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1. Introduction

Neutrino oscillation experiments are powerful probes of neutrino masses (see [1]–[6]).

At present three types of neutrino oscillation experiments have obtained positive

results: solar and atmospheric experiments and one short-baseline experiment.

All solar neutrino experiments (Homestake [7], Kamiokande [8], GALLEX [9],

SAGE [10], Super-Kamiokande [11]) have found a deficit in the flux of electron neu-

trinos on Earth with respect to the Standard Solar Model prediction [12], which con-

stitutes an indication in favor of oscillations of electron neutrinos into other states.

Although no direct proof of these oscillations exist at present, there is a convincing

evidence that the deficit of solar νe’s is due to neutrino physics, of which neutrino

oscillations is the simplest and most natural phenomenon. Hopefully, the issue will

be definitively settled in a few years by the new generation of neutrino oscillation

experiments (GNO [13], SNO [14], Borexino [15], ICARUS [16] and others [17]).

Several atmospheric neutrino experiments (Kamiokande [18], IMB [19], Super-

Kamiokande [20], Soudan 2 [21], MACRO [22]) have found an anomalous ratio of

the events generated by muon and electron neutrinos and an anomalous angular

dependence of the events generated by muon neutrinos. Although so far the os-

cillation pattern has not been observed, this is considered as an evidence in favor

of oscillations of muon neutrinos into tau or sterile neutrinos. Transitions of muon

neutrinos into electron neutrinos are strongly disfavored by the bounds established

by the long-baseline ν̄e disappearance experiments CHOOZ [23] and Palo Verde [24]

and by the fact that Super-Kamiokande data do not show any anomalous angular

dependence of the events generated by atmospheric electron neutrinos. The present
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Figure 1: Qualitative illustration of the possible four-neutrino schemes.

data of Super-Kamiokande [20] and MACRO [22] disfavor dominant transitions of

atmospheric muon neutrinos into sterile states. There are good chances that the is-

sue will be clarified in a definite way in the near future by long-baseline experiments

with muon neutrino beams (K2K [25], MINOS [26], OPERA [27], ICARUS [16]) and

by new atmospheric neutrino experiments (MONOLITH [28] and others [29]). The

K2K experiment have already obtained some preliminary indication of a possible

transition of muon neutrinos into other states [30].

The third evidence in favor of neutrino oscillations has been found in the short-

baseline LSND experiment [31], where an excess of e+ events have been observed.

If interpreted in terms of ν̄µ → ν̄e neutrino oscillations, this excess corresponds

to an oscillation probability of (2.5 ± 0.6 ± 0.4) × 10−3. This result has not been
confirmed by other experiments (many other less sensitive short-baseline experiments

have not found any signal of neutrino oscillations; the strongest bounds have been

obtained in the Bugey [32], CDHS [33], CCFR [34], BNL-E776 [35], KARMEN [36],

CHORUS [37], NOMAD [38] experiments), but it is very interesting and important,

because it is the only existing evidence of neutrino flavor transition from one state to

another and because such transitions could be explored with high accuracy in future

short-baseline experiments. In a few years the MiniBooNE experiment [39] will check

the LSND signal in terms of neutrino oscillations.

It is well known (see [40]–[42]) that the three indications in favor of neutrino

oscillations need at least three different neutrino mass-squared differences (∆m2’s),

arranged in the hierarchical order ∆m2SUN � ∆m2ATM � ∆m2SBL. This means that
at least four massive neutrinos must exist. Here we consider the minimal case of

four massive neutrinos, that has been considered recently by many authors (see [43]–

