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Abstract

We explicitly show how the chiral superstring amplitudes can be obtained through factorisation of the
higher genus chiral measure induced by suitable degenerations of Riemann surfaces. This powerful tool
also allows to derive, at any genera, consistency relations involving the amplitudes and the measure. A key
point concerns the choice of the local coordinate at the node on degenerate Riemann surfaces that greatly
simplifies the computations. As a first application, starting from recent ansätze for the chiral measure up to
genus five, we compute the chiral two-point function for massless Neveu–Schwarz states at genus two, three
and four. For genus higher than three, these computations include some new corrections to the conjectural
formulae appeared so far in the literature. After GSO projection, the two-point function vanishes at genus
two and three, as expected from space–time supersymmetry arguments, but not at genus four. This suggests
that the ansatz for the superstring measure should be corrected for genus higher than four.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the last years there has been a considerable progress in understanding and deriving explicit
formulas for multiloop superstring amplitudes. In a series of papers [1–6], D’Hoker and Phong
obtained, from first principles, an explicitly gauge independent expression for the 2-loop chiral
superstring measure on the moduli space of Riemann surfaces, given by
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dμ(2)[δ] = Ξ(2)[δ]dμ
(2)
Bos, (1.1)

where δ ∈ Z2
2 is an even spin structure, Ξ(2)[δ] is a modular form of weight 8 for a subgroup

of Sp(4,Z) and dμ
(g)
Bos is the genus g bosonic string measure. Based on such a result, they

also proved the non-renormalisation of the cosmological constant and of the n-point functions,
n � 3, up to g = 2, as expected by space–time supersymmetry arguments [7]. Furthermore,
the four-point amplitude has been computed and checked against the constraints coming from
S-duality [8].

Direct computations of higher loop corrections to superstring amplitudes have been inten-
sively investigated during the years. In spite of such efforts, direct computations still appear out
of reach. Nevertheless, the strong constraints coming from modular invariance and from fac-
torisation under degeneration limits, together with the explicit 2-loop expressions, can lead to
reliable conjectures on such corrections. This is the point of view adopted, for example, in [9],
where the explicit expression of higher loop contributions to the four-point function has been
proposed.

In [2,3], D’Hoker and Phong conjectured that Eq. (1.1) could be extended to genus g > 2 for
a suitable modular form Ξ(g)[δ] of weight 8. Such a form is required to fulfill a set of constraints
related to holomorphicity, modular invariance and factorisation. In [10] Cacciatori, Dalla Piazza
and van Geemen (CDvG) found a solution to such constraints at g = 3 and in [11] the uniqueness
of this solution has been proved.

The CDvG ansatz for the g = 3 measure has been generalised to any g by Grushevsky [12].
Salvati Manni proved in [13] that such an ansatz provides a solution to the constraints for
g = 4,5. For g > 5 some issues arise due to the presence of holomorphic roots of modular forms
in the definition of the chiral measure, and it is not clear whether such roots are well defined
and have the correct modular properties. In [14], Oura, Poor, Salvati Manni and Yuen (OPSMY)
proposed an alternative construction for the chiral measure up to g = 5, using lattice theta series
rather than theta constants, as done by Grushevsky. They also proved that the solution to the con-
straints is unique up to g = 4. The explicit equivalence of all ansätze up to g = 4 has been shown
in [15]. It is still an open question to understand whether Grushevsky and OPSMY proposals
coincide at g = 5.

There are several consistency conditions that the chiral superstring measure must satisfy. In
particular, non-renormalisation theorems from space–time supersymmetry imply that the cos-
mological constant and the n-point functions, for n � 3, must vanish [7]. The vanishing of the
g-loop correction to the cosmological constant corresponds to the condition∑

δ even

Ξ(g)[δ] = 0,

where the sum over the spin structures corresponds to the GSO projection [16]. This identity
has been proved for the CDvG–Grushevsky (CDvG–G) ansatz for genera 3 [10] and 4 [12]. Re-
markably, for g = 4, the cosmological constant corresponds to a non-zero Siegel modular form
of weight 8 (the Igusa–Schottky form), vanishing only on the locus of Jacobians of Riemann
surfaces. For g = 5 the vanishing of the cosmological constant has to be imposed as a further
constraint on the chiral measure and it is satisfied by the OPSMY ansatz and by a slight modi-
fication of the original Grushevsky’s ansatz [17]. It would be interesting to understand whether
this further condition implies the uniqueness of the solution also in the case g = 5.

Consistency conditions related to non-renormalisation of the chiral amplitudes for n = 1,2,3
Neveu–Schwarz massless states are much more difficult to check. As the two-loop explicit com-
putation shows, these amplitudes are given by a sum of several different contributions that cannot
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be easily determined in terms of the chiral measure alone. Very schematically, all such contribu-
tions can be collected into two different terms that, following [6], we call the connected (Bc[δ])
and disconnected (Bd [δ]) part (see also [18] for a relevant preliminary investigation of such con-
tributions). The disconnected part can be easily expressed in terms of the chiral measure. In
particular, the disconnected part of one-point function vanishes trivially after summing over the
spin structures. For n = 2,3, Bd [δ] is given, up to spin-independent factors, by the functions

Â2[δ](a, b) := Ξ(g)[δ]Sδ(a, b)2, (1.2)

Â3[δ](a, b, c) := Ξ(g)[δ]Sδ(a, b)Sδ(b, c)Sδ(c, a), (1.3)

where a, b, c are the insertion points and Sδ is the Szegö kernel [19]. On the other hand, Bc[δ]
is much more complicated to compute and its precise form is unknown for g > 2. One possible
approach to this problem is to introduce some simplifying assumptions. In this respect, it is useful
to analyse the explicit two-loop computation of the two- and three-point functions. In these cases,
the connected and disconnected contributions vanish separately after the GSO projection [4]. It
is reasonable to conjecture that a similar mechanism occurs at higher genus as well, so that∑

δ even

Bc[δ] = 0,

and the non-renormalisation theorems would imply that also
∑

δ even Bd [δ] vanishes, i.e.

Â2(a, b) :=
∑

δ even

Â2[δ](a, b) = 0, (1.4)

Â3(a, b, c) :=
∑

δ even

Â3[δ](a, b, c) = 0, (1.5)

for all insertion points a, b, c. A strong argument for the identities (1.4) and (1.5) to hold on the
hyperelliptic locus for any genus has been given by Morozov in [20], whereas Grushevsky and
Salvati Manni proved (1.4) for genus 3 [21]. However, in [22] it has been proved that (1.5) does
not hold for any non-hyperelliptic Riemann surface of genus 3. More precisely, Â3(a, b, c) = 0
for all a, b, c ∈ C, where C is a Riemann surface of genus 3, if and only if C is hyperelliptic.
In this paper, we will also prove that (1.4) and (1.5) do not hold at genus four (see Section 2.1).
Apparently, these results lead to a contradiction between the chiral measure ansatz at three loop
and non-renormalisation theorems. However, as discussed in [22], it is plausible to consider this
discrepancy as the evidence that the connected part of the chiral amplitude does not vanish in
these cases.

In this paper, we propose a different approach to the computation of the (spin dependent
part of the) chiral amplitude for two NS massless states at g-loop, for g = 2,3,4, based on
the natural factorisation properties of the chiral measure. More precisely, the two-point function
can be obtained by considering the chiral measure at genus g + 1 in the limit in which one
of the handles of the Riemann surface becomes infinitely long. We apply this procedure to the
OPSMY ansatz for the chiral measure and show that the two-point function is given by (1.2) plus
a correction term. For g = 2,3 such a term vanishes after summing over the spin structures, so
that the complete two-point function vanishes as expected by space–time supersymmetry. This
represents a highly non-trivial consistency check for the chiral measure at genus g + 1 = 3,4.
On the other hand, the two-point function does not vanish at genus 4, which could be the signal
that the OPSMY ansatz must be corrected at g = 5.
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The paper is organised as follows. In Section 2, after reviewing Grushevsky ansatz, we for-
mulate a lemma and proposition based on theta relations, that imply the non-vanishing of the
proposed two-point function at genus four. This also easily reproduces the known results in the
case of genus lower than four. Another simple consequence is that the proposed three-point
amplitude does not vanish at genus four as requested by the non-renormalisation theorem. We
conclude this section by considering the OPSMY ansatz for the superstring measure in terms of
theta lattices [14].

In Section 3 we consider the degeneration of handles of Riemann surfaces, to provide basic
relationships among measure and amplitudes at arbitrary genera. A key point is the choice of
a local coordinate at the node of the degenerate Riemann surfaces that greatly simplifies the
computations. As an application, we explicitly show that the two-point function corresponds to
the leading term in the degeneration parameter. It turns out that the proposed superstring measure
actually leads to a vanishing two-point function for genus two and three. In this respect, it should
be stressed that while the results in Section 2 are obtained assuming the form (1.2) and (1.3) for
the n-point functions, here the results are obtained using only the ansatz for the chiral measure,
so that this investigation also provides an important check for the ansatz itself at genus three and
four. We also directly show that the two-point function at g = 4, implied by the OPSMY ansatz
for the measure, does not vanish as requested by the non-renormalisation theorem. In turn, this
also implies that the proposed three-point function does not vanish at the same genus. Section 4
is devoted to our conclusions.

In Appendix A we first fix some notation used in the main text and recall basic facts on
Riemann surfaces and Riemann theta functions. Next, we provide a careful analysis of the de-
generation of Riemann surfaces which is used in Section 3 to derive the two-point function. We
also provide a basic formula for a section of |2Θ|, with Θ denoting the theta divisor. In Ap-
pendix B, after reviewing useful results on unimodular lattices and the associated theta series,
we consider the summation on the spin structures. In this context, we obtain some results that, at
the best of our knowledge, are new.

