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Abstract. Over Matlis valuation domains there exist finitely injective mod-
ules which are not direct sums of injective modules, as well as complete locally

pure-injective modules which are not the completion of a direct sum of pure-

injective modules. Over Prüfer domains which are either almost maximal, or
h-local Matlis, finitely injective torsion modules and complete torsionfree lo-

cally pure-injective modules correspond to each others under the Matlis equiv-

alence. Almost maximal Prüfer domains are characterized by the property
that every torsionfree complete module is locally pure-injective. It is derived

that semi-Dedekind domains are Dedekind.

Introduction

A result in the Ph.D. thesis of H. Bass, whose proof can be found in [3], states
that a ring is left Noetherian if and only if the class of the injective modules is
closed under taking direct sums. Ramamurthi and Rangaswamy [15] noted that
left Noetherian rings are also characterized by the stronger condition that finitely
injective modules are injective; recall that a module M is finitely injective if every
finite set of elements of M is contained in an injective submodule; obviously, direct
sums of injective modules are “trivial” examples of finitely injective modules.

Thus the following question naturally arises: if R is a non-Noetherian ring, is
the class of the direct sums of injective modules strictly contained in the class of
finitely injective modules? In other words, does a finitely injective R-module exist
which fails to be a direct sum of injective modules? Note that such a module must
be at least ℵ1-generated, since a countably generated finitely injective module is
necessarily a direct sum of injectives (see Proposition 1.1).

The first goal of this paper is to show that the answer to the above question is
positive when R is a non-Noetherian Matlis valuation domain (recall that a domain
is Matlis if the projective dimension of the field of quotients Q of R is ≤ 1).

The tool to obtain the required finitely injective module is a construction that
was first performed by Hill [11] to exhibit ℵ1-separable p-groups which are not direct
sums of countable groups; later on, this construction was modified by P. A. Grif-
fith [9] to obtain flat ℵ1-separable torsionless modules over non-left perfect rings,
which fail to be direct sums of countably generated modules (here ℵ1-separable
means that each countable subset belongs to a countably generated direct sum-
mand). B. Zimmermann-Huisgen [20] generalized Hill’s and Griffith’s construc-
tions (and similar ones by Gruson-Jensen [10] and W. Zimmermann [18]) to prove
that all ℵ1-separable modules over an arbitrary associative unital ring R are trivial
(i.e., direct sums of countably generated modules) if and only if R has pure global
dimension zero, namely, every pure inclusion of left R-modules splits.
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We will adapt the construction in [20] to the setting of divisible modules over a
non-Noetherian almost maximal Matlis valuation domain R, obtaining ℵ1-generated
finitely injective torsion modules whose only injective summands are isomorphic to
finite direct sums of Q/R. Recall that over such a domain R all divisible mod-
ules are finitely injective (see [6] and [16]). Then we will extend the above result
eliminating the almost maximal assumption.

Using the Matlis equivalence between h-divisible torsion modules and torsion-
free complete modules, we obtain an example of a complete locally pure-injective
torsionfree module over a non-Noetherian Matlis valuation domain, which fails to
be the completion of a direct sum of pure-injective modules (see [19] for a study
of locally pure-injective modules). Furthermore, we characterize almost maximal
Prüfer domains R by means of the property that all torsionfree complete R-modules
are locally pure-injective. As a subproduct of this result we derive that the semi-
Dedekind domains, introduced by S. B. Lee in [13], are in fact Dedekind domains.

The latter goal of the paper is to show that, over Prüfer domains which are either
almost maximal, or h-local Matlis, finitely injective torsion modules correspond,
under the Matlis equivalence, to complete torsionfree locally pure-injectve modules.

1. Non-trivial finitely injective modules

It is useful to introduce some definitions. B. Zimmermann-Huisgen [20] calls a
module over an arbitrary ring ℵ1-separable if each countable subset belongs to a
countably generated direct summand (this notion differs from that defined in [4,
p. 87]); she also calls an ℵ1-separable module “trivial” if it is a direct sum of
countably generated submodules. Inspired by this definition, we say that a finitely
injective module is trivial if it is a direct sum of injective modules. Given an
infinite cardinal κ, a module D is said to be κ-⊕injective if every subset of D
of cardinality < κ is contained in a submodule D′ of D which is a direct sum of
injective modules. If, furthermore, D′ can be chosen being a summand of D, then
D is said to be separable κ-⊕injective.