[54], [6, 40, 42] and references therein), whose flavor basis is constituted by the

standard active neutrinos νe, νµ, ντ , and a sterile neutrino νs. Figure 1 shows the

six possible four-neutrino schemes that can accommodate the observed hierarchy

of ∆m2’s. These six schemes are divided in two classes: 3 + 1 and 2+2. In the

3 + 1 schemes there is a group of three neutrino masses separated from an isolated

mass by the LSND gap of the order of 1 eV, such that the largest mass-squared
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difference, ∆m241 (where ∆m
2
kj ≡ m2k − m2j and mk, mj are neutrino masses, with

k, j = 1, . . . , 4), generates the oscillations observed in the LSND experiment. In

the 2+2 schemes there are two couples of close mass eigenstates separated by the

LSND gap. The numbering of the mass eigenvalues in figure 1 is conveniently chosen

in order to have always solar neutrino oscillations generated by ∆m221 = ∆m
2
SUN

and short-baseline (SBL) oscillations generated by |∆m241| ' |∆m242| = ∆m2SBL (we
have also |∆m241| ' |∆m243| in 3 + 1 schemes and |∆m241| ' |∆m231| ' |∆m232| in
2+2 schemes). In 3 + 1 schemes atmospheric neutrino oscillations are generated

by |∆m231| ' |∆m232| = ∆m2ATM, whereas in 2+2 schemes they are generated by
|∆m243| = ∆m2ATM.
It has been shown that in the framework of four-neutrino mixing the 3+1 schemes

are disfavored by the experimental data, with respect to the 2 + 2 schemes [43]–

[45], [40]. However, in a recent paper Barger, Kayser, Learned, Weiler and Whisnant

[53] noticed that the new 99% CL allowed region obtained recently in the LSND

experiment and presented at the Neutrino 2000 conference allows the existence 3+1

schemes (see also [50]) in four small regions of the amplitude Aµe of νµ → νe and

ν̄µ → ν̄e oscillations (Aµe is equivalent to the usual sin
2 2ϑ in the two-generation

case). These regions, to be derived later (eqs. (3.1)–(3.6)) are shown in figure 2,

enclosed by very thick solid lines. They lay at

R1: |∆m241| ' 0.25 eV2 ,
R2: |∆m241| ' 0.9 eV2 ,
R3: |∆m241| ' 1.7 eV2 ,
R4: |∆m241| ' 6 eV2 . (1.1)

Barger, Kayser, Learned, Weiler and Whisnant explored the phenomenological

consequences of the assumption

1− |Us4|2 � 1 (1.2)

(here Uαk are the elements of the 4×4 neutrino mixing matrix with α = s, e, µ, τ and
k = 1, . . . , 4). Such a scheme is attractive because it represents a perturbation of

the standard three-neutrino mixing in which a mass eigenstate is added, that mixes

mainly with the new sterile neutrino νs and very weakly with the standard active neu-

trinos νe, νµ and ντ . In this case, the usual phenomenology of three-neutrino mixing

in solar and atmospheric neutrino oscillation experiments is practically unchanged.

The atmospheric neutrino anomaly would be explained by dominant νµ → ντ tran-

sitions, with possible sub-dominant νµ � νe transitions constrained by the CHOOZ

bound [55, 56, 51]. The solar neutrino problem would be explained by an approxi-

mately equal mixture of νe → νµ and νe → ντ transitions [56, 57].

Here, we consider another possibility that, as we will see, predicts relatively large

νµ → ντ and νe → ντ transitions in short-baseline neutrino oscillation experiments,
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Figure 2: Very Thick Solid Line: Allowed regions. Thick Solid Line: Disappearance

bound (3.5). Dotted Line: LSND 2000 allowed regions at 90% CL [31]. Solid Line: LSND

2000 allowed regions at 99% CL [31]. Broken Dash-Dotted Line: Bugey exclusion curve

at 90% CL [32]. Vertical Dash-Dotted Line: CHOOZ exclusion curve at 90% CL [23].

Long-Dashed Line: KARMEN 2000 exclusion curve at 90% CL [36]. Short-Dashed Line:

BNL-E776 exclusion curve at 90% CL [35].

that could be observed in the near future. We consider the 3 + 1 schemes with

|Us4|2 � 1 . (1.3)

This could be obtained, for example, in the hierarchical scheme I (see figure 1)

with an appropriate symmetry keeping the sterile neutrino very light, i.e. mostly

mixed with the lightest mass eigenstates. Notice that nothing forbids |Us4|2 to be
even zero exactly. The only unwelcomed consequence of equation (1.3) is a large

contribution of νµ → νs transitions to the atmospheric neutrino anomaly, as discussed

in section 4. These transitions are dominant in the regions R2, R3, R4, whereas they

mix with νµ → ντ transitions in the region R1. As mentioned above, dominant

νµ → νs transitions of atmospheric neutrinos are disfavored by the present Super-