2. The chiral superstring measure

The chiral superstring measure dμ(g)[δ] satisfies some natural consistency conditions com-
ing from modular invariance and factorisation properties [3,10]. Such conditions impose strong
constraints on the modular form Ξ(g)[δ](Ω) defined in (1.1), which, at least for low genera, are
sufficient to uniquely characterise this form. It is easier to first describe the constraints satisfied
by Ξ(g)[0]:

1. Ξ(g)[0](Ω) is a modular form of weight 8 under Γg(1,2) ⊂ Γg = Sp(2g,Z)

Ξ(g)[0]((AΩ + B)(CΩ + D)−1)= det(CΩ + D)8Ξ(g)[0](Ω), (2.1)(
A B
C D

) ∈ Γg(1,2) (see Appendix A for more details on modular forms).
2. In the limit

Ωg →
(

Ωk 0
0 Ωg−k

)
,

where Ωk ∈ Hk , Ωg−k ∈ Hg−k , Ξ(g)[0](Ωg) must factorise

Ξ(g)[0](Ωg) → Ξ(k)[0](Ωk)Ξ
(g−k)[0](Ωg−k). (2.2)
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3. For g = 1, the known result for the chiral measure must be reproduced, so that

Ξ(1)[0](τ ) = θ [0](τ )4
∏

δ even

θ [δ](τ )4, (2.3)

with τ ∈ H1.

Once these properties are satisfied for a certain Ξ(g)[0], then, for any other even spin structure δ

we can define

Ξ(g)[δ](Ω) := det(CΩ + D)−8Ξ(g)[0]((AΩ + B)(CΩ + D)−1), (2.4)

where
(

A B
C D

) ∈ Γg satisfies (see Eqs. (A.2) and (B.2))[
δ′
δ′′
]

=
[

0 ·
(

A B

C D

)]
=
[

( tAC)0
( tBD)0

]
(2.5)

(for any matrix A, we denote by A0 the vector of diagonal entries). With this definition, each
Ξ(g)[δ] can be shown to satisfy all the constraints from modular invariance and factorisation, as
an immediate consequence of (2.1), (2.2) and (2.3).

Space–time supersymmetry implies that the cosmological constant must vanish after the GSO
projection. In terms of the chiral measure, this condition becomes

4. Vanishing of the cosmological constant∑
δ even

Ξ(g)[δ](Ω) = 0, Ω ∈ Jg ⊆ Hg, (2.6)

where Jg is the locus of the period matrices of Riemann surfaces of genus g.

For g � 4, this last condition is a consequence of (2.1), (2.2) and (2.3), while at genus 5 it must
be imposed as an independent constraint. The solution of the above conditions in the case of
hyperelliptic Riemann surfaces has been found by Poor and Yuen [23].

2.1. Grushevsky ansatz

In [12] an ansatz has been proposed for the chiral superstring measure which satisfies the
conditions (2.1), (2.2) and (2.3). At genus 5, a modified version of this ansatz is needed to satisfy
also (2.6) [17]. In this subsection, we describe Grushevsky’s construction and prove that the
functions Â2 and Â3 defined in (1.4) and (1.5) do not vanish at g = 4.

Let V be a vector subspace of F2g

2 , with F2 := {0,1} the field of characteristic 2. Set

P(V ) :=
∏
δ′∈V

θ
[
δ′], P

g
i,s :=

∑
V,dimV =i

P (V )s .

For each δ ∈ F2g

2 , consider the affine space A := δ + V and define

P(A) ≡ P(V + δ) :=
∏
δ′∈V

θ
[
δ′ + δ

]
,

and
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P
g
i,s[δ] :=

∑
V,dimV =i

P (V + δ)s =
∑

A	δ,dimA=i

P (A)s.

Grushevsky proposal for the modular form Ξ(g)[δ] appearing in the superstring measure dμ[δ] =
Ξ(g)[δ]dμBos is

Ξ
(g)
G [δ] := 2−g

g∑
i=0

(−1)i2
i(i−1)

2 P
g

i,24−i [δ].

The cosmological constant is

Ξ
(g)
G :=

∑
δ even

Ξ
(g)
G [δ] = 2−g

g∑
i=0

(−1)i2
i(i+1)

2
∑

A,dimA=i

P (A)24−i

= 2−g

g∑
i=0

(−1)i2
i(i+1)

2 Si,24−i ,

where

Si,s :=
∑

A,dimA=i

P (A)s.

Note the factor 2
i(i+1)

2 which differs from 2
i(i−1)

2 in the definition of Ξ(g)[δ], because in the
cosmological constant each affine space A of dimension i is counted 2i times, one per each
element δ ∈ A. The cosmological constant up to g = 5 can be computed using the following
relations for the modular forms Si,24−i [24](

22g − 1
)
S0,16 = 6S1,8 + 24S2,4, g � 2,(

22g−2 − 1
)
S1,8 = 18S2,4 + 168S3,2, g � 3,(

22g−4 − 1
)
S2,4 = 42S3,2 + 840S4,1, g � 4,

together with the following relation which holds on Jg ⊆ Hg for g � 5 [17](
22g−6 − 1

)
S3,2 = 90S4,1 + 3720S5,1/2, g � 5.

It follows that

Ξ
(g)
G = 2g−1(2g + 1

)
DgJ

(g),

for some non-vanishing Dg ∈ C, where 2g−1(2g + 1) is the number of even spin structures at
genus g,

J (g) := Θ2
E8

− ΘD+
16

= 2−2g
((

1 − 2g
)
S0,16 + 2S1,8

)
, (2.7)

and ΘE8 , ΘD+
16

are the theta series corresponding to the even unimodular lattices Λ = E8 and

Λ = D+
16 (see Section 2.2). In particular, Ξ(g)

G = 0 for g = 2,3, because J (g) vanishes identically
on Hg for g � 3, while

D4 = − 27 · 3

7 · 17
, (2.8)

and
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D5 = − 211 · 17

7 · 11 · 31
.

For g = 4 the form J (4) vanishes identically on the locus J4 (in fact, J4 is the divisor of J (4)

inside H4), while J (5) 
= 0 on J5 [17]. Thus, for the constraint (2.6) to be satisfied, one has to
introduce a modified measure at g = 5

Ξ̃
(5)
G [0] := Ξ

(5)
G [0] − D5J

(5), (2.9)

that continues to satisfy the factorisation properties and assures that Eq. (2.6) is satisfied.
Let C be a Riemann surface of genus g and define

Â2(a, b) :=
∑

δ even

Ξ(g)[δ]Sδ(a, b)2, (2.10)

a, b ∈ C, where Sδ(a, b) is the Szegö kernel (see Appendix A.1). It has been proposed that the
chiral two-point function for NS states on C corresponds to Â2(a, b) up to spin independent
factors. By space–time supersymmetry, the two-point function is expected to vanish identically
on any Riemann surface. It has been proved [21] that with Grushevsky ansatz this condition
on (2.10) is satisfied for g � 3. In the following, we will prove that such a condition does not
hold for g = 4. This is an immediate consequence of the following useful lemma.

Lemma 2.1.

∂Ξ
(g)
G

∂Ωij

= 24

2πi(1 + δij )

∑
δ

Ξ
(g)
G [δ] ∂i∂j log θ [δ]. (2.11)

Proof. By a direct computation

∂Sk,s

∂Ωij

=
∑

A,dimA=k

∂

∂Ωij

∏
δ∈A

θ [δ]s = s
∑

A,dimA=k

∑
δ∈A

P (A)s
∂

∂Ωij

log θ [δ]

= s
∑

δ

∑
V,dimV =k

P (δ + V )s
∂

∂Ωij

log θ [δ],

so that

∂Ξ
(g)
G

∂Ωij

= 2−g

g∑
k=1

(−1)k2
k(k+1)

2
∂Sk,24−k

∂Ωij

= 24−g
∑

δ

g∑
k=1

(−1)k2
k(k−1)

2
∑

V,dimV =k

P (δ + V )24−k ∂

∂Ωij

log θ [δ]

= 24
∑

δ

Ξ
(g)
G [δ] ∂

∂Ωij

log θ [δ] = 24
∑

δ

Ξ
(g)
G [δ]

2πi(1 + δij )
∂i∂j log θ [δ],

where, in the last line, we used the heat equation for the theta function

∂i∂j θ [δ](z,Ω) = 2πi(1 + δij )
∂

∂Ωij

θ [δ](z,Ω). � (2.12)
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Proposition 2.2. In the case Ξ(g)[δ] in (2.10) is identified with Ξ
(g)
G [δ], we have

Â2(a, b) = ω(a, b)Ξ
(g)
G + 2πi

16

g∑
i�j

∂Ξ
(g)
G

∂Ωij

(
ωi(a)ωj (b) + ωi(b)ωj (a)

)
.

Proof. First use the relation (formula (38) in p. 25 of [19], see also Appendix A.3 for a proof)

Sδ(a, b)2 = ω(a, b) +
g∑
i,j

ωi(a)ωj (b)∂i∂j log θ [δ](0), (2.13)

to obtain

Â2[δ](a, b) ≡ Ξ(g)[δ]Sδ(a, b)2

= Ξ(g)[δ]ω(a, b) +
g∑
i,j

Ξ(g)[δ]ωi(a)ωj (b)∂i∂j log θ [δ](0), (2.14)

then use the previous lemma. �
This result leads immediately to the known results for g � 3 and to a new one for g = 4.

Corollary 2.3. For g � 3,

Â2(a, b) = 0, (2.15)

while for g = 4

Â2(a, b) dμ
(4)
Bos = c

∑
i�j

(−1)mij
(
ωi(a)ωj (b) + ωi(b)ωj (a)

) 4∧
k�l,

(k,l)
=(i,j)

dΩkl 
= 0, (2.16)

for some non-zero constant c ∈ C and mij ∈ Z.

