that
	∀M(�(∀M(S))) = {s ∈ S |M↓s = (�M)↓s}.
Finally, point (7) is as follows.Observe that	∀M(∀(∀M(S1), ∀M(S2)))={s ∈ S |M↓s ⊆ {〈i, �〉 ∈ ∀M(S1) |
(∀M(S1))↓�i ⊆ ∀M(S2)}}. On the one hand, it is easy to check that S1 ∩ S2 ⊆ 	∀M(∀(∀M(S1), ∀M(S2))).
The reverse inclusion follows easily by noting that Hypothesis 2.6 ensures that for any s ∈ S there
exists some 〈i, �〉 ∈ M↓s. �
By the above lemma, the abstract semantics [[·]]∀M→ : → Es→ ℘(S) is inductively defined as

follows:

[[�S]]∀M→4 = S[[�t]]∀M→4 = {s ∈ S | ∀s′ ∈ S. s→ s′ ⇒ (s, s′) ∈ t}
[[X]]∀M→4 = 4(X)[[�1 ∨ �2]]∀M→4 = [[�1]]∀M→4 ∪ [[�2]]∀M→4[[¬�]]∀M→4 = ¬[[�]]∀M→4[[⊕�]]∀M→4 = p̃re→([[�]]∀M→4)[[��]]∀M→4 = 	∀M→(

�(∀M→([[�]]∀M→4)))[[�X.�]]∀M→4 = lfp($S ∈ ℘(S).[[�]]∀M→4[X/S])[[�X.�]]∀M→4 = gfp($S ∈ ℘(S).[[�]]∀M→4[X/S])[[∀�1 : �2]]∀M→4 = [[�1]]∀M→4 ∩ [[�2]]∀M→4

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 391

Thus, for any linear formula �, namely a formula � with no quantifier, [[�]]∀M→ provides the
state-semantics of the state formula �∀ which is obtained from � by preceding each linear temporal
operator, i.e., next-time ⊕ and time-reversal �, occurring in � by the universal path quantifier ∀.
The universal abstraction 	∀M is extended pointwise to environments 	̇∀M : E → Es as follows:

	̇∀M(0)
def= $X ∈ X.	∀M(0(X)). The correctness of the state-based semantics [[·]]∀M→ is a consequence

of its abstract interpretation-based definition:

For any � ∈ L and 0 ∈ E, 	∀M([[�]]0) ⊇ [[�]]∀M	̇∀M(0).

This means that given any state s ∈ [[�]]∀M	̇∀M(0), it turns out that any trace 〈i, �〉 in M whose
present state is s satisfies �. Following the terminology by Kupferman and Vardi [17,25], when
	∀M([[�]]0) = [[�]]∀M	̇∀M(0) holds for some � ∈ , the formula � is called branchable. In general,

completeness does not hold for all the formulae of the -calculus, i.e., the above containment may
be strict, as shown in the Introduction. This intuitively means that universal model checking of
linear formulae cannot be reduced with no loss of precision to universal model checking on states
through the universal quantifier abstraction. Consequently, it turns out that the universal abstrac-
tion is incomplete for some trace operators of the -calculus. Cousot and Cousot [10, Section 11]
identified the sources of this incompleteness, namely those operators Op of the -calculus such that
#∀M is incomplete for Op: next-time, disjunction, negation and time-reversal. Incompleteness of #∀M
w.r.t. time-reversal and negation is not explicitly mentioned in [10] and is shown by the following
example.

Example 2.8. Let us consider the two states transition system in Example 1.1. Let X def= {〈i, �〉 ∈
T | ∀k � i. �k = 1}, so that �(X) = {〈i, �〉 | ∀k � i. �k = 1}. Since (M→)↓1 �⊆ X and (M→)↓2 �⊆ X , we
have that#∀M→(X)=∅and therefore#∀M→(

�(#∀M→(X))) = ∅. Instead, it turnsout that#∀M→(
�(X)) =

(M→)↓1. This means that #∀M→ is not complete for �.
As far as negation is concerned, consider any 〈i, �〉∈(M→)↓1 (e.g., 〈0, $k ∈ Z.1〉) and 〈j, /〉 ∈ (M→)↓2
(e.g., 〈0, $k ∈ Z.2〉), and let X def= ¬{〈i, �〉, 〈j, /〉}. It turns out that #∀M→(¬X) = #∀M→({〈i, �〉, 〈j, /〉}) =
∅, while #∀M→(¬#∀M→(X)) = #∀M→(¬∅) = #∀M→(T) =M→, so that completeness does not hold.

Cousot and Cousot [10] provide some conditions on the incomplete trace operators that ensure
completeness of #∀M . As far as next-time is concerned, Cousot andCousot show that completeness of
#∀M for⊕ holds when the linear operator⊕ is restricted to forward closed (i.e., future-time) formu-

lae, namely formulae of the -calculus without time-reversal. On the other hand, when disjunction
is restricted to have at least one state formula, i.e., a universally quantified formula, it turns out
that #∀M is complete. These sufficient conditions allow to identify some complete fragments of the
-calculus. This is the case, for example, of the �∀+-calculus considered by Cousot and Cousot in

[10, Section 13], where time-reversal is disallowed and disjunction is restricted to at least one state
formulae.
Completeness of#∀M is related toMaidl’s [19] characterization of themaximumcommon fragment

LTLdet of LTL and ACTL, which is defined as follows:

LTLdet & � ::= �S | ¬�S |�1 ∧ �2 | (�S ∧ �1) ∨ (¬�S ∧ �2) |
⊕� |U(�S ∧ �1,¬�S ∧ �2) |W(�S ∧ �1,¬�S ∧ �2)

392 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

whereUandWdenote, respectively, standarduntil andweak-until, i.e.,W(�1,�2) = G�1 ∨U(�1,�2),
operators. Obviously, LTLdet is a fragment of the -calculus. Maidl [19] shows that LTLdet =
LTL ∩ACTL,namely that for any� ∈ LTL, there exists some ∈ ACTLsuch that	∀M([[�]]) = [[]]
iff there exists some 6 ∈ LTLdet such that [[�]] = [[6]].
Ranzato and Tapparo [23] show that the universal abstraction is complete for all the formulae of

LTLdet, namely for any � ∈ LTLdet, 	∀M([[�]]) = [[�]]∀M . Let LTL∀ def={� ∈ LTL |	∀M([[�]]) = [[�]]∀M }
denote the set of branchable LTL formulae. Thus, we have that LTLdet ⊆ LTL∀. Furthermore, the
following converse holds: any branchable LTL formula is equivalent to some formula in LTLdet. In
fact, if � ∈ LTL is branchable then, byMaidl’s [19, Corollary 1] result, there exists some ∈ LTLdet
such that [[�]] = [[]]. As a consequence, we obtain the following characterization of branchability
for LTL formulae.

Theorem 2.9. Let � ∈ LTL. Then, there exists 6 ∈ LTL∀ such that [[�]] = [[6]] if and only if there
exists ∈ LTLdet such that [[�]] = [[]].
Thus, LTLdet also provides a synctatic characterization for the set of branchable LTL formulae.

3. Complete cores and shells for temporal connectives

In the following, wewill characterize the complete cores and shells of the universal abstraction #∀M
for the following trace operators which are sources of incompleteness: next-time, disjunction and
time-reversal. These complete cores and shells do exist because⊕, ∪ and � are trivially continuous
functions on the concrete domain℘(T)⊇ so that we can exploit Theorem 2.1 in order to characterize
them. As recalled in Section 2.2.3, complete shells may not exist and we show that this is indeed the
case of negation. Let us observe that Theorem 2.1 cannot be applied in this case because negation
is not continuous on ℘(T)⊇. On the other hand, the complete core for negation does exist.
One remarkable feature of our approach lies in the fact that it is fully constructive, namely The-

orem 2.1 always provides complete cores and shells in fixpoint form so that we do not need to
conjecture some abstract domain and successively to prove that it is indeed a complete core or shell.

3.1. Negation

Theorem 3.1. The complete shell of #∀M for ¬ does not exist.

