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de Sitter Vacua via ConsistentD Terms
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We introduce a new mechanism for producing locally stable de Sitter or Minkowski vacua, with
spontaneously broken N � 1 supersymmetry and no massless scalars, applicable to superstring and M-
theory compactifications with fluxes. We illustrate the mechanism with a simple N � 1 supergravity
model that provides parametric control on the sign and the size of the vacuum energy. The crucial
ingredient is a gauged U�1� that involves both an axionic shift and an R symmetry, and severely constrains
the F- and D-term contributions to the potential.
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Introduction.—Superstring and M-theory vacua with
exact or spontaneously broken N � 1 supersymmetry de-
serve special attention. Their effective D � 4 supergrav-
ities admit chiral fermions and inherit some strong sym-
metry properties from the underlying higher-dimensional
theory. So far, perturbative compactifications with fluxes
and branes could produce, at best, either Minkowski vacua
of the no-scale type, with broken supersymmetry and at
least one complex flat direction, or anti–de Sitter (AdS)
vacua with all geometrical moduli stabilized.

It is important to go further, exploring the possible
existence of locally stable de Sitter (dS) or Minkowski
vacua, with no residual flat directions. Some interesting
attempts along these lines do indeed exist [1–4]. Most of
them rely on the positive contributions to the potential
associated with the gauge symmetry of the theory, the so-
called D terms. However, the subtle consistency require-
ments dictated by the coexistence of the two local symme-
tries, supersymmetry and the gauge symmetry, are known
on general grounds [5,6], but were never thoroughly exam-
ined in this context.

Reference [1] used a superpotential motivated by non-
perturbative effects to produce a supersymmetric AdS
vacuum, then uplifted the vacuum energy by a positive
contribution to the potential ascribed to D3 branes. So far,
however, no consistent supergravity description of such a
mechanism was found. Reference [2] proposed to replace
the D3-brane contribution with a D-term contribution or-
iginated by magnetic fluxes but, as will be clear in the
following, such a proposal does not fulfill the above-
mentioned consistency requirements. Reference [3] intro-
duced nonperturbative superpotentials and D terms that
satisfy all known consistency conditions, but did not per-
form a full minimization of the supergravity potential with
respect to all fields.

In the present Letter, we first review the general consis-
tency conditions associated with D terms in N � 1 super-
gravity. We then construct a simple explicit model ful-
filling all such conditions. We show that, for a wide range
of parameters, the model admits locally stable vacua with
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spontaneously broken supersymmetry and positive or
negative vacuum energy. The vacuum energy can be
zero, or very small and positive, for special values of the
parameters. The key features of the model can be present in
flux compactifications of superstring theories. The crucial
one is a gauged U�1� symmetry that combines an R sym-
metry with an axionic shift, and severely constrains the
form of the F- and D-term contributions to the potential.
The rigid version of such a symmetry, and some of its
consequences if unbroken, were previously studied in [7].
Supergravity models with gauged R symmetry [8] were
considered in [6,9]. The models of [3] have instead a
gauged axionic symmetry but no gauged R symmetry.
We finally comment on the extension of our mechanism
to more general models and on its string/M-theory embed-
ding, leaving a detailed exploration for future work.
D terms in N � 1 supergravity.—The gauge-invariant

two-derivative action for N � 1, D � 4 supergravity with
chiral multiplets �i � �zi;  i� and vector multiplets Va �
��a; Aa�� is completely fixed by three ingredients [5]. The
first is the real and gauge-invariant Kähler function G,
which can be written in terms of a real Kähler potential
K and a holomorphic superpotential W as

G � K � logjWj2: (1)

The second is the holomorphic gauge kinetic function fab,
which transforms as a symmetric product of adjoint repre-
sentations, plus a possible imaginary shift associated with
anomaly cancellation. Generalized Chern-Simons terms
may also be needed [10], but they will not play any role
in the simple case discussed in this Letter. The third are the
holomorphic Killing vectors Xa � Xia�z��@=@zi�, which
generate the analytic isometries of the Kähler manifold
for the scalar fields that are gauged by the vector fields. In
the following it will suffice to think of G, fab, and Xa as
functions of the complex scalars zi rather than the super-
fields �i.