Kamiokande and MACRO data [20, 22]. On the other hand, a mixture of νµ → νs
and νµ → ντ transitions is allowed by the data [49, 51, 52].
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2. 3 + 1 schemes with |Us4|2 � 1
From the assumption (1.3), since the amplitude of να → νβ and νβ → να oscillations

in short-baseline neutrino oscillation experiments (equivalent to the usual sin2 2ϑ in

the two-generation case) is given by [43, 6]

Aαβ = Aβα = 4|Uα4|2|Uβ4|2 (α, β = s, e, µ, τ) , (2.1)

we have

Aαs � 1 (α = e, µ, τ) , (2.2)

i.e. the transitions from active to sterile neutrinos in short-baseline experiments are

strongly suppressed. In the following we will neglect them.

Let us consider now the oscillation amplitude (equivalent to the usual two-

generation sin2 2ϑ) in short-baseline να disappearance experiments, which is given

by [43, 6]

Bα = 4 |Uα4|2
(
1− |Uα4|2

)
. (2.3)

In general the oscillation amplitude in να disappearance experiments is related to

the amplitude of να → νβ oscillations by the relation

Bα =
∑
β 6=α

Aαβ , (2.4)

that quantify the conservation of probability. Using equation (2.2), equation (2.4)

gives

Aeτ ' Be − Aµe . (2.5)

Aµτ ' Bµ −Aµe . (2.6)

Therefore, we have

Bmine − Amaxµe . Aeτ . Bmaxe − Aminµe . (2.7)

Bminµ − Amaxµe . Aµτ . Bmaxµ −Aminµe . (2.8)

Let us determine Bmine , B
max
e , B

min
µ , B

max
µ , A

min
µe , A

max
µe from the results of short-

baseline experiments.

3. General bounds in 3+1 schemes and νµ → νe short-baseline

transitions

The values of Bmaxe and Bmaxµ are given by the exclusion plots of ν̄e and νµ disap-

pearance experiments (notice that Bmaxe and Bmaxµ depend on |∆m241|). The most
stringent bounds for |∆m241| in the LSND-allowed region are given by the exclusion
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curves of the Bugey [32] and CHOOZ [23] reactor ν̄e disappearance experiments and

the exclusion curve of the CDHS accelerator νµ disappearance experiment [33].

The bounds Be ≤ Bmaxe and Bµ ≤ Bmaxµ , together with the results of solar and

atmospheric neutrino experiments imply that |Ue4|2 and |Uµ4|2 are small [43, 45, 40]:
|Ue4|2 ≤ |Ue4|2max and |Uµ4|2 ≤ |Uµ4|2max , (3.1)

where |Ue4|2max and |Uµ4|2max are given by

|Ue4|2max =
1

2

(
1−√1− Bmaxe

)
, (3.2)

|Uµ4|2max = min
[
1

2

(
1−
√
1− Bmaxµ

)
, 0.55

]
. (3.3)

The number 0.55 comes [45] from the up-down asymmetry of multi-GeV muon-like

events measured in the Super-Kamiokande experiment [20]. The values of |Ue4|2max
and |Uµ4|2max as functions of |∆m241| are shown, respectively, in figures 3 and 4.
.

In the 3 + 1 schemes we have

Aµe = 4|Uµ4|2|Ue4|2 , (3.4)

and the bounds (3.1) imply that [43]

Aµe ≤ 4|Uµ4|2max|Ue4|2max . (3.5)

As one can see from figure 2, from the LSND region constrained by the exclusion

curves of KARMEN and BNL-E776 and by the bound (3.5), there are four allowed

regions for Aµe, R1, R2, R3, R4 in equation (1.1), where we have

Aminµe ≤ 4|Uµ4|2|Ue4|2 ≤ Amaxµe . (3.6)

These regions could be explored in the near future by the MiniBooNE experiment

[39]. Region R4 is at the limit of the final NOMAD sensitivity in the νµ → νe
channel [58].