Proof. Let us consider the simplest transition system 〈{•}, {•→•}〉 consisting of a single state • and
of a single transition •→•. The only possible path is $n ∈ Z.• so that the model M generated by
this transition system coincides with the set of traces, namely M = {〈i, $n.•〉 | i ∈ Z}. Thus, any set
of traces can be simply represented by the corresponding set of present times, namely by a corre-
sponding set of integers, so that the concrete domain ℘(T)⊇ can be represented by ℘(Z)⊇ and in
particular M = Z. We also have that #∀M = {∅,Z}.
Let Zev and Zod denote, respectively, the set of even and odd intergers and consider the following
two closures: for any X ∈ ℘(Z),

#ev(X) =
{

Z if X = Z

X ∩ Zev otherwise #od(X) =
{

Z if X = Z

X ∩ Zod otherwise

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 393

Let us note that #ev, #od ∈ uco(℘(Z)⊇), because their images are closed under arbitrary unions,
and that #ev, #od � #∀M . Let us show that #ev is complete for ¬ (the case of #od is analogous).
If X ∈ {Z,∅} then #ev(¬X) = #ev(¬#ev(X)) trivially holds. If X ∈ ℘(Z) and X �∈ {Z,∅} then

#ev(¬#ev(X)) = #ev(¬(Zev ∩ X)) = #ev(Zod ∪ ¬X) =
Zev ∩ (Zod ∪ ¬X) = Zev ∩ ¬X = #ev(¬X).

If Shell¬(#∀M) would exist then we would have that #ev, #od � Shell¬(#∀M), so that #ev " #od �
Shell¬(#∀M). But #ev " #od = #∀M , so that we would have that Shell¬(#∀M) = #∀M which is a con-
tradiction because #∀M is not complete for ¬. �
Negation is antimonotone, however this is not the reason why the corresponding complete shell

does not exist. In fact, as a further remarkable example, we show that this is also the case of the
“sometime” operator F, which is instead monotone.

Theorem 3.2. The complete shell of #∀M for F does not exist.

Proof. Let us consider again the transition system 〈{•}, {•→•}〉 used in the proof of Theorem 3.1
so that the concrete domain ℘(T)⊇ can be represented by ℘(Z)⊇ and in particularM = Z. We also
have that #∀M = {∅,Z}, namely #∀M(Z) = Z, while if X�Z then #∀M(X) = ∅. Let us observe that for
any k ∈ Z, F([k ,+∞)) = Z, because for any i ∈ Z there exists some m � i and m ∈ [k ,+∞).
It is simple to observe that #∀M is not complete for F. In fact, for any k ∈ Z, we have that
#∀M(F([k ,+∞))) = #∀M(Z) = Z, while #∀M(F(#∀M([k ,+∞)))) = #∀M(F(∅)) = #∀M(∅) = ∅. It is al-
so easy to note that F is not continuous on ℘(T)⊇: in fact,

⋂
k∈Z F([k ,+∞)) = Z, whereas

F(
⋂
k∈Z[k ,+∞)) = F(∅) = ∅. Hence, noncontinuity of F is consistent with Theorem 2.1.

Let us now consider the following family of closures: for any k ∈ Z and X ∈ ℘(Z),

#k(X) =
{

Z if X = Z

X ∩ [k ,+∞) otherwise

Let us note that #k ∈ uco(℘(Z)⊇), because img(#k) = {Z} ∪ {X ∈ ℘(Z) |X ⊆ [k ,+∞)} is closed un-
der arbitrary unions, and that #k � #∀M . Let us show that #k is complete for F. Let X ∈ ℘(Z). If
X = Z then #k(F(X)) = #k(F(#k(X))) trivially holds because X = Z ∈ #k . Thus, consider X�Z. We
distinguish the following two cases.

Case (i). Assume that for any j ∈ Z, X ∩ [j,+∞) /= ∅. Then, we have that F(X) = Z because, by
hypothesis on X , for any i ∈ Z there exists some k ∈ X such that i � k . Moreover, F(#k(X)) =
F(X ∩ [k ,+∞)) = Z because for any i ∈ Z, X ∩ [k ,+∞) ∩ [i,+∞) /= ∅. Thus, in this case, F(X) =
F(#k(X)), so that #k(F(X)) = #k(F(#k(X))) = Z.
Case (ii). On the other hand, assume that there exists some i ∈ Z such that X ∩ [i,+∞) = ∅. There-
fore,max(X) = n ∈ Z so thatF(X) = (−∞, n]. Let us distinguish two cases: n < k and n � k . If n < k

then #k(F(X)) = (−∞, n] ∩ [k ,+∞) = ∅, #k(X) = X ∩ [k ,+∞) = ∅, so that #k(F(#k(X))) = ∅. If,
instead, n�k then #k(F(X))=(−∞, n] ∩ [k ,+∞)=[k , n], #k(X) = X ∩ [k ,+∞) so that
max(#k(X))= nand this impliesF(#k(X)) = (−∞, n], fromwhich#k(F(#k(X)))=(−∞, n] ∩ [k ,+∞)
= [k , n].

394 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

Hence, summing up, we have shown that for any k ∈ Z and X ∈ ℘(Z), #k(F(X)) = #k(F(#k(X))),
i.e., any #k is complete for F. If ShellF(#

∀
M) would exist then we would have that for any k , #k �

ShellF(#
∀
M), so that "k∈Z#k � ShellF(#

∀
M). But img("k∈Z#k) =⋂

k∈Z img(#k) = {∅,Z} = img(#∀M),
so that we would have that ShellF(#

∀
M) = #∀M which is a contradiction because #∀M is not complete

for F. �

The above proof also shows that F is not continuous on ℘(T)⊇, so that noncontinuity of F is
consistent with Theorem 2.1.
Although negation is not monotone, it turns out that the core of #∀M for¬ exists even if we cannot

exploit Theorem 2.1 in order to obtain a constructive characterization of it. This core results to be
the greatest totally uninformative closure.

Theorem 3.3. Core¬(#∀M) = $X.∅.
Proof. Let - ∈ uco(℘(T)⊇) such that #∀M � -, so that, for any X , #∀M(X) ⊇ -(X). By Hypothesis 2.6,
for any s ∈ S, we consider some 〈i, �s〉 ∈ M↓s, so that |M↓s�{〈i, �s〉} | � 1. Consider Y def= {〈i, �s〉 ∈
T | s ∈ S}. Then, we have that -(¬Y) ⊆ #∀M(¬Y) = ∅, so that -(¬Y) = ∅. On the other hand, -(Y) ⊆
#∀M(Y) = ∅, so that -(Y) = ∅ and in turn -(¬-(Y)) = -(¬∅) = -(T). Thus, if - is complete for ¬
then -(T) = ∅ so that for any X ⊆ T, -(X) ⊆ -(T) = ∅. Hence, $X.∅ is the unique closure which
is greater than #∀M and complete for ¬, i.e., Core¬(#∀M) = $X.∅. �

3.2. Next-time

Let us first show the following easy properties of the predecessor and successor trace operators.

Lemma 3.4.

(1) ⊕ : ℘(T)→ ℘(T) and* : ℘(T)→ ℘(T) preserve arbitrary unions and intersections, and⊕−1 =
* and *−1 = ⊕.
Let # ∈ uco(℘(T)⊇). Then,

(2) # ∈ *(℘(T)⊇,⊕) iff for all n ∈ N and X ∈ ℘(T),*n(#(X)) = #(*n(#(X)));
(3) # ∈ *(℘(T)⊇,*) iff for all n ∈ N and X ∈ ℘(T),⊕n(#(X)) = #(⊕n(#(X))).

Proof. (1): Clear. (2) and (3): Let us check that # ∈ *(℘(T)⊇,⊕) iff for all n ∈ N and X ∈ ℘(T),
*n(#(X))=#(*n(#(X))) (the remaining proof is analogous). Because, by (1),⊕ is additive on℘(T)⊇,
by Theorem 2.1 and Remark 2.3, we have that # ∈ *(℘(T)⊇,⊕) iff {∩{X ∈ ℘(T) | ⊕(X) ⊇ Y }}Y ∈# ⊆
#. By (1), ⊕(X) ⊇ Y iff X ⊇ *(Y), and therefore # ∈ *(℘(T)⊇,⊕) iff {*(Y) | Y ∈ #} ⊆ #, and there-
fore, iff {*(#(X)) |X ∈ ℘(T)} ⊆ #. Analogously, we get that, for any n ∈ N, # ∈ *(℘(T)⊇,⊕n) iff
{*n(#(X)) |X ∈ ℘(T)} ⊆ #. Thus, property (∗) in Section 2.2.2 closes the proof. �
Let us recall from [10] that #∀M is complete for ⊕ when ⊕ is restricted to forward closed set of

traces, namely if X ∈ ℘(T) is such that X = Fd(X) then #∀M(⊕(X)) = #∀M(⊕(#∀M(X))). This implies
that for forward or state closed specification languages, namely languages with no past-time mo-
dality like LTL and CTL∗, the universal abstraction is already complete for the next-time trace
transformer. The situation changes in the general case of the -calculus, where #∀M is incomplete
for next-time.