Proof. Eq. (2.15) follows immediately from Proposition 2.2 and the fact that for g � 3, Ξ(g)
G = 0

identically on Hg . As proved in [13], Ξ
(4)
G = D4J

(4), with D4 
= 0 given in (2.8). Furthermore,
∂J (4)

∂Ωij
cannot vanish identically on J4 for all i, j , because J4 is the divisor of J (4) and is irre-

ducible [25]. Fix some 1 � i, j � 4 and consider the open subset of J4 where ∂J (4)/∂Ωij 
= 0.
The bosonic string measure on this subset is given (up to a constant) by

dμ
(4)
Bos = (−1)mij

∧4
k�l, (k,l) 
=(i,j) dΩkl

∂J (4)/∂Ωij

,

where mij is the position of dΩij with respect to a given ordering of {dΩkl}k�l . Then, for each
point in J4, we have

Â2(a, b) dμ
(4)
Bos = 2πiD4

16
dμ

(4)
Bos

∑
i�j

∂J (4)/∂Ωij 
=0

∂J (4)

∂Ωij

(
ωi(a)ωj (b) + ωi(b)ωj (a)

)
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= 2πiD4

16

∑
i�j

∂J (4)/∂Ωij 
=0

(−1)mij
(
ωi(a)ωj (b) + ωi(b)ωj (a)

) 4∧
k�l,

(k,l)
=(i,j)

dΩkl

= 2πiD4

16

∑
i�j

(−1)mij
(
ωi(a)ωj (b) + ωi(b)ωj (a)

) 4∧
k�l, (k,l) 
=(i,j)

dΩkl,

where we used the fact that dΩ11 ∧ · · · ∧ ˆdΩij ∧ · · · ∧ dΩ44 = 0 when ∂J (4)/∂Ωij = 0. �
This corollary also implies that the proposed three-point function

Â3(a, b, c) :=
∑

δ even

Ξ(g)[δ]Sδ(a, b)Sδ(b, c)Sδ(c, a), (2.17)

does not vanish for g = 4, as expected from space–time supersymmetry. To see this, note that,
in the limit c → a, the coefficient of the term (c − a)−2 coincides with Â2(a, b). As discussed
in [22], the fact that (2.10) and (2.17) do not vanish for g = 4 does not really rule out the proposals
Ξ(4)[δ] for the chiral measure, because it is reasonable that the two- and three-point functions
receive other contributions different from Â2 and Â3. For the same reasons, however, the fact
that Â2 vanishes at g = 3 cannot be considered as a real argument in favor of this ansatz. In
the following sections, we will consider a more reliable computation for the two-point function
based on the factorisation of vacuum amplitudes.

2.2. The OPSMY ansatz

In this section, we define Ξ(g)[δ] in terms of theta series of 16-dimensional unimodular lat-
tices, following Oura, Poor, Salvati Manni and Yuen (OPSMY) [14]. A d-dimensional lattice
Λ ⊂ Rd is called unimodular (or self-dual) if it is isomorphic to its dual Λ ∼= Λ∗, where

Λ∗ := {λ ∈ Rd
∣∣ λ · μ ∈ Z for all μ ∈ Λ

}
.

A unimodular lattice is called even if the norm λ · λ of all its vectors is an even integer, and odd
otherwise. There are eight 16-dimensional unimodular lattices, listed in Table 1, where E2

8 and
D+

16 are even and the others odd [26]. The genus g theta series of a lattice Λ is a holomorphic
function on Hg defined as

Θ
(g)
Λ (Ω) :=

∑
λ1,...,λg∈Λ

e
πi
∑g

i,j λi ·λj Ωij . (2.18)

Following [14], let us define ξj := (ξ
j

0 , . . . , ξ
j

5 ) ∈ C6, j = 0, . . . ,5, by1

ξ0 := (1,1,1,1,1), ξ j :=
(

0,
1

8j
,

1

4j
,

1

2j
,1,2j

)
, j = 1, . . . ,5,

and the dual basis {(ci
0, . . . , c

i
5)}i=0,...,5 ⊂ C6, so that

1 We use a different normalisation with respect to [14], so that Ξ
(g)
OPSMY [δ] and Ξ

(g)
G

[δ] have the same normalisation.

In particular, ci
k

is 24i times the corresponding coefficient in [14].
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Table 1
The 16-dimensional unimodular lattices. The vectors of norm 2 form the root system of the Lie algebra gk . Each lattice
can be decomposed as Λk = Λ̃k ⊕ Znk , where Λ̃k has minimal norm 2, and the associated Lie algebras decompose
accordingly gk = g̃k ⊕ Dnk

(with the identification D2 ≡ A1 ⊕ A1). lk is twice the dual Coxeter number of g̃k and Nk

is the number of roots in gk . The value l5 = 92 is chosen for later convenience. See Appendix B for the definition of

Λ
(1)
k

,Λ
(2)
k

.

k Λk Parity nk gk = g̃k ⊕ Dnk
lk Nk Λ

(1)
k

Λ
(2)
k

0 (D8 ⊕ D8)+ odd 0 (D8 ⊕ D8) ⊕ 0 28 224 D+
16 E2

8

1 Z ⊕ A+
15 odd 1 A15 ⊕ 0 32 240 D+

16 D+
16

2 Z2 ⊕ (E7 ⊕ E7)+ odd 2 2E7 ⊕ 2A1 36 256 E2
8 E2

8

3 Z4 ⊕ D+
12 odd 4 D12 ⊕ D4 44 288 D+

16 D+
16

4 Z8 ⊕ E8 odd 8 E8 ⊕ D8 60 352 E2
8 E2

8

5 Z16 odd 16 0 ⊕ D16 92 480 D+
16 D+

16

6 E8 ⊕ E8 even 0 (E8 ⊕ E8) ⊕ 0 60 480 E2
8 E2

8

7 D+
16 even 0 D16 ⊕ 0 60 480 D+

16 D+
16

5∑
k=0

ci
kξ

j
k = δij .

For g < 5, the theta series of the 16-dimensional unimodular lattices

Θ
(g)
k := Θ

(g)
Λk

,

k = 0, . . . ,7, are not linearly independent and the linear relations can be easily expressed using
the coefficients ci

k . In particular [14],

5∑
k=0

ci
kΘ

(g)
k = 0, for g � 3, g < i � 5, (2.19)

5∑
i=0

c5
kΘ

(4)
k = CJ (4), (2.20)

where J (g) is defined in (2.7) and

C = −25 · 3

7
. (2.21)

There are also well-known relations between the theta series of even lattices

J (g) = 0, g � 3, J
(4)

|J4
= 0. (2.22)

Set

Ξ
(g)

OPSMY [0](Ω) :=
5∑

k=0

c
g
kΘ

(g)
k (Ω).

By (2.4), Ξ(g)

OPSMY [δ] for every even δ ∈ F2g

2 can be easily expressed in terms of the corresponding
lattice theta series
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Θ
(g)
k [δ](Ω) = det(CΩ + D)−8Θ

(g)
k

(
(AΩ + B)(CΩ + D)−1), (2.23)

where
(

A B
C D

)
satisfies (2.5). Therefore

Ξ
(g)

OPSMY [δ](Ω) =
5∑

k=0

c
g
kΘ

(g)
k [δ](Ω).

A useful expression for Θ
(g)
Λ [δ](Ω) is (see Appendix B for a derivation)

Θ
(g)
Λ [δ](Ω) =

∑
λ1,...,λg∈Λ

exp

(
πi

g∑
i,j

(
λi + δ′

iu

2

)
·
(

λj + δ′
j u

2

)
Ωij

+ 2πi

g∑
i

(
λi + δ′

iu

2

)
·
(

δ′′
i

u

2

))
, (2.24)

where u ∈ Λ is a parity vector for Λ, i.e. u ·λ ≡ λ ·λ mod 2 for all λ ∈ Λ. We take (2.24) to be the
definition of Θ

(g)
Λ [δ] for a general integral lattice Λ and for every theta characteristic δ ∈ F2g

2 .
Note that, even though this definition makes sense more generally, Eq. (2.23) holds for some(

A B
C D

) ∈ Sp(2g,Z) only if Λ is a 16-dimensional unimodular lattice and δ is even.

Summing Ξ
(g)

OPSMY [δ] over spin structures yields (see Appendix B for the derivation)∑
δ even

Ξ
(g)

OPSMY [δ](Ω) = 2g−1(2g + 1
)
BgJ

(g),

where

B4 = 22 · 33 · 5 · 11

7 · 17
, (2.25)

and

B5 = −25 · 17

7 · 11
.

Thus, in analogy with (2.9), we define a modified measure for g = 5

Ξ̃
(5)
OPSMY [0](Ω) :=

7∑
k=0

c5
kΘ

(5)
k (Ω) = Ξ

(5)
OPSMY [0](Ω) − B5J

(5),

where, for all g (this modification is irrelevant for g � 4), we set

c
g

6 = −c
g
7 = −B5, (2.26)

so that Eq. (2.6) is satisfied.
It is known that two forms Ξ(g), satisfying (2.1), (2.2) and (2.3), must be the same for g = 2,3

while for g = 4 differ by a multiple of the Igusa–Schottky form J (4), which vanishes on the
Jacobian locus, so that, by (2.8) and (2.25),

Ξ
(g)

OPSMY [δ] = Ξ
(g)
G [δ], g � 3, Ξ

(4)
OPSMY [δ] = Ξ

(4)
G [δ] + (B4 − D4)J

(4). (2.27)

It is an open question whether Ξ̃
(5)
OPSMY [δ] and Ξ̃

(5)
G [δ] coincide on the Jacobian locus (see [15]

for a discussion on this point). From now on, we will drop the subscripts in Ξ
(g)
G and Ξ

(g)

OPSMY
when the result is independent of the particular definition.
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3. Two-point function from factorisation

Consider a family of Riemann surfaces C̃t , 0 < |t | < 1 of genus g + 1 such that, in the limit
t → 0, one of the handles becomes infinitely long or, in the conformally equivalent picture, the
cycle α̃g+1 around this handle is pinched to form a node. This family of surfaces can be defined
using the standard plumbing fixture procedure, see Section A.2.

