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In this paper, we present a study of discrete time quantum walks whose underlying
graph is a d-dimensional lattice. The dynamical behavior of these systems is of
current interest because of their applications in quantum information theory as tools
to design quantum algorithms. We assume that, at each step of the walk evolution,
the coin transformation is allowed to change so that we can use it as a control
variable to drive the evolution in a desired manner. We give an exact description of
the possible evolutions and of the set of possible states that can be achieved with
such a system. In particular, we show that it is possible to go from a state where
there is probability 1 for the walker to be found in a vertex to a state where all the
vertices have equal probability. We also prove a number of properties of the set of
admissible states in terms of the number of steps needed to obtain them. We pro-
vide explicit algorithms for state transfer in low dimensional cases as well as results
that allow to reduce algorithms on two-dimensional lattices to algorithms on the
one-dimensional lattice, the cycle. © 2009 American Institute of Physics.
#doi:10.1063/1.3271109$

I. INTRODUCTION

Quantum walks are the quantum generalization of random walks and they are amenable of
similar applications. In particular, they can be used as computational tools as well as mathematical
models in several areas such as biology, physics, economics, etc. They are also a common model
for general transport processes3 and offer a paradigm to design quantum algorithms.1,16,17 Quan-
tum walks are of two types: continuous and discrete time. Given an undirected graph, a continuous
time quantum walk is implemented as a quantum system which evolves according to an Hamil-
tonian H that respects the structure of the graph, i.e., Hjk"0 if and only if there is an edge in the
graph connecting the jth and kth vertices. The implementation of a discrete quantum walk requires
the coupling of two quantum systems, a walker system and a coin system. An orthonormal basis of
the Hilbert space associated with the walker !coin" system is in one to one correspondence with
the vertices of the underlying graph, i.e., the positions of the walker !the directions of motion on
the graph, i.e., the coin results". #As we will describe more in detail in Sec. II, this model requires
the underlying graph to be regular. A different more general !decentralized" model can be given
where the coin operation may depend on the walker position !see, e.g., Refs. 6 and 8 for the
relation between the two models". We shall not consider this more general model here.$ Each step
of the evolution consists of an operation on the coin system followed by a conditional shift on the
walker system, that is, an operation which changes the state of the walker according to the current
state of the coin !following an edge of the underlying graph". This paper focuses on discrete time
quantum walks !DTQWs".

a"Tel.: !39-049-827-1376. Electronic mail: albertin@math.unipd.it.
b"Tel.: !1-515-294-8130. Electronic mail: daless@iastate.edu.
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In many applications of quantum walks, one would like to obtain some desired dynamics. For
example, one would like to transfer the state of the total system from a value where there is
certainty to find the walker in a given position in the graph to a state where all the positions have
the same probability. There are many types of problems in the literature, in many areas, which can
be formulated as a state-to-state transfer control problem. To cite only one example, the quantum
phase transition in an optical lattice treated in Ref. 5 can be formulated in this fashion. In practical
implementations of quantum walks, one has some degree of freedom which can be used as control.
For example, in DTQWs one can choose, at every step, the coin operation. This is the scenario we
will consider here.

In this paper we shall present an analysis of DTQWs on d-dimensional lattice and, in particu-
lar, we shall explore the dynamical consequences of allowing a possible change in the coin
dynamics. Quantum walks on d-dimensional lattices have been considered before in the context of
quantum algorithms.2,18 In particular, they were used to implement search algorithms on lattices.
Some of the results we shall present are generalizations of the results presented for the case of the
cycle !d=1" in Ref. 9.

In Sec. II, we discuss more in depth the mathematical model of DTQWs. We point out where
the control variables appear and motivate this experimentally. We then specialize the graph un-
derlying the walk to a d-dimensional lattice with periodic boundary condition and set up the
notations used in the following sections. Since this graph is the Cartesian product of d cycles, the
simple quantum walk on the cycle will play a prominent role. In Sec. III we start a study of the
controllability of this model by calculating the dynamical Lie algebra !cf. Ref. 7" and therefore the
set of all the unitary evolutions that can be achieved with this system. Having obtained the set of
possible evolutions we then derive a description of the available states in Sec. IV. Instrumental in
this treatment is a change in coordinates which amounts to a discrete Fourier transform. We prove,
in particular, that it is always possible to go from a state where the probability of finding the
walker is concentrated in one vertex to a state where all have the same probability. We prove some
properties of the reachable sets in terms of the number of steps of the evolution in Sec. V. In Sec.
VI, we give explicit algorithms for control for some low dimensional cases. These algorithms are
optimal in the sense that they require the minimum number of steps. We also describe a general
strategy which allows us to reduce a problem of control for a two-dimensional lattice to the
one-dimensional case. In Sec. VII we discuss our results and indicate further research on these
models.

II. MODEL DESCRIPTION; DTQWS ON d-DIMENSIONAL LATTICES

Consider an undirected regular graph Gª %V ,E& with a set of vertices V and a set of edges E.
Let m denote the degree of the graph G. A DTQW on G is implemented with two quantum
systems, a walker system whose associated Hilbert space H has dimension 'V' and a coin system,
whose associated Hilbert space C has dimension m. !These might as well be two distinct degrees
of freedom of the same physical systems, for example, spin and position of an atom, see below."
Each element of an orthonormal basis of H, %'j1( , . . . , 'j'V'(&, represents a vertex of the graph, that
is, a position of the walker. The coin space C is spanned by orthonormal states %'c1( , . . . , 'cm(& each
representing the result of a coin tossing. Denote by nj!ck", j=1, . . . , 'V', k=1, . . . ,m, an element in
V if a coin result ck induces a transition from j to it #clearly we will have that the edge !j ,nj!ck""
is in E$. The state of the DTQW on G, '"(, evolves on the Hilbert space C ! H. At each step the
state '"( is transformed as '"(→U'"( where the unitary operator U has the form

U = S!C ! 1'V'" . !1"

Here C is a unitary !coin tossing" operation on C and 1'V' is the identity on H !we always denote
by 1w the w#w identity matrix" while S is a controlled shift defined by

S'ck, j( = 'ck,nj!ck"( . !2"
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In many implementations of DTQWs it is possible to vary the coin operation C in !1" at every
step. For example, the proposal put forward in Ref. 12 for the one-dimensional line and cycle
places an atom in a periodic potential created by two laser waves. The internal state of the atom
plays the role of the coin. The position of the atom gives the position of the walker in the quantum
walk. A laser beam performs an operation of the type

C!t,$" = ) cos!t" − sin!t"e−i$

sin!t"ei$ cos!t" * , !3"

on the two-dimensional Hilbert space associated with the coin. This operation depends on the
phase factor $ and the duration of the pulse t. By changing these two parameters !and possibly
performing more than one operation in a cascade" one can obtain all the unitary transformations
on the two-dimensional coin space. This available flexibility in the physical implementation gives
several advantages in the performance of quantum walks in quantum algorithms. In this work, we
shall consider this scenario and consider the coin operation C as a control variable.

