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Abstract

We formulate and provide a solution to an approximation problem that occurs in various
settings: Finding an optimal additive decomposition of a given Hermitian Hilbert–Schmidt
operator, in a term commuting with a second Hermitian compact operator and a term as small
as possible in the trace norm sense. In the finite-dimensional case, we show how to interpret
our result through a Sylvester equation. An application to a quantum information problem and
an interpretation in quantum probability are also sketched.
© 2005 Elsevier Inc. All rights reserved.
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1. The problem

Let H be a separable complex Hilbert space. The set of the Hilbert–Schmidt
operators S2(H) is the set of operators A in H such that Tr(A∗A) < ∞, where ∗
denotes adjoint.S2(H) is an Hilbert space endowed with the inner product (A,B) :=
Tr(A∗B).
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An operator B in H is compact if

∃{Ck}∞k=1, rankCk � k,

such that ‖B − Ck‖ ↘ 0 when k → ∞, where ‖A‖ := supx /=0
|Ax|
|x| indicates the

operator norm.

Problem 1 (Commuting decomposition). Let A be a self-adjoint operators in S2 and
B a compact Hermitian operator on H. We are looking for an optimal decomposition
for A = A0 + �, with A0 = A∗

0 ∈ S2(H), such that [A0, B] := A0B − BA0 = 0,
and the trace norm of � is minimal. That is, we want to find A0 such that:

A0 = arg min
X

‖A−X‖,
subject to: [X,B] = 0, X = X∗. (1)

2. The optimal decomposition

To solve our problem we will use the following theorems.

Theorem 1 (Hilbert–Schmidt). Let A be a self-adjoint, compact operator on H.

Then, there is a complete orthonormal basis, {φn}, for H so that Aφn = λnφn and
limn→∞ λn = 0.

For a proof, see e.g. [8, p. 203]. Every operator in S2(H) is compact, hence the
theorem applies to our setting, provided we consider self-adjoint operators.

Theorem 2. Two self-adjoint, compact operators A and B on H commute (AB −
BA = 0) if and only if they admit a common orthonormal basis of eigenvectors{
φ̂n

}
.

Proof. It is easy to see that two operators with a common basis of eigenvectors
commute. Here we will prove the converse. Suppose AB = BA and take {φn} a
basis of eigenvectors of A, corresponding to eigenvalues λn of A. The existence
of such a basis is guaranteed by Theorem 1. Thus ABφn = λnBφn. Then Bφn is an
eigenvector ofA relative to the same eigenvalue λn (or the zero vector). Suppose that
φ1
n, . . . , φ

n
n, . . . are the orthonormal basis vectors that generate the eigenspace of A

relative to λn, and define �n = span
{
φ1
n, . . . , φ

n
n, . . .

}
. Hence B�n ⊆ �n. Define B̂

the restriction of B to �n. B̂ remains a compact, self-adjoint operator on a (reduced)

Hilbert space. Then, there exists
{
φ̂in

}
, an orthonormal basis of eigenvectors of B̂

for �n, that is also an orthonormal basis for �n of eigenvectors of A. By substituting

these
{
φ̂in

}
to the former

{
φin
}

for every eigenspace of A, we conclude. �
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The central result is the following:

Theorem 3 (Optimal decomposition). Let us rewrite B = ∑
i bi�i , where bi are

the eigenvalues of B and �i the orthogonal projectors on the Ker(biI − B). The
optimal solution to the minimum problem (1) is given by �̂ := A− A0, where:

A0 :=
∑
i

�iA�i , (2)

is the sum of the reductions of A on B eigenspaces.

Proof. Reformulating the problem geometrically, we are looking for the orthogonal
projection of A onto the closed linear subspace of operators commuting with B. By
the theorem of the orthogonal projections [8], we know that it exists unique and
corresponds to the minimum norm, commuting part.
A0 is the desired operator if and only if:

[i] [A0, B] = 0,
[ii] (A− A0, C) = 0, ∀C s.t. [C,B] = 0.

In fact, for the candidate A0 it holds that:

A0B − BA0 =
∑
i

�iA�i

∑
j

bj�j −
∑
j

bj�j

∑
i

�iA�i

=
∑
i

bi�iA�i −
∑
i

bi�iA�i = 0,

and

(A,C)−
(∑

i

�iA�i , C

)
=Tr

A∑
j

cjPj

− Tr

∑
i

�iA�i

∑
j

cjPj


=
∑
n


〈
φn,A

∑
j

cjPjφn

〉
−
〈
φn,

∑
j

cjPjAPjφn

〉
=
∑
n

{〈φn, cnAφn〉 − 〈φn, cnPnAPnφn〉}

=
∑
n

〈φn, (cnA− cnA)φn〉 = 0,

where we have used Theorem 2: If [C,B] = 0, then exists an orthonormal basis {φn}
of common eigenvectors and we can write C = ∑

n cnPn, where Pn is the projector
on the eigenspace generated by the nth common eigenvector. Thus, for every n there
exists a unique i(n) such that �i(n)Pn = Pn /= 0.
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The optimal solution A0 defined in (2) is Hermitian:

A∗
0 =

∑
i

�∗
i A

∗�∗
i =

∑
i

�iA�i = A0, (3)

providing the desired solution for Problem 1. �

For many applications it is crucial to compute or estimate the norm of the
“error” �̂. Since �̂ andA0 are orthogonal in the Hilbert space of the Hilbert–Schmidt

operators, it holds that:∥∥�̂∥∥2 = ‖A‖2 − ‖A0‖2. (4)

3. Applications

3.1. Optimal solution for a class of Sylvester equations

The Hilbert–Schmidt operators space is a quite general, infinite dimensional set-
ting in which is natural to formulate the problem geometrically. Nevertheless, some
natural applications of Theorem 3 arise considering Hermitian or symmetric matrices.
Here we present an an interpretation in terms of a class of Sylvester equations.

