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Ubiquitous van der Waals interactions between atoms and molecules are important for many molecular
and solid structures. These systems are often studied from first principles using the density functional
theory (DFT). However, the commonly used DFT functionals fail to capture the essence of van der Waals
effects. Most attempts to correct for this problem have a basic semiempirical character, although
computationally more expensive first principles schemes have been recently developed. We here describe
a novel approach, based on the use of the maximally localized Wannier functions, that appears to be
promising, being simple, efficient, accurate, and transferable (charge polarization effects are naturally
included). The results of test applications to small molecules and bulk graphite are presented.
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DFT represents a well-established tool to study the
structural and electronic properties of molecules and con-
densed matter systems from first principles, and to eluci-
date complex processes such as surface adsorptions,
catalytic reactions, and diffusive motions. Although cur-
rent density functionals are able to describe well several
systems, at much lower computational cost compared to
other first principles methods, they fail to do so [1] for the
description of long-range dispersion effects, generally de-
noted as van der Waals (VdW) interactions, particularly the
leading R�6 term originated from correlated instantaneous
dipole fluctuations; the cases where DFT [using, for in-
stance, the Perdew-Burke-Ernzerhof (PBE) [2] functional]
provides reasonable estimates for the interaction energy of
weakly bound systems are actually due to favorable errors
or cancellations and should therefore be considered
accidental.

In order to overcome this severe deficiency of DFT, two
basic strategies have been adopted: on one hand, new
density functionals or/and relatively complex schemes
have been proposed that allow for a first-principles treat-
ment of the VdW interactions [1,3–9] (of particular im-
portance is the seamless VdW-DF method [8], based on the
calculation of the nonlocal correlation energy); on the
other hand, several semiempirical approaches [10,11]
have been developed where an approximately derived
R�6 term, multiplied by a suitable short-range damping
function, is explicitly introduced. Although both these
approaches have been somehow successful, neither of
them appears to be entirely satisfactory: in fact, the former
is generally quite complex and computationally demand-
ing, compared to a standard DFT calculation, while the
latter, based on interatomic C6 coefficients (actually de-
pendent on the molecular environment of the atoms in-
volved) and empirical fits, turns out to be far from
generally applicable because it neglects changes in the
atomic polarizabilities (which, in general, are not additive)
and should be tailored to the specific system considered.

Therefore, the development of a practical efficient scheme
to include VdW interactions in DFT still represents an
important issue.

In this Letter, we propose a novel method which allows
the efficient calculation of the VdW interaction between
nonoverlapping fragments, using as input only the ground
state electron density and the Kohn-Sham (KS) orbitals
computed in a conventional DFT approach.

Crucial to our analysis is the use of the Maximally
Localized Wannier function (MLWF) formalism [12],
that allows the total electronic density to be partitioned,
in a chemically transparent and unambiguous way, into
individual fragment contributions [13]. The MLWFs rep-
resent a generalization, for systems characterized by peri-
odic boundary conditions, of the Boys’ localized orbitals
[14] that are commonly used in quantum chemistry; they
allow for an intuitive interpretation of the bonding proper-
ties of condensed matter systems [12] and are at the center
of the modern theory of polarization [15]. The MLWFs,
fwn�r�g, are generated by performing a unitary transforma-
tion in the subspace of the occupied KS orbitals, obtained
by a standard DFT calculation, so as to minimize the total
spread:

 S �
X
n

Sn �
X
n

�hwnjr
2jwni � hwnjrjwni2�: (1)

Besides its spread, Sn, each MLWF is characterized also by
its Wannier-function center (WFC); for instance, if peri-
odic boundary conditions are used with a cubic supercell of
side L, the coordinate xn of the n-th WFC is defined [12] as

 xn � �
L

2�
Im lnhwnje�i�2�=L�xjwni; (2)

with similar definitions for yn and zn. If spin degeneracy is
exploited, every MLWF corresponds to 2 paired electrons.
Starting from these MLWFs, the leading R�6 VdW cor-
rection term can be evaluated using different possible
recipes; one of them is described and applied in the follow-
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ing. We make the reasonable (at least for insulating sys-
tems; clearly the present scheme is not appropriate if the
generated MLWFs are not well localized, as it could hap-
pen in truly metallic systems) assumption [16] of exponen-
tial localization of the MLWFs in real space, so that each of
them is supposed to be an hydrogen-like, normalized,
function, centered around its WFC position, rn, with a
spread Sn:

 wn�jr� rnj� �
33=4

����
�
p

S3=2
n

e��
��
3
p
=Sn�jr�rnj: (3)

Then, the binding energy of a system composed of two
fragments is given by Eb � E0 � EVdW, where E0 is the
binding energy obtained from a standard DFT calculation,
while the VdW correction is assumed to have the form