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 395

3.2.1. Complete core
By exploiting the constructive method provided by Theorem 2.1, the set of fixpoints of the com-

plete core Core⊕(#∀M) is first characterized as follows.

Theorem 3.5. The set of fixpoints of Core⊕(#∀M) is {Y ∈ ℘(T) | ∀k ∈ N.*kY = #∀M(*kY)}.
Proof. By Theorem 2.1 and Remark 2.3, Core⊕(#∀M) = "i∈NL

i⊕(#∀M). Thus, Y ∈ Core⊕(#∀M)⇔ ∀i ∈
N. Y ∈ Li⊕(#∀M). Moreover, by Lemma 3.4, we have that L⊕(-)={Y ∈ ℘(T) | ∩ {X ∈ ℘(T) |X ⊇
*Y }∈-}={Y ∈ ℘(T) | *Y ∈ -}={Y ∈℘(T) | *Y =-(*Y)}, and therefore, for any i ∈ N,Y ∈ Li⊕(#∀M)⇔*iY = #∀M(*iY). Therefore, the thesis follows. �
The following result provides a further useful characterization of the complete core based on the

structure of the transition system. We use the following notation: given a transition system 〈S,→〉
and states r, s ∈ S, for any k > 0, r

k→s iff r = r0 → r1 → r2 → . . .→ rk = s, where {r1, ..., rk−1} ⊆ S.
Moreover, we consider the following property P→ for any S ⊆ S:

P→(S) iff ∃k > 0, q ∈ S , r ∈ S�S , t ∈ S. q
k→t and r

k→t.

Theorem 3.6. Let M =M→, for some total transition system 〈S,→〉. Then, for any S ⊆ S, ∀M(S) �∈
Core⊕(#∀M) iff P→(S).

Proof. (⇐) Assume that there exist k > 0, q ∈ S , r ∈ S�S , t ∈ S such that q
k→t and r

k→t. By
Theorem 3.5, it is enough to show that *k(∪s∈SM↓s)�#∀M(*k(∪s∈SM↓s)). Since q

k→t and 〈S,→〉
is total, there exists 〈j,8〉 ∈ M such that 8j = q and 8j+k = t. Since q ∈ S , we have that 〈j,8〉 ∈
∪s∈SM↓s and therefore 〈j + k ,8〉 ∈ *k(∪s∈SM↓s). On the other hand, since r

k→t and 〈S,→〉 is to-
tal, there exists 〈l, /〉 ∈ M such that /l = r and /l+k = t = 8j+k . Thus, 〈l+ k , /〉 ∈ M↓8j+k , while
〈l+ k , /〉 �∈ *k(∪s∈SM↓s) because /l = r �∈ S . Thus, by definition of #∀M , this means that 〈j + k ,8〉 �∈
#∀M(*k(∪s∈SM↓s)).
(⇒) By Theorem 3.5, there exist k > 0 and 〈j,:〉 such that (i) 〈j,:〉 ∈ *k(∪s∈SM↓s) and (ii) 〈j,:〉 �∈
#∀M(*k(∪s∈SM↓s)). Thus, by (i), 〈j − k ,:〉 ∈ ∪s∈SM↓s, i.e., :j−k ∈ S . Moreover, by (ii), M↓:j �⊆ *k
(∪s∈SM↓s), so that there exists 〈l,8〉 ∈ M such that 8l = :j and 〈l− k ,8〉 �∈ ∪s∈SM↓s, i.e., 8l−k �∈ S .
Summing up, we have that 8l−k

k→8l, :j−k
k→8l, 8l−k �∈ S and :j−k ∈ S , that is P→(S). �

Thus, by the characterization (Ð) in Section 2.4.1 of #∀M stating that {∀M(S)}S⊆S is the set of
fixpoints of #∀M , the above result characterizes exactly the fixpoints which must be removed from
#∀M in order to get the complete core Core⊕(#∀M). As an immediate consequence of Theorem 3.6,
observe that M ∈ Core⊕(#∀M): in fact, by Theorem 3.6, M = ∀M(S) and P→(S) is not satisfied.
Let us also observe that P→(S) holds iff P→(¬S) holds, so that ∀M(S) �∈ Core⊕(#∀M) ⇔ ∀M(¬S) �∈
Core⊕(#∀M).

Example 3.7. Consider the transition system in Example 1.1. We know that #∀M = {∀M(∅), ∀M({1}),
∀M({2}), ∀M({1, 2})}. Which elements are in Core⊕(#∀M)? We have that ∀M(∅) and ∀M({1, 2}) always
belong to Core⊕(#∀M). Moreover, note that 1

1→2 and 2
1→2 so that P→({1}) holds. Hence, by Theorem

3.6, ∀M({1}) and ∀M({2}) do not belong to Core⊕(#∀M).

396 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

By exploiting the above constructive result, we are also able to characterize the structure of tran-
sition systems whose models induce a universal closure which is complete for next-time. These are
the transition systems 〈S,→〉 such that→ is injective. A transition relation→ is injective when

∀r, s, t ∈ S. (r→ t & s→ t)⇒ r = s.
Theorem 3.8. Let M =M→, for some total transition system 〈S,→〉. Then, #∀M is complete for ⊕ if
and only if→ is injective.

Proof. #∀M is complete for ⊕ iff Core⊕(#∀M) = #∀M iff Core⊕(#∀M) � #∀M iff #∀M ⊆ Core⊕(#∀M). Thus:
(⇒) By hypothesis, for any s ∈ S, ∀M({s}) ∈ Core⊕(#∀M). Thus, by Theorem 3.6, for any r, s, t ∈ S

such that r /= s, we have that for any k > 0, s
k→t implies ¬(r k→t). Hence, for any r, s, t ∈ S and for

any k > 0, r
k→t and s

k→t imply s = r. Therefore, for k = 1, this implies that→ is injective.
(⇐) Let → be injective. Let r, s, t ∈ S and k > 0 such that r

k→t and s
k→t, i.e., r→ r1 → . . .→

rk−1 → t and s→ s1 → . . .→ sk−1 → t. Then, by injectivity, rk−1 = sk−1, and in turn, still by injec-
tivity, rk−2 = sk−2, and so on, so that we get r = s. Hence, for any r, s, t ∈ S, for any k > 0, s

k→t

and r
k→t imply r = s. This means that, for any s ∈ S, P→({s}) does not hold. Thus, by Theorem 3.6,

∀M({s}) ∈ Core⊕(#∀M). Since Core⊕(#∀M) is a uco on ℘(T)⊇, its set of fixpoints is closed under arbi-
trary set-unions. Moreover, since ∀M is co-additive on ℘(S)⊇, we have that ∀M preserves arbitrary
set-unions. Thus, for any S ⊆ S, ∀M(S) = ∪s∈S∀M({s}) ∈ Core⊕(#∀M). Thus, since #∀M = {∀M(S)}S⊆S,
it turns out that #∀M ⊆ Core⊕(#∀M). �
It is worth noting that injectivity means that each computation step is reversible, i.e., the reversed

transition system 〈S,←〉 obtained by reversing the transition relation is deterministic. This is the
case of Bennett’s reversible computations [1], i.e., computations whose output uniquely defines the
input, which have been extensively studied bymany authors in different contexts. Let us also observe
that if s ∈ S is in a stall, i.e., such that s→ s, then the injectivity of the transition relation requires
that t �→ s for any t /= s, i.e., s cannot be reached by any other state so that smust necessarily be an
initial system state.