The gauge transformation laws and covariant derivatives
for the scalars in the chiral multiplets read
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�zi � Xia�
a; D�z

i � @�z
i � Aa�X

i
a; (2)

where �a are real parameters. The scalar potential is

V � VF � VD � eG�GiGi � 3� �
1

2
DaDa; (3)

whereGi � @G=@zi, scalar field indices are raised with the
inverse Kähler metric Gi �k, gauge indices are raised with
��Ref��1�ab, and Da are the Killing potentials, real solu-
tions of the complex Killing equations:

Xia � �iGi �k @Da

@�z �k
: (4)

The general solution to the Killing equation for Da, com-
patible with gauge invariance, is then

Da � iGiXia � iKiXia � i
Wi

W
Xia: (5)

Gauge invariance of G requires that K and W be invari-
ant up to a Kähler transformation

K0 � K �H � �H; W0 � We�H; (6)

where H is a holomorphic function, thus it will not be
restrictive to assume that K is gauge invariant. If W is also
gauge invariant, Eq. (5) reduces to the standard form

Da � iKiXia: (7)

Otherwise, it must be

i
Wi

W
Xia � �a; ��a 2 R�; (8)

so that the gauge noninvariance of W can be at most an
overall phase with real parameter �a, for the Abelian
factors U�1�a. The constants �a correspond to gaugings
of the R symmetry, and give rise to the supergravity
expression for the D terms [5,6]:

Da � iKiX
i
a � �a: (9)

The �a are then the genuine Fayet-Iliopoulos (FI) terms of
supergravity. For a linearly realized gauge symmetry,
iKiX

i
a � �Ki�Ta�

i
kz
k, and we recover the standard expres-

sion of [11] for the D terms. For an axionic realization,
Xia � iqia, where qia is a real constant, and we obtain the so-
called field-dependent FI terms.

A few comments are now in order. Equation (5) shows
that D terms are actually proportional to F terms, Fi �
eG=2Gi. Two facts, frequently forgotten in the recent lit-
erature, then become obvious. First, and in contrast with
the rigid case, there cannot be pure D breaking of super-
gravity, unless the gravitino mass vanishes and the D-term
contribution to the vacuum energy is uncanceled, as in
the limit of global supersymmetry. Second, if VF admits
a supersymmetric AdS vacuum configuration, hGii � 0
(8i) and heGi � 0, such configuration automatically mini-
mizes VD at zero. For this kind of vacua, as already stressed
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in [12], D terms cannot be used to raise the vacuum energy
from negative to positive or zero. Moreover, for the theory
to be consistent, W must be gauge invariant, up to an
overall phase for U�1� factors. This severely restricts the
possibility of constructing superstring-inspired supergrav-
ity models with both nonperturbative superpotentials and
D terms.D terms associated with a gauged U�1� symmetry
cannot coexist with ‘‘racetrack’’ (sums of exponentials) or
other (e.g., constant plus exponential) superpotentials,
when the latter break such a symmetry. This is in agree-
ment with some recent results in superstring compactifica-
tions, where it was shown that the gauged isometries are
protected from being broken, both by instanton-induced
[13] and by flux-induced [14] superpotentials. On the other
hand, a rigid axionic and/or R symmetry, possibly the
remnant of a gauged symmetry spontaneously broken at
the string scale, can be explicitly broken to a discrete
subgroup by nonperturbative effects.