In this paper, the focus is on DTQWs on d-dimensional lattices. Algorithms on these graphs
have been proposed in Refs. 2 and 18. The set of vertices V is given by V= %0,1 , . . . ,N−1&d !with
N%2". If H̃ªspan%'0( , '1( , . . . , 'N−1(&, then the associated state Hilbert space of the DTQW is

H= !dH̃. This space is spanned by the orthogonal vectors 'j1 , . . . , jd(, with ji! %0,1 , , . . . ,N−1&,
which represent a vertex of the graph with coordinates j1 , . . . , jd. Each vertex of G, labeled by
!j1 , . . . , jd", has 2d neighbors each differing from !j1 , . . . , jd" by only one coordinate and with
!Hamming" distance of 1, i.e., of the form !j1 , . . . , jk&1, . . . , jd", where the &1 operation has to be
intended mod N. This graph is the Cartesian product of d-cycles with N vertices !see, e.g., Ref. 11
for definitions and properties". The adjacency matrix is given by

A ª +
l=1

d

Ã!l". !4"

Here Ã!l" is the tensor product of d, N#N, identity matrices except in the lth position which is
occupied by the adjacency matrix of the cycle Ã, where Ã is given by Ã=F+FT. The matrix F is
the basic circulant10 matrix defined as

F ª,
0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

· · · · · · ·

· · · · · · ·

· · · · · · ·

0 · · · · 1 0

- . !5"

The coin Hilbert space C is spanned by 2d basis vectors each corresponding to a different coin
result. We choose the basis so that the vectors corresponding to the same dimension on the lattice
are placed one after the other. For example, for a two-dimensional lattice, C is spanned by the
ordered basis %'→ ( , '← ( , '↑ ( , '↓ (&, where the coin results induce a right, left, up, and down
motions, respectively.

The dynamics of the DTQW on the Hilbert space C ! H will be given, as in Eq. !1", by
S!C ! 1Nd", at every step. Here C, which is the coin transformation on C, is a general matrix in
SU!2d" and S, which represents the controlled shift, is a 2dNd#2dNd matrix, and it has, in the
chosen basis, a block diagonal structure. In fact, S is composed of d diagonal blocks S!l", l
=1, . . . ,d, each of dimension 2Nd#2Nd, and each corresponding to one a couple of successive
basis states in the coin space !i.e., one dimension in the lattice". The lth block is given by

122106-3 Quantum walks with time-varying coin on lattices J. Math. Phys. 50, 122106 #2009!
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S!l" = )F!l" 0

0 F!l"T * , !6"

where F!l" !F!l"T" is the tensor product of d, N#N identity matrices, except in the lth position
which is occupied by the matrix F !FT" defined in Eq. !5". This represents a forward !backward"
motion in the dimension identified by l.

The matrix C, i.e., the coin tossing, is in principle a general matrix in SU!2d", and thus it
depends on !2d"2−1 parameters. In the next sections, we will treat this matrix !and so its param-
eters" as the control, and we will study the admissible evolutions and reachable sets of the DTQW
where the coin tossing is used as a control to reach a desired configuration.

III. SET OF ADMISSIBLE STATE TRANSFORMATIONS

In this section we study the set of possible state transformations.
For a general DTQW, the set of available transformations G is, by definition, the set of finite

products of the form . jS!Cj ! 1w" #cf. !1"$, where Cj !SU!m" !w is the dimension of the walker
space and m the dimension of the coin space". This set is the group generated by S and SU!m"
! 1w. In fact, it contains both S #obtained by taking the product S!1m ! 1w"$ and C ! 1w for every
Cj !SU!m" #obtained by taking !S!1m ! 1w""r−1S!C ! 1", where r is the order of S as a permutation
matrix$. Moreover, it is easily verified that it is a group !it is closed under the product and
inversion operations".

In the case of the quantum walk on a d-dimensional lattice, which is the focus of this paper,
the previous observation applies with r, the order of S, equal to N, the size of the lattice. We shall
make the following important assumption which allows us to characterize G as a Lie group.

Assumption A: The size of the lattice, N, is odd.
Theorem 1: Under the above Assumption A, consider the Lie algebra L generated by the set

F = %!su!2d" ! 1",S!su!2d" ! 1"S−1,S2!su!2d" ! 1"S−2, . . . ,SN−1!su!2d" ! 1"S& , !7"

where 1=1Nd denotes the Nd#Nd identity matrix. Then G=eL , the connected Lie group associ-
ated with L .

Proof: Let us first prove that eL!G. Consider X!eL, X is the finite product of elements of
the form eAt, where A is in the generating set F and t is any real. Since G is a group, it is enough
to show that eAt!G for every A!F and real t. Take A!F, AªSk!Ã ! 1Nd"Sr−k, for some k
! %0,1 , . . . ,r& and Ã!su!2d". !r is the degree of S which, in this case, is equal to N." We have
eAt=Sk!eÃt ! 1Nd"Sr−k which is in G because all the factors are in G.

To prove that G!eL, we need to prove that C ! 1Nd #for any C!SU!2d"$ and S are both in
eL. While this is obvious for C ! 1Nd, we need Assumption A for S. Consider the matrix in eL,

Ŝ ª !P ! 1Nd"Sj!P†
! 1Nd"S−j , !8"

where P is a permutation matrix in SU!2d" such that the transformation

Sj → !P ! 1Nd"Sj!P†
! 1Nd"

interchanges all the pairs of blocks in !6". Therefore, each block of the matrix in !8" has the form
!S!l""−2j. By choosing j= !N−1" /2 recalling that N is the order of S, we obtain !S!l""−2j =S!l" and
therefore the matrix Ŝ in !8" is equal to S. "

Remark 3.1: We notice that the assumption of N being odd is necessary in the above theorem.
In fact, without this assumption the theorem does not hold because S"eL. To see this, consider for
simplicity the case d=1, i.e., the case of the cycle. Assume N is even. Then the exponential of

every element in F has the form ! z1N F2jy
−y#F−2j z#1N

", where z and y are two complex numbers with
'z'2+ 'y'2=1 and j is any integer while F is the fundamental circulant matrix defined in !5". All
elements of eL are products of matrices of the above type. In particular, a straightforward induc-
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tion argument shows that the !1,1" block is a linear combination of the form +k=0
N/2−1akF2k, with the

ak’s complex coefficients, and this can never be equal to F because of the linear independence of
the matrices Fl, l=0,1 , . . . ,N−1. Therefore, no element in the Lie group eL is equal to S.