Example 3.9. Consider a traffic light controller modeled by the transition system 〈S,→〉 depicted
in Fig. 1 that generates the modelM . Then, 〈S,→〉 is total and injective, and therefore, by Theorem
3.8, the corresponding universal closure is complete for next-time, so that Core⊕(#∀M) = #∀M .
Consider instead the abstract transition system 〈S� = {red , go },→�〉 induced by the state partition
{{red }, {green , yellow}} (see [7] for an introduction to abstract model checking) and still depicted
in Fig. 1. In this case, 〈S�,→�〉 is total but it is not injective. Let M� be the model generated by
〈S�,→�〉. We exploit Theorem 3.6 in order to compute the complete core in this case. It turns out
that red→ �go and go→ �go , so that P→�(red) and P→�(go) do not hold. Thus, in this case it turns
out that the complete core is trivial, i.e., Core⊕(#∀M�) = {∅,M�}.

Fig. 1. A traffic light controller and its abstract version.

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 397

Let us also observe that any abstractionwith at least two states of 〈S,→〉 induces an abstract transi-
tion system for which the universal closure is not complete for next-time. This is not always the case
for abstract transition systems. For example, in the case of an infinite counter modeled by a con-
crete transition system 〈S,→〉 where S = Z and x→ y iff y = x + 1, it turns out that both 〈S,→〉
and the abstract transition system 〈{even , odd },→p 〉 with→p def= {odd → even , even → odd }, ob-
tained by the even/odd partition of integer numbers, are such that the corresponding universal
closures are complete for ⊕: in fact, both transition relations are injective and therefore Theorem
3.8 applies.

3.2.2. Complete shell
By applying again Theorem 2.1, let us now characterize the set of fixpoints of the complete shell

of the universal closure for next-time.

Theorem 3.10. The set of fixpoints of Shell⊕(#∀M) is Cl
∪
({*n(X) | n ∈ N,X ∈ #∀M }).

Proof. By Theorem 2.1 and Remark 2.3, Shell⊕(#∀M) = #i∈NR
i⊕(-), where R⊕(-) = Cl∪({∩{X ∈

℘(T) | ⊕X ⊇ Y } | Y ∈ -}) = Cl∪({*(Y) | Y ∈ -}).Moreover, for any i ∈ N,Ri⊕(-) = Cl∪({*i(Y) | Y ∈
-}). Thus, it turns out that

Shell⊕(#∀M) = #i∈NR
i⊕(#∀M)

= Cl∪(∪i∈NCl∪({*i(Y) | Y ∈ #∀M }))
= Cl∪(∪i∈N{*i(Y) | Y ∈ #∀M })
= Cl∪({*i(Y) | i ∈ N, Y ∈ #∀M }). �

Thus, in order tominimally refine the universal closure #∀M to a complete closure for the next-time
⊕, one must close the image of #∀M under the application of the inverse of ⊕, i.e., the previous-time
trace operator *.
As a consequence of Theorem 3.10, we can also provide a characterization of Shell⊕(#∀M) as a

function. Given 〈i, �〉 ∈ T, M ∈ ℘(T) and k ∈ Z, let us define:

Mk↓〈i,�〉
def= {〈j, /〉 ∈ M | /j+k = �i+k}.

This is a generalization of the (current) state projection, sinceM↓�i = M 0↓〈i,�〉. In particular, if k ∈ N,
M−k
↓〈i,�〉 can be thought of as the k-th past state projection of M .

Theorem 3.11. Shell⊕(#∀M) = $X.{〈i, �〉 ∈ M | ∃k ∈ N. M−k
↓〈i,�〉 ⊆ X }.

Proof. By Theorem 3.10, we have that Shell⊕(#∀M) = $X. ∪ {*n(Z) | n ∈ N, Z ∈ #∀M ,*n(Z) ⊆ X }.
Thus, let us show that for any X ⊆ T,

∪{*n(Z) | n ∈ N, Z ∈ #∀M , *n(Z) ⊆ X } = {〈i, �〉 ∈ M | ∃k ∈ N. M−k
↓〈i,�〉 ⊆ X }.

(⊆): Let 〈i, �〉 ∈ *n(Z), for some n ∈ N and Z ∈ #∀M such that *n(Z) ⊆ X . Then, 〈i − n, �〉 ∈ Z and,
sinceZ ∈ #∀M , 〈i − n, �〉 ∈ M . Let us show thatM−n

↓〈i,�〉 ⊆ X . Consider 〈j, /〉 ∈ M such that /j−n = �i−n.

398 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

Since 〈i − n, �〉 ∈ Z andZ ∈ #∀M , wehave that 〈j − n, /〉 ∈ Z , so that 〈j, /〉 ∈ *n(Z).Hence,*n(Z) ⊆ X
implies 〈j, /〉 ∈ X .
(⊇): Consider 〈i, �〉 ∈ M such that M−k

↓〈i,�〉 ⊆ X for some k � 0. We consider M↓�i−k ∈ #∀M and we
observe that 〈i, �〉 ∈ *k(M↓�i−k). In order to conclude, let us check that *k(M↓�i−k) ⊆ X . Consider〈j, /〉 ∈ *k(M↓�i−k), so that 〈j − k , /〉 ∈ M↓�i−k . Hence, /j−k = �i−k , so that 〈j, /〉 ∈ M−k

↓〈i,�〉 ⊆ X , and
therefore 〈j, /〉 ∈ X . �
Thus, for any X ∈ ℘(T), Shell⊕(#∀M)(X) throws away from X all those traces either which are not

inM orwhich are inM but anypast or current state of the trace does not universally satisfyX . The in-
tuition is that while the universal closure #∀M considers present states only (i.e.,M↓�i ⊆ X), as expect-
ed, completeness for next-time forces to take into account any past state (i.e., ∃k ∈ N. M−k

↓〈i,�〉 ⊆ X).
Therefore, in order to design a suitable abstract domain for representing Shell⊕(#∀M) we need “to
prolong the abstract domain ℘(S)⊇ in the past” as follows.

Definition 3.12.Define℘(S)
←
ω def= Z�0 → ℘(S), whereZ�0 is the set of nonpositive integers. Observe

that ℘(S)
←
ω is a complete lattice w.r.t. the standard pointwise ordering ⊇̇.

Given z ∈ Z�0, s ∈ S and M ∈ ℘(T), define Mz↓s
def= {〈i, �〉 ∈ M | �i+z = s}.

The mappings 	⊕∀M : ℘(T)→ ℘(S)
←
ω and ⊕∀M : ℘(S)

←
ω → ℘(T) are defined as follows:

	⊕∀M (X)
def= $z ∈ Z�0. {s ∈ S |Mz↓s ⊆ X };

⊕∀M (>)
def= {〈i, �〉 ∈ M | ∃k ∈ N. �i−k ∈ >(−k)}.

Corollary 3.13. (⊕∀M ,℘(T)⊇,℘(S)
←
ω
⊇̇ ,

⊕
∀M) is a GC, and additionally a GI when M =M→, for some

total transition system 〈S,→〉, which induces the closure Shell⊕(#∀M).

Proof. The fact that (⊕∀M ,℘(T)⊇,℘(S)
←
ω
⊇̇ ,

⊕
∀M) is a GC/GI follows easily from the GC/GI

(∀M ,℘(T)⊇,℘(S)⊇, ∀M). Moreover, observe that ⊕∀M ◦ 	⊕∀M coincides with the characterization
of Shell⊕(#∀M) given by Theorem 3.11. �
Hence, the state abstract domain ℘(S)⊇ needs to be refined to a domain of infinite sequenc-

es of sets of states, namely the “prolongation” of ∀M in the past. We index the sequences > ∈
℘(S)

←
ω over Z�0, so that for any i ∈ N, >(−i) ∈ ℘(S) is reminiscent of a set of states at time

−i ∈ Z�0.
As a consequence, it is easy to design an abstract domain for representing the complete shell of

the universal closure for both next- and previous-time. In fact, the prolongation of ℘(S)⊇ both in
the past and in the future leads to the Galois insertion (±∀M ,℘(T)⊇,℘(S)

ω
⊇̇ ,

±
∀M), where:

	±∀M (X)
def= $z ∈ Z. {s ∈ S |Mz↓s ⊆ X };

±∀M (>)
def= {〈i, �〉 ∈ M | ∃k ∈ Z. �i+k ∈ >(k)}.