From the lower bound in equation (3.6) and the bounds (3.1), we obtain

|Ue4|2 ≥
Aminµe
4|Uµ4|2 ≥

Aminµe
4|Uµ4|2max

, (3.7)

|Uµ4|2 ≥
Aminµe
4|Ue4|2 ≥

Aminµe
4|Ue4|2max

. (3.8)

Therefore, we have

Aminµe
4|Uµ4|2max

≤ |Ue4|2 ≤ |Ue4|2max , (3.9)

Aminµe
4|Ue4|2max

≤ |Uµ4|2 ≤ |Uµ4|2max . (3.10)
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Figure 3: Dotted Line: |Ue4|2max obtained from the 90% CL exclusion curve of the Bugey
short-baseline reactor ν̄e disappearance experiment [32] (equation (3.2)). Dashed Line:

|Ue4|2max obtained from the 90% CL exclusion curve of the CHOOZ long-baseline reactor
ν̄e disappearance experiment [23] (equation (3.2)). Solid Line: Allowed regions (equa-

tion (3.9))

Since these bounds have been obtained without any assumption on the value of |Us4|2,
they are generally valid in any 3+1 scheme. The corresponding four allowed regions

for |Ue4|2 and |Uµ4|2 are shown, respectively, in figures 3 and 4.
The lower bounds for |Ue4|2 and |Uµ4|2 in equations (3.7) and (3.8) imply lower

bounds for the oscillation amplitudes Be = 4|Ue4|2 (1− |Ue4|2) and Bµ = 4|Uµ4|2×
(1− |Uµ4|2). Let us derive these bounds.
Since |Ue4|2max is always smaller than 1/2, the lower bound for Be is

Bmine =
Aminµe
|Uµ4|2max

(
1− Aminµe
4|Uµ4|2max

)
. (3.11)

On the other hand, since |Uµ4|2max can be bigger than 1/2, the lower bound for Bµ is

Bminµ = min

[
Aminµe
|Ue4|2max

(
1− Aminµe
4|Ue4|2max

)
, |Uµ4|2max

(
1− |Uµ4|2max

)]
. (3.12)
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Figure 4: Dotted Line: |Uµ4|2max obtained from the exclusion curve of the CDHS ac-
celerator νµ disappearance experiment [33] (equation (3.3)). Dashed Line: |Uµ4|2max ob-
tained from the up-down asymmetry of multi-GeV muon-like events measured in the

Super-Kamiokande experiment [20] (equation (3.3)). Solid Line: Allowed regions (equa-

tion (3.10)).

Figure 5 and 6 show the allowed regions in the Be–|∆m241| and Bµ–|∆m241| planes
given by the bounds

Bminα ≤ Bα ≤ Bmaxα (α = e, µ) . (3.13)

One can see that these regions lie just on the left of the Bugey+CHOOZ (figure 5)

and CDHS (figure 6) exclusion curves and could be observed in the near future [59].

Let us emphasize that these regions are generally predicted in any 3 + 1 scheme,

since they have been obtained independently on any assumption on the mixing (as

equation (1.2) or equation (1.3)).

4. Large νe → ντ and νµ → ντ short-baseline transitions

We have now all the elements to calculate the bounds (2.7) and (2.8) on the am-

plitudes of short-baseline νe → ντ and νµ → ντ oscillations that follow from the

assumption (1.3), |Us4|2 � 1.
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Figure 5: Solid Line: Allowed regions. Dotted Line: Bugey exclusion curve at 90% CL

[32]. Dashed Line: CHOOZ exclusion curve at 90% CL [23].

Figure 7 shows the allowed regions in the Aµτ–|∆m241| plane given by the bounds
(2.8). One can see that the region R4 is excluded by the negative results of the

CHORUS [37] and NOMAD [38] experiments. The other three regions are possible

and predict relatively large oscillation amplitudes that could be observed in the near

future, especially the two regions R2 and R3 in which Aµτ ∼ 4× 10−2 − 10−1.
Figure 8 shows the allowed regions in the Aeτ–|∆m241| plane given by the bounds

(2.7). One can see that these regions predict relatively large oscillation amplitudes,

but unfortunately lie rather far from the CHORUS and NOMAD exclusion curves

(except the region R4 that is excluded by figure 7). Therefore, even under the

favorable assumption (1.3), it will be very difficult to observe νe → ντ transitions in

short baseline experiments with conventional neutrino beams, but large transitions

could be observed with a νe beam from a neutrino factory [60].