Our task now is to characterize, in view of Theorem 1, more explicitly the Lie algebra L. We
will see that it is the direct sum of Nd Lie algebras su!2d" and this will allow us to describe
explicitly the set of admissible transformations. The first step is to make a change of coordinates
which corresponds to a discrete Fourier transform on each factor of the walker space. The set of
admissible transformations is much more easily described in these coordinates !that is, in the
Fourier domain".

Recall that every circulant N#N matrix can be diagonalized by the Fourier matrix10 '
defined by

'† ª 1
/N,

1 1 1 1 . . . 1

1 ( (2 (3 . . . (N−1

1 (2 (4 (6 . . . (2!N−1"

1 (3 (6 (9 . . . (3!N−1"

] ] ] ] ]
1 (N−1 (2!N−1" (3!N−1" . . . (!N−1"!N−1"

- , !9"

where ( is the Nth root of the unity, that is (ªei!2)/N". The Fourier matrix ' is unitary. The map

X → *X*†, !10"

where

! ª 12d ! " ! " ! ¯ ! "

d factors

,

!11"

transforms S in a block diagonal matrix with d blocks, S̃!l", l=1, . . . ,d, of the form #cf. !6"$

S̃!l" = )T!l" 0

0 T!l"T * , !12"

where T!l" !T!l"T" is the tensor product of d, N#N identity matrices, except in the l-th position
which is occupied by Tª'F'† !'FT'†= T̄". The matrix T is the Fourier transform of the
fundamental circulant matrix F in !5" which becomes after diagonalization T
ªdiag !1, (̄ , (̄2 , . . . , (̄N−1". Noticing that the change in coordinates !10" does not affect matrices
of the form C ! 1Nd, with C!su!2d", it follows that the set F in !7", in the Fourier coordinates, is
composed by matrices of dimensions 2dNd#2dNd with a block structure. There are 2d#2d
blocks of dimension Nd#Nd which are diagonal matrices. For example, for d=1 and d=2, we
have matrices of the form

L1 ª ) D11 D12

− D̄12 D22
*, L2 ª,

D11 D12 D13 D14

− D̄12 D22 D23 D24

− D̄13 − D̄23 D33 D34

− D̄14 − D̄24 − D̄34 D44

- , !13"

respectively. Here the D’s matrices are diagonal matrices of dimension N#N in the case of L1
!d=1" and N2#N2 in the case of L2 !d=2".

Moreover, fix k, 1+k+Nd. The submatrix given by the 2d#2d principal minor correspond-
ing to rows and columns !k ,k+Nd ,k+2Nd , . . . ,k+ !2d−1"Nd" is a matrix in su!2d". This is because
the whole matrix has to be skew-Hermitian and therefore so has to be every principal minor.
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Furthermore, the diagonal blocks in all the elements in F are of the form ajj1Nd, where the ajj’s are
the diagonal elements of a matrix in su!2d" and therefore + j=1

2d ajj =0. Since these properties are
preserved under the Lie bracket operation, the Lie algebra L generated by F is a subalgebra of the
Lie algebra of block matrices of the previous form where one can assign to each k an arbitrary
matrix in su!2d". This latter Lie algebra is the direct sum !i.e., direct sum of vector spaces which
commute with each other" of Nd, independent, su!2d"’s. We shall denote this Lie algebra by Ld
and our discussion above says that !in the Fourier domain" L!Ld. Our next task is to show that
equality, in fact, holds !under Assumption A". We shall prove this by induction on d.

For d=1, the case of the cycle, the result was already proven by direct computations in Ref.
9 and we shall not repeat this proof here !in this first step, Assumption A is used". We shall focus
on the inductive step in the following.

Fixing 1+ p,n, su!n" has the vector space decomposition,

su!n" = K $ P , !14"

where elements in K have the form K= ! A 0
0 B

" with A!u!p" and B!u!n− p" and Tr!A"+Tr!B"
=0, i.e., K is the subalgebra of block diagonal matrices. P is the subspace of block antidiagonal
matrices. This is also known as the AIII Cartan decomposition of su!n" !cf., e.g., Ref. 13". It is
easy to verify the following fact.

Lemma 3.2:

span #P,P$ = K . !15"

That is, every block diagonal matrix in su!n" can be obtained as a linear combination of Lie
brackets of block antidiagonal matrices.

To prove that L=Ld, we first separate the span of F in four subspaces

span F ª FDU $ FDL $ FS $ FA.

#With some abuse of notation, we shall still denote by F the set in !7" even though we are now
working in the Fourier domain, i.e., we assume that the change in coordinates !10" and !11" has
taken place.$ FDU !diagonal upper" #FDL !diagonal lower"$ is the space of real linear combinations
of matrices of the form in !7" where the matrices in su!2d" that appear are restricted to be of the
form ! A 0

0 0
" with A in su!2!d−1"" #or of the form ! 0 0

0 A
", respectively, with A in su!2"$. For the

subspace FS we restrict the matrices in su!2d" to be multiples of ! −i12!d−1" 0

0 i!d−1"12
", while for FA !An-

tidiagonal" we restrict them to be of the form ! 0 A
−A† 0

" for an arbitrary 2!d−1"#2 matrix A !we
denote by 0k the square k#k matrix where all the entries are zeros and by 0 a not necessarily
square matrix whose dimensions are clear from the context". Now, by the inductive assumption,
the subalgebra generated by FDU consists of matrices of the form ! Ld−1 0

0 02Nd−1
" ! 1N, where the 2!d

−1"Nd−1#2!d−1"Nd−1 matrix Ld−1 is any matrix in Ld−1. We shall denote this subalgebra of L by
LDU. Again, by the inductive assumption, the Lie subalgebra generated by FDL consists of matri-

ces of the form ! 02!d−1"Nd

0
0

!12!P1d"L1!1Nd−1!12!P1d
T " ", where P1d is the Nd#Nd permutation matrix which

exchanges the first and dth position in the Kronecker product of d, N#N matrices !cf., e.g., Ref.
14, Corollary 4.3.10" and L1 is any matrix in L1. We shall denote the subalgebra spanned by
matrices of this form by LDL. Our task is now to show that using matrices in LDU, LDL, FS, and
FA, we can generate Ld.

Fix a k, with 1+k+Nd. We shall show that the Lie algebra generated by LDU, LDL, FS, and
FA contains matrices such that the principal 2d#2d minor corresponding to rows and columns
!k ,k+Nd ,k+2Nd , . . . ,k+ !2d−1"Nd" is an arbitrary matrix in su!2d", and the remaining entries are
equal to zero. Since k is arbitrary, this proves our claim.

