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Abstract. For each submanifold of a stratified group, we find a number and a mea-
sure only depending on its tangent bundle, the grading and the fixed Riemannian metric. In
two step stratified groups, we show that such number and measure coincide with the Haus-
dor¤ dimension and with the spherical Hausdor¤ measure of the submanifold with respect
to the Carnot-Carathéodory distance, respectively. Our main technical tool is an intrinsic
blow-up at points of maximum degree. We also show that the intrinsic tangent cone to the
submanifold at these points is always a subgroup. Finally, by direct computations in the
Engel group, we show how our results can be extended to higher step stratified groups, pro-
vided the submanifold is su‰ciently regular.

1. Introduction

In this paper we study how a submanifold inherits its sub-Riemannian geometry from
a stratified group equipped with its Carnot-Carathéodory distance. Our aim is finding the
sub-Riemannian measure ‘‘naturally’’ associated with a submanifold.

This measure for hypersurfaces is exactly the G-perimeter, which is widely acknowl-
edged as the appropriate measure in connection with intrinsic regular hypersurfaces, trace
theorems, isoperimetric inequalities, the Dirichlet problem for sub-Laplacians, minimal
surfaces, and more. Here we address the reader to some relevant papers [1], [2], [4], [5],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [21], [25], [26], [28], [29], [22], [23], [30],
[31], [33], [34], [36], [38], [41], [44], [45], [46], [47] and the references therein.

Our question is: what does replace the G-perimeter in arbitrary submanifolds?
Clearly, once the Hausdor¤ dimension of the submanifold is known, the corresponding
spherical Hausdor¤ measure should be the natural candidate. However this measure is
not manageable, since it cannot be used in minimization problems, due to the lack of lower
semicontinuity with respect to the Hausdor¤ convergence of sets. It is then convenient to
find an equivalent measure, that can be represented as the supremum among a suitable
family of linear functionals, in analogy with the classical theory of currents.

In the recent works [24], [35], higher codimensional submanifolds in the Heisenberg
group have been considered along with their associated measure. Here we emphasize exam-
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ples of Hölder submanifolds where the Hausdor¤ measure with respect to the Carnot-
Carathéodory distance is finite, but the Riemannian measure is not, [29]. Nevertheless, in
[24] the authors consider intrinsic currents in the Heisenberg groups that include the previ-
ously mentioned ‘‘singular’’ submanifolds.

In the present paper, we wish to find the intrinsic measure associated to any submani-
fold, under suitable regularity and negligibility assumptions. To do this, we have to find out
the privileged subset of points where an intrinsic blow-up holds.

Recall that at a horizontal point x of a C1 smooth submanifold S contained in a
stratified group G, the horizontal subspace HxG and the tangent space TxS do not span
all of TxG. We say that a submanifold is horizontal if it is formed by horizontal points
and non-horizontal otherwise. Recall that horizontal points of hypersurfaces coincide with
the well known characteristic points, that play an important role in the study of hypersur-
faces in stratified groups, [4], [9], [14], [15], [18], [20], [22], [23], [34], [40], [42].

Any smooth hypersurface is clearly non-horizontal, due to the non-integrability of the
horizontal distribution. This is clearly not true in higher codimension, where di¤erent sit-
uations can occur. For instance, in the Heisenberg group Hn it is easy to check that hori-
zontal submanifolds exactly coincide with the special class of Legendrian submanifolds and
it is easy to construct non-horizontal submanifolds of any dimension. On the other hand,
there exist stratified groups where all submanifolds of fixed topological dimension are hor-
izontal, see Example 3.14.

We first notice that horizontal points may induce di¤erent behaviours of the subma-
nifold when it is dilated around these points. We will show that this behaviour depends on
the degree dSðxÞ of the point x in the submanifold S, see (2.4) for precise definition. This
notion allows us to distinguish the di¤erent natures of horizontal points. Roughly speaking,
it represents a sort of ‘‘pointwise Hausdor¤ dimension’’. Notice that our notion of degree
for hypersurfaces satisfies the formula dSðxÞ ¼ Q � typeðxÞ, where the type of a point in a
hypersurface has been introduced in [9] and Q denotes the homogeneous dimension of the
group.