 EVdW � �
X
n;l

fnl�rnl�
C6nl

r6
nl

; (4)

where rnl is the distance of the n-th WFC, of the first
fragment, from the l-th WFC of the second one, the sum
is over all the MLWFs of the two fragments, and the C6nl
coefficients can be calculated directly from the basic in-
formation (center positions and spreads) given by the
MLWFs. In fact, using for instance the expression pro-
posed by Andersson et al. (see Eq. (10) of Ref. [4]) that
describes the long-range interaction between two separated
fragments of matter,
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3
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(5)

where �n�r� � w2
n�r� is the electronic density correspond-

ing to the n-th MLWF, C6nl is given in a.u., and the rc, r0c
cutoffs have been introduced [3,4] to properly take into
account both the limit of separated fragments and of distant
disturbances in an electron gas: by equating the length
scale for density change to the electron gas screening
length one obtains,

 

6�n�rc�

j ~5�n�rc�j
�
vF��n�rc��
!p��n�rc��

; (6)

where vF � �3�2�n�r��
1=3=m is the local Fermi velocity

and !p � �4�e
2�n�r�=m�

1=2 is the local plasma fre-
quency. By using the analytic form [see Eq. (3)] of the
MLWFs, it is straightforward to obtain the cutoff expressed
in terms of the MLWF spread:

 rc � Sn
���
3
p
�0:769� 1=2 ln�Sn��; (7)

and to evaluate very efficiently the multidimensional inte-
gral of Eq. (5). For instance, in the test case of two, distant

H atoms, using the well known (unperturbed) analytic H
atom wave function, the above formula gives C6 �
6:41 a:u: to be compared to the reference literature value
of 6.50 a.u. [17].

In Eq. (5), if the electronic density corresponding to
every MLWF is multiplied by 2, the C6nl coefficients
increase by a

���
2
p

factor; therefore, it appears reasonable
to assume that, when each MLWF describes 2 paired
electrons (spin degeneracy), C6nl has to be multiplied by���

2
p

. This is also supported by the fact that, in the Slater-
Kirkwood approximation for estimating the C6 coeffi-
cients, the effective number of electrons is smaller than
the number of valence electrons, and it is 1.42 ’

���
2
p

in the
case of the He atom [18], whose DFT ground state is just
given by 2 paired electrons in the lowest-energy KS orbital.

In Eq. (4), fnl�r� is a damping function which serves to
cut off the unreasonable behavior of the asymptotic VdW
correction at small fragment separations. For it, we have
chosen a form [11,19] with parameters directly related to
the MLWF spreads:

 fnl�r� �
1

1� exp��a�r=Rs � 1��
; (8)

where [19] a ’ 20 (the results are almost independent on
the particular value of this parameter), and Rs � RVdW �
R0VdW is the sum of the VdW radii of the MLWFs, which,
following Grimme et al. [19], are determined as the radii of
the 0.01 electron density contour (in realistic systems the
results are essentially unchanged even by reducing this
value by an order of magnitude); using Eq. (3), one easily
obtains that

 RVdW � �1:475� 0:866 ln�Sn��Sn: (9)

The damping function effectively reduces the VdW cor-
rection to zero at short distances; at intermediate distances,
a minimum in the VdW potential exists that usually lies
around the sum of the corresponding VdW radii, Rs. Note
that the above recipe resembles that proposed in Ref. [20],
where the long-range electron-electron interaction is sepa-
rated by the short-range one, using a single parameter
describing the physical dimensions of a valence electron
pair.

The E0 binding energy can be obtained from a standard
DFT calculation (we have used the CPMD [21] and
Quantum-ESPRESSO [22] ab initio packages), using the
Generalized Gradient Approximation (GGA) in the revised
PBE (revPBE) flavor [23]. This choice [8,19] is motivated
by the fact that revPBE is fitted to the exact Hartree-Fock
exchange so that the VdW binding, a correlation effect,
only comes from the VdW correction term, as described
above, without any double-counting effect (for instance,
the Local Density Approximation or some GGA function-
als, such as PBE, predict substantial binding in rare gas
dimers, due to a severe overestimate of the long-range part
of the exchange contribution [8]). The evaluation of the
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VdW correction as a post-standard DFT perturbation, us-
ing the revPBE electronic density distribution, represents
an approximation because, in principle, a full self-
consistent calculations should be performed; however, re-
cent investigations [24] on different systems have shown
that the effects due to the lack of self-consistency are
negligible (this is reasonable because one does not expect
that the rather weak and diffuse VdW interaction substan-
tially changes the electronic charge distribution).

The VdW correction scheme described above can be
refined by considering the effects due to the anisotropy of
the MLWFs, and distinguishing between contributions
along (or orthogonal to) the fragment-fragment direction
(details will be published elsewhere [25]). Moreover, also
higher-order term VdW corrections, involving the C8, C10,
. . . coefficients, could be easily included. Clearly, in the
present method, the evaluation of the VdW corrections to
the interfragment forces is trivial, thus allowing an easy
implementation in standard geometry optimization calcu-
lations or Molecular Dynamics simulations. Remarkably,
the whole procedure of generating the MLWFs and evalu-
ating the VdW corrections represents a negligible addi-
tional computational cost, compared to that of a standard
DFT calculation.