As one can see from figure 3, the bound in equation (3.1) imply that |Ue4|2 is
very small in all the three allowed regions in figure 7. On the other hand, one can

see from figure 4 that |Uµ4|2 is small in the two allowed regions R2 and R3, but it is
large in the region R1. As a consequence of the unitarity of the mixing matrix and

the assumption (1.3), we have 1 − |Uτ4|2 � 1 in R2 and R3, whereas |Uτ4|2 can be
as small as about 1/2 in R1. The prediction for solar, atmospheric and long-baseline

experiments depend on the value of |Uµ4|2. There are two possibilities:
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[33].

1. |Uµ4|2 � 1 in regions R2 and R3 in figure 4. In this case 1−|Uτ4|2 � 1 and the
atmospheric neutrino anomaly is due to dominant νµ → νs transitions. This

possibility is disfavored by present Super-Kamiokande and MACRO data [20,

22], but still it is not completely excluded (see [61, 62, 52]). Obviously, in

this case long-baseline νµ → ντ transitions are suppressed with respect to

the dominant νµ → νs transitions, that are almost entirely responsible of the

disappearance of νµ’s.

The solar neutrino problem is due to an approximately equal mixture of νe → νµ
and νe → νs transitions, which is allowed by the data. This has been shown in

refs. [47, 48] in the framework of the 2 + 2 schemes in figure 1. However, the

results obtained in refs. [47, 48] are valid also in the 3 + 1 schemes, because

the formalism of solar neutrino oscillations in 3+1 schemes is identical to that

in 2 + 2 schemes [46]–[48]. Indeed, from eqs. (3.1) and (3.2) we already know

that the results of the Bugey and CHOOZ experiment imply that |Ue4|2 is very
small. Furthermore, taking into account the hierarchy

∆m221 = ∆m
2
SUN � |∆m231| = ∆m2ATM � |∆m241| = ∆m2SBL , (4.1)
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Figure 7: Solid Line: Allowed regions. Long Dashed Line: CHORUS exclusion curve at

90% CL [37]. Short Dashed Line: NOMAD exclusion curve at 90% CL [38]. Dotted Line:

CDHS exclusion curve at 90% CL [33].

the effective survival probability of ν̄e and νe in long-baseline experiments is

given by

P LBLνe→νe = 1− 4|Ue3|2
(
1− |Ue3|2

)
sin2
(
∆m231L

4E

)
+ |Ue4|4 , (4.2)

where L is the propagation distance and E is the neutrino energy. Neglect-

ing |Ue4|4, equation (4.2) has the same structure as the usual two-generation
survival probability (see [6]), with sin2 2ϑ replaced by 4|Ue3|2 (1− |Ue3|2) and
∆m2 replaced by ∆m231. The bound on sin

2 2ϑ obtained in the CHOOZ exper-

iment [23] for |∆m231| & 10−3 eV2 implies that |Ue3|2 . 2.6× 10−2. Therefore,
both |Ue3|2 and |Ue4|2 are very small,

|Ue3|2 . 3× 10−2 |Ue4|2 . 3× 10−2 , (4.3)

and can be neglected in the study of solar neutrino oscillations, as done in

refs. [46, 47, 48]. In other words, the production and detection of the mass

eigenstates ν3 and ν4 is negligibly small in solar neutrino experiments. More-

over, because of the hierarchy (4.1), there are no matter-induced transitions

from ν1, ν2 to ν3, ν4. Hence, ν3 and ν4 effectively decouple in solar neutrino

oscillations, leading to the formalism described in refs. [46]–[48].
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90% CL [37]. Short Dashed Line: NOMAD exclusion curve at 90% CL [38]. Dotted Line:

Bugey exclusion curve at 90% CL [32]. Dashed Line: CHOOZ exclusion curve at 90%

CL [23].