A finitely injective module D is trivial exactly if it is κ-⊕injective for all κ.
Note that a separable ℵ0-⊕injective module is nothing else than a finitely injective
module. The next result is similar to Proposition 2.5 in [19] (which deals with
locally pure injective modules).

Proposition 1.1. A finitely injective module is ℵ1-⊕injective.

Proof. Let M be a finitely injective module and (xn)n∈ω a sequence of elements in
M . We argue by induction. Let E1 ⊕ · · · ⊕ En ⊕ N = M , where E1 ⊕ · · · ⊕ En

is a finite direct sum of injective submodules of M containing x1,. . . , xn. Let
xn+1 = y + z, with y ∈ E1 ⊕ · · · ⊕ En and z ∈ N . Since N is finitely injective, z
belongs to an injective submodule En+1 of N , thus E1⊕· · ·⊕En+1 contains x1,. . . ,
xn+1. There follows that

⊕
n∈ω En contains (xn)n∈ω. �

An immediate consequence of Proposition 1.1 is that countably generated finitely
injective modules are trivial, i.e., direct sums of injective modules.

Most part of this Section is devoted to prove the following

Theorem 1.2. Let R be a non-Noetherian Matlis almost maximal valuation do-
main. Then there exists a non-trivial separable ℵ1-⊕injective module D.

Proof. Let 0 < Rr1 < Rr2 < · · · < Rrn < · · · be a strictly increasing sequence of
principal ideals of R, and let J =

⋃
n∈ω Rrn. For each ordinal σ ≤ ℵ1 set:

Sσ =
⊕
ρ<σ

Kρ, Pσ =
∏
ρ<σ

Kρ
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where Kρ = K = Q/R for all ρ.
First we construct a countably generated submodule Tω of Pω containing Sω,

which is isomorphic to
⊕

ℵ0
K, such that Sω is not a direct summand of Tω.

Let x = (xn)n∈ω ∈ Pω be the element defined by setting, for each n ∈ ω,
xn = r−1

n +R. Then AnnR(x) = Rr1, hence Rx ∼= R/Rr1, and an easy computation
shows that AnnR(x + Sω) = J . Let us set:

Tω = Sω + Eω

where Eω denotes the injective envelope of the cyclic module Rx inside the injective
module Pω. Eω is countably generated, since Eω = E(Rx) ∼= Q/Rr1

∼= K. There-
fore Tω is countably generated. Moreover, since Eω is uniserial and AnnR(x+Sω) =
J , we have:

Tω/Sω
∼= Eω/(Eω ∩ Sω) = E(Rx)/Jx ∼= Q/J ;

there follows that p.d.Tω/Sω = 2 (see [8, VI, Exercise 3.3]; as usual, p.d.M denotes
the projective dimension of the module M). On the other hand, p.d. Tω = 1;
in fact, every finitely generated submodule of Tω is contained in a submodule of
the form K1 ⊕ · · · ⊕ Kn + Eω, which is isomorphic to K1 ⊕ · · · ⊕ Kn ⊕ K, since
AnnR(x + K1 ⊕ · · · ⊕ Kn) = Rrn+1. There follows that Tω is coherent, hence
isomorphic to

⊕
ℵ0

K. (N.B.: It is easily seen that the module Tω is isomorphic to
the module T constructed in [1, Lemma 3.4]. However it is important to construct
Tω as above, in order to adapt the Griffith’s technique).

Let us fix now a ladder system on the set lim(ℵ1) of the limit ordinals in ℵ1

(see [4, p. 40]), that is, for each limit ordinal λ < ℵ1, we fix an increasing sequence
J(λ) of ordinals: σ1 < σ2 < · · · < σn < · · · < λ, whose supremum is λ. We denote
by SJ(λ) and PJ(λ), respectively, the two modules

⊕
ρ∈J(λ) Kρ and

∏
ρ∈J(λ) Kρ.

Let us define an element xλ = (xλ
σ)σ<λ ∈ Pλ in the following way:

xλ
σ =

{
r−1
n + R if σ = σn for some n,

0 otherwise.

Let us set
Tλ = SJ(λ) + Eλ

where Eλ denotes the injective envelope of the cyclic module Rxλ inside the injective
module PJ(λ) (we look at xλ as an element of PJ(λ) in the obvious way). The
module Tλ is a “clone” (B. Zimmermann-Huisgen calls the similar module in her
construction a “carbon copy” [20]) of the module Tω defined above. In particular,
Tλ/SJ(λ)

∼= Q/J , hence p.d.Tλ/SJ(λ) = 2.
We are now in position to define the desired finitely injective module D. Let us

set
D = Sℵ1 +

∑
λ∈lim(ℵ1)

Eλ.