It is an old idea, both in conformal field theory and string theory, that, in the limit t → 0,
the amplitudes defined on C̃t must satisfy suitable factorisation properties [27]. Let us give a
rough description of the physical picture behind this idea in the simple case of the zero-point
amplitude Z in some conformal field theory. A genus g + 1 Riemann surface C̃t can be obtained
by “gluing” a long thin cylinder to a Riemann surface C of genus g with two holes. In the limit
t → 0, the cylinder becomes infinitely thin and the holes collapse to two punctures a, b ∈ C.
Then, the boundary conditions of the fields around these punctures can be described in terms of
vertex operators at a and b. In a state-operator formalism, the propagation of states along the
cylinder is given by an operator tL0 t̄ L̄0 , where L0 and L̄0 generate the world-sheet dilatations
and rotations. Thus, the zero-point function Z can be expanded as

Z →
∑
φ

〈φ|tL0 t̄ L̄0 |φ〉〈V (φ,a)V
(
φ∗, b

)〉
C
, (3.1)

where the sum runs over a complete set of states of the theory and φ∗ denote the conjugated of φ.
In the following, we will apply this procedure to obtain the (spin dependent part of the) chiral

two-point function for two NS massless states on a surface of genus g from factorisation of the
chiral measure at genus g + 1. Specialising Eq. (3.1) to the case where Z is the superstring chiral
zero-point function before GSO projection, one obtains

dμ(g+1)[δ̃] →
∑
φ

thφ
〈
V (φ,a)V

(
φ∗, b

)〉
C
,

where the sum is over a complete set of chiral L0-eigenstates with L0φ = hφφ. The spin structure

δ̃ ∈ F2g+2
2 is given by

δ̃ =
[

δ̃′
1 . . . δ̃′

g+1

δ̃′′
1 . . . δ̃′′

g+1

]
=
[

δ′
1 . . . δ′

g ε′

δ′′
1 . . . δ′′

g ε′′

]
∈ F2g+2

2 ,

where each δ̃′
i (respectively, δ̃′′

i ), i = 1, . . . , g + 1, determines the periodicity of the world-sheet
fermionic fields around the cycle α̃i (resp., β̃i ) of C̃t . In particular, the cycle α̃g+1 encircles the
infinitely long cylinder in the limit t → 0, so that, when ε′ = 0 (respectively, ε′ = 1), the sum
in (3.1) runs only over the Neveu–Schwarz (resp., Ramond) sector. Thus, the two-point function
at genus g for NS states and for an arbitrary even spin structure δ ∈ F2g

2 can be obtained from the
degeneration limit of

dμ(g+1)

[
δ′ 0
δ′′ 0

]
or dμ(g+1)

[
δ′ 0
δ′′ 1

]
.

To project out the NS tachyon, we consider a linear combination such that its leading term cor-
responds to massless states. Because the GSO projection is implemented by summing the chiral
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measure over all spin structures without phases, the correct linear combination to consider is

1

2

(
dμ(g+1)

[
δ′ 0
δ′′ 0

]
+ dμ(g+1)

[
δ′ 0
δ′′ 1

])
= dμ

(g+1)
Bos XNS

[
δ′
δ′′
]

,

where

XNS

[
δ′
δ′′
]

:= 1

2

(
Ξ̃ (g+1)

[
δ′ 0
δ′′ 0

]
+ Ξ̃ (g+1)

[
δ′ 0
δ′′ 1

])
,

is the spin dependent part. Indeed, the tachyon contribution would correspond to the t1/2 power
in the expansion of XNS, but it can be verified that all half-integer powers of t are canceled by
summing over the two spin structures. It follows that, as t → 0,

XNS[δ] = t
A2[δ](a, b)

dz(a) dz(b)
+ O

(
t2), (3.2)

up to an irrelevant spin-independent factor, where A2[δ] is the chiral two-point function
for NS massless states. Note that A2[δ](a, b) is a meromorphic 1-differential in a, b and
A2[δ](a, b)/(dz(a) dz(b)) corresponds to its evaluation in the local coordinates around a and
b used in the plumbing fixture construction, see Section A.2.

3.1. Computation of the two-point function

Here we compute A2[δ](a, b) with the mentioned coordinate choice (see Eq. (3.2)), using the
OPSMY ansatz for the chiral measure at genus g + 1, for g = 2,3,4. As we will see, such a
choice of the local coordinate at the node of degenerate Riemann surfaces leads to a considerable
simplification of the calculations.

For a general Ω̃ ∈ Hg+1 define

Ω̃ =
(

Ω tz

z 1
2πi

logq

)
,

where Ω ∈ Hg , z ∈ Cg and q ∈ C, 0 < |q| < 1. Consider a Riemann surface of genus g + 1 and
take the degeneration limit in which the cycle α̃g+1 is pinched. One obtains a singular surface
of genus g with two points a, b identified to form a node. Let t be the degeneration parameter
and Ω̃(t) ∈ Hg+1 the corresponding period matrix. As t → 0, for a suitable choice of local
coordinates (see Appendix A.2), we have

q(t) := t + O
(
t2), zi(t) =

b∫
a

ωi + O
(
t2), i = 1, . . . , g, (3.3)

Ωij (t) = Ωij + 2πitE(a, b)2(ωi(a)ωj (b) + ωi(b)ωj (a)
)+ O

(
t2),

i, j = 1, . . . , g, (3.4)

where Ω ∈ Jg . With respect to this choice of local coordinates, (3.2) becomes

XNS[δ] = tE(a, b)2A2[δ](a, b) + O
(
t2). (3.5)

For a generic Ω̃ ∈ Hg+1, let us take the expansion of XNS[δ] ≡ XNS[δ](q, z,Ω) as q → 0

XNS[δ](q, z,Ω) = G(g)[δ](Ω) + qF (g)[δ](Ω, z) + O
(
q2).
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The effect of summing over the two spin structures
[

δ′ 0
δ′′ 0

]
and

[
δ′ 0
δ′′ 1

]
is to project out the half-

integer powers in q . Modular properties of Ξ̃ (g+1)
[

δ′ 0
δ′′ 0

]
(Ω̃) and Ξ̃ (g+1)

[
δ′ 0
δ′′ 1

]
(Ω̃) imply that

G(g)[δ](Ω) is independent of z and F (g)[δ](Ω, z) is a section of |2Θ| (see Appendix A.3). It
follows that G(g)[δ](Ω) can be computed for z = 0. The factorisation properties of the theta
series

Θ
(g+1)
k

[
δ′ 0
δ′′ ∗

]
(Ω̃)

z→0−→ Θ
(1)
k

[
0
∗
](

(2πi)−1 logq
)
Θ

(g)
k

[
δ′
δ′′
]

(Ω),

yield

XNS[δ](q, z = 0,Ω) =
7∑

k=0

c
g+1
k

(
1 + Nkq + O

(
q2))Θ(g)

k [δ](Ω),

where Nk is the number of vectors of norm 2 in the lattice Λk (see Table 1). By (2.19), (2.20),
(2.22) and (2.26), it follows that

G(g)[δ](Ω) =
7∑

k=0

c
g+1
k Θ

(g)
k [δ](Ω) = (C − B5)J

(g)(Ω).

Similarly, one can find the expansion of (c
g+1
0 N0, . . . , c

g+1
5 N5) ∈ C6 with respect to the basis

c0, . . . , c5 by computing the scalar products with the dual basis ξ0, . . . , ξ5

5∑
k=0

c
g+1
k Nkξ

i
k = 0, i < g,

5∑
k=0

c
g+1
k Nkξ

g
k = 128,

5∑
k=0

c5
kNkξ

5
k = 720,

to obtain (note that N6 = N7 = 480)

F (g)[δ](Ω,0) = 128Ξ
(g)

OPSMY [δ](Ω) + (720C − 480B5)J
(g). (3.6)

It follows that, as t → 0,

XNS[δ] = t

(
g∑
i,j

2πiE(a, b)2ωi(a)ωj (b)(1 + δij )(C − B5)
∂J (g)

∂Ωij

+ F (g)[δ](Ω,b − a)

)

+ O
(
t2).

Since F (g) is a section of |2Θ|, we can use the standard result (see Appendix A.3 for a proof)

F (g)[δ](Ω,b − a)

= E(a,b)2

(
F (g)[δ](Ω,0)ω(a, b) + 1

2

g∑
i,j

∂i∂jF
(g)[δ](Ω,0)ωi(a)ωj (b)

)
.

When Ω ∈ Jg , Eq. (3.6) is equivalent to F (g)[δ](Ω,0) = 128Ξ(g)[δ](Ω) that, by (2.27), holds

in both cases Ξ(g)[δ](Ω) ≡ Ξ
(g)

OPSMY [δ](Ω) and Ξ(g)[δ](Ω) ≡ Ξ
(g)
G [δ](Ω). It follows that

A2[δ](a, b) = 128Ξ(g)[δ](Ω)ω(a, b)

+
g∑
i,j

ωi(a)ωj (b)

(
2πi(C − B5)(1 + δij )

∂J (g)

∂Ωij

+ 1

2
∂i∂jF

(g)[δ](Ω,0)

)
.

Notice that, by (2.22), the term ∂J (g)

∂Ωij
vanishes for g � 3 but not for g = 4.
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It remains to compute ∂i∂jF
(g)[δ](Ω,0). For a general lattice Λ, set

F
(g)
Λ [δ](Ω, z) :=

∑
λ1,...,λg

λk∈Λ+u
δ′
k
2

∑
λ̃·λ̃=2

eπiλk ·λlΩkl+2πi
∑

k λk ·(λ̃zk+u
δ′′
k
2 ),

and, in particular, Fk[δ](Ω, z) ≡ FΛk
[δ](Ω, z), k = 0, . . . ,7, with Λk listed in Table 1. Note

that FΛ[δ](Ω,0) = NΛΘΛ[δ](Ω), where NΛ is the number of vectors of norm 2 in Λ. Since,
by (2.24),

1

2

(
Θ

(g+1)
k

[
δ′ 0
δ′′ 0

]
(Ω̃) + Θ

(g+1)
k

[
δ′ 0
δ′′ 1

]
(Ω̃)

)

= Θ
(g)
k [δ](Ω) + qF

(g)
k [δ](Ω, z) + O

(
q2),

we have

F (g)[δ](Ω, z) =
7∑

k=0

c
g+1
k F

(g)
k [δ](Ω, z),

and

∂i∂jFΛ[δ](Ω,0) =
∑

λ1,...,λg

λk∈Λ+u
δ′
k
2

(2πi)2
∑

λ̃·λ̃=2

(λi · λ̃)(λ̃ · λj )e
πi
∑

k,l λk ·λlΩkl+πi
∑

k λk ·uδ′′
k .