2. |Uµ4|2 ' 0.33 − 0.55 in region R1 in figure 4. In this case the solar neutrino
problem is due to a mixture of νe → νµ, νe → ντ and νe → νs transitions, that

is allowed by data as in the previous case.

The atmospheric neutrino anomaly is due to a mixture of νµ → ντ and νµ → νs
transitions. In refs. [49, 51, 52] it has been shown that a mixture of νµ → ντ
and νµ → νs transitions in the framework of 2 + 2 schemes is allowed by

the atmospheric neutrino data. This indicates that such a mixture should be

allowed also in the framework of 3 + 1 schemes. The groups specialized in

the analysis of atmospheric neutrino data could check this possibility using

the formalism presented in appendix A. The existence of mixed νµ → ντ
and νµ → νs transitions can also be checked by comparing the rates of νµ
disappearance and νµ → ντ appearance in future long-baseline experiments

with νµ beams. The formalism that allows to describe these oscillation channels

in the framework of 3 + 1 four-neutrino schemes is presented in appendix A.

These predictions are testable in future experiments, especially measuring the

percentage of transitions into active and sterile neutrinos in solar, atmospheric and

long-baseline experiments (that should measure the same transitions observed in
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atmospheric neutrino experiments). Taking into account also the prediction of large

νµ → ντ and νe → ντ in short-baseline experiments, the schemes under consideration

can be checked and possibly falsified in the near future.

5. Conclusions

In conclusion, we have considered the four-neutrino 3 + 1 schemes in figure 1, that

are marginally allowed by present data (see figure 2). We have identified four small

regions (R1, R2, R3, R4) in the parameter space of neutrino mixing compatible with

all data and we have derived general upper and lower bounds for the elements Ue4
and Uµ4 of the mixing matrix and on the oscillation amplitudes in short-baseline ν̄e
and νµ disappearance experiments. The corresponding νµ → νe transitions and νe
and νµ disappearance in short-baseline experiments are relatively large and could be

observed in future dedicated experiments.

Assuming a small mixing of the sterile neutrino with the isolated mass eigenstate,

|Us4|2 � 1, we have shown that large νµ → ντ and νe → ντ transitions are predicted

in short-baseline experiments. In this case, the region R4 is already excluded by the

results of the CHORUS [37] and NOMAD [38] νµ → ντ experiments.

We have also discussed the implications of |Us4|2 � 1 for solar, atmospheric and
long-baseline neutrino oscillation experiments and we have presented in appendix A

the formalism describing in general 3 + 1 schemes the oscillations in matter of at-

mospheric neutrinos and neutrinos in long-baseline νµ disappearance and νµ → ντ
appearance experiments. In the allowed regions R2 and R3 the atmospheric neu-

trino anomaly is due to dominant νµ → νs transitions, that are disfavored by present

Super-Kamiokande and MACRO data [20, 22]. On the other hand, in the allowed re-

gion R1 the atmospheric neutrino anomaly is due a mixture of νµ → ντ and νµ → νs
transitions, that is likely to be allowed by the data, as shown by the calculations in

the framework of 2 + 2 schemes presented in refs. [49, 51, 52].

Finally, let us remark that the four 3 + 1 schemes in figure 1 are equivalent for

solar, atmospheric and short-baseline neutrino oscillation experiments, but they may

be distinguishable in long-baseline νµ → νe experiments if |Ue3|2 is not too small [63],
or through their different effects in tritium β decay and neutrinoless double-β decay

(see [3, 5, 6]) and through neutrino oscillations in supernovae (see [64, 65]) and in

the early universe (see [66]–[70]).
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A. Formalism of atmospheric neutrino oscillations

In this appendix we derive in a concise way the formalism in 3 + 1 schemes of

atmospheric neutrino oscillations and oscillations in long-baseline νµ → ντ and νµ
disappearance experiments. We take into account matter effects, following a method

similar to that used in ref. [46] in the case of 2 + 2 schemes. As explained in the

main text, the formalism of solar neutrino oscillations in 3 + 1 schemes is identical

to that in 2 + 2 schemes [46]–[48].

