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Precise Toppling Balance, Quenched Disorder, and Universality for Sandpiles
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A single sandpile model with quenched random toppling matrices captures the crucial features of
different models of self-organized criticality. With symmetric matrices avalanche statistics falls in the
multiscaling Bak-Tang-Wiesenfeld universality class. In the asymmetric case the simple scaling of the
Manna model is observed. The presence or absence of a precise toppling balance between the amount of
sand released by a toppling site and the total quantity the same site receives when all its neighbors topple
once determines the appropriate universality class.
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Self-organized criticality (SOC) occurs in the nonlinear
transport of some physical entity, like energy, sand, or
stress, through a system of linear size L under a constant,
slow external drive [1–4]. The transport has breakdown
features, with intermittent bursts of activity called ava-
lanches. At long times the probability distribution of ava-
lanche sizes becomes critical since they do not reveal char-
acteristic scales between L and the minimal length speci-
fied in the model. In spite of many efforts, the physical
mechanisms underlying the different forms of scaling real-
ized in such models and the related universality issues re-
main poorly understood. The probability distribution of the
number of topplings in an avalanche of the Bak-Tang-
Wiesenfeld (BTW) [5] sandpile, historically the prototype
of SOC, has been shown recently to violate the finite size
scaling (FSS) ansatz, assumed for many years, and to obey
a peculiar form of multiscaling [6,7]. On the other hand, in
the Manna stochastic sandpile [8] the corresponding dis-
tribution is known to obey FSS [7,9,10]. Understanding the
key mechanisms at the basis of these radically different
forms of scaling remains a major challenge which should
be faced also in the perspective of new concrete applica-
tions [11].

In this Letter we study sandpile models [2] on lattices
with quenched disorder. This means that different bonds of
the lattice allow flow of different, but constant numbers of
sand grains through them. We further distinguish between
an undirected case, in which the flow is identical in the two
directions for each bond, and a directed one, in which this
flow can be asymmetric. We show that, once averaged over
the possible realizations of the quenched disorder, the
avalanche size distribution of the model with symmetric
flow in each bond obeys the same multiscaling as the BTW
model, while asymmetry in the flow leads to FSS with the
exponents of the Manna sandpile. Thus, for a disordered
sandpile the two main SOC universality classes can both be
realized simply upon enforcing or releasing a local sym-
metry requirement.

The deterministic sandpile model on a square lattice of
size L is described using an integer ‘‘toppling matrix’’
05=94(8)=088002(4)$23.00 08800
(TM) � of size L2 � L2 [2]. At lattice site k there is a
column of hk sand grains. The system is externally driven
by adding a single grain at a time at a randomly selected
site i: hi ! hi � 1. Each site has a threshold height Hi of
stability. If hi > Hi, the sand column at i topples and grains
are distributed to other sites. Consequently, all heights are
updated as hj ! hj ��ij where �ii > 0 and �ij � 0 for
i � j. The threshold heights are chosen as Hi � �ii. Grain
conservation is assured by putting �ii��

P
j�i�ij. Grains

must flow out of the system through the boundary sites to
maintain a stationary state. The BTW model is a special
case of this formulation where �ii � 4, �ij � �1 for
ji�jj�1, and �ij�0 for ji�jj>1 [5]. In contrast, in
the stochastic sandpile model [8], annealed randomness en-
ters in the grain distribution process upon toppling. Indeed,
in this case each grain of the toppling site is transferred to a
randomly selected neighboring site. For both BTW and
stochastic sandpiles the grain number is conserved,
boundaries are open, and, when a site topples, grains are
distributed to its neighborhood. In spite of these common
features and similarities [12], the difference in the behavior
of the two models concerns even the type of scaling.

In the Manna sandpile, the randomness in the choice of
the neighbors getting a grain from the toppling site can be
regarded as an ‘‘annealed’’ disorder. Indeed, the random
choice of the TM elements is constantly updated during the
course of a given avalanche. In contrast, a ‘‘quenched’’
disorder is realized in the models discussed here, for which
a random realization of � is maintained for a full samples
of avalanches, and an average over the distributions of
many samples created is performed eventually.

Our �ij is nonzero only for i � j or ji� jj � 1.
However, unlike in the BTW model, �ij takes random
values. These are chosen among the negative integers
�1;�2; . . . ;�m when ji� jj � 1. Thus, when one of
the sites joined by a nearest neighbor bond topples, this
bond can allow the flow of more than one grain, unlike in
the BTW case. When the TM is symmetric, we call the
model undirected and assign only one random integer
2-1  2005 The American Physical Society
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�ij � �ji independently to each nearest neighbor bond
[Fig. 1(a)]. In the directed case the TM is asymmetric
and both �ij and �ji are assigned independently drawn
random integers [Fig. 1(b)]. In this way a toppling at one
end of a bond may send, through the same bond, a different
number of grains from that at the other end. At any site iwe
put Hi � �ii � �

P
j�i�ij. The total number of grains

received by the site i when all neighboring sites topple
once is H0

i � ��j�i�ji. We call Hi and H0
i the out degree

and the in degree of site i, respectively.
Irrespective of whether � is symmetric or not, the

models enjoy the Abelian property of the BTW sandpile
[13]. This allows us to establish a number of general exact
results concerning the stationary state, recurrent configu-
rations, etc., which hold in both the directed and the
undirected cases [2]. An important notion is that an ava-
lanche can be decomposed into waves of toppling [14,15].
To this purpose one considers the sequence of topplings
following the addition of the seed grain at site 0. The first
wave is the set of all topplings that follows the first toppling
at 0 while 0 itself is prevented from a possible second
toppling. If 0 is still unstable after the first wave, the second
wave starts by allowing a second toppling at 0, and so on.