We will prove that D is separable ℵ1-⊕injective and is not a direct sum of
injective modules. Actually, we will prove more: the only injective summands of D
are isomorphic to (Q/R)n (n ∈ N). Note that D is the union of an increasing chain
of submodules: D =

⋃
σ<ℵ1

Dσ, where, for each σ < ℵ1,

Dσ = Sσ +
∑

λ∈lim(σ)

Eλ.

Each module Dσ is divisible, countably generated and coherent, hence Dσ
∼=

⊕
ℵ0

K
for all σ < ℵ1. We need the following technical lemmas.

Lemma 1.3. If λ ∈ lim(ℵ1), then D ∩ Pλ = Dλ + Eλ.
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Proof. The inclusion D∩Pλ ≥ Dλ+Eλ is obvious. Conversely, let x =
∑

1≤i≤n kρi
+∑

1≤j≤m eλj ∈ D ∩ Pλ, where kρi ∈ Kρi , eλj ∈ Eλj , and λ1 < · · · < λm are limit
ordinals. Since J(λm) has finite intersection with J(λj) for each j, x ∈ Pλ implies
that λm ≤ λ. Then

∑
1≤j≤m eλj

∈ Pλ and consequently also
∑

1≤i≤n kρi
∈ Pλ.

Therefore ρi < λ for all i, hence
∑

1≤i≤n kρi
+

∑
1≤j≤m−1 eλj

∈ Dλ and eλm
∈ Eλ,

so that x ∈ Dλ + Eλ as desired. �

Lemma 1.4. If λ ∈ lim(ℵ1), then
(1) Dλ = (Dλ ∩

∏
ρ∈λ\J(λ) Kρ)⊕ SJ(λ);

(2) Dλ+1 = (Dλ ∩
∏

ρ∈λ\J(λ) Kρ)⊕ Tλ ⊕Kλ;
(3) Dλ+1 = D ∩

∏
ρ≤λ Kρ.

Proof. (1) Using the notation in the proof of Lemma 1.3, let x =
∑

1≤i≤n kρi +∑
1≤j≤m eλj

∈ Dλ, where ρ1 < · · · < ρm < λ, and λ1 < · · · < λm < λ are limit
ordinals. Since J(λ) has finite intersection with J(λj) for each j, each eλj

has only
finitely many components in SJ(λ); let y denote the element of SJ(λ) which is the
sum of all of these components for 1 ≤ j ≤ m, and of all the elements kρi such that
ρi ∈ J(λ). Then x− y ∈ Dλ ∩

∏
ρ∈λ\J(λ) Kρ, so we are done.

(2) Dλ+1 = (Dλ + Eλ) ⊕Kλ = (((Dλ ∩
∏

ρ∈λ\J(λ) Kρ) ⊕ SJ(λ)) + Eλ) ⊕Kλ =
(Dλ ∩

∏
ρ∈λ\J(λ) Kρ)⊕ Tλ ⊕Kλ.

(3) Using Lemma 1.3 and the equality Pλ+1 = Pλ ⊕ Kλ, we get: Dλ+1 ≤
D ∩ (Pλ ⊕ Kλ) = (D ∩ Pλ) ⊕ Kλ = (Dλ + Eλ) ⊕ Kλ ≤ Dλ+1, hence Dλ+1 =
D ∩ (Pλ ⊕Kλ) = D ∩

∏
ρ≤λ Kρ. �

Lemma 1.5. If λ ∈ lim(ℵ1), then

D = Dλ+1 ⊕
(

D ∩
∏

λ<ρ<ℵ1

Kρ

)
.

Proof. By Lemma 1.4 (3), we must prove that D = (D ∩
∏

ρ≤λ Kρ) ⊕ (D ∩∏
λ<ρ<ℵ1

Kρ). Let x =
∑

1≤i≤n kρi
+

∑
1≤j≤m eλj

∈ D, where ρ1 < · · · < ρk ≤ λ <
ρk+1 < · · · < ρm, and λ1 < · · · < λh ≤ λ < λh+1 < · · · < λm are limit ordinals.