From equation (4.3) we know that Ue3 and Ue4 can be neglected. Choosing the

ordering νs, νe, νµ, ντ for the flavor neutrino fields, the mixing matrix can be written

as

U = V34 V14 V13 V12 , (A.1)

where

(Vij)ab = δab + (cos ϑij − 1) (δiaδib + δjaδjb) + sinϑij (δiaδjb − δjaδib) (A.2)

represents a rotation by an angle ϑij in the i-j plane. We have also neglected

possible CP-violating phases. The evolution of the neutrino flavor amplitudes ψα
(α = s, e, µ, τ) in vacuum and in matter is given by the MSW equation [71]

i
d

dx
Ψ = HΨ , (A.3)

where Ψ = (ψs, ψe, ψµ, ψτ )
T and H is the effective Hamiltonian

H = 1
2p

(
UM2

0 U
† +A) . (A.4)

Here p is the neutrino momentum,

M2
0 = diag(0, 0,∆m

2
31,∆m

2
41) (A.5)

is the mass-squared matrix, in which we neglected ∆m221 according to the hierarchical

relation (4.1), and A is the matrix

A = diag(−ANC , ACC , 0, 0) , (A.6)

with ACC = 2pVCC and ANC = 2pVNC , where VCC and VNC are, respectively, the

matter-induced charged-current and neutral-current potentials (see [2, 3, 4, 5, 6]).

For atmospheric neutrinos propagating in the Earth and accelerator neutrinos in

long-baseline experiments |ACC | ∼ |ANC | ∼ |∆m231| � |∆m241|. In equation (A.4)
we have neglected a common phase for the flavor amplitudes, that is irrelevant for

neutrino oscillations.
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The evolution equation (A.3) is most easily solved in the rotated basis Ψ′ =
V T14V

T
34Ψ = (ψ

′
1, ψ

′
2, ψ

′
3, ψ

′
4)
T that obeys to a similar evolution equation, with H re-

placed by

H′ = 1
2p

(
V13M2

0V
T
13 + V

T
14AV14

)
(A.7)

where we have taken into account the fact that V12M2
0V
T
12 =M2

0 and V
T
34AV34 = A,

which lead to a significant simplification of the evolution equation. The explicit form

of H′ is

H′ = 1
4p



(1−c2ϑ13 )∆m231−2c2ϑ14ANC 0 s2ϑ13∆m

2
31 −s2ϑ14ANC

0 2ACC 0 0

s2ϑ13∆m
2
31 0 (1+c2ϑ13 )∆m

2
31 0

−s2ϑ14ANC 0 0 2∆m241−2s2ϑ14ANC


 , (A.8)

with cϑ ≡ cosϑ and sϑ ≡ sinϑ. This equation shows that the amplitudes ψ′2 and ψ′4
evolve independently (remember that |∆m241| � |ANC |), with phases given by the
energy eigenvalues

E′2 = ACC/2p = VCC , E ′4 ' ∆m241/2p , (A.9)

whereas the evolutions of the amplitudes ψ′1 and ψ
′
3 are coupled and there is a reso-

nance in the 1-3 sector for

− cos2 ϑ14ANC = cos 2ϑ13∆m231 . (A.10)

Notice that for neutrinos the left-hand side of equation (A.10) is positive, because

ANC ≤ 0, whereas for antineutrinos it is negative because ANC must be replaced by
ANC = −ANC . Hence, if ∆m231 > 0 (schemes I and IV in figure 1) and ϑ13 < π/4 or

∆m231 < 0 (schemes II and III) and ϑ13 > π/4, there can be a resonance for neutrinos,

otherwise the resonance can be for antineutrinos.

One can calculate the evolution of the amplitudes ψ′1 and ψ
′
3 solving numerically

the two coupled equations generated by the 1-3 sector of the effective Hamiltonian

H′. Another common method for the solution of the evolution equation is to divide
the Earth interior into shell with constant density, calculate the evolution of the

amplitudes Ψ′ in each shell and match the amplitudes in the flavor basis at the shell
boundaries. In this case, in each shell the amplitudes ψ′1 and ψ