An arbitrary element in LDL has the form
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LDL = ,02!d−1"Nd 0

0 +
j=1

N

Mj ! 1Nd−1 ! Ej
N- , !16"

with Mj arbitrary matrices in su!2". !This follows because an arbitrary matrix of the form L1 can
be written as #cf. !13"$ + j=1

N Mj ! Ej
N with Mj !su!2" and then applying the transformation X

→ !12 ! P1d"X!12 ! P1d
T ", one obtains the matrix in the lower corner of !16".$ Here and in the

following, we use the notation Ej
p to denote the diagonal p# p matrix which has all entries equal

to zero except the jth one on the diagonal which is equal to 1. Analogously, an arbitrary matrix in
LDU has the form

LDU = , +
j=1

Nd−1

Bj ! Ej
Nd−1

! 1N 0

0 02Nd−1
- , !17"

with Bj arbitrary matrices in su!2!d−1"".
Set

k ª !f − 1"N + g , !18"

with 1+ f +Nd−1 and 0+g+N. Choose L̃DU in LDU as

L̃DU ª )Bf ! Ef
Nd−1

! 1N 0

0 02Nd−1
* , !19"

and L̃DL in LDL as

L̃DL ª )02!d−1"Nd 0

0 Mg ! 1Nd−1 ! Eg
N* . !20"

For a general matrix ! 02!d−1" A

−A† 02
"!su!2d", choose Q!FA as #this type of matrices belongs to the first

type of the ones listed in !7"$

Q ª ) 02!d−1"Nd A ! 1Nd

− A†
! 1Nd 02Nd

* , !21"

and calculate #L̃DL, #L̃DU,Q$$. A direct computation gives

#L̃DL,#L̃DU,Q$$ ª ) 02!d−1"Nd − BfAMg ! Ef
Nd−1

! Eg

MgA†Bf ! Ef
Nd−1

! Eg
N 02Nd

* . !22"

In this matrix, the only elements that are possibly different from zero are the ones corresponding
to the principal minor identified by k, according to !18". These form a matrix in P of the Cartan
decomposition !14" of su!2d" with pª2!d−1". Since A, Mg, and Bf are arbitrary, every matrix in
P !antidiagonal", can be obtained this way. !It is enough to choose nonsingular Bf and Mg and then
adjust A accordingly." By using Lemma 3.2, we obtain that every matrix in su!2d" can be obtained
as linear combination of Lie brackets of these matrices. This completes the proof that L=Ld.

In conclusion, we have the following characterization of the set of admissible state transfor-
mations for the d-dimensional lattice which is more explicit than the one of Theorem 1.

Theorem 2: Under Assumption A, in the Fourier domain, the set of admissible state trans-
formations for a quantum walk on a d -dimensional lattice is the connected Lie group eL corre-
sponding to the Lie algebra,
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L = span%A ! Eh
Nd

'A ! su!2d",1 + h + Nd& .

This Lie algebra is the direct sum of Nd su!2d" ’s. In particular, a state transformation can be
achieved if and only if it belongs to the Lie groups,

eL ª0+
h=1

Nd

Rh ! Eh
Nd

'Rh ! SU!2d"1 . !23"

IV. SET OF ADMISSIBLE STATES

Having described the set of possible evolutions, we can now describe all the possible states
that can be achieved for the system implementing the quantum walk on the d-dimensional lattice.
This is more easily achieved by working in the Fourier domain first. We are always working under
Assumption A, that is, we assume N to be odd. As we have seen in Sec. III, in the Fourier domain,
the set of possible evolutions is given by matrices with 2d#2d blocks each of dimension Nd and
each diagonal #cf. !13"$. Given a 1+k+Nd, the entries corresponding to the principal minor
identified by !k ,k+Nd ,k+2Nd , . . . ,k+ !2d−1"Nd" are occupied by an arbitrary matrix in SU!2d".
This is described in !23" of Theorem 2. Alternatively, by writing

k ª !k1 − 1"Nd−1 + !k2 − 1"Nd−2 + ¯ + !kd−1 − 1"N + kd, k1,k2, . . . ,kd = 1, . . . ,N , !24"

we can write any possible evolution as +k1,. . .,kd=1
N Bk1,. . .,kd

! Ek1

N
! Ek2

N
! Ekd

N , with arbitrary Bk1,. . .,kd
!SU!2d".

Let us assume now that the initial condition is for the walker to be with certainty in position
!0,0 , . . . ,0" and !without loss of generality" assume the coin is in the first possible state. Such an
initial state can be written as "inªe#1

2d
! e#1

N
! e#1

N
! ¯ ! e#1

N, where the Kronecker product is taken
d times and e# j

l denotes the !standard" vector of length l with all 0’s except in the jth position which
is occupied by 1. In the Fourier domain, this vector becomes, with * defined in !11" and !9",

"Fin = *e#1
2d

! e#1
N

! e#1
N

! ¯ ! e#1
N =

1
Nd/2e#1

2d
! )+

l1=1

N

e#l1
N* ! ¯ ! )+

ld=1

N

e#ld
N* , !25"

that is, except for the factor 1 /Nd/2 it is a 2dNd-vector with all 1’s in the first Nd positions and
zeros in the remaining positions. Combining this with the set of the possible evolutions, we obtain
the set of admissible states in the Fourier domain, OF,

OF = %!+k1,. . .,kd
Bk1,. . .,kd

! Ek1

N
! ¯ ! Ekd

N ""Fin'Bk1,. . .,kd
! SU!2d"&

= 0 1
Nd/2+k1,. . .,kd

!Bk1,. . .,kd
e#1

2d" ! e#k1

N
! ¯ ! e#kd

N 'Bk1,. . .,kd
! SU!2d"1 . !26"

By denoting a general complex valued 2d-vector by b#k1,. . .,kd
, we can rewrite the set OF as

OF = 0 1
Nd/2 +

k1,. . .,kd

b#k1,. . .,kd
! e#k1

N
! ¯ ! e#kd

N '2b#k1,. . .,kd
2 = 11 . !27"

By taking the antitransform of this expression, we obtain the admissible set in the standard
domain, O. We have #cf. !11"$

O = *†OF = 0 1
Nd/2 +

k1,. . .,kd

b#k1,. . .,kd
! '†e#k1

N
! ¯ ! '†e#kd

N '2b#k1,. . .,kd
2 = 11 . !28"

Notice that the vector '†e#kj

N is the kjth column of the Fourier matrix in !9". This observation will
be important for what follows.
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From !28", one can study the structure of the set of reachable states and, in particular, the type
of probability distributions that can be achieved. For a state " of the total system, the probability
of finding the walker in position !l1 , . . . , ld" is the length square of the 2d-vector !12d ! !e#l1+1