Let y denote the element of
∏

ρ≤λ Kρ which is the sum of the finitely many
components in

∑
ρ≤λ Kρ of the elements eλj

for h + 1 ≤ j ≤ m. Then

x =
( ∑

1≤i≤k

kρi
+

∑
1≤j≤h

eλj
+ y

)
+

( ∑
k<i≤n

kρi
+

∑
h<j≤m

eλj
− y

)
where the first summand belongs to D∩

∏
ρ≤λ Kρ, and the second summand belongs

to D ∩
∏

λ<ρ<ℵ1
Kρ. Consequently D ⊆ Dλ+1 ⊕ (D ∩

∏
λ<ρ<ℵ1

Kρ). The converse
inclusion is trivial. �

We continue now the proof of Theorem 1.2. By Lemma 1.5, Dλ+1 is a direct
summand of D for each limit ordinal λ < ℵ1; there follows that D is not an injective
module, as Dλ+1

∼=
⊕

ℵ0
K is not injective. D is separable ℵ1-⊕injective, since a

countable subset of D is contained in Dλ+1 for some limit ordinal λ < ℵ1, and
Dλ+1 is a direct sum of injective modules which is a summand in D. Finally, we
must show that D is not a direct sum of injective modules. First we observe that D
is not isomorphic to

⊕
ℵ1

K; in fact, from Lemma 1.4 we derive that Dλ+1/Dλ
∼=

(Tλ/SJ(λ)) ⊕ K, hence p.d.Dλ+1/Dλ = 2 for all limit ordinals λ; a well known
result by Eklof (see [7, p. 75]) implies that p.d. D = 2, while p.d.

⊕
ℵ1

K = 1.
It remains to show that D is not a direct sum of injective modules of some

different kind. Assume, by way of contradiction, that D has a direct summand E
which is the injective hull of a module B ∼=

⊕
ℵ0

K. Then there exists a countable
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ordinal λ such that B ≤ Dλ+1. As B is essential in E, we get from Lemma 1.5 that
E ∩ (D ∩

∏
λ<ρ<ℵ1

Kρ) = 0. This implies that E embeds as a direct summand in
Dλ+1, which is impossible, since E is not countably generated. �

We extend now Theorem 1.2 to arbitrary non-Noetherian Matlis valuation do-
mains. We need the following technical lemma; recall that, if S denotes a maximal
immediate extension of R, then E(Q/R) ∼= QS/S (see [5]), which is an injective
S-module, and, as S is a flat overring of R, injective S-modules are also injective
as R-modules (see [12, p. 62, 3.6A] or [8, IX, Exercise 1.3]).

Lemma 1.6. Let S be a maximal immediate extension of the valuation domain
R, and let E be the injective hull as an R-module of a module of the form B =⊕

ℵ QS/S for some ℵ. Then E is an injective S-module.

Proof. Let A be the injective hull of B as S-module. Then A is an injective R-
module which decomposes as R-module in the form A = E ⊕ E′. If E′ 6= 0, then
E′ contains a direct R-summand C ∼= QS/S. But this is impossible, since B⊕C is
a direct decomposition also of S-modules, while B is an essential S-submodule of
A. �

Theorem 1.7. Let R be a non-Noetherian Matlis valuation domain. Then there
exists a non-trivial finitely injective module D.

Proof. Let S be a maximal immediate extension of R. Let D be a finitely injective
S-module constructed as in Theorem 1.2 with S instead of R; this makes sense,
since S is a non-Noetherian Matlis maximal valuation domain. Clearly finitely
injective S-modules are finitely injective also as R-modules, hence it is enough to
show that D is not a direct sum of injective R-modules. We will show more: the
only injective summands of D as R-module are isomorphic to finite direct sums of
copies of E(Q/R). Let us assume, by way of contradiction, that D decomposes as
R-module in the following way:

D = E
(⊕
ℵ0

Q/R
)
⊕D′ ∼= E

(⊕
ℵ0

QS/S
)
⊕D′

(note that an indecomposable injective R-summand of D is necessarily isomorphic
to E(Q/R), since D is a coherent R-module). To reach the contradiction it is enough
to prove that E(

⊕
ℵ0

QS/S) is the injective hull of
⊕

ℵ0
QS/S as S-module, and

this is ensured by Lemma 1.6. �

2. Finitely injective modules and Matlis equivalence

A classical result by Matlis establishes an equivalence between the category of
h-divisible torsion modules over an arbitrary domain R on one side, and the cat-
egory of torsionfree complete R-modules on the other side; it is understood that
the completion is made with respect to the R-topology. The two inverse corre-
spondences send the h-divisible torsion R-module D to the torsionfree complete
R-module HomR(K, D) (K = Q/R), and the torsionfree complete R-module M to
the h-divisible torsion R-module K ⊗R M (see [8, VIII.2]).