The condition [A0, B] = 0 can be rewritten obtaining:

0 = [A0, B] = [A,B] − [�, B].
Defining C := AB − BA, we have:

[�, B] = �B − B� = C.

This equation is a particular Sylvester equation [1, p. 203] that admits solutions (e.g.
� = A). Since σ(B) ∩ σ(B) = σ(B) /= 0 the equation has infinite solutions, and (1)
is equivalent to find the minimum-norm (symmetric) solution of the above Sylvester
equation. Thus, Problem 1 is equivalent to the following:

Problem 2. LetA andB be two Hermitian matices. We are looking for a self-adjoint
Hilbert–Schmidt operator � that is the minimum trace-norm solution of the Sylvester
equation:

�B − B� = C, (5)

with C := AB − BA.

The optimal solution in the trace norm sense, is A0, as defined in (2). Sylvester
equations are crucial in different areas of filtering and control theory [4]. In partic-
ular, they play a fundamental role in spectral factorization problems and realization
theory [3,5].
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3.2. Application to quantum information theory

The choice of the trace norm is natural for the application fields we have in
mind, as quantum mechanics and quantum information, where the trace is related
to probabilities in statistical mixtures and measures [9,7].

In quantum mechanics the best knowledge we can have about a system is rep-
resented by a unit vector in a suitable separable Hilbert space, a pure state. Even
if in the pure state description there is an amount of intrinsic uncertainty, we may
need to add further uncertainty. It can be due to our ignorance about the state or
about the transformations that have occurred or to a statistical description of a set of
identical systems. The natural way to describe the system is then the density operator
formalism. The state is described by a positive definite, unit trace Hilbert–Schmidt
operator ρ on the system Hilbert space, called density operator. Here we consider
finite dimensional Hilbert spaces for simplicity.

To apply our result to this setting, a relevant observation is the following:

Proposition 1. Let ρ be a density matrix and B = ∑
i bi�i an Hermitian compact

operator on H. Then

ρ̂ :=
∑
i

�iρ�i

is a density operator too.

Proof. The key observation is that the optimal A0, as defined in Theorem 3, has the
same trace of A:

Tr

(
A−

∑
i

�iA�i

)
= Tr

(
A−

(∑
i

�i

)
A

)
= Tr(A− A) = 0.

Hence, thanks to linearity of the trace, Tr(A) = Tr(A0). This means that if A is a
density matrix, A0 has unit trace and it is a density matrix too (positive definiteness
is guaranteed by (2) and by the fact that A is positive definite). �

Suppose, on the one hand, we extract information from a finite-dimensional
quantum system in a “noisy” environment, obtaining an estimated density operator ρ
(e.g. by quantum state tomography [7]). On the other hand, we expected, by a theor-
etical analysis, ρ to be a statistical mixture of the states {ψi}, that are an orthonormal
basis for the state space (e.g. the energy eigenstates of the system). We want to find
the best approximation of ρ compatible with our “a priori” analysis. Theorem 3 tells
us that the answer is:

ρ̂ =
∑
i

�iρ�i ,

where every �i is the orthogonal projector onto the subspace generated by ψi .
Hence, �̂ = ρ − ρ̂ may be considered as the effect of the noise.



324 F. Ticozzi / Linear Algebra and its Applications 400 (2005) 319–325

Such an experimental situation is very similar to the effect of a Von Neumann
measurement in the case we do not know the outcome of the experiment. Consider
an Hermitian operator B with spectral decomposition:

B =
∑
k

bk�k.

We consider the non-degenerate case, bk /= bl if k /= l. B represents an observable
for the quantum system and, according to the basic measurement postulates [2],
measuring B on a system described by a density operator ρ induces the following
state change:

ρ → ρ̂ =
∑
i

Tr(ρ�i )�i . (6)

Proposition 2. Let ρ be a density operator and B = ∑
i bi�i an Hermitian oper-

ator on H. Then we have:∑
i

Tr(ρ�i )�i =
∑
i

�iρ�i .

Proof. Under the present hypothesis, we can rewrite

�i[·] = 〈ψi, ·〉ψi.
Since 〈ψi, ·〉 is a complex number, using the linearity of the scalar product we obtain:∑

i

Tr(ρ�i )�i[·]=
∑
i

∑
j

〈ψj , ρ〈ψi, ψj 〉ψi〉〈ψi, ·〉ψi

=
∑
i

〈ψi, ρψi〉〈ψi, ·〉ψi

=
∑

〈ψi, ρ〈ψi, ·〉ψi〉ψi
=
∑
i

�iρ�i[·]. �

Thus, a variational interpretation of the statistical description of these “quantum
jumps” is provided: the density operator collapses to the best approximation in the
trace norm sense of the before-measurement density operators that commutes with
the observable involved.

This interpretation is mathematically equivalent to the fact that the best estimate
for the density operator after the measurement is the prior estimate conditioned by
the measurement (see e.g. [6], Appendix 2). In fact, in the non-commutative quantum
probability setting the conditional distribution is the restriction (projection) of the
former density operator to the measurement-involved subspaces, that represent the
conditioning events.
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