N "T

! !e#l2+1
N "T ! ¯ ! !e#ld+1

N "T"". If we impose that "!O, using formula !28", we have that an admis-
sible probability distribution pl1,. . .,ld

is of the form

pl1,. . .,ld
=

1
Nd 3 +

k1,. . .,kd

b#k1,. . .,kd
!!e#l1+1

N "T'†e#k1

N "!!e#l2+1
N "T'†e#k2

N " ¯ !!e#ld+1
N "T'†e#kd

N "32

=
1

N2d 3 +
k1,. . .,kd

b#k1,. . .,kd
(!l1"!k1−1"(!l2"!k2−1" ¯ (!ld"!kd−1"32

, !29"

where we have used the formula #cf. !9"$ !e#l+1
N "T'†e#k

N= !1 //N"(!l"!k−1". Therefore, a probability
distribution pl1,. . .,ld

is obtainable if and only if there exist Nd, unit, 2d-vectors, b#k1,. . .,kd
, with

pl1,. . .,ld
=

1
N2d 3 +

k1,. . .,kd

b#k1,. . .,kd
(!l1"!k1−1"(!l2"!k2−1" ¯ (!ld"!kd−1"32

. !30"

It is clear that the probability distribution,

p0,0,. . .,0 = 1, pl1,. . .,ld
= 0 otherwise, !31"

is achievable !it is, in fact, the probability distribution we started from" and can be obtained by
using all the bk1,. . .,kd

equal to !1 //2d"#1,1 , . . . ,1$T. #This follows easily from formula !30" recall-
ing that for l"0 !mod N", +k=1

N (!l"!k−1"=0.$ It is interesting to investigate other probability distri-
butions. A particularly relevant case is the uniformly distributed probability. This is the extreme
case with respect to the initial one. #One can see the problem of going from a probability concen-
trated in a vertex to the uniform distribution as a “mixing” problem and the time to achieve this as
a “mixing time.” Analogously, the problem of going from a uniform probability to a probability
concentrated !or larger than a certain threshold" in a given vertex as a “hitting” problem and the
time to achieve this as a “hitting time.” In our control theoretic setting, there is a symmetry
between these two problems, !cf. Theorem 4, part 3" The notions of mixing time and hitting time
are among the ones most studied in the theory of random and quantum walks !see, e.g., Ref. 17".
Many search algorithms on the lattice can also be formulated as going from a uniformly distrib-
uted probability to a concentrated one. However, these problems cannot be directly formulated as
state transfer problems and our setting does not apply since the final target vertex is, in principle,
unknown. To deal with search problems, one could, however, modify the model, for example, by
allowing the coin transformation to depend on the vertex. This model incorporates a query of the
current vertex in the evolution !cf., for example, Ref. 2". We believe similar techniques to the ones
employed here can be used to analyze these modified models as well.$ In order to show that a
uniform probability distribution may be achieved, we pick a specific set of 2d-vectors and show
that they, in fact, lead to the desired probability distribution. In particular, choose

b#k1,. . .,kd
= .

j=1

d

(!kj−1"!kj−2"/2e#1
2d. !32"

The corresponding probability distribution is

pl1,. . .,ld
=

1
N2d4 +

k1,. . .,kd

.
j=1

d

(!kj−1"!kj−2"/2(!lj"!kj−1"42

. !33"

The sum in !33" is reminiscent of the Gauss’ sums studied in number theory !cf., e.g., Ref. 4".
Completing the square, !33" becomes
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pl1,. . .,ld
=

1
N2d4 +

k1,. . .,kd

.
j=1,. . .,d

(!1/2"!!kj − 1" + !lj − 1/2""2 .
j=1,. . .,d

(−!1/2"!lj − 1/2"242

=
1

N2d4 +
k1,. . .,kd

.
j=1,. . .,d

(!1/2"!!kj − 1" + !lj − 1/2""242
, !34"

since the factor . j=1,. . .,d(−!1/2"!lj − 1 / 2"2
has magnitude equal to 1. We now show that the right hand

side of !34" does not depend on l1 , . . . , ld. Fix j̄! %1, . . . ,d&, we have !splitting the product"

v ª +
k1,. . .,kd

.
j=1

d

(!1/2"!kj + lj − 3/2"2
= +

k1,. . .,kd
).

j" j̄

(!1/2"!kj + lj − 3/2"2*(!1/2"!kj̄ + l j̄ − 3/2"2

= ) +
k1,. . .,kj̄−1,kj̄+1,. . .,kd

.
j" j̄

(!1/2"!kj + lj − 3/2"2*)+
kj̄=1

N

(!1/2"!kj̄ + l j̄ − 3/2"2* . !35"

Now,

+
kj̄=1

N

(!1/2"!kj̄ + l j̄ − 3/2"2
= +

h=1+l j̄

N+l j̄

(!1/2"!h − 3/2"2
= +

h=1+l j̄

N

(!1/2"!h − 3/2"2
+ +

h=1

l j̄

(!1/2"!N + h − 3/2"2
. !36"

The terms in the second sum can be written as

(!1/2"!N + h − 3/2"2
= (!1/2"!h − 3/2"2

(!1/2"!N!2!h−3/2"+N"". !37"

However, the term in the last exponent, N!2!h− 3
2

"+N", is an even multiple of N, since N is odd,
and therefore the last factor in !37" is 1.

Replacing this in !36", we obtain

+
kj̄=1

N

(!1/2"!kj̄ + l j̄ − 3/2"2
= +

h=1

N

(!1/2"!h − 3/2"2
, !38"

thus the second factor of v, and therefore v itself, does not depend on l j̄. By the arbitrariness of j̄,
we have shown that v does not depend on l1 , . . . , ld. Therefore, the probability, pl1,. . .,ld

= 'v'2 /N2d,
must be uniform among the various vertices. This result extends !with a different proof" the result
of reachability of the uniform distribution which was proven in Ref. 9 for the case of the cycle.

We summarize the discussion of this section in the following theorem.
Theorem 3: Assume that Assumption A holds and assume the initial state of the quantum walk

on the d -dimensional lattice is with certainty in position !0,0 , . . . ,0" . Then the set of states that
can be obtained by varying at each step the coin transformation is given by (27) in the Fourier
domain and by (28) in the standard domain. A probability distribution pl1,. . .,ld

can be achieved if
there exist Nd, unit, 2d -vectors b#k1,. . .,kd

, k1 , . . . ,kd=1, . . . ,N , such that (30) holds. In particular,
it is always possible to reach a state where all the vertices of the walk have equal probability.