In general, the lattice Λk is a direct sum Λk = Λ̃k ⊕Znk , where Λ̃k has no vectors of norm 1 [26].
It follows that the set of vectors of norm 2 in Λ splits into a disjoint union

{λ ∈ Λ | λ · λ = 2} = {λ ∈ Λ̃ | λ · λ = 2} � {λ ∈ Zn
∣∣ λ · λ = 2

}
.

Hence,

FΛ[δ](Ω, z) = ΘΛ̃[δ](Ω)FZn [δ](Ω, z) + ΘZn [δ](Ω)FΛ̃[δ](Ω, z).

The vectors of norm 2 in Λ̃k are the roots of a semi-simple Lie algebra g̃k (see Table 1). Let �

be the set of roots of a simple Lie algebra of rank r , a standard result is∑
α∈�

α tα = l�Ir ,

where l� is a constant depending on the Lie algebra. This can be proved by noting that the
matrix on the left-hand side is invariant under the action of the Weyl group, so that it must be
proportional to the identity. The constant l� can be easily computed by taking the trace of both
sides ∑

α∈�

α · α = rl�.

In the case of simply-laced algebras one obtains

l� = 2N

r
,
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where N is the number of roots (more generally, l� is twice the dual Coxeter number of the
algebra). The Lie algebra g̃k associated to Λ̃k is either simple or the sum of two copies of the
same simple algebra, so that∑

λ̃·λ̃=2

(λi · λ̃)(λ̃ · λj ) = lk λi · λj ,

with lk given in Table 1. From this identity, one sees that F̃k := FΛ̃k
satisfies an analog of the

heat-kernel equation (2.12)

∂i∂j F̃k[δ](Ω,0) = 2πi(1 + δij )lk
∂

∂Ωij

Θ̃k[δ](Ω).

Furthermore, since θ [δ](Ω, z) is even in z, one has

FZn[δ](Ω, z) =
∑
λ̃∈Zn

λ̃·λ̃=2

n∏
i=1

θ [δ](Ω, λ̃iz) = 2n(n − 1)θ [δ](Ω,0)n−2θ [δ](Ω, z)2,

and

∂i∂jFZn [δ](Ω,0) = 4n(n − 1)θ [δ](Ω,0)n−1∂i∂j θ [δ](Ω,0)

= 2πi(1 + δij )(4n − 4)
∂

∂Ωij

ΘZn [δ](Ω).

Using these results, one gets

∂i∂jF
(g)
k [δ](Ω,0)

= 2πi(1 + δij )lk
∂Θ

(g)
k [δ](Ω)

∂Ωij

+ (4nk − 4 − lk)nkΘ
(g)
k [δ](Ω)∂i∂j log θ [δ](Ω,0),

so that

∂i∂jF
(g)[δ](Ω,0) =

7∑
k=0

c
g+1
k ∂i∂jF

(g)
k [δ](Ω,0)

= 2πi(1 + δij )
∂

∂Ωij

(
7∑

k=0

s
g
k Θ

(g)
k [δ](Ω)

)

−
(

5∑
k=0

t
g
k Θ

(g)
k [δ](Ω)

)
∂i∂j log θ [δ](Ω,0)

where

s
g
k := c

g+1
k lk, t

g
k := c

g+1
k nk(lk − 4nk + 4).

By an explicit computation, one can verify that

5∑
k=0

ξ i
ks

g
k = 0, i < g,

5∑
k=0

ξ
g
k s

g
k = 32,

5∑
k=0

ξ5
k s4

k = 152,

for g = 2,3,4. By (2.19) and (2.20), and noting that l6 = l7 = 60, one obtains
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7∑
k=0

s
g
k Θ

(g)
k [δ](Ω) = 32Ξ

(g)

OPSMY [δ](Ω) + (152C − 60B5)J
(g).

Analogously,

5∑
k=0

ξ i
kt

g
k = 0, i < g,

5∑
k=0

ξ
g
k t

g
k = 256,

so that

5∑
k=0

t
g
k Θ

(g)
k [δ](Ω) = 256Ξ(g)[δ](Ω), Ω ∈ Jg.

The final expression for the chiral two-point function is

A2[δ](a, b)

= 128Ξ(g)[δ](Ω)ω(a, b) +
g∑
i,j

ωi(a)ωj (b)

[
−256

2
Ξ(g)[δ](Ω)∂i∂j log θ [δ](Ω,0)

+2πi(1 + δij )
∂

∂Ωij

(
32

2
Ξ

(g)

OPSMY [δ](Ω) + 1

2
(152C − 60B5)J

(g) + (C − B5)J
(g)

)]
(3.7a)

= 128Â2[δ](a, b) +
g∑
i,j

ωi(a)ωj (b)

[
−256Ξ(g)[δ](Ω)∂i∂j log θ [δ](Ω,0)

+ 2πi(1 + δij )
∂

∂Ωij

(
16Ξ

(g)

OPSMY [δ](Ω) + (77C − 31B5)J
(g)
)]

, (3.7b)

where Eq. (2.14) has been used. We stress that, in the last line of (3.7a) and (3.7b), Ξ(g)

OPSMY [δ] has

been used instead of Ξ
(g)
G [δ]. This is important for g = 4, because the difference is proportional

to J (4), whose derivatives ∂J (4)/∂Ωij in the directions transverse to the Jacobian locus J4 are
not zero. Such an issue does not arise for Ξ(g)[δ] on the first line of (3.7a) and (3.7b), since
Ξ

(4)
OPSMY [δ] − Ξ

(4)
G [δ] = 0 on J4.

3.2. Vanishing of the two-point function

For g = 2,3, J (g) = 0 identically on Hg , so that Eq. (3.7b) simplifies to

A2[δ](a, b) = 128Â2[δ](a, b) + 16 · 2πi(1 + δij )

g∑
i,j

ωi(a)ωj (b)

×
(

∂Ξ(g)[δ](Ω)

∂Ωij

− 16Ξ(g)[δ](Ω)
∂

∂Ωij

log θ [δ](Ω,0)

)
.

This reproduces (up to an irrelevant factor) the ansatz (2.10) for the two-point function, plus a
correction. After summing over the spin structures, by (2.11) the correction vanishes, so that,
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by (2.15),∑
δ even

A2[δ](a, b) = 0, g = 2,3, (3.8)

as expected from space–time supersymmetry. Note, however, that the meaning of this result is
quite different from the analogous results obtained so far in the literature. In fact, here we have
made no further assumptions on the form of the two-point function, beyond the ansatz for the
chiral measure and the natural factorisation properties of string amplitudes. Furthermore, the fact
that the two-point function vanishes at genus g is really a check for the chiral measure at genus
g + 1 rather than g. For such reasons, (3.8) is a strong argument supporting the ansatz for the
chiral measure at genus three and four.

We now directly show that the two-point function at g = 4, implied by the OPSMY ansatz
for the measure, does not vanish at g = 4. To this end, it is convenient to choose Ξ

(4)
G [δ] on the

second line of (3.7b), so that, after summing over the even spin structures, we can use (2.11) to
simplify this expression (note that the coefficient of the polar part is proportional to the cosmo-
logical constant and vanishes)

A2(a, b) = 23(24 + 1
)
(−8D4 + 16B4 + 77C − 31B5)

g∑
i,j

ωi(a)ωj (b)2πi(1 + δij )
∂J (4)

∂Ωij

,

and being

−8D4 + 16B4 + 77C − 31B5 = − 214

7 · 11 · 17

= 0,

we conclude that the two-point function obtained by factorisation from the OPSMY ansatz at
g = 5 does not vanish.

4. Conclusions

The renewed recent interest in trying to solve long standing questions in superstring theory,
mainly due to basic papers by D’Hoker and Phong, led to a parallel deeper analysis of the struc-
ture of moduli space of Riemann surfaces involving Riemann theta functions, Siegel modular
forms and theta series associated to unimodular lattices.

In the present paper we have seen that a careful use of such mathematical results, combined
with the old idea of factorisation of string and conformal field theory amplitudes under degener-
ation limits of Riemann surfaces, provide powerful tools to analyse the structure of superstring
amplitudes that would be inaccessible to a direct calculation. A key point that simplifies consid-
erably the computations, concerns the choice of the local coordinate at the node on degenerate
Riemann surfaces. Our techniques lead to several advantages with respect to other approaches to
the problem, which were based on strong assumptions about the form of these amplitudes. On
one hand, one can obtain information on the connected part of the n-point function at a certain
genus, once the chiral superstring measure is known at higher loop. This could lead to a major
advance in the so far prohibitive task of computing higher loop n-point functions in the RNS for-
mulation of superstrings. On the other hand, one can use the non-renormalisation theorems for
one-, two- and three-point functions to check consistency of the chiral measure at higher genus,
without introducing any further assumptions.
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We applied this procedure to obtain a general expression the (spin dependent part of the) chiral
two-point function for two NS massless states on a surface of genus g, for every g, from factori-
sation of the chiral measure at genus g + 1. Then, we specialised our result to the recent ansätze
for the chiral superstring measure and explicitly compute the two-point function up to genus 4.
We proved that, after GSO projection, the two-point function vanishes at g = 2,3 as expected
from space–time supersymmetry and, in particular, that the connected and the disconnected part
of the amplitude vanish separately.

We also showed that the same result does not hold for the genus four two-point function ob-
tained from the OPSMY ansatz for the chiral measure at genus five. In this case, the connected
and disconnected part, after summing over the spin structures, give the same non-vanishing con-
tribution up to a factor, but these contributions do not cancel each other. This probably means that
OPSMY ansatz has to be modified. For such a reason, it would be very interesting to understand
whether Grushevsky expression for the chiral measure is equivalent to OPSMY at genus five. If
they are different, we can conjecture that a certain linear combination of the two ansätze exists,
leading to a vanishing two-point function at genus four. If this is the case, then the vanishing of
the two-point function at genus g should be imposed as an additional constraint for the chiral
measure at genus g + 1. On the contrary, if Grushevsky and OPSMY expressions are equivalent,
it would be interesting to understand whether they are the unique solutions to the constraints.