′
3 can be written as

ψ′1 = cosϑ
M
13ψ

M
1 + sinϑ

M
13ψ

M
3 , ψ′3 = − sinϑM13ψM1 + cosϑM13ψM3 , (A.11)

where ψM1 and ψ
M
3 are the amplitudes of the energy eigenstates that evolve with

phases given by the energy eigenvalues

EM1,3 =
1

4p

[
∆m231 − cos2 ϑ14ANC ∓

∓
√
(cos 2ϑ13∆m

2
31 + cos

2 ϑ14ANC)
2
+ (sin 2ϑ13∆m

2
31)
2
]
. (A.12)
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The effective mixing angle in matter ϑM13 is given by

tan 2ϑM13 =
sin 2ϑ13∆m

2
31

cos 2ϑ13∆m231 + cos
2 ϑ14ANC

, (A.13)

from which one can see that ϑM13 = π/4 when the resonance condition (A.10) is satis-

fied, and ϑM13 → π/2 in a very dense medium, where | cos2 ϑ14ANC | � | cos 2ϑ13∆m231|
if cos 2ϑ13∆m

2
31 > 0, whereas ϑ

M
13 → 0 in a very dense medium if cos 2ϑ13∆m231 < 0.

The connection between the amplitudes Ψ′ and the flavor amplitudes Ψ, needed
for the calculation of the probability of flavor transitions, is given by

ψs = cosϑ14ψ
′
1 + sin ϑ14ψ

′
4 ,

ψe = ψ
′
2 ,

ψµ = − sinϑ14 sinϑ34ψ′1 + cos ϑ34ψ′3 + cosϑ14 sinϑ34ψ′4 ,
ψτ = − sin ϑ14 cos ϑ34ψ′1 − sin ϑ34ψ′3 + cosϑ14 cosϑ34ψ′4 . (A.14)

The second line of equation (A.14) imply that electron neutrinos do not oscillate in

atmospheric neutrino experiments (remember that ψ′2 evolves independently). This is
due to the approximation Ue3 = 0, motivated by equation (4.3), which also imply that

the charged-current matter potential VCC , felt only by νe, is irrelevant for atmospheric

neutrino oscillations (only the neutral-current potential VNC , felt by νµ and ντ , enter

in eqs. (A.10)–(A.13)). On the other hand, simultaneous νµ → ντ and νµ → νs
transitions are allowed, with pure νµ → ντ transitions in the limit cosϑ14 = 0, that

corresponds to Us4 = 1, and pure νµ → νs transitions in the limit cosϑ14 cosϑ34 = 1,

that corresponds to Uτ4 = 1.

Let us consider finally long baseline experiments in which the neutrino beam

travels in the crust of the Earth, where the matter density is practically constant.

The probability of να → νβ transitions is given by

P LBLνα→νβ =
∣∣∣∣UMα1UMβ1 + UMα3UMβ3 exp

(
−i∆

M
31L

2p

)∣∣∣∣
2

+ |UMα4 |2|UMβ4 |2

= −4UMα1UMβ1UMα3UMβ3 sin2
(
∆M31L

4p

)
+ 2|UMα4 |2|UMβ4 |2 , (A.15)

where L is the propagation distance,

∆M31 = 2p
(
EM3 − EM1

)
=

√
(cos 2ϑ13∆m231 + cos

2 ϑ14ANC)
2
+ (sin 2ϑ13∆m231)

2
,

(A.16)

and UM is the effective mixing matrix in matter,

UM = V34V14V
M
13 =




cϑ14cϑM
13

0 cϑ14sϑM
13

sϑ14

0 1 0 0

−sϑ34sϑ14cϑM
13
−cϑ34sϑM

13
0 −sϑ34sϑ14sϑM

13
+cϑ34cϑM

13
sϑ34cϑ14

−cϑ34sϑ14cϑM
13
+sϑ34sϑM

13
0 −cϑ34sϑ14sϑM

13
−sϑ34cϑM

13
cϑ34cϑ14


 ,

(A.17)
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where V M13 is equal to V13 with ϑ13 replaced by ϑ
M
13 . The expression (A.15) can be used

to analyze the data of long-baseline νµ → ντ and νµ disappearance experiments (the

analysis of long-baseline νµ → νe data requires the relaxation of the approximation

Ue3 = 0, leading to a significant complication of the formalism [63]).
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