Example 3.14. Let us consider again the two states transition system in Example 1.1 and the
formula ⊕*p ∈ , where p = �1. Observe that [[⊕*p]] = [[p]] = M↓1. The formula ⊕*p is
not branchable, namely the abstract semantics of ⊕*p induced by #∀M is not complete. In fact,
	∀M([[⊕*p]]) = {1} while [[⊕*p]]∀M = p̃re→(p̃ost→(∀M(M↓1))) = p̃re→(p̃ost→({1})) = p̃re→({1})
= ∅.

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 399

Let us check that for the above abstract domain ℘(S)ω completeness does hold. In this case, the
abstract semantics is as follows: [[⊕ * p]]±M = 	±∀M ◦ ⊕ ◦ ±∀M ◦ 	±∀M ◦ * ◦ ±∀M ◦ 	±∀M (M↓1). Hence, we
have the following equalities:

	±∀M (M↓1)(z) =
{
∅ if z < 0
{1} if z � 0

±∀M (
±
∀M (M↓1)) = M↓1

*(±∀M (±∀M (M↓1))) = M↓1 ∪ {〈i, �〉 ∈ M | �i = 2, �i−1 = 1}
	±∀M (*(±∀M (±∀M (M↓1))))(z) =

{
∅ if z < −1
{1} if z � −1

±∀M (
±
∀M (*(±∀M (±∀M (M↓1))))) = M↓1 ∪ {〈i, �〉 ∈ M | �i = 2, �i−1 = 1}

⊕(±∀M (±∀M (*(±∀M (±∀M (M↓1)))))) = M↓1

As a consequence, it turns out that

	±∀M ([[⊕*p]]) = 	±∀M (M↓1) = 	±∀M (⊕(±∀M (±∀M (*(±∀M (±∀M (M↓1))))))) = [[⊕*p]]±M
namely completeness holds for this abstract domain.

3.3. Time reversal

Let us now analyze the time reversal operator. The universal abstraction for the reversed model
�M is characterized as follows. Of course, notice that ifM is generated by a transition system 〈S,→〉
then �M is the model generated by the reversed transition system 〈S,←〉.
Lemma 3.15. #∀�M = � ◦ #∀M ◦ �.

Proof.Letus showthat�(#∀M(�X))=#∀�M(X). Let 〈i, �〉∈�(#∀M(�X)).Wehave that�〈i, �〉 ∈ #∀M(�X),
and therefore�〈i, �〉 ∈ M andM↓�i ⊆ �X . This implies 〈i, �〉∈�M and�(M↓�i)⊆X . Since�(M↓�i) =
(�M)↓�i , this means that 〈i, �〉 ∈ #∀�M(X). On the other hand, the previous implications actually are
equivalences, and thus the reverse inclusion simply follows by going backward. �

3.3.1. Complete core
Theorem 2.1 allows us here to show that the complete core is given by those fixpoints of #∀M which

also belong to the universal closure #∀�M relative to the reversed model �M .

Theorem 3.16.The set of fixpoints of Core
�
(#∀M) is {Y ∈ ℘(T) | Y , �Y ∈ #∀M }.Moreover,Core

�
(#∀M) =

#∀M " #∀�M .
Proof. By Theorem 2.1 and Remark 2.3, Core�(#

∀
M) = "i∈NL

i
�
(#∀M), where L�(-) = {Y ∈ ℘(T) |

∩{X ∈ ℘(T) |�X ⊇ Y } ∈ -}. Since �X ⊇ Y ⇔ X ⊇ �Y , we have that L�(-) = {Y ∈ ℘(T) |�Y ∈ -}.
Thus, for any j > 0, L2j

�
(#∀M) = #∀M and L2j+1

�
(#∀M) = L�(#

∀
M). Hence, "i∈NL

i
�
(#∀M)= #∀M " L�(#

∀
M) = {Y ∈ ℘(T) | Y , �Y ∈ #∀M }. Moreover, let us observe that �Y ∈ #∀M ⇔

400 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

#∀M(�Y) = �Y ⇔ �(#∀M(�Y)) = Y . Therefore, by Lemma 3.15, we have that �Y ∈ #∀M ⇔ Y ∈ #∀�M ,
and thus Core�(#

∀
M) = #∀M " #∀�M . �

This allows us to give a characterization of transition systems that induce universal closures
which are complete for time reversal. It turns out that these are the symmetric transition systems:
a relation→ is symmetric when ∀r, s ∈ S. r→s ⇒ s→r. This means that in symmetric transition
systems any computation step is reversibile.

Corollary 3.17. LetM =M→ for some total transition system 〈S,→〉. Then, #∀M is complete for � if
and only if→ is symmetric.

Proof. Let us first observe that→ is symmetric iffM = �M . Let us show that #∀�M � #∀M ⇒ M =
�M : we have that �M = #∀�M(T) ⊇ #∀M(T) = M , and in turn, by applying �, M ⊇ �M , that is

�M = M . Thus, #∀�M � #∀M ⇔ M = �M . Moreover, by Theorem 3.16, #∀M is complete for � iff
Core�(#

∀
M) = #∀M iff #∀�M � #∀M . Hence, this closes the proof. �

Thus, in practice, the universal closure is rarely complete for time reversal, since symmetry is not
a realistic condition for most systems.

Example 3.18. Consider the abstract counter and the abstract traffic light controller in Example
3.9. The transition relations of both systems are symmetric, so that, by Corollary 3.17, the universal
closure is complete for time reversal. This is not the case of the concrete three-state traffic light
controller, since the transition relation is not symmetric. Observe that the model generated by this
transition system is as follows:

M = {〈i, · · · red green yellow red green yellow · · ·〉 | i ∈ Z}.
Thus, for anyY ⊆M ,Y , �Y ∈#∀M holds if andonly ifY =∅. Therefore, byTheorem3.16,Core�(#

∀
M) ={∅}, i.e., the complete core is the trivial abstract domain representing no information.

3.3.2. Complete shell
Let us now apply our constructive approach to characterize the complete shell.

Theorem 3.19. The set of fixpoints of Shell
�
(#∀M) is Cl∪(#∀M ∪ {Y ∈ ℘(T) |�Y ∈ #∀M }). Moreover,

Shell
�
(#∀M) = #∀M # #∀�M .

Proof. By Theorem 2.1 and Remark 2.3, Shell�(#∀M) = #i∈NR
i
�
(#∀M), where R�(-) = Cl∪({∩{X ∈

℘(T) |�X ⊇ Y } | Y ∈ -}) = Cl∪({�Y | Y ∈ -}) = Cl∪({Y |�Y ∈ -}). Since � preserves arbitrary
unions, for any j > 0, R2j

�
(#∀M) = #∀M and R2j+1

�
(#∀M)=R�(#

∀
M). Hence, we have that #i∈NR

i
�
(#∀M)= #∀M # R�(#

∀
M) = Cl∪(#∀M ∪ {Y |�(Y) ∈ #∀M }). Moreover, as observed in the proof of Theorem

3.16, �Y ∈ #∀M ⇔ �(#∀M(�Y)) = Y , and therefore, by Lemma 3.15, R�(#
∀
M) = #∀�M , so that we

obtain that Shell�(#∀M) = #∀M # #∀�M . �
It is therefore simple to design an abstract domain for representing this complete shell.We consid-

er the abstract domain℘(S)2⊇ as related to the concrete domain℘(T)⊇ by the following abstraction
and concretization maps:

	�∀M
def= $X.〈	∀M(X),	∀�M(X)〉;

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 401

�∀M
def= $〈X1,X2〉.∀M(X1) ∪ ∀�M(X2).

As a consequence of Theorem 3.19, it turns out Shell�(#∀M) is the closure induced by the GI
(�∀M ,℘(T)⊇,℘(S)

2⊇, �∀M). Thus, the above result tells us that completeness for time reversal re-
quires an additional component taking into account the universal abstraction for the reversed
model �M .

3.4. Disjunction

Finally, let us consider disjunction, namely set-union in the concrete domain ℘(T).