A model with stable de Sitter vacua.—Consider a model
with a single chiral multiplet S � �S; �� and Kähler poten-
tial

K � �p log�S� �S� � K0; �0<p 2 R�; (10)

with K0 real and S independent. This form of K is familiar
from superstring compactifications. Decomposing the
complex scalar as S � s� i�, s can stand here for the
string dilaton, a geometrical (Kähler or complex structure)
modulus of the compactification manifold, or a combina-
tion thereof; � could instead carry the degree of freedom of
some component of the NS-NS or R-R potentials, or even
of the internal metric. The U�1� isometry acting as a shift
on the ‘‘axion’’ � can be gauged by a vector multiplet. The
corresponding holomorphic Killing vector is just an imagi-
nary constant,

XS � iq; �q 2 R�: (11)

The most general form of the superpotential compatible
with the gauged U�1� symmetry is then

W � W0e�kS; �k 2 R�; (12)

where W0 is S independent. Equation (12) has the typical
form of the nonperturbative superpotentials induced by
instantons or gaugino condensation [15]. Notice that the
gaugedU�1� is a combination of the axionicU�1�, acting as
a shift on � and leaving all the other fields invariant, and
the U�1� R symmetry, with charge ���=2� for �, ���=2�
for the gravitino  � and the gaugino �, and zero for all the
bosonic fields. � � kq is the constant FI term. For the
gauge kinetic function, we take

f � S; (13)

as typical of superstring compactifications, but the model
would still work for f � aS� b, the most general form
compatible with the gauged symmetry. Notice, finally, that
the gauge kinetic function f of the possible gauge group
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factor associated with instantons or gaugino condensation
does not need to coincide with the U�1� gauge kinetic
function of Eq. (13): this may be of help in obtaining vacua
at weak coupling.

The scalar potential of Eq. (3) then reads

VF �
eG0e�2ks

�2s�p

�
�2s�2

p

�
k�

p
2s

�
2
� 3

�
; (14)

VD �
q2

2s

�
k�

p
2s

�
2
; (15)

where eG0 	 jW0j
2eK0 . As required by gauge invariance, V

does not depend on�: the axion is absorbed by the massive
U�1� vector boson via the Higgs effect [16]. However, both
VF and VD depend nontrivially on s. For k < 0, there is
always a stable supersymmetric AdS vacuum at hsi �
�p=�2k�, but there can be also metastable dS vacua for
suitable values of the parameters. For k > 0 and p 
 3, V
is positive definite and monotonically decreasing. For k >
0 and p < 3, VF is unbounded from below for s! 0, but
VD is positive definite and diverges for s! 0. As a result,
for a wide range of parameters there is a locally stable dS
(or stable AdS) minimum of V at a finite value hsi, with
spontaneously broken supersymmetry. At this level, having
approximate Minkowski vacua requires a tuning of the
parameters so that hVDi ’ �hVFi � hVi. In principle,
this may find an explanation in the correlations of the
underlying string theory. Notice that hsi can be continu-
ously varied by rescaling the parameters as:

k! 	�1k; eG0 ! 	peG0 ; q! 	3=2q; (16)

(0<	 2 R), which leads to hsi ! 	hsi. A representative
example is shown in Fig. 1.

Discussion.—The simple model discussed above can be
easily generalized. The inclusion of additional gauge mul-
tiplets is straightforward (apart from anomaly cancellation,
see below), thus we consider the inclusion of additional
chiral multiplets �i, transforming linearly under the axi-
onic U�1�, with charges qi. Since the R charge is fixed to
be vanishing for the zi and ���=2� for the  i, the corre-
FIG. 1. V (solid line), VF (dashed line), and VD (dotted line)
for p � 1, q � 0:3, eG0 � 1=64, and k � 0:1.
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sponding charges under the gauged U�1� will be qi and
�qi � �=2�, respectively.