A peculiar property of waves with a symmetric TM is
that the set of lattice sites which topple has no holes. For
example, a single untoppled site cannot be fully sur-
rounded by toppled sites. Indeed, in the undirected model
the equality Hi � H0

i is strictly maintained at all sites
except at the boundary, which implies that a site must
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FIG. 1. Random grain flow distribution along the bonds of a
3� 3 square lattice: (a) undirected case, (b) directed case.
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topple irrespective of its height, if all its neighbors topple
once. Thus, waves in the undirected model, like in the
BTW model, have no holes. In addition, one can show
that all sites involved by a wave topple only once, like the
seed site. All this is not true anymore with asymmetric TM.
In this case the waves can have holes and can include sites
that topple more than once. Indeed, in the directed model,
Hi � H0

i in general and a site with Hi > H0
i does not topple

even if all its neighbors topple once. This creates a single
site hole in the avalanche. On the other hand, if a site i has
an out degree sufficiently smaller than its in degree, it may
topple for the second time even if none of its neighbors
have toppled for the second time. Thus, in general, differ-
ent sites belonging to a given wave topple a different
number of times.

The compactness and uniformity of waves in the undi-
rected model leads us to expect for them and for the
resulting avalanches a structure similar to that of the
BTW model [Fig. 2(a)]. The nonuniformity introduced
by disorder should not be relevant at large scales when
one counts toppling events. The situation is quite different
for the directed model: the structures of waves and of
avalanches in this case [Fig. 2(b)] look, in fact, similar to
those of the Manna model [16] where the numbers of
grains transmitted upon in the two directions of a given
bond are different in general, and this imbalance is main-
tained dynamically due to the stochastic distribution of
sand grains.

In the BTW model, the probability distribution
Prob	s; L
 of the total number of topplings, s, in an ava-
lanche has been found recently to obey a multiscaling
ansatz [7]. On the other hand, it is pretty well established
[9] by now that in the Manna stochastic sandpile this
distribution obeys simple FSS as

P rob	s; L
 � s��f
�
s
LD

�
; (1)

where the scaling function f	x
 � const in the limit of
x ! 0 and f	x
 approaches zero very fast for x � 1. The
exponent � and the dimension D fully characterize the
scaling of Prob in this case. One immediate way to check
the validity of Eq. (1) is to attempt a data collapse by
plotting s�Prob vs s=LD with trial values of the exponents.
We collected extensive data for both our models (m � 4)
for L � 128, 256, 512, 1024, 2048, and 4096, namely,
50� 106 avalanches in 500 independent configurations
for L � 128 down to  1:1� 106 avalanches for nine
configurations for L � 4096. The first �4L2 avalanches
were skipped to reach the steady state. For the directed case
collapse works very nicely giving �  1:28 and D  2:75,
close to the most reliable estimates of the Manna sandpile
exponents [9]. For the undirected model the collapse does
not work for a single set of � and D and for all values of s
and L. This is found also in the BTW sandpile.

A more reliable and quantitative check of the validity,
or violation, of FSS, is based on the evaluation of the
2-2
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FIG. 3. (a) Plot of �	q
 vs q for the BTW (solid line), undir-
ected (dotted line), Manna (dashed line), directed (dot-dashed
line) models. Comparison of d�	q
=dq vs q plots between
(b) BTW (solid lines) and undirected (dotted lines) models and
for the (c) Manna (solid lines) and directed (dotted lines) models.
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FIG. 2 (color online). Multiply toppled sites within avalanches
are shown by different colored symbols: 1 (circles), 2 (squares),
3 (up triangles), 4 (down triangles), 5 (diamonds), and 6 (stars)
for the (a) undirected model, and (b) directed model.
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various moments of Prob [6,7,9]. The qth moment is
defined as hsqi �

R
sqProb	s; L
ds. Assuming that FSS

holds, it is easy to show that hsqi � L�	q
 with the moment
exponent given by �	q
�D	q���1
 for q > �� 1
and �	q
 � 0 for 0< q< �� 1. In the case of multi-
scaling � should have a nonlinear dependence on q. A
comparison of �	q
 for two given models is also a key to
establish if they belong to the same universality class or
not. The value of �	q
 was determined from the slope
of the plot of loghsq	L
i vs logL for L�1024, 2048, and
4096 with an error 0:01 and for 251 values of q between
0 and 5 [Fig. 3(a)]. The derivative of � is determined by
the finite difference method. A slow but monotonic in-
crease of d�	q
=dq with q clearly indicates the multiscal-
ing in BTW as well as in undirected models [Fig. 3(b)],
whereas a saturation of d�	q
=dq indicates the validity of
FSS for Manna and in directed models [Fig. 3(c)]. To
measure deviations quantitatively we define a quantity
Xa;b � 2j�d�	q
=dq�a � �d�	q
=dq�bj=f�d�	q
=dq�a �
�d�	q
=dq�bg. It is observed that after some initial fluctua-
tions XBTW;undir has a maximum value 0.33% within q � 2
and 5 whereas XBTW;direc gradually increases to 5.5% at
q � 5. This analysis implies that the undirected model is
almost negligibly different from the BTW model in the
d�	q
=dq vs q plot, whereas the deviation of the directed
model from the BTW model is much larger and gradually
08800
increases with q. Similarly, XManna;direc is limited within
0.91%, whereas XManna;undir gradually increases to 6.5% at
q � 5 which also implies that the directed model behaves
very similarly to the Manna model, and is very much
different from the BTW model. The above described re-
sults concerning X for the various couples of models are
altogether strongly supporting the conclusion that while
the directed model belongs most likely to the Manna
universality class, the undirected one has the multiscaling
features known to be peculiar to the standard BTW
sandpile.

By decomposing a large sequence of successive ava-
lanches into waves in the undirected and directed cases, we
obtained global wave size distributions which obey FSS
with the exponents expected for the BTW model [15] and
the Manna model [16], respectively. For the BTW sandpile
globally sampled waves have a size distribution with a
form as in Eq. (1), with �w � 1 and Dw � 2. In the case
of the Manna stochastic sandpile, waves cannot be defined
as in the deterministic Abelian sandpiles, but a wavelike
decomposition was proposed in Ref. [16]. The global size
distribution of the corresponding waves obeys FSS with the
same exponents obtained for the avalanche distribution
[16]. As already noted above, waves can be consistently
defined [2] in the same way for each quenched disorder
realization of our directed and undirected models. The
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global wave scalings obtained here further support the
expectation that they fall in the Manna and BTW universal-
ity classes, respectively.

Further insight into the different behaviors of the di-
rected and undirected models can be obtained by analyzing
the wave time series fs1; s2; s3; . . .g of the sizes of succes-
sive waves as in Ref. [16]. In Fig. 4 we plot the autocorre-
lation function:

C	t; L
 �
hsk�tskiL � hski2L
hs2kiL � hski2L

; (2)

where the expectation values refer to samples with dif-
ferent L and include quenched disorder averaging. The
plots in Fig. 4 are fully consistent with similar ones for
the BTW and Manna sandpiles [16]. While in the directed
case the autocorrelation function is essentially zero as soon
as t > 0, in the undirected model it grows steadily with L
and approximately scales as C	t; L
 � t��cG	t=LDc
 with
�c  0:35 and Dc  1. These exponents should be com-
pared to 0.40 and 1.02, respectively, as determined for the
BTW model [16]. This long range autocorrelation must be
a consequence of the coherent and uniform spatial struc-
ture of each wave in the undirected case. In the directed
model, correlations are destroyed by the much more ir-
regular pattern of topplings, with inhomogeneities and
holes, in each wave. The correlation patterns show marked
self-averaging, being reproducible on the basis of very few
disorder realizations.

The local out or in degree balance Hi � H0
i at all sites in

the undirected model is essential for the BTW multiscaling
behavior to prevail. Numerically, with quenched disorder
realized as described above, we find that the density of
unbalanced sites with Hi � H0

i in the directed model is
around 0.88 and those of the sites with H0

i > Hi and H0
i <

Hi are equal to 0.44. Now we ask if there is any critical
density of unbalanced sites which demarcates the behav-
08800
iors of the undirected and directed models. To study this we
first generated an asymmetric TM in which the fraction of
the bonds with unequal � values is found to be 0:75. We
tuned this fraction, and thus the density of unbalanced
sites, by randomly selecting these bonds and making their
� values equal by assigning a random integer number
between �1 and �m. We find that even the presence of
as low as 5% bonds with unequal � values is sufficient to
destroy the mutiscaling and to ensure FSS as in the directed
model. Thus, as soon as the precise toppling balance is
broken, FSS holds, and the universality class turns into that
of the Manna sandpile. The transition to Manna behavior
does not require a nonzero threshold density of unbalanced
sites. Thus, for the undirected model the symmetry of the
precise toppling balance is a crucial requisite for the multi-
scaling to hold. This requisite is, of course, satisfied also by
the ordinary BTW sandpile.

To conclude, we studied sandpile models with quenched
disorder where the elements of the TM are randomly
assigned. With asymmetric TM the precise toppling bal-
ance between in and out degrees at each site is not main-
tained. This imbalance suppresses the wave correlations
leading to the BTW-like multiscaling behavior of the ava-
lanche size distribution and results in a FSS regime in the
universality class of the Manna stochastic sandpile. Thus, a
symmetry mechanism underlies the puzzling difference
between BTW and Manna scalings.
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