Another direction for further investigation concerns the computation of the three-point func-
tions at genus g by multiple factorisation of the chiral measure at genus g +2. In this respect, it is
interesting to observe that the disconnected part of the three-point function vanish at genus g = 2
but not at genus g = 3 [22]. Because these amplitudes can be obtained from multiple factorisa-
tion of the chiral measure at genera g + 2 = 4,5, it is tempting to conjecture that this is related to
the vanishing of the disconnected part of the two-point function at genera g + 1 = 3,4, respec-
tively. Finally, our techniques could be checked by computing the four-point function at genus
two and comparing it with the results of [4]. All such computations involve, however, multiple
degenerations limits and are technically more complicated.
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Appendix A. Theta functions and Riemann surfaces

Here we first provide some background on theta functions and Riemann surfaces (see [19,
28,29] for proofs and details). Next, we consider the degeneration of Riemann surfaces which
is used in section three to derive the two-point function. We also derive a basic formula for a
section of |2Θ|, with Θ denoting the theta divisor.

A.1. Definitions and basic results

Let Hg denote the Siegel upper half-space, i.e. the space of g×g complex symmetric matrices
with positive definite imaginary part

Hg := {Ω ∈ Mg×g(C)
∣∣ tΩ = Ω, ImΩ > 0

}
.

Let Sp(2g,Z) be the symplectic modular group, i.e. the group of 2g × 2g complex matrices
M := (A B

C D

)
, where A, B , C, D are g × g blocks satisfying
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tAC = tCA, tBD = tDB, tDA − tBC = Ig.

Let us define the action of Sp(2g,Z) on Cg × Hg by

(M · z,M · Ω) := ( t (CΩ + D)−1z, (AΩ + B)(CΩ + D)−1), (A.1)

where M := (A B
C D

) ∈ Sp(2g,Z) and (z,Ω) ∈ Cg × Hg .

For each δ′, δ′′ ∈ Fg

2 , the theta function θ [δ] := θ
[

δ′
δ′′
] : Cg × Hg → C with characteristics

[δ] := [ δ′
δ′′
]

is defined by

θ [δ](z,Ω) :=
∑
k∈Zg

expπi

[
t
(

k + δ′

2

)
Ω

(
k + δ′

2

)
+ 2

t
(

k + δ′

2

)(
z + δ′′

2

)]
,

where (z,Ω) ∈ Cg × Hg . For each fixed Ω , θ [δ](z,Ω) is an even or odd function on Cg de-
pending whether (−1)δ

′·δ′′
is +1 or −1, respectively. Correspondingly, there are 2g−1(2g + 1)

even and 2g−1(2g − 1) odd theta characteristics. Under translations z �→ z + λ, z ∈ Cg , λ ∈
Zg + ΩZg ⊂ Cg , theta functions get multiplied by a nowhere vanishing factor

θ

[
δ′
δ′′
]

(z + n + Ωm,Ω) = e−πi tmΩm−2πi tmz+πi( t δ′n− t δ′′m)θ

[
δ′
δ′′
]

(z,Ω),

m,n ∈ Zg . It follows that, for any fixed Ω , the theta functions can be seen as sections of line
bundles on the complex torus AΩ := Cg/(Zg + ΩZg), with a well defined divisor on AΩ . We
denote by Θ the divisor of θ(z) = θ [0](z,Ω) = θ

[ 0
0

]
(z,Ω).

The action of Sp(2g,Z) on the space of theta characteristics F2g

2 is defined by

[δ · M] =
[(

δ′
δ′′
)

· M
]

:=
(

tA tC
tB tD

)[
δ′
δ′′
]

+
[

( tAC)0
( tBD)0

]
mod 2, (A.2)

where, for any matrix A, we denote by A0 the vector of diagonal entries. Theta characteristics
are invariant under the action of the subgroup Γ (2) ⊂ Sp(2g,Z), where

Γ (n) := {M ∈ Sp(2g,Z)
∣∣M = I2g modn

}
,

is the subgroup of elements of Sp(2g,Z) congruent to the 2g × 2g identity matrix mod n. The
theta characteristic [0] := [ 0

0

]
is fixed by the subgroup

Γ (1,2) :=
{(

A B

C D

)
∈ Sp(2g,Z)

∣∣∣ ( tAC
)

0 ≡ ( tBD
)

0 ≡ 0 mod 2

}
.

Symplectic transformations preserve the parity of the characteristics and, for any two δ, ε ∈ Z2g

2
of the same parity, there exists M ∈ Sp(2g,Z2) such that ε = M · δ.

A (Siegel) modular form f of weight k ∈ Z for a subgroup Γ ∈ Sp(2g,Z) is a holomorphic
function on Hg such, for all M ∈ Γ , that

f (M · Ω) = det(CΩ + D)kf (Ω).

A condition of regularity, automatically satisfied for g > 1, is also required for g = 1.
Let C be a Riemann surface of genus g > 1. The choice of a marking for C provides a set of

generators {α1, . . . , αg,β1, . . . , βg} for the first homology group H1(C,Z) on C, with symplectic
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intersection matrix, that is

αi · αj = 0 = βi · βj , αi · βj = δij , (A.3)

for all i, j = 1, . . . , g. The choice of such generators canonically determines a basis {ω1, . . . ,ωg}
for the space H 0(KC) of holomorphic 1-differentials on C, with normalised α-periods∮
αi

ωj = δij , for all i, j = 1, . . . , g. The β-periods define the Riemann period matrix Ωij :=∮
βi

ωj , which is symmetric and with positive-definite imaginary part, so that Ω ∈ Hg . By Torel-
li’s theorem, the complex structure of C is completely determined by its Riemann period matrix.

The conditions (A.3) determine the basis of H1(C,Z) up to a symplectic transformation(
α

β

)
�→
(

α̃

β̃

)
:=
(

D C

B A

)(
α

β

)
, M =

(
A B

C D

)
∈ Sp(2g,Z),

under which (ω1, . . . ,ωg) �→ (ω̃1, . . . , ω̃g) := (ω1, . . . ,ωg)(CΩ + D)−1, whereas Ω �→ Ω̃ :=
M · Ω transforms as in (A.1).

The complex torus AC := Cg/(Zg + ΩZg) associated to the Riemann period matrix of C is
called the Jacobian torus of C. For a fixed base-point p0 ∈ C, let I :C → AC denote the Abel–
Jacobi map, defined by

p �→ I (p) :=
t
( p∫

p0

ω1, . . . ,

p∫
p0

ωg

)
∈ AC.

Note that different choices of the path of integration from p0 to p correspond, by the formula
above, to points in Cg differing by elements in the lattice Zg + ΩZg , so that I is well-defined
only on Cg/(Zg + ΩZg). The Abel–Jacobi map extends to a map from the Abelian group of
divisors on C to AC by

I

(∑
i

pi −
∑

i

qi

)
:=
∑

i

I (pi) −
∑

i

I (qi).

Such a map is independent of the base-point p0 when restricted to zero degree divisors. When
no confusion is possible, we will identify such zero degree divisors with their image in AC

through I . In particular, we will omit both I when considering the theta functions on the Jacobian
evaluated at (the image of) some zero degree divisor on C and the argument Ω for theta functions
associated to a marked Riemann surface.

Fix a non-singular odd theta characteristic ν ∈ F2g

2 and consider
∑g

i=1 ∂iθ [ν](0)ωi , which is
a holomorphic 1-differential with g − 1 double zeroes and is the square h2

ν of a holomorphic
1/2-differential with odd spin structure ν. This differential defines the prime form

E(a,b) := θ [ν](b − a)

hν(a)hν(b)
, (A.4)

a, b ∈ C, which is a section of a line bundle on C ×C, antisymmetric in its arguments, vanishing
only on the diagonal a = b and independent of the choice of ν.

For each non-singular even characteristic δ ∈ F2g

2 , the Szegö kernel is the meromorphic 1/2-
differential

Sδ(a, b) := θ [δ](a − b)

θ [δ](0)E(a, b)
,

with a single pole at a = b and holomorphic elsewhere.
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Finally, we denote by

ωa−b(x) := d

dx
log

E(x,a)

E(x, b)
, (A.5)

a, b, x ∈ C, the Abelian 1-differential of the third kind with single poles on a and b with residue
+1 and −1, respectively, holomorphic elsewhere and with vanishing α-periods, and with

ω(a, b) := d2

da db
logE(a,b), (A.6)

the Abelian 1-differential of the second kind with a double pole of residue 1 at a = b, holomor-
phic elsewhere and with vanishing α-periods.

A.2. Degeneration formulae

Here we derive the degeneration formulae for the Riemann period matrix. A key point con-
cerns the local coordinate at the node of degenerate Riemann surfaces whose choice leads to a
considerable simplification of the calculations to derive the two-point function from the chiral
measure.

Consider two distinct points p1,p2 ∈ C and let z1, z2 be local coordinates

zi : {z ∈ C
∣∣ |z| < 1

}→ Ui ⊂ C, zi(pi) = 0, i = 1,2,

centered at p1 and p2, respectively. Then, a family{
C̃t

∣∣ t ∈ C, 0 < |t | < 1
}
,

of Riemann surfaces of genus g + 1 is defined, where

C̃t = C \ (U1,t ∪ U2,t ),

with Ui,t := {p ∈ Ui | |zi(p)| � |t |}, i = 1,2, and two points p ∈ U1 \ U1,t and q ∈ U2 \ U2,t are
identified if

z1(p)z2(q) = t.

Let α1, . . . , αg,β1, . . . , βg be a symplectic basis for the homology of C, with representatives in
C \ (U1 ∪ U2) and ω1, . . . ,ωg the basis of canonically normalised Abelian differentials. We can
choose a basis α̃1(t), . . . , α̃g+1(t), β̃1(t), . . . , β̃g+1(t) of H1(C̃t ,Z) such that

α̃i(t) = αi, β̃i(t) = βi, i = 1, . . . , g.