As finitely injective torsion modules are h-divisible (see [16, Corollary 1.3]), it is
natural to ask which torsionfree complete modules correspond to them in the Matlis
equivalence. Recall that, by a Warfield result [17] (see [8, VIII.2.9]), injective torsion
modules and torsionfree Warfield cotorsion modules correspond to each others in
the Matlis equivalence.

We will investigate the above question over Prüfer domains. Note that, over
such a domain R, as torsionfree R-modules are flat, RD-injective and pure-injective
modules coincide, as well as Enochs cotorsion and Warfield cotorsion modules, and
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torsionfree cotorsion modules are pure-injective (see [8, XIII]). Notice also that,
in view of the Warfield’s result quoted above, it is quite obvious that direct sums
of injective torsion R-modules and completions of direct sums of torsionfree pure-
injective R-modules correspond to each others under the Matlis equivalence.

Therefore, natural candidates as modules corresponding to the finitely injective
torsion R-modules are the complete l-pure-injective modules. Recall that a module
M over an arbitrary ring is said to be locally pure-injective (l-pure-injective for
short), if every element x ∈ M belongs to a pure-injective summand of M . These
modules have been investigated recently by W. Zimmermann [19].

The first simple result is the following

Proposition 2.1. Let M be a torsionfree (complete) l-pure-injective module over
a domain R. Then M ⊗R K is finitely injective.

Proof. It is enough to prove that every element of the form m⊗k (0 6= m ∈ M,k ∈
K) belongs to an injective summand of M⊗RK. By hypothesis, M = X⊕Y , where
X is pure-injective and contains m. Then M ⊗R K = (X⊗R K)⊕ (Y ⊗R K), where
X ⊗R K contains m⊗ k and is injective, by the Warfield result quoted above. �

We give a simple direct proof of the converse of Proposition 2.1 for almost max-
imal Prüfer domains. Recall that, by [16], every h-divisible module over such a
domain is finitely injective.

Proposition 2.2. Let R be an almost maximal Prüfer domain, and let D be a
torsion h-divisible R-module. Then HomR(K, D) is l-pure-injective.

Proof. Let 0 6= φ : K → D be an homomorphism. Since all quotients of Q are injec-
tive [2] (see also [8, IX.4.5]), we get that D = φ(K)⊕A, with φ(K) injective. There-
fore HomR(K, D) = HomR(K, φ(K)) ⊕ HomR(K, A), where HomR(K, φ(K)) is
pure-injective by the Warfield’s result quoted above, and clearly φ ∈ HomR(K, φ(K)).

�

There is another very good reason why the statement of Proposition 2.2 is true:
every complete torsionfree module over an almost maximal Prüfer domain is l-
pure-injective. Actually, with the help of Theorem 2.4 in [16], we can prove the
following

Theorem 2.3. All torsionfree complete modules over a domain R are l-pure-
injective if and only if R is an almost maximal Prüfer domain.

Proof. The sufficiency is an obvious consequence of the following facts:

(i) as almost maximal Prüfer domains R are h-local, a torsionfree complete R-
module M (i.e., reduced weakly cotorsion) is isomorphic to

∏
P MP , where P

ranges over Max(R) and MP = HomR(R̃P ,M) is a complete module over the
completion R̃P of the localization RP (see [14, Corollary 8.6]);

(ii) R̃P is a maximal valuation domain and every torsionfree module over such
a domain is l-pure-injective both as R̃P -module and as R-module (see [8,
XIV.3]);

(iii) the class of l-pure-injective modules is closed under direct products [18, Prop. 2.4 (2)].