Consider first the simple case where the full K can be
written as in (10), with K0 real gauge-invariant function of
the zi. Assume also a factorized W as in (12), with W0 the
analytic gauge-invariant function of the zi, and f as in (13).
We may think of the zi as other moduli of string/M-theory
compactifications, orthogonal to S, or the scalar fields of
the minimal supersymmetric standard model (MSSM). It is
easy to see that, under mild and plausible assumptions, the
minimization of the potential V with respect to the zi and S
can be fully decoupled. If there is a field configuration hzii
such that hGii � 0 and qihzii � 0 8i, then hsi, as deter-
mined in the previous section, and hzii, extremize the full
potential V with no mass mixing between the zi and s. A
locally stable minimum can be obtained for a wide range of
the parameters in G0, with the same hVi as before. If,
instead, there is a minimum of V such that hVDi � 0,
then we can decouple a massive N � 1 vector multiplet
and discuss a simpler, but less interesting effective theory.

The previous model can be further generalized by in-
cluding additional chiral multiplets C	 � �C	;  	�, which
could stand for some or all the MSSM squarks and leptons,
in the approximation of small field fluctuations about
hC	i � 0, but relaxing the factorization of K and W. For
example, we could add to K a �K �

P
	jC

	j2�S� �S�n	
(n	 2 Z), and to W a �W polynomial in the C	 and
transforming with the same phase as e�kS, e.g., �W �
d	
�C

	C
C� with q	 � q
 � q� � �kq. Also in this
case, for suitable values of the new parameters, there is a
local minimum of the full potential V with hC	i � hG	i �
08	, positive squared masses for all the new scalar fields
C	, and all the remaining features as in the previous model.

For a consistent effective theory, all gauge and gravita-
tional anomalies associated with our gauged U�1� must
vanish: in particular, the cubic (AU�1�3 ), the gravitational
(AU�1�) and the mixed-gauge anomaly (AU�1�G2 ) if the
full gauge group is U�1� � G. The fermionic contributions
to the cubic and gravitational anomalies are:

TrQ3 � 3
�
�
�
2

�
3
�
X
i;	

�
qi;	 �

�
2

�
3
; (17)

TrQ � �21
�
�
�
2

�
�
X
i;	

�
qi;	 �

�
2

�
; (18)

where the contributions from � and � cancel each other
and have been omitted. The remaining ones come from  �
(see [17]) and possible  i;	, respectively. These contribu-
tions must cancel the Green-Schwarz (GS) contributions
[18] coming from the variation of � and proportional to q.
All the resulting conditions are model dependent, in par-
ticular: all of them depend on the matter content; the GS
contribution to AU�1� depends on higher derivative terms
(R2); AU�1�G2 depends also on the details of G. However,
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there are, in principle, strong combined constraints on the
possible matter content and on the parameters k and q.

The mechanism discussed in this Letter should be rele-
vant for the study of superstring and M-theory vacua, with
the anomaly constraints automatically satisfied and the
possibility of determining k and q. N � 1 supergravities
obtained from compactifications with fluxes generically
allow for some shift symmetry to be gauged.

In the heterotic theory, the shift symmetry of the uni-
versal axion [19], dual to B��, is gauged via the GS
mechanism, and fluxes can be used to generate a super-
potential W0 [20,21]

Z
X6

�H � idJ� ^�; (19)

which can stabilize all geometrical moduli with vanishing
F terms and positive masses. A modification of W (or,
equivalently, of K) as in (12) would then stabilize also the
dilaton S on a dS vacuum, breaking the local symmetries
only spontaneously.

Also in type-IIA compactifications with fluxes, the
superpotential [21,22]

Z
X6

GeiJ � i�H � idJ� ^�; (20)

can produce the stabilization of all bulk moduli with
vanishing F terms, with the exception of at least one
massless axion [14,22], associated with a shift symme-
try that can eventually be gauged. In this case the role
of S is played by a linear combination of the dilaton and
the complex structure moduli �, and its dependence
cannot be factorized from the other moduli anymore.
Whether in this case an analogous modification of the
superpotential would allow the lifting of the vacuum en-
ergy and the stabilization of all moduli remains an open
problem.

Finally, it would be interesting to understand better how
the needed superpotential modifications actually originate
from string/M-theory, and what the corresponding con-
straints on the various parameters are.
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