3.4.1. Complete core
Theorem 3.20. Core∪(#∀M) = $X.∅.
Proof.ByTheorem2.1 andRemark2.3,Core∪(#∀M)="i∈NL

i∪(#∀M),whereL∪(-)={Y ∈ ℘(T) | {∩{Z ∈
℘(T) |Z ∪ X ⊇ Y }}X∈℘(T) ⊆ -}. Note that, for any X , Y ∈ ℘(T), ∩{Z ∈ ℘(T) |Z ∪ X ⊇ Y } = Y ∩
¬X and↓Y def= {Z ∈ ℘(T) |Z ⊆ Y } = {Y ∩ ¬X |X ∈ ℘(T)}. Thus,L∪(-) = {Y ∈ ℘(T) | ↓Y ⊆ -}.Al-
so, let us observe that L∪(-) ⊆ - and ↓L∪(-) = L∪(-), so that, for any i � 2, Li∪(#∀M) = L∪(#∀M), and
therefore"i∈NL

i∪(#∀M) = {Y ∈ ℘(T) | ↓Y ⊆ #∀M }. Consider now some Y ∈ ℘(T) such that↓Y ⊆ #∀M .
Then, Y ∈ #∀M , so that there exists some S ⊆ S such that Y = ∀M(S). If s ∈ S then there exists some〈i, �〉 ∈ M↓s ⊆ ∀M(S), so that {〈i, �〉} ⊆ Y . It turns out that {〈i, �〉} �∈ #∀M because ∀M({�i}) = M↓�i
and, byHypothesis 2.6 (i), |M↓�i | > 1. Thismeans that if S /= ∅ then↓Y �⊆ #∀M . Thus, Core∪(#∀M) ={∅}, i.e., the core is the greatest closure $X.∅. �
The greatest closure $X.∅ represents the straightforward uninformative abstract domain con-

sisting of a unique abstract value which is the abstraction of any concrete value. The above result
states that there is no further abstraction, but for the straightforward abstraction, of the univer-
sal abstraction which is complete for disjunction. As a consequence, we will prove later that any
abstraction, but for the straightforward one, of the state-based model checking for a temporal
calculus that includes an unrestricted connective of disjunction is incomplete for the trace-based
semantics.

3.4.2. Complete shell
Theorem 3.21. Shell∪(#∀M) = $X.X ∩M , so that the set of fixpoints of Shell∪(#∀M) is {X ∈ ℘(T) |
X ⊆ M }.
Proof. By Theorem 2.1 and Remark 2.3, Shell∪(#∀M) = #i∈NR

i∪(#∀M), where
R∪(-)=Cl∪({∩{X ∈ ℘(T) |X ∪ Y ⊇ Z}}Y ∈℘(T),Z∈-)=Cl∪({Z ∩ ¬Y | Y ∈ ℘(T), Z ∈ -}) = Cl∪({Z ∩
Y | Y ∈ ℘(T), Z ∈-}). Thus,wehave that#i∈NR

i∪(#∀M) = R∪(#∀M). It remains toobserve thatCl∪({Z ∩
Y | Y ∈ ℘(T), Z ∈ -}) = {X ∈ ℘(T) |X ⊆ M }: this is an immediate set-theoretic consequence of the
fact thatM ∈ #∀M and that if Z ∈ #∀M then Z ⊆ M . Moreover, let us also note that the set of fixpoints
of $X.X ∩M is {X ∈ ℘(T) |X ⊆ M }. �
As a consequence, let us also notice that Shell∪(#∀M) is the closure induced by the GI

(∪∀M ,℘(T)⊇,℘(M)⊇,
∪∀M), where 	

∪∀M
def= $X.X ∩M and ∪∀M

def= $X.X . Hence, the complete shell of

402 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

the universal abstraction for the union is “essentially” the identity mapping. More precisely, for a
given modelM , the closure Shell∪(#∀M) can be represented by the abstract domain ℘(M)⊇ endowed
with the abstraction map $X.X ∩M which simply removes those traces which are not in M . This
means that completeness for disjunction indeed requires all the traces in M .
Once again the above complete shell was characterized by exploiting the constructive method in

Section 2.2.3. This complete shell can be also obtained in a nonconstructive way.1

Lemma 3.22. Let X be any set and # ∈ uco(℘(X)⊇) such that #(M) = M. If # is finitely additive then
for any Z ⊆ M , #(Z) = Z.
Proof. Assume by contradiction that Z ⊆ M is such that #(Z)�Z , and let x ∈ Z�#(Z). Then, x �∈
M�Z , so that x �∈ #(M�Z). Moreover, since #(M ∩ Z) ⊆ #(Z), we also have that x �∈ #(M ∩ Z).
On the other hand, x ∈ M = #(M) = #((M ∩ Z) ∪M�Z), so that #(M ∩ Z) ∪ #(M�Z)�#((M ∩ Z) ∪
(M�Z)), namely # is not additive, a contradiction. �
Let us observe that # ∈ uco(℘(T)⊇) is complete for finite set-union when for any X , Y ∈ ℘(T),

#(X ∪ Y) = #(#(X) ∪ #(Y)) = #(X) ∪ #(Y), that is, when # is finitely additive. This observation al-
lows us to show that Shell∪(#∀M) = $X.X ∩M in a nonconstructive way: by Lemma 3.22, since
M ∈ #∀M ⊆ Shell∪(#∀M), it turns out that for any X ⊆ M , X ∈ Shell∪(#∀M); hence, {X ∈ ℘(T) |X ⊆
M } ⊆ Shell∪(#∀M), and since {X ∈ ℘(T) |X ⊆ M } is (the set of fixpoints of) the closure $X.X ∩M
which is finitely additive, i.e. complete for set-union, we have that Shell∪(#∀M) = $X.X ∩M . Let us
remark that in this easy nonconstructive proof one first needs to guess some abstract domain and
then to prove that this is indeed the complete shell. By contrast, our proof (of Theorem 3.21) is easy
as well and, more importantly, constructive so that it is enough to apply themethodology in Section
2.2.3 to characterize the complete shell.

3.5. All the connectives

To conclude our analysis, let us characterize the complete core and shell of the universal checking
closure for all the connectives of the -calculus, i.e., the set TT of all the trace transformers.We need
to take care of the following technicality. As far as the universal quantifier is concerned, the follow-
ing restriction is needed. We just consider the unary restrictions $X.∀(N ,X) : ℘(T)→ ℘(T), where
N ⊆ M ∪ �M , because the binary trace transformer ∀ : ℘(T)× ℘(T)→ ℘(T) is neither monotone
nor antitone in its first argument, while given any N ∈ ℘(T), the unary restriction $X.∀(N ,X) is in-
stead monotone. Standard universal quantification can be expressed, because, as recalled in Section
2.3, ∀� def= ∀ (�±�→) : �, where [[�± (�→)]] =M→. In the sequel, we will use the following compact

notation:M ∗ def= M ∪ �M . Hence, the set of trace transformers of the -calculus is TT def= {�S}S∈℘(S)
∪ {�t}t∈℘(S2) ∪ {⊕,∪,¬,�} ∪ {$X.∀(N ,X)}N⊆M∗ . As TT includes negation which is antimonotone,
observe that the existence of the complete core and shell of the universal closure for all the connec-
tives is not guaranteed. However, since the complete core of #∀M for negation and disjunction is the
greatest closure $X.∅ (by Theorems 3.3 and 3.20), as a straight consequence we obtain that $X.∅ is

1 This has been suggested by one anonymous referee.

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 403

also the complete core of #∀M for the set TT of trace transformers, that is CoreTT(#∀M) = $X.∅. On
the other hand, the complete shell for all the connectives does exist and is as follows.