We will prove the necessity by showing that every h-divisible torsion R-module
is finitely injective and then applying Theorem 2.4 in [16]. Let D be a torsion
h-divisible R-module. Then HomR(K, D) is l-pure-injective, by hypothesis, hence
D ∼= K ⊗R HomR(K, D) is finitely injective, by Proposition 2.1. �

An immediate consequence is the following
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Corollary 2.4. Let R be an almost maximal Prüfer domain. Then the two classes
of torsion finitely injective R-modules and of torsionfree complete l-pure-injective
R-modules correspond to each other under the Matlis equivalence. �

Another interesting consequence is that semi-Dedekind domains, introduced and
investigated by S. B. Lee in [13], are Dedekind. Recall that a domain R is semi-
Dedekind if all h-divisible R-modules are pure-injective. Lee proved that, if R
is semi-Dedekind, then every torsionfree complete R-module is pure-injective. As
pure-injective modules are trivially l-pure-injective, and since semi-Dedekind Prüfer
domains are necessarily Dedekind domains, from Theorem 2.3 we derive the follow-
ing

Corollary 2.5. A semi-Dedekind domain is a Dedekind domain. �

Recall that an almost maximal Prüfer domain is necessarily h-local. In the
remaining part of this paper we will extend the result in Corollary 2.4 to h-local
Prüfer domains, but with the additional assumption that they are Matlis.

We will need the next technical result.

Lemma 2.6. Let R be a valuation domain and {Mi}i∈I a family of pure-injective
torsonfree R-modules. Then the completion of

⊕
i∈I Mi in the R-topology is l-pure-

injective.

Proof. Let M =
⊕̃

i∈I Mi be the completion of
⊕

i∈I Mi and let S be a maxi-
mal immediate extension of R. An element x ∈ M is the limit of a Cauchy net
{xr}0 6=r∈R of elements in

⊕
i∈I Mi, which is an S-module. If α ∈ S, then αx is

the limit of the net {αxr}0 6=r∈R, hence αx ∈ M ; therefore M is an S-module too.
Pick a non-zero element m ∈ M ; if xJ is the pure R-submodule of M generated by
x (J ≤ Q), then xJS is a pure injective summand of M containing x, hence M is
l-pure-injective. �

We can now prove the converse of Proposition 2.1 for modules over Matlis valu-
ation domains.

Proposition 2.7. Let R be a Matlis valuation domain, and let D be a finitely
injective torsion R-module. Then HomR(K, D) is l-pure-injective.

Proof. Let 0 6= φ ∈ HomR(K, D). Since K is ℵ0-generated, by Proposition 1.1 we
have that φ(K) ≤

⊕
n∈ω En, where the En are injective modules. From the exact

sequence
0 →

⊕
n∈ω

En → D → X → 0

where X = D/
⊕

n∈ω En, we obtain the exact sequence

0 → HomR

(
K,

⊕
n∈ω

En

)
→ HomR(K, D) → HomR(K, X) → Ext1R

(
K,

⊕
n∈ω

En

)
where the last term vanishes, since p.d.K = 1 and

⊕
n∈ω En is h-divisible (see [7,

VII.2.5]). Now HomR(K,
⊕

n∈ω En) is the completion of a direct sum of torsionfree
pure-injective modules, by the Warfield result in [17], hence it is l-pure-injective by
Lemma 2.6; furthermore, it is pure in HomR(K, D), since HomR(K, X) is torsion-
free. Clearly φ ∈ HomR(K,

⊕
n∈ω En), so it belongs to a pure-injective summand

of it, which is as well a direct summand of HomR(K, D), being pure in it. Therefore
we can conclude that HomR(K, D) is l-pure-injective. �

From Theorem 1.7 and Proposition 2.7 we immediately obtain the following

Corollary 2.8. Let R be a Matlis non-Noetherian valuation domain. There exists
a complete l-pure-injective torsionfree R-module which fails to be the completion of
a direct sum of pure-injective modules. �
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We can also extend Corollary 2.4 to h-local Matlis Prüfer domains.

Corollary 2.9. Let R be an h-local Matlis Prüfer domain. Then the two classes
of torsion finitely injective R-modules and of torsionfree complete l-pure-injective
R-modules correspond to each other under the Matlis equivalence.

Proof. By h-locality, we can reduce to the local case, namely, to Matlis valuation
domains, so the proof follows from Propositions 2.1 and 2.7. �

We close the paper with two open questions.

Question 1. Given an arbitrary non-Noetherian ring R, does a non-trivial finitely
injective R-module exist?

Question 2. Given an arbitrary integral domain R, which torsionfree complete
R-modules correspond to the torsion finitely injective R-modules under the Matlis
equivalence, and which torsion finitely injective R-modules correspond to the com-
plete torsionfree l-pure-injective R-modules?
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