V. PROPERTIES OF REACHABLE SETS

The above discussion concerns the set of admissible states without taking into account the
number of steps needed to obtain a given state. In order to take this into account we have to study
a different type of admissible sets which, following control theory terminology, we call reachable
sets. We denote by R!t ,"in" the set of states that can be reached starting with "in with t steps.
Clearly, we have R!0,"in"= %"in&. The corresponding set in the Fourier domain is RF!t ,"in"ª*R!t ,"in", with * in !11". If we choose "in as in Sec. III, we clearly have O="t-0R!t ,"in"
#OF="t-0RF!t ,"in"$. These definitions can be written as #cf. !25"$
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R!t,"in" = 0).
l=1

t

SCl ! 1Nd*"in'Cl ! SU!2d"1 ,

RF!t,"in" = 0).
l=1

t

*S*†Cl ! 1Nd**"in'Cl ! SU!2d"1 . !39"

A probability distribution pl1,. . .,ld
, l1 , . . . , ld, can be achieved at time t if it can be written as

pl1,. . .,ld
!t" = 312d ! !e#l1

N"T
! !e#l2

N"T
! ¯ ! !e#ld

N"T).
l=1

t

SCl ! 1Nd*"in32

!40"

for some Cl’s !SU!2d". Although, in principle, one can study directly the reachable set in !39" by
parametrizing the Lie group SU!2d", this is a difficult task as the number of parameters grows very
large with t and they appear in a complicated, nonlinear, fashion. It is possible, however, to give
some general properties of the reachable sets R!t , ·", which we collect in the next theorem. !We
state the results in the standard domain. Analogous results hold in the Fourier domain."

Theorem 4: The reachable sets satisfy the following properties.

(1)

R!t,"in" ! R!t + 2,"in" . !41"

(2) There exists a finite T such that

R!T,"in" " R!T − 1,"in" = "
t-0

R!t,"in" . !42"

(3) If " f !R!t ,"in" then there exists a state "̃in!R!t ," f" , such that to "̃in there corresponds the
same probability distribution as "in .

We use Assumption A to prove property (2). This is done indirectly because we use the character-
ization of the set of available transformations as a Lie group which required this assumption.
Properties (1) and (3) hold for every N and do not require Assumption A.

Proof:

!1" Let "!R!t ,"in" and let C be the matrix with d blocks, C=diag!P , P , . . . , P", where P is the
matrix P= ! 0 1

−1 0
" in SU!2". Then we have !C† ! 1Nd"S!C ! 1Nd"=S−1, which implies that

S!C†
! 1Nd"S!C ! 1Nd"" = " , !43"

and therefore "!R!t+2,"in".
!2" Consider a set of linearly independent elements of F in !7", Gª %G1 , . . . ,Gh&. Using the

product of a finite number n of exponentials of the form eGjtj with tj !R and Gj !G, it is
possible to obtain every element in a neighborhood of the identity in eL !cf. the proof of
controllability in Appendix D of Ref. 7. There the proof is based on the idea of using
similarity transformations X→eFtXe−Ft to generate new directions in the Lie algebra L. Once
one has a number dim L of linearly independent matrices in the Lie algebra L, say
H1 , . . . ,Hdim L, the set %X!eL 'X=. j=1

dim LeHjtj , t1 , . . . , tdim L!R& contains an open neighbor-
hood of the identity." Moreover, each of these exponentials can be performed with a number
of steps equal to N since eGjt=SN−leX ! 1NdSl for some 0+ l+N−1, and X!su!2d". There-
fore, with nN steps we can obtain all the elements in a neighborhood U of the identity in eL.
Write eL as

eL = "
x!eL

xU . !44"
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Since eL is the direct product of Nd SU!2d"’s, which is compact, it is also compact and
therefore the covering !44" has a finite subcover,

eL = "
j=1

z

xjU . !45"

Moreover, because of compactness the exponential map is surjective and each xj can be
written as xj =eYj with Y j !L. For every j, we can choose a positive integer rj !large enough"
so that eYj/rj !U and therefore it can be obtained with at most nN steps. By repeating the
same sequence rj times we obtain xj. By comparing with !45", we obtain that every element
of eL can be obtained in at most !!maxj rj"+1"nN steps. This means that there is a T, such
that "t-0

T R!t ,"in"="t-0R!t ,"in". However, from property !1" we have "t-0
T R!t ,"in"

=R!T ,"in""R!T−1,"in", which completes the proof. !Some arguments are in common
with the proof of controllability for systems on Lie groups of Ref. 15."

!3" Assume " f !R!t ,"in". Therefore there exists a sequence of t transformations in SU!2d",
C1 , . . . ,Ct, such that

" f = ).
k=1

t

S!Ck ! 1Nd"*"in. !46"

Therefore, we have

"in = ).
k=t

1

!Ck
†

! 1Nd"S−1*" f . !47"

As we have seen in the proof of !1", there exists a matrix C such that !C ! 1Nd"S!C† ! 1Nd"=S−1.
Replacing this in !47", we obtain

"in = !!Ct
†C" ! 1Nd") .

k=t−1

1

S!!C†Ck
†C" ! 1Nd"*S!C†

! 1Nd"" f . !48"

Therefore the state !!C†Ct" ! 1Nd""in is in R!t ," f".
Remark 5.1: From a practical point of view, an interesting problem is to give estimates for the

number of steps T of part !2" of the above theorem. This is, in general, a difficult problem in the
theory of Lie groups in that one has not only to estimate the number of exponentials needed to
obtain the open neighborhood U !n in the theorem" but also understand the size and shape of U.
In fact, the main idea is to paste together translated copies of U as in !45" to cover the whole Lie
group eL. It may be possible to give estimates for the time needed for a specific evolution. "

VI. CONTROL ALGORITHMS FOR LOW DIMENSIONAL CASES

In this section, we first prove a reduction-type of result that provides an algorithm !we use the
term !control" algorithm indicating a sequence of coin transformations" to reach the uniform
probability distribution for a DTQW on a two-dimensional lattice for every N, if we are given an
algorithm on the corresponding cycle !d=1" !see Theorem 5". Then we restrict ourselves to a
DTQW on a cycle !d=1" with N=3 and N=5 vertices. If N=3, we provide a control algorithm for
all the probability distributions which takes at most two steps !see Proposition 6.1", while, in the
case N=5, we provide an explicit control to reach the uniform probability distribution in four steps
!see Proposition 6.3". The algorithms in Propositions 6.1 and 6.3 are optimal in that the number of
steps is the minimum required. By combining Theorem 5 with Propositions 6.1 and 6.3, we get
algorithms to reach the uniform probability distribution in the planar lattice !d=2" with N=3 and
N=5 !see Remark 6.5".