Theorem 3.23. ShellTT(#
∀
M) = $X.X ∩M ∗, so that the set of fixpoints of ShellTT(#

∀
M) is {X ∈ ℘(T) |

X ⊆ M ∗}.
Proof. Let # = $X.X ∩M ∗ and note that this is a closure on ℘(T)⊇. The following points show that
∈ *(℘(T)⊇, TT).
(1) # ∈ *(℘(T)⊇, {�S}S∈℘(S) ∪ {�t}t∈℘(S2)) because �S and �t are 0-ary operators.
(2) # ∈ *(℘(T)⊇,⊕). Since ⊕ preserves unions and intersections, given X ∈ ℘(T), #(⊕(#(X))) =
#(⊕(X) ∩ (⊕(M) ∪ ⊕(�(M)))) = ⊕(X) ∩ (⊕(M) ∪ ⊕(�(M))) ∩ (M ∪ �(M)).Also, byHypothesis 2.6
(ii),⊕(M) = M and⊕(�(M)) = �(M), and therefore #(⊕(#(X))) = ⊕(X) ∩ (M ∪ �(M)) = #(⊕(X)).
(3) # ∈ *(℘(T)⊇,∪). In fact, #(#(X) ∪ #(Y))=#((X ∩M ∗) ∪ (Y ∩M ∗))=#((X ∪ Y) ∩M ∗) = (X ∪
Y) ∩M ∗ = #(X ∪ Y).
(4) # ∈ *(℘(T)⊇,¬). In fact, #(¬#(X)) = (¬(X ∩M ∗)) ∩M ∗ = ((¬X) ∩M ∗) ∪ ((¬M ∗) ∩M ∗) =
(¬X) ∩M ∗ = #(¬X).
(5) # ∈ *(℘(T)⊇,�). As � preserves intersections and, by Hypothesis 2.6 (ii), �(M ∗) = M ∗, we have
that #(�(#(X))) = #(�(X ∩M ∗)) = #(�(X) ∩M ∗) = �(X) ∩M ∗ = #(�(X)).
(6) # ∈ *(℘(T)⊇, {$X.∀(N ,X)}N⊆M). Let N ⊆ M and X ∈ ℘(T), and observe that for any 〈i, �〉 ∈ N ,
we have that N↓�i ⊆ X ∩M ∗ ⇔ (N↓�i ⊆ X). Thus, #(∀(N , #(X)))={〈i, �〉 ∈ N |N↓�i ⊆ X ∩M ∗} ∩
M ∗ = {〈i, �〉 ∈ N |N↓�i ⊆ X } ∩M ∗ = #(∀(N ,X)).
To conclude, consider any - ∈ uco(℘(T)⊇) such that - ∈ *(℘(T)⊇, TT) and - � #∀M . Since - ∈
*(℘(T)⊇,∪), byTheorem3.21,wehave that-�Shell∪(#∀M)=$X.X ∩M .Moreover,-∈ *(℘(T)⊇,�),
and hence, by Theorem 3.19, - � Shell�(#∀M) = #∀M # #∀�M � #∀�M . Thus, because - � #∀�M and - ∈
*(℘(T)⊇,�), we have that - � Shell∪(#∀�M). By Theorem 3.21, Shell∪(#∀�M) = $X.X ∩ �(M), so that
- � $X.X ∩�(M).Hence,weobtained that-�($X.X ∩M) # ($X.X ∩�(M)) = #. Thus, ShellTT(#∀M)=
#. �
Let us observe that ℘(M ∗)⊇ is a suitable abstract domain for representing this complete shell

because the GI (∀M ,℘(T)⊇,℘(M ∗)⊇, ∀M), where 	∀M
def= $X.X ∩M ∗ and ∀M

def= $X.X , induces the
closure $X.X ∩M ∗. The abstract domain ℘(M ∗) therefore represents the traces both of the system
〈S,→〉 and of the reversed system 〈S,←〉.
Let us remark that by exploiting the above results in Sections 3.1-3.4, it is not hard to characterize

the complete shell of the universal abstraction for any subset of trace transformers. For example,
when we leave out the reversal operator from TT, as one expects, it is easy to show that in this case
ShellTT(#∀M) = $X.X ∩M .

4. Completeness of temporal languages

LetOpbe any set of temporal connectives, where each op ∈ Ophas a corresponding arity �(op) �
0 so that constants are viewed as connectives whose arity is 0. Following Cousot and Cousot [10,
Section 8],Op induces a corresponding fixpoint temporal language LOp which is inductively defined
as follows:

LOp & � ::= X | op (�1, ...,�n) | �X.� | �X.�

404 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

whereX ∈ X and op ∈ Op. Given any setS of states which determines a corresponding setT of trac-
es, the semantics of any connective op with arity n � 0 is given by a corresponding trace transformer
op : ℘(T)n→ ℘(T). The set of trace transformers that provide the semantics of connectives in Op
is denoted by Op. Hence, this determines a trace semantics of LOp, namely [[·]] : LOp → E → ℘(T),
which is inductively (and, due to fixpoints, possibly partially) defined as follows:

[[X]]0 = 0(X)
[[op (�1, ...,�n)]]0 = op([[�1]]0, ..., [[�n]]0)
[[�X.�]]0 = lfp($N ∈ ℘(T).[[�]]0[X/N])
[[�X.�]]0 = gfp($N ∈ ℘(T).[[�]]0[X/N])

Thus, any abstraction of the concrete domain ℘(T) induces an abstract semantics for LOp. As de-
scribed in Section 2.4.3, the universal abstractionprovides an example: the state semantics [[·]]∀M is the
abstract semantics induced by #∀M ∈ uco(℘(T⊇)). In general, any abstract domain # ∈ uco(℘(T)⊇)
induces the set of abstract environments E#

def= X → #. Hence, the abstract semantics [[·]]# : LOp →
E# → # is defined as follows:

[[X]]#4 = 4(X)
[[op (�1, ...,�n)]]#4 = #(op([[�1]]#4, ..., [[�n]]#4))
[[�X.�]]#4 = lfp($N ∈ #.[[�]]#4[X/N])
[[�X.�]]#4 = gfp($N ∈ #.[[�]]#4[X/N])

Given a concrete environment 0 ∈ E, #̇(0) def= $X.#(0(X)) ∈ E# is the corresponding abstract en-
vironment induced by #. Soundness of # for the language LOp means that the abstract semantics[[·]]# is sound, namely for any � ∈ LOp and 0 ∈ E, #([[�]]0) ⊆ [[�]]##̇(0). Completeness of # for LOp
means that equality always holds. As usual, the abstract interpretation approach always ensures
soundness, while completeness in general does not hold.
Given # ∈ uco(℘(T)⊇), the complete shell of # forLOp, when it exists, is themost abstract domain

ShellLOp
(#) ∈ uco(℘(T)⊇) such that ShellLOp

(#) � # and ShellLOp
(#) is complete for LOp. Complete

cores for LOp are defined dually.
As recalled in Section 2.2.2, it turns out that if # is complete for some function f then # is also

fixpoint complete for f . Thus, as a straight consequence we obtain that if # ∈ uco(℘(T)⊇) is com-
plete for Op and # is co-continous (e.g., this happens when # does not contain infinite descending
chains) then # is complete for LOp. Moreover, it turns out that complete shells and cores for a
temporal language LOp coincide with complete shells and cores for the corresponding set Op of
trace transformers.

Theorem 4.1. Let # ∈ uco(℘(T)⊇). If ShellOp(#) exists and is co-continuous then ShellLOp
(#) =

ShellOp(#).

Proof. As recalled above, since ShellOp(#) is complete for Op, we have that ShellOp(#) is complete
for LOp. Moreover, ShellOp(#) � #. Let us consider any - ∈ uco(℘(T)⊇) such that - � # and - is
complete for LOp. Let us check that - is complete for Op. Consider op ∈ Op and, for simplici-
ty, assume that op is unary. Given T ∈ ℘(T), we consider an environment 0 ∈ E such that 0(X) =

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 405

T . Hence, by completeness of - for LOp, we have that -(op(T)) = -(op(0(X))) = -([[op (X)]]0) =
[[op (X)]]--̇(0) = -(op(-(0(X)))) = -(op(-(T))). Therefore,- � ShellOp(#).As a consequence, it turns
out that ShellLOp

(#) exists and that ShellLOp
(#) = ShellOp(#). �

Obviously, an analogous result holds for complete cores as well. This general result can be applied
to the -calculus. Recall that TT denotes the set of trace transformers of the -calculus, where the
universal quantifier is restricted to a unary operator. Let us denote by TT the corresponding set of
temporal connectives of the -calculus so that LTT ⊆ is a slight restriction of the -calculus
where universal quantifications are unary. Consider any set Op ⊆ TT of temporal connectives,
that gives rise to the language LOp ⊆ LTT , and assume that the complete shell ShellOp(#

∀
M) of the

universal closure #∀M for the trace transformers in Op exists. Then, by Theorem 4.1, it turns out that
ShellLOp

(#∀M) = ShellOp(#
∀
M). Analogously, this also holds for complete cores. Consequently, as far

as the core is concerned, we have that

CoreLTT
(#∀M) = $X.∅.

On the other hand, by Theorem 3.23, it turns out that

ShellLTT
(#∀M) = $X.X ∩M ∗.