As representatives of α̃g+1(t) and β̃g+1(t) we can consider, respectively, the circle |z1| = √|t |
and a suitable path on C from z−1

1 (x) to z−1
2 (t/x) for some x ∈ C, |t | < |x| < 1. Then, the

Riemann period matrix Ω̃(t) of C̃t with respect to this basis is [19,30]

Ω̃(t) =
(

Ωij + 2πitσij

∫ p2
p1

ωi + tσi∫ p2
p1

ωj + tσj
1

2πi
log t + c0 + c1t

)
+ O

(
t2),

where
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σij = −ωi(p1)ωj (p2) + ωi(p2)ωj (p1)

dz1(p1) dz2(p2)
, σi = −

(
γ1

ωi

dz2
(p2) + γ2

ωi

dz1
(p1)

)
, (A.7)

c0 = 1

2πi
lim
x→0

( z−1
2 (x)∫

z−1
1 (x)

ωp2−p1 − 2 logx

)
, c1 = i

π
γ1γ2, (A.8)

where ωp2−p1 is the 1-differential of the third kind on C defined in (A.5), and

γi = lim
x→pi

(
ωp1−p2(x) − (−1)i

dzi

zi

(x)

)
, i = 1,2. (A.9)

All these parameters can be exactly computed for a suitable choice of the coordinates z1 and z2.
Choose 2g curves on C which are representatives of the basis of homology and consider the
canonical dissection of C along these curves. We can identify C with a fundamental domain Ĉ

in the upper half-plane H with respect to the Fuchsian uniformisation on C. Let us choose such
a dissection so that p1, p2 and the paths α̃g+1 and β̃g+1 lie in the interior of Ĉ. Fix an arbitrary
point c ∈ Ĉ, distinct from p1, p2, and set

z1(p) := E(p,p1)E(c,p2)

E(p,p2)E(c,p1)
= e

∫ p
c ωp1−p2 , z2(q) := E(q,p2)E(c,p1)

E(q,p1)E(c,p2)
= e

∫ q
c ωp2−p1 .

These coordinates, that represent the higher genus generalisations of cross-ratios on the sphere,
satisfy the following properties

dz1(p) = ωp1−p2(p)z1(p), dz1(p1) = E(c,p2)

E(p2,p1)E(c,p1)
,

dz2(q) = ωp2−p1(q)z2(q), dz2(p2) = E(c,p1)

E(p1,p2)E(c,p2)
,

where p,q are distinct from p1,p2. Replacing these expressions in (A.9), it follows immediately
that γi = 0 in such coordinates. Furthermore, if in (A.8) we choose a path from z−1

1 (x) to z−1
2 (x)

in Ĉ passing through c, we obtain

z−1
2 (x)∫

z−1
1 (x)

ωp2−p1 =
z−1

1 (x)∫
c

ωp1−p2 +
z−1

2 (x)∫
c

ωp2−p1 =
x∫

1

dz1

z1
+

x∫
1

dz2

z2
= 2 logx,

where we used z1(c) = 1 = z2(c). It follows that c0 = 0 and we finally obtain

Ω̃(t) =
(

Ωij + 2πitσij

∫ p2
p1

ωi∫ p2
p1

ωj
1

2πi
log t

)
+ O

(
t2),

where

σij = −ωi(p1)ωj (p2) + ωi(p2)ωj (p1)

dz1(p1) dz2(p2)
= E(p1,p2)

2(ωi(p1)ωj (p2) + ωi(p2)ωj (p1)
)
.
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A.3. A formula for the sections of |2Θ|

Fix an element Ω ∈ Hg an consider the complex torus AΩ := Cg/(Zg + ΩZg). A section
of |kΘ| on AΩ , k ∈ N, corresponds to a holomorphic function F on Cg obeying the quasi-
periodicity conditions

F(z + Ωm + n) = e−k(πi tmΩm+2πi tmz)F (z), m,n ∈ Zg.

In the following we will be interested in the space H 0(AΩ, |2Θ|) of sections of |2Θ|, which
is spanned by the squares θ [δ]2(z) of theta functions with characteristics. In particular, all such
sections are even functions of z. Let Ω be the period matrix of a Riemann surface C and AC its
Jacobian, and consider the restriction of a section F ∈ H 0(AC, |2Θ|) to the locus

C − C :=
{

(b − a) :=
( b∫

a

ω1, . . . ,

b∫
a

ωg

) ∣∣∣ a, b ∈ C

}
⊆ AC.

It is easy to see that

F(b − a)

E(a, b)2
= F(b − a)

θ [ν]2(b − a)
h2

ν(a)h2
ν(b),

is a single-valued meromorphic 1-differential with respect to (a, b) ∈ C × C, with a double pole
on the diagonal a = b and holomorphic elsewhere. The space of such differentials is generated
by {ωi(a)ωj (b)}i,j=1,...,g and by the normalised differential of the second kind ω(a, b) defined
in (A.6), so that

F(b − a) = E(a,b)2

(
c0ω(a, b) +

g∑
i,j

cijωi(a)ωj (b)

)
. (A.10)

To compute the coefficients c0, cij , let us compare the expansion of both sides of (A.10) in the
limit of b → a. Since F is even, we have

F(b − a) = F(0) + 1

2
(b − a)2

g∑
i,j

∂i∂jF (0)ωi(a)ωj (a) + O(b − a)4.

On the other hand [19],

da1/2 db1/2E(a,b) = (b − a) − 1

12
S(a)(b − a)3 + O(b − a)5,

ω(a, b) = da db

(
(b − a)−2 + 1

6
S(a) + O(b − a)2

)
,

with S(a) a holomorphic projective connection, so that the right-hand side of (A.10) becomes

c0 + (b − a)2
g∑
i,j

cijωi(a)ωj (a) + O(b − a)4.

It follows that

F(b − a) = E(a,b)2

(
F(0)ω(a, b) + 1

2

g∑
i,j

∂i∂jF (0)ωi(a)ωj (b)

)
.

Note that, since θ [δ]2(z) ∈ H 0(AC, |2Θ|), this relation implies Eq. (2.13).
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Appendix B. Theta series and lattices

We collect here some useful results about unimodular lattices and their theta series.

B.1. Proof of formula (2.24)

To each even theta characteristic δ := [ δ′
δ′′
] ∈ F2g

2 associate an element Mδ ∈ Sp(2g,Z) such
that

[0 · Mδ] :=
[

( tAC)0

( tBD)0

]
= [δ]. (B.1)

In particular, we can choose

Mδ =
(

diag(δ′) −Ig
Ig 0

)(
Ig S

0 Ig

)
=
(

diag(δ′) diag(δ′)S − Ig
Ig S

)
, (B.2)

where, for any vector v = (v1, . . . , vg), diag(v) denotes the diagonal matrix with diag(v)ii = vi .
Here, S is an integer g × g matrix satisfying

δ′′ = Sδ′ + S0, S0 · δ′ = 0.

For example, if[
δ′
δ′′
]

=
[

1 1 1 1 1 1 1 0 0 0
1 1 1 1 0 0 0 1 1 0

]
,

then

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0

0 1
1 0

0
0

0
1

1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and this construction can be easily generalised to every even δ. Note that

Mδ · Ω = (diag
(
δ′)(Ω + S) − I

)
(Ω + S)−1 = diag

(
δ′)+ Ω̂,

where

Ω̂ = −(Ω + S)−1.

Let Λ be a d-dimensional unimodular lattice, with d ≡ 0 mod 8. Choose a basis λ(1), . . . ,

λ(d) ∈ Rd of generators of Λ and let E be the d × d matrix whose i-th column is the vector
λ(i), i = 1, . . . , d , and Q the Gram matrix

E := (λ(1), . . . , λ(d)
)
, Qij := λ(i) · λ(j).
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Then, by construction, Q = tEE is an integral unimodular matrix. Let ΘΛ be the theta se-
ries (2.18) of Λ and, as in (2.23), set

ΘΛ[δ](Ω) = (det Ω̂)d/2ΘΛ

(
diag

(
δ′)+ Ω̂

)
.

Let us define r ′′ ∈ (Z/2Z)d and u ∈ Λ by

r ′′ ≡ Q0 mod 2, u := EQ−1r ′′ = tE−1r ′′,

and notice that for any λ = En ∈ Λ, n ∈ Zd , we have

λ · λ = t nQn =
d∑
i

n2
i Qii + 2

d∑
i<j

niQijnj ≡
d∑
i

niQii mod 2,

so that

λ · λ ≡ n · r ′′ ≡ λ · u mod 2, for all λ ∈ Λ. (B.3)

A vector u ∈ Λ satisfying this property is called a parity (or characteristic) vector for Λ. Thus

ΘΛ

(
diag

(
δ′)+ Ω̂

)
=

∑
λ1,...,λg∈Λ

e
πi
∑

i,j λi ·λj Ω̂ij +πi
∑

i δ′
iλi ·λi =

∑
λ1,...,λg∈Λ

e
πi
∑

i,j λi ·λj Ω̂ij +πi
∑

i δ′
iλi ·u,

that can be rewritten as

ΘΛ

(
diag

(
δ′)+ Ω̂

)= ∑
n1,...,ng∈Zd

e
πi
∑

i,j ( t niQnj )Ω̂ij +2πi
∑

i

δ′
i
2 ni ·r ′′

,

so that making a Poisson resummation with respect to (n1, . . . , ng) ∈ Zg×d becomes

ΘΛ

(
diag

(
δ′)+ Ω̂

)= (det Ω̂)−d/2
∑

m1,...,mg∈Zd

e
πi
∑

i,j
t (mi+ δ′

i
2 r ′′)Q−1(mj + δ′

j
2 r ′′)(Ωij +Sij )

.

Set

ni = Q−1mi, r ′ = Q−1r ′′,

and use Q−1 ∈ GL(d,Z) and u = Er ′ to obtain

ΘΛ[δ](Ω) =
∑

n1,...,ng∈Zd

e
πi
∑

i,j
t (ni+ δ′

i
2 r ′)Q(nj + δ′

j
2 r ′)(Ωij +Sij )

=
∑

λ1,...,λg∈Λ

e
πi
∑

i,j (λi+ δ′
i
2 u)·(λj + δ′

j
2 u)(Ωij +Sij )

.