We will denote by '+1( and '−1( the two basis vectors of the coin space on the cycle !d=1"
and with '→ (, '← (, '↑ (, and '↓ ( the four basis vectors for the coin space on the planar lattice
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!d=2". The following theorem which is stated as an existence result provides, in its proof, a
method to control to the uniform probability distribution for the two-dimensional lattice, once a
method is known for the cycle d=1.

Theorem 5: Assume that for the DTQW on the N -cycle it is possible from the initial state
"in

1 = '+1( ! '0( to reach in N steps a final state " f
1 whose probability distribution is uniform. Then

for the DTQW on the two-dimensional lattice it is always possible from the initial state "in
2 = '

→ ( ! '0,0( to reach in 3N steps a final state " f
2 whose probability distribution is the uniform one.

Proof: Denote by C1 , . . . ,CN the N matrices in SU!2" which give the control algorithm steer-
ing "in

1 to " f
1. More precisely, this means that if Ui=S!Ci ! 1N", i=1, . . . ,N !where S is the

conditional shift on the cycle with N nodes" it holds

UN ¯ U1"in
1 = " f

1 = +
k=0

N−1

!.k'+ 1( + /k'− 1(" ! 'k( !49"

for some complex numbers .k and /k, k=1, . . . ,N, with '.k'2+ '/k'2=1 /N.
We denote by Ci

l!SU!4", l=1,2 and i=1, . . . ,N, the block diagonal matrix which is com-
posed by two blocks of dimension 2, where the lth block is equal to Ci, while the other one is the
identity. More specifically, we have

Ci
1 = )Ci 0

0 12
*, Ci

2 = )12 0

0 Ci
* . !50"

We denote by Ui
l=S!Ci

l
! 1N2", where S is now the conditional shift on the two-dimensional lattice.

Given the particular form of the matrices Cj
l in !50" and by using Eq. !49", we have that

UN
1 ¯ U1

1!' → ( ! '0, j(" = +
k=0

N−1

!.k' → ( + /k' ← (" ! 'k, j( !51"

for all j! %0, . . . ,N−1&, where .k and /k are the same as !49". Moreover, since SN=1N2, we also
have

UN
1 ¯ U1

1!!0'↑( + 1'↓(" ! 'k,h(" = !!0'↑( + 1'↓(" ! 'k,h(" !52"

for any constants 0 , 1 and any k , h! %0, . . . ,N−1&. That is, the sequence UN
1 UN−1

1 ¯U1
1 does not

modify the up-down part of the Hilbert space. Similarly, by replacing 1 with 2 and the basis
vectors '→ ( , '← ( with ↑ , '↓ (, we will have

UN
2 ¯ U1

2!'↑( ! 'j,0(" = +
k=0

N−1

!.k'↑( + /k'↓(" ! 'j,k( !53"

and

UN
2 ¯ U1

2!!0' → ( + 1' ← (" ! 'u,h(" = !!0' → ( + 1' ← (" ! 'u,h(" , !54"

again for any constants 0 , 1, and for all j , u , h! %0, . . . ,N−1&.
Now, given the initial state "in

2 , the control algorithm on the two-dimensional lattice first
applies the N steps UN

1 ¯U1
1. From Eq. !51", we have

"N ª UN
1 ¯ U1

1"in
2 = +

k=0

N−1

!.k' → ( + /k' ← (" ! 'k,0( . !55"

Let C̄!SU!4" be the permutation matrix which exchanges '→ ( with '↑ ( and leave unchanged the
other two basis vectors and denote by Ū1

2=U1
2!C̄ ! 1N2". Then, since !C̄ ! 1N2""N=+k=0

N−1!.k'↑ (
+/k'← (" ! 'k ,0(, by using Eqs. !53" and !54", we have
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"2N ª UN
2 ¯ Ū1

2"N = 5+
k=0

N−1

.k+
j=0

N−1

!. j'↑( + / j'↓(" ! 'k, j(6 + +
k=0

N−1

/k' ← ( ! 'k,0( . !56"

Let Ĉ!SU!4" be the permutation matrix which makes the basis change,

%' → (, ' ← (, '↑(, '↓(& ⇒ %'↓(, '↑(, ' → (, ' ← (& .

Notice that

!Ĉ ! 1N2""2N = 5+
k=0

N−1

.k+
j=0

N−1

!. j' → ( + / j' ← (" ! 'k, j(6 + +
k=0

N−1

/k'↑( ! 'k,0( .

Denote by Û1
2=U1

2!Ĉ ! 1N2". Then, as before, by using Eqs. !53" and !54", we have

" f
2 ª UN

2 ¯ Û1
2"2N = +

k=0

N−1

.k+
j=0

N−1

!!. j' → ( + / j' ← ("" ! 'k, j( + +
k=0

N−1

/k+
j=0

N−1

!!. j'↑( + / j'↓("" ! 'k, j( .

!57"

Now, we can verify that the probability distribution of " f
2 is the uniform one, as desired, in fact, we

have

pkj = '.k'2'. j'2 + '.k'2'/ j'2 + '/k'2'. j'2 + '/k'2'/ j'2 = '.k'2!1/N" + '/k'2!1/N" = 1/N2.

"

A. Cycle with N=3

The following proposition provides a direct algorithm to obtain any probability distribution on
a 3-cycle.

Proposition 6.1: It is always possible from the initial state "in= '+1( ! '0(=e#1
6 to reach in at

most two steps a final state " f whose probability distribution is arbitrary.
Proof: As in !3", we use the notation

C!2,$" ª ) cos!2" − sin!2"e−i$

sin!2"ei$ cos!2" * . !58"

Set $=0, and let U!2"=S!C!2 ,0" ! 13". By direct computation, for any 21 ,22, we have

" f ª U!22"U!21""in =,
− sin!22"sin!21"

0

cos!22"cos!21"
sin!22"cos!21"
cos!22"sin!21"

0

- .

Fix any arbitrary probability distribution !p0 , p1 , p2". To prove our statement, we need to show that
it is possible to choose 21 and 22, such that

p0 = sin2!22" ,

p1 = sin2!21"cos2!22" ,

122106-14 F. Albertini and D. D’Alessandro J. Math. Phys. 50, 122106 #2009!

Downloaded 13 Feb 2012 to 147.162.114.132. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



p2 = cos2!21"cos2!22" .

In fact, if p0=1 we can set 22=) /2 and 21 arbitrary, while, if p0,1 we choose 22 such that the
first equation holds, and then 21 such that sin2!21"=/!p1 / !1− p0"".

"
The sequence of coin transformations in the above proposition is optimal in the sense that

there exist states !and probability distributions" that cannot be reached in a number of steps strictly
less than 2. Using the results proven above and the symmetry property proven in Theorem 4, we
obtain the following.