Thus, in general, in order to obtain the complete shell/core of the universal closure for some
fragment LOp of the -calculus it is enough to characterize the complete shell/core for the corre-
sponding set Op of trace transformers. For example, if Op includes arbitrary disjunction but does
not include time reversal, so that LOp is a future-time language, by the result mentioned at the end
of Section 3.5, we have that ShellLOp

(#∀M) = $X.X ∩M .

5. Conclusion

This paper studied the completeness of state-based w.r.t. trace-based model checking by using
a body of techniques based on abstract interpretation. By using a slogan, this study showed that
“the state-based model checking is intrinsically incomplete w.r.t. trace-based model checking,” since
no refinement or abstraction of the standard state-based semantics for model checking induced
by the universal/existential abstraction of past- and future-time specification languages can lead
to a semantics whose corresponding model checking is complete for the trace semantics of the
specification language.
The results of this paper suggest some research directions. An abstract interpretation-based ap-

proach to model checking for modal Kripke transition systems has been studied by Huth et al. [15].
It is then interesting to investigate whether the framework of modal transition systems based on
three-valued logics affects the incompleteness of states w.r.t. traces. In view of the characterizations
of transition systems provided by Theorem 3.8 and Corollary 3.17, it is also interesting to determine
fragments of �-calculi and classes of transition systems such that the universal/existential abstrac-
tion results to be complete. Finally, it is certainly interesting to investigate how completeness of
state-based abstractions interacts with the presence of spurious counterexamples in abstract model

406 R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407

checking. The works by Clarke et al. [3–5] on spurious counterexamples originated from the idea
of systemically refining abstract models in order to enhance their precision. A spurious counterex-
ample is an abstract trace which is an artificial counterexample generated by the approximation
of the abstract model checker, namely there exists a concrete trace approximated by the spurious
counterexample which is not a real counterexample. Clarke et al. devised amethodology for refining
a partition-based abstract model relatively to a given temporal specification � by using the spurious
counterexamples provided by the abstract model checker on �. The relationship between spurious
counterexamples and the trace-semantics of temporal calculi has not been investigated from an
abstract interpretation-based perspective and we believe that the results of this paper might shed
some light on these issues.

Acknowledgments

We are grateful to the anonymous referees for their helpful comments. This work is an extended
and revised versionof two conferencepapers [14,20] andwaspartially supportedby theFIRBProject
RBAU018RCZ “Abstract interpretation and model checking for the verification of embedded sys-
tems” and by the COFIN2004 Project “AIDA: Abstract Interpretation Design and Applications.”

References

[1] C.H. Bennett, Logical reversibility of computation, IBM J. Res. Dev. 21 (1981) 905–940.
[2] E.M. Clarke, I.A. Draghicescu, Expressibility results for linear time and branching time logics, in: Linear Time,

Branching Time and Partial Order in Logics and Models for Concurrency, Lecture Notes in Computer Science, vol.
354, Springer, Berlin, 1988, pp. 428–437.

[3] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement, in: Proceedings
of the 12th International Conference onComputerAidedVerification (CAV’00), LectureNotes in Computer Science,
vol. 1855, Springer, Berlin, 2000, pp. 154–169.

[4] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement for symbolic
model checking, J. ACM 50 (5) (2003) 752–794.

[5] E.M. Clarke, S. Jha, Y. Lu, H. Veith, Tree-like counterexamples in model checking, in: Proceedings of the 17th IEEE
Symposium on Logic in Computer Science (LICS’02), IEEE Press, New York, 2002, pp. 19–29.

[6] E.M. Clarke, O. Grumberg, D.E. Long, Model checking and abstraction, ACM Trans. Program. Lang. Syst. 19 (5)
(1994) 1512–1542.

[7] E.M. Clarke, O. Grumberg, D. Peled, Model checking, The MIT Press, Cambridge, MA, 1999.
[8] P. Cousot, R. Cousot, Abstract interpretation: A unified lattice model for static analysis of programs by construction

or approximation of fixpoints, in: Proceedings of the ACM Symposium on Principles of Programming Languages
(POPL’77), ACM Press, New York, 1977, pp. 238–252.

[9] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Proceedings of the ACM Symposium
on Principles of Programming Languages (POPL’79), ACM Press, New York, 1979, pp. 269–282.

[10] P. Cousot, R. Cousot, Temporal abstract interpretation, in: Proceedings of the ACM Symposium on Principles of
Programming Languages (POPL’00), ACM Press, New York, 2000, pp. 12–25.

[11] E.A. Emerson, J.Y. Halpern, “Sometimes” and “Not Never” revisited: on branching versus linear time temporal
logic, J. ACM 33 (1) (1986) 151–178.

[12] R. Giacobazzi, F. Ranzato, F. Scozzari, Making abstract interpretations complete, J. ACM 47 (2) (2000) 361–416.
[13] R. Giacobazzi, E. Quintarelli, Incompleteness, counterexamples and refinements in abstract model checking, in:

Proceedings of the 8th International Static Analysis Symposium (SAS’01), Lecture Notes in Computer Science, 2126,
Springer, Berlin, 2001, pp. 356–373.

R. Giacobazzi, F. Ranzato / Information and Computation 204 (2006) 376–407 407

[14] R.Giacobazzi, F. Ranzato. States vs. traces inmodel checking, in: Proceedings of the 9th International StaticAnalysis
Symposium (SAS’02), Lecture Notes in Computer Science, vol. 2477, 2002, pp. 461–476.

[15] M. Huth, R. Jagadeesan, D. Schmidt, Modal transition systems: a foundation for three-valued program analysis, in:
Proceedings of the 10th European Symposium on Programming (ESOP’01), Lecture Notes in Computer Science, vol.
2028, Springer, Berlin, 2001, pp. 155–169.

[16] D. Kozen, Results on the propositional �-calculus, Theoret. Comput. Sci. 27 (1983) 333–354.
[17] O. Kupferman, M. Vardi, Relating linear and branching model checking, in: Proceedings of the IFIP Working

Conference on Programming Concepts and Methods, Chapman & Hall, London, 1998, pp. 304–326.
[18] L. Lamport, Sometimes is sometimes “not never”—on the temporal logic of programs, in: Proceedings of the 7th

ACM Symposium on Principles of Programming Languages (POPL’80), ACM Press, New York, 1980, pp. 174–185.
[19] M. Maidl, The common fragment of CTL and LTL, in: R. Shoba (Ed.), Proceedings of the 41st IEEE Symposium

on Foundations of Computer Science, FOCS’00, IEEE Press, New York, 2000, pp. 643–652.
[20] F. Ranzato, On the completeness of model checking, in: Proceedings of the 10th European Symposium on Program-

ming (ESOP’01), Lecture Notes in Computer Science, vol. 2028, Springer, Berlin, 2001, pp. 137–154.
[21] F. Ranzato, F. Tapparo, Strong preservation as completeness in abstract interpretation, in: Proceedings of the 13th

European Symposium on Programming (ESOP’04), Lecture Notes in Computer Science, vol. 2986, Springer, Berlin,
2004, pp. 18–32.

[22] F. Ranzato, F. Tapparo, An abstract interpretation-based refinement algorithm for strong preservation, in: Proceed-
ings of the 11th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’05), Lecture Notes in Computer Science, vol. 3440, Springer, Berlin, 2005, pp. 140–156.

[23] F. Ranzato, F. Tapparo, An abstract interpretation perspective on linear vs branching time, in: Proceedings of the
3rd Asian Symposium on Programming Languages and Systems (APLAS’05), Lecture Notes in Computer Science,
vol. 3780, Springer, Berlin, 2005, pp. 69–85.

[24] D. Schmidt, From trace sets to modal transition systems by stepwise abstract interpretation, in: Proceedings of the
Workshop on Structure Preserving Relations, Amagasaaki, Japan, 2001.

[25] M. Vardi, Sometimes and not never re-revisited: on branching versus linear time, in: Proceedings of the 9th Internat.
Conf. on Concurrence Theory (CONCUR’98), Lecture Notes in Computer Science, vol. 1466, Springer, Berlin, 1998,
pp. 1–17.

[26] M. Vardi, Branching vs. linear time: final showdown, in: Proc. 7th Internat. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’01), Lecture Notes in Computer Science, vol. 2031, 2001, pp. 1–22.