Observe that∑
i,j

λi · λjSij ≡
∑

i

λi · λiSii ≡
∑

i

λi · uSii mod 2,

because S is integral and symmetric. Furthermore, any parity vector u satisfies [31]
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u · u ≡ d mod 8 ≡ 0 mod 8

(for d = 16 this can also be checked by an explicit case by case calculation), so that the following
congruences mod 2 hold

∑
i,j

(
λi + δ′

i

2
u

)
·
(

λj + δ′
j

2
u

)
Sij ≡

∑
i

λi · u((Sδ′)
i
+ (S0)i

)+∑
i,j

u · u
4

δ′
iSij δ

′
j

≡
∑

i

λi · uδ′′
i ≡

∑
i

(
λi + δ′

i

2
u

)
· uδ′′

i mod 2,

and (2.24) follows. Note that the set of parity vectors, i.e. the vectors in Λ satisfying (B.3), is
given by u + 2Λ, and (2.24) does not change if we replace u by an arbitrary ũ ∈ u + 2Λ. Also
note that ũ · ũ ≡ u · u mod 8 (this property holds for unimodular lattices of any dimension [31]).
The definition (2.24) makes sense also for δ an odd theta characteristic, but in this case there is
no M ∈ Sp(2g,Z) satisfying (B.1).

B.2. Sums over spin structures

Let Λ be an odd unimodular lattice and Λe ⊂ Λ the sublattice of vectors of even norm, so that
Λe ⊂ Λ ⊂ Λ∗

e . If u ∈ Λ is a parity vector, i.e. satisfies (B.3), then u/2 ∈ Λ∗
e and it maps to a non-

trivial element of Λ∗
e/Λ

∼= Z2. Let λo ∈ Λ be an arbitrary vector of odd norm and Λo = λo + Λe

the set of vectors of odd norm, so that Λ = Λe ∪ Λo. We have the decomposition

Λ∗
e = Λ ∪

(
u

2
+ Λ

)
= Λe ∪ Λo ∪

(
u

2
+ Λe

)
∪
(

u

2
+ Λo

)
.

Set

Λ(1) := Λe ∪
(

u

2
+ Λe

)
, Λ(2) := Λe ∪

(
u

2
+ Λo

)
. (B.4)

Proposition B.1. If Λ is a d-dimensional unimodular lattice, with d ≡ 0 mod 8, then Λ(1) and
Λ(2) are d-dimensional even unimodular lattices.

Proof. For d-dimensional unimodular lattices, the norm of a parity vector satisfies u · u ≡
d mod 8 [31]. It follows that, for d ≡ 0 mod 8,

u

2
· u

2
= u · u

4
∈ 2Z,

(
u

2
+ λo

)
·
(

u

2
+ λo

)
= u · u

4
+ u · λo + λo · λo ∈ 2Z.

In particular, u and u + 2λo are elements of Λe, so that Λ(1) and Λ(2) are closed under the sum.
Furthermore, they are integral (Λ(i) ⊆ Λ(i)∗) and even. To prove that they are self-dual, first
observe that Λ(i)∗ ⊂ Λ∗

e because Λe ⊂ Λ(i). Since

λo · u

2
, λo ·

(
u

2
+ λo

)
,

u

2
·
(

u

2
+ λo

)
∈ 1

2
+ Z,

we conclude that Λ(i)∗ ∩ (Λ∗
e \ Λ(i)) is empty. �

In particular, when d = 16, Λ(1) and Λ(2) must be isomorphic to either D+
16 or E2

8 . The even
lattices corresponding to each Λk can be found by considering its set of vectors of norm 2, which
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is the root system of the Lie algebras gk (see Table 1). This root system must be contained in
Λ

(i)
k and in most cases, namely for k > 0, there is only one even unimodular lattice satisfying

this constraint, so that Λ
(1)
k

∼= Λ
(2)
k . The only exception is Λ0, because g0 ∼= D8 ⊕ D8 can be

embedded both in E8 ⊕ E8 or in D16. In this case, a more detailed analysis of the root systems
shows that Λ(1) = ΛD+

16
and Λ(2) = ΛE2

8
.

Proposition B.2. Let Λ be a d-dimensional unimodular lattice, with d ≡ 0 mod 8, Λ(1) and Λ(2)

defined as in (B.4) and Θ
(g)
Λ [δ] the theta series (2.24) for every (even or odd) theta characteris-

tic δ. Then∑
δ even

Θ
(g)
Λ [δ] = 2g−1(Θ(g)

Λ(1) + Θ
(g)

Λ(2)

)
,

and ∑
δ odd

Θ
(g)
Λ [δ] = 2g−1(Θ(g)

Λ(1) − Θ
(g)

Λ(2)

)
.

Proof. For any 0 � k � g, λk+1, . . . , λg ∈ Rd , Ω ∈ Hg and 2k-dimensional theta characteristic
[δ] = [ δ′

δ′′
]
, δ′, δ′′ ∈ Fk

2, let us define

R
(g)
k [δ](λk+1, . . . , λg,Ω) :=

∑
λ1,...,λk

λi∈Λ+δ′
i
u
2

(−1)
∑k

i=1 δ′′
i λi ·u e

πi
∑g

i,j λi ·λj Ωij , k > 0,

and R
(g)

0 (λ1, . . . , λg,Ω) := e
πi
∑g

i,j λi ·λj Ωij . We will prove that, for all 1 � k � g

∑
δ∈F2k

2 even

R
(g)
k [δ] = 2k−1

( ∑
λ1,...,λk∈Λ(1)

R
(g)

0 +
∑

λ1,...,λk∈Λ(2)

R
(g)

0

)
,

∑
δ∈F2k

2 odd

R
(g)
k [δ] = 2k−1

( ∑
λ1,...,λk∈Λ(1)

R
(g)

0 −
∑

λ1,...,λk∈Λ(2)

R
(g)

0

)
. (B.5)

The proposition corresponds to the particular case k = g. For all 1 � k � g and [δ̂] =[
δ̂′
δ̂′′
] ∈ F2(k−1)

2 , we have

R
(g)
k

[
δ̂′ 0
δ̂′′ 0

]
=
∑

λk∈Λe

R
(g)

k−1[δ̂] +
∑

λk∈Λo

R
(g)

k−1[δ̂],

R
(g)
k

[
δ̂′ 0
δ̂′′ 1

]
=
∑

λk∈Λe

R
(g)

k−1[δ̂] −
∑

λk∈Λo

R
(g)

k−1[δ̂],

R
(g)
k

[
δ̂′ 1
δ̂′′ 0

]
=

∑
λk∈Λe+ u

2

R
(g)

k−1[δ̂] +
∑

λk∈Λo+ u
2

R
(g)

k−1[δ̂],

R
(g)
k

[
δ̂′ 1
δ̂′′ 1

]
=

∑
λk∈Λe+ u

2

R
(g)

k−1[δ̂] −
∑

λk∈Λo+ u
2

R
(g)

k−1[δ̂],



Author's personal copy

M. Matone, R. Volpato / Nuclear Physics B 839 (2010) 21–51 49

so that

R
(g)
k

[
δ̂′ 0
δ̂′′ 0

]
+ R

(g)
k

[
δ̂′ 0
δ̂′′ 1

]
+ R

(g)
k

[
δ̂′ 1
δ̂′′ 0

]
=

∑
λk∈Λ(1)

R
(g)

k−1[δ̂] +
∑

λk∈Λ(2)

R
(g)

k−1[δ̂],

and

R
(g)
k

[
δ̂′ 1
δ̂′′ 1

]
=

∑
λk∈Λ(1)

R
(g)

k−1[δ̂] −
∑

λk∈Λ(2)

R
(g)

k−1[δ̂].

From these formulas, Eq. (B.5) for k = 1 follows immediately. Now, suppose that Eq. (B.5) holds
for k − 1. Then∑

δ∈F2k
2 even

R
(g)
k [δ] =

∑
δ̂∈F2(k−1)

2 even

(
R

(g)
k

[
δ̂′ 0
δ̂′′ 0

]
+ R

(g)
k

[
δ̂′ 0
δ̂′′ 1

]
+ R

(g)
k

[
δ̂′ 1
δ̂′′ 0

])

+
∑

δ̂∈F2(k−1)
2 odd

R
(g)
k

[
δ̂′ 1
δ̂′′ 1

]

= 2k−2
( ∑

λk∈Λ(1)

λ1,...,λk−1∈Λ(1)

R
(g)

0 +
∑

λk∈Λ(1)

λ1,...,λk−1∈Λ(2)

R
(g)

0 +
∑

λk∈Λ(2)

λ1,...,λk−1∈Λ(1)

R
(g)

0

+
∑

λk∈Λ(2)

λ1,...,λk−1∈Λ(2)

R
(g)

0 +
∑

λk∈Λ(1)

λ1,...,λk−1∈Λ(1)

R
(g)

0 −
∑

λk∈Λ(1)

λ1,...,λk−1∈Λ(2)

R
(g)

0

−
∑

λk∈Λ(2)

λ1,...,λk−1∈Λ(1)

R
(g)

0 +
∑

λk∈Λ(2)

λ1,...,λk−1∈Λ(2)

R
(g)

0

)

= 2k−1
( ∑

λ1,...,λk∈Λ(1)

R
(g)

0 +
∑

λ1,...,λk∈Λ(2)

R
(g)

0

)
.

An analogous computation gives the case with odd spin structures. �
Corollary B.3. For the lattices Λk , k = 1, . . . ,5 in Table 1, Λ(1) ∼= Λ(2).

Proof. Notice that for these lattices

Θk[δ] = θ [δ]nkΘΛ̃k
[δ],

with nk > 0. It follows that Θk[δ] = 0 if δ is odd. By Proposition B.2, this implies

Θ
(g)

Λ(1) = Θ
(g)

Λ(2) ,

for all g and, since E2
8 and D+

16 have different theta series at g = 4, one gets Λ(1) ∼= Λ(2). �
As an application, we can use this result to compute the constant C in (2.21). By summing

both sides of (2.20) over all even spin structures, we obtain

23(c5
0 + 2c5

2 + 2c5
4

)
ΘE2

8
+ 23(c5

0 + 2c5
1 + 2c5

3 + 2c5
5

)
ΘD+

16
= 23(24 + 1

)
C(ΘE2

8
− ΘD+

16
),
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so that

C = c5
0 + 2c5

2 + 2c5
4

17
= −c5

0 + 2c5
1 + 2c5

3 + 2c5
5

17
= −25 · 3

7
.

An analogous calculation gives the constants B4 and B5.
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