Corollary 6.2: Let !p0
1 , p1

1 , p2
1" and !p0

2 , p1
2 , p2

2" be two given probability distributions. Then it is
always possible to find two states "1 and "2 whose probability distributions are the given one, and
such that "2 is reachable from "1 in at most four steps.

B. Cycle with N=5

Proposition 6.3: It is possible from the initial state "in= '+1( ! '0(=e#1
10 to reach in four steps a

final state " f whose probability distribution is the uniform one.
Proof: In this proof we use again the notation C!2 ,$" #see Eq. !58"$ to denote matrices in

SU!2". Let " f = #x0 ,x1 ,x2 ,x3 ,x4 ,y0 ,y1 ,y2 ,y3 ,y4$T be the state reached from "in in four steps by
applying U!2i"=S!C!2i ,0" ! 15", with i=1, . . . ,4. Denote by ci=cos!2i" and by Ti=tan!2i" for i
=1, . . . ,4. A direct calculation of U!21"U!22"U!23"U!24""in shows that we have

x0 = c4c3c2c1!− T3T1 + T4T3T2T1 − T4T2" ,

x1 = 0,

x2 = c4c3c2c1!− T2T1 − T3T2T1 − T4T3" ,

x3 = c4c3c2c1!− T4T1" ,

x4 = c4c3c2c1,

y0 = c4c3c2c1!− T4T2T1 − T4T3T2 + T3" ,

y1 = c4c3c2c1!T1" ,

y2 = c4c3c2c1!T4" ,

y3 = c4c3c2c1!− T4T3T1 − T3T2T1 + T2" ,

y4 = 0. !59"

We need to find 2i, for i=1, . . . ,4, such that pj =xj
2+yj

2=1 /5 for all j=0, . . . ,4 !all quantities
considered here are real".

One way to reach the uniform probability is to use the following constants:

c1 = 1//2 and T1 = 1,

'c2' = 'c4' = /2//3 and 'T2' = 'T4' = 1//2, with T2 = − T4,
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'c3' = 3//!10", and T3 = 1/3. !60"

With this choice, we have

!c4c3c2c1"2 = 1/5,

thus,

p4 = x4
2 = !c4c3c2c1"2 = 1/5 and p1 = y1

2 = !c4c3c2c1"2T1
2 = 1/5.

Moreover, we also have

p2 = x2
2 + y2

4 = 1/5T2
2 + 1/5T4

2 = 1/5

and

p3 = x3
2 + y3

4 = 1/5T4
2 + 1/5T2

2 = 1/5.

It is also easy to see that by choosing T3=1 /3, we get x0=0 and y0=c4c3c2c1, while if we set
T3=−1 /3, we get x0=c4c3c2c1 and y0=0. In any case, p0=1 /5, as desired. Notice that the choice
is not unique.

The number of steps !4" in the previous proposition is optimal in the sense that no other
algorithm will reach the uniform distribution with a number of steps less than 4. A direct analysis
of the dynamics shows that after three steps the probability p0 must be zero, after two steps p1 and
p4 must be zero and after one step p0, p2, and p3 must be zero.

Remark 6.4: It is not difficult to see that quantum walks can achieve different probability
distributions and/or faster than classical random walks. There are several examples in the litera-
ture. The 5-cycle treated in this subsection offers another very simple example. By changing the
coin operation in SU!2" at each step one directly verifies that, in two steps, from "in= '+1( ! '0(,
states can be reached with probability distributions !p0 ,0 , p2 , p3 ,0", with arbitrary !non-negative"
values of p0, p2, and p3, such that p0+ p2+ p3=1. In the classical case, the evolution at each step
!on a five-dimensional vector space" is given by !1−r"FT+rF, where F defined in !5" is 5#5 and
0+r+1. Starting with a probability concentrated in position 0, i.e., from #1,0 ,0 ,0 ,0$T, and
indicating by r1 and r2 the value of r at steps !1" and !2", respectively, the vector of probabilities
after two steps is #!1−r2"r1+r2!1−r1" ,0 ,r1r2 , !1−r1"!1−r2" ,0$T. It is clear that r1r2"0 and !1
−r1"!1−r2""0 implies !1−r2"r1+r2!1−r1""0 and therefore probability distributions with p0=0,
p2"0, and p3"0 cannot be reached in two steps. Other cases include p0= p2= p3= 1

3 .
Remark 6.5: Propositions 6.1 and 6.3 give algorithms for the N=3 and N=5 cycles, in,

respectively, two and four steps to reach a state whose probability distribution is the uniform one.
To apply the result in Theorem 5 to get an algorithm to reach the uniform probability distribution
in the corresponding planar lattice !d=2" for N=3 and N=5, we need to be able to reach the
uniform probability distribution on the cycle in, respectively, three and five steps. This small
discrepancy can be solved by adding an extra “dummy” step to the algorithms of Propositions 6.1
and 6.3. The evolution on the cycle at this step is of the form S!12 ! 1N" !N=3 or N=5". It
performs a forward shift in the vertices of the cycle and does not modify the property of the
probability distribution to be uniform. Therefore Propositions 6.1 and 6.3 can be used in conjunc-
tion with Theorem 5 to obtain algorithms on two-dimensional lattices with N=3 and N=5.

VII. CONCLUSION

The design of an algorithm using a quantum walk can be seen as a control problem consisting
in driving the state of the walk from one value to another. For example, a search algorithm can
start from a state where all the positions of the walker have the same probability and ends with a
state where the probability is concentrated in one position. After the evolution has achieved the
desired state transfer a measurement of the !walker" position observable reveals the !looked for"
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eigenvalue corresponding to the desired position. The analysis of feasibility of quantum algo-
rithms using quantum walks is therefore a controllability analysis.

In this paper, we have provided such controllability analysis for the quantum walk on a
d-dimensional lattice, for general d, where the coin operation is allowed to change at each step.
We have characterized the set of possible evolutions and seen that it is a Lie group which is the
direct product on Nd, SU!2d"’s, where N is the number of vertices along one dimension of the
lattice. We also described the set of achievable states and achievable probability distributions for
this system. One important question is how the set of states and probabilities that can be achieved
depends on the number of steps employed in the evolution. This study is formalized by defining
reachable sets. We have described some general properties of these sets. Moreover, for low di-
mensional cases we were able to explicitly design the sequence of coin transformations leading to
a desired state transfer !in minimum time". That is, we gave some results on constructive control-
lability. Further research in this area will focus on the extension of these control algorithms to
general dimensions, the analysis of different graph topologies, and of different models, where the
coin operation is allowed to change not only with time but also according to the position of the
walker.
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