We have applied the new method to selected dimers
among typical VdW-bonded systems: Ar2, N2-N2

(‘‘T-shaped’’), CH4-CH4, C6H6-Ar, CO2-CO2, and also
to a mixed (H-bonded–VdW-bonded) complex, C6H6-H2O.

In Tables I and II, we report our computed binding
energy and equilibrium characteristic interdimer distance.
These values are compared to the most reliable (to our
knowledge) experimental [26] and theoretical [24,27–29]
literature data (when available, theoretical reference data
obtained using the seamless VdW-DF scheme of Langreth
et al. [8], which probably represents the best, DFT-based,
first-principles approach derived so far, have been re-
ported). As can be seen, the general performance of the
method is quite satisfactory; in fact, the improvement
achieved by including the VdW correction, with respect

to the pure revPBE results, is dramatic, even in the case of a
mixed complex, such as C6H6-H2O, where some fraction
of the binding energy is already given by the standard DFT
calculation. In Fig. 1, we show the effect of the inclusion of
the VdW correction on the behavior of the binding energy
of the Ar2 dimer, plotted as a function of the Ar-Ar
distance, and compared to the experimental equilibrium
value; in Ar, the 8 valence electrons of each atom are
described by 4 MLWFs (spin degeneracy is exploited),
whose WFCs are tetrahedrally located around the Ar ion.

In the case of the equilibrium characteristic distances,
the more substantial deviation from the reference results
can easily be explained by the fact that the potential energy
curves for weakly-bonded systems are typically very shal-
low. Inspection of the Tables shows that anisotropy effects
do not much affect the binding energy and equilibrium
distance estimates. In Table I, by considering the MLWF
anisotropy, the absolute values of the binding energies are
always decreased, and most of the data are lower than the
experimental corresponding values; this behavior is proba-
bly due to the neglect of higher-order contributions to the
VdW correction, such as the �C8=R8 term (dipole-
quadrupole interaction), which should be included to
have a very accurate estimate of the binding energy [30].

We have also applied our technique to an extended,
semimetal system, such as bulk hexagonal graphite (AB
stacking), using the WANNIER90 program [31], which al-
lows the efficient generation of the MLWFs, by adopting a
proper k-point sampling of the Brillouin Zone. As can be
seen in the Tables, even in this more complex case, where
the standard DFT-revPBE approach gives completely un-
physical results, the performances of the present method
are very satisfactory.

In conclusion, we have presented and applied in test
cases a technique suitable to describe VdW effects in the
framework of standard DFT calculations. The technique is
based on the generation of the MLWFs and naturally
describes changes in the electronic density distributions
of the fragments due to the environment, for instance,

TABLE II. Equilibrium characteristic interdimer distance
(layer-layer separation for graphite), in Å, computed using the
standard DFT-revPBE calculation, R0 and including the VdW
correction, RVdW, compared to available experimental [26] and
theoretical [27,27–29] reference data; in parentheses, values
computed taking anisotropy effects into account are reported.

system R0 RVdW expt. theor.

Ar-Ar 4.67 4.03 (4.07) 3.76 3.9
N2-N2 5.05 4.37 (4.37) 4.03 4.2

CH4-CH4 4.70 4.23 (4.25) 3:8$ 4:3 3.85
C6H6-Ar 4.79 3.57 (3.57) 3.68 3.41
CO2-CO2 3.86 3.49 (3.49) 4.04 3.1
C6H6-H2O 4.23 3.17 (3.17) 3.32 3.6

graphite 5.10 3.35 3.34 3.59

TABLE I. Binding energy (exfoliation energy per surface C
atom, for graphite), in meV, computed using the standard DFT-
revPBE calculation, E0 and including the VdW correction, E0 �
EVdW, compared to available experimental [26] and theoretical
[24,27–29] reference data; in parentheses, values computed
taking anisotropy effects into account are reported.

system E0 E0 � EVdW expt. theor.

Ar-Ar �1:7 �11:9 (�9:5) �12:3 �23
N2-N2 �2:9 �11:1 (�10:8) �13:3 �12

CH4-CH4 �2:1 �11:7 (�9:9) �20$ �14 �17
C6H6-Ar �2:4 �65:7 (�53:5) �49 �65
CO2-CO2 �16:2 �54:0 (�47:9) 	 	 	 �67
C6H6-H2O �40:4 �131:2 (�121:6) �106
 4 �115

graphite �1:9 �61:0 �52
 5 �53

PRL 100, 053002 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
8 FEBRUARY 2008

053002-3



related to charge polarization effects: in fact, these changes
are easily described in terms of changes in the location of
the centers and in the spreads of the MLWFs. The results of
the method, which is simple to be implemented and not
expensive computationally, are quite satisfactory and
promising, also considering that a large area for future
improvements exists: in fact, more elaborate schemes to
utilize the MLWFs could be developed and/or improved
reference DFT functionals, with respect to revPBE, could
be adopted.
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FIG. 1. Binding energy of the Ar2 dimer, as a function of the
Ar-Ar distance, using the standard DFT-revPBE calculation and
including the VdW corrections, compared to the reference,
experimental value [26].
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