The notion of degree permits us to characterize a horizontal point x A S, requiring
that dSðxÞ < Q � k, where k is the codimension of S. At these points the blow-up of the
submanifold, if it exists, is not necessarily a subgroup of G, see Remark 4.5. However,
defining

dðSÞ ¼ max
x AS

dSðxÞ

as the degree of S, we will show that the blow-up always exists at points with maximum
degree dSðxÞ ¼ dðSÞ and it is a subgroup of G. We have the following

Theorem 1.1. Let S be a C1;1 smooth submanifold of G and let x A S be a point of

maximum degree. Then for every R > 0 we have

d1=rðx�1SÞXDR ! PSðxÞXDR as r ! 0þð1:1Þ

with respect to the Hausdor¤ distance and PSðxÞ is a subgroup of G.
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Recall that dr are the intrinsic dilations of the group and that DR is the closed ball of
center the identity of the group and radius R with respect to the fixed homogeneous dis-
tance, see Section 2 for details. The limit set PSðxÞ corresponds to the one introduced in
Definition 2.4. In particular, Theorem 1.1 shows that the intrinsic tangent cone to S at x

exists, according to [24], Definition 3.4, and that it is exactly equal to PSðxÞ.

The geometrical interpretation of our approach consists in foliating a neighbourhood
of the point x in S with a family of curves which are homogeneous with respect to dilations,
up to infinitesimal terms of higher order. In mathematical terms, we are able to represent S
in a neighbourhood of x as the union of curves t ! gðt; lÞ in S satisfying the Cauchy prob-
lem (3.10). These curves have the property

gðt; lÞ ¼ dt

�
GðlÞ þ OðtÞ

�
;ð1:2Þ

where l varies in a fixed compact set of Rp and the di¤eomorphism G defined in (3.26)
parametrizes PSðxÞ by Rp with respect to the graded coordinates, see Remark 3.12. Our
key tool is Lemma 3.10 that shows the crucial representation (1.2) of the curves parametriz-
ing the submanifold. The proof of this lemma is in turn due to the technical Lemma 2.5,
which is available since PSðxÞ is a subgroup of G. From (1.1) we obtain the following

Theorem 1.2. Let S be a C1;1 smooth p-dimensional submanifold of degree d ¼ dðSÞ
and let x A S be of the same degree. Then we have

lim
r#0

~mmpðSXBx; rÞ
rd

¼
y
�
td
SðxÞ

�
jtd

SðxÞj
;ð1:3Þ

where ~mmp is the p-dimensional measure on S with respect to the Riemannian metric ~gg.

Recall that y
�
td
SðxÞ

�
is the metric factor defined in (2.17), which also depends on the

homogeneous distance we are using to construct Sd . The p-vector td
SðxÞ is the part of tSðxÞ

having degree d, where tSðxÞ is a unit tangent p-vector to S at x with respect to the metric
induced by ~gg, see Section 2. In Corollary 3.6 we show that td

SðxÞ is a simple p-vector. By
(1.3) and standard theorems on di¤erentiation of measures, [19], we immediately deduce

Ð
S

y
�
td
SðxÞ

�
dSd

r ðxÞ ¼
Ð
S

jtd
SðxÞj d ~mmpðxÞð1:4Þ

whenever

SdðSnSdÞ ¼ 0;ð1:5Þ

where Sd is the open subset of points of maximum degree d. In fact, it is not di‰cult to
check that td

S vanishes on SnSd . Formula (1.4) shows that Sd is positive and finite on
open bounded sets of the submanifold and yields the ‘‘natural’’ sub-Riemannian measure
on S:

mSR ¼ jtd
SðxÞj~mmp CS:ð1:6Þ

We stress that the measure defined in (1.6) does not depend on the Riemannian metric ~gg.
In fact, parametrizing a piece of S by a mapping F : U ! G, we have
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mSR

�
FðUÞ

�
¼
Ð
U

jðqx1
F5qx2

F5� � �5qxp
FÞd j dx

where the projection ð�Þd is defined in (2.3) and j � j is the norm induced by the fixed left
invariant metric g. This integral formula can be seen as an area-type formula where the
Jacobian is projected on vectors of fixed degree. From (1.4) and the fact that yð�Þ is uni-
formly bounded from below and from above, one easily deduces that m is the ‘‘natural’’
replacement of Sd and that it might be convenient to consider sub-Riemannian filling
problems, [27].

For a non-horizontal submanifold S, namely dðSÞ ¼ Q � k, the limit (1.3) and for-
mula (1.4) can be extended to C1 regularity, then a corresponding sub-Riemannian coarea
formula can be obtained, see [36]. Moreover, in this case the negligibility condition (1.5)
holds, [34].

One can check that in two step stratified groups the formula

2p � dimðTxSXHxGÞ ¼ dSðxÞ

holds, then the blow-up estimates of [37] immediately show that d-negligibility holds in two
step groups for submanifolds of arbitrary degree. As a consequence, dðSÞ is the Hausdor¤
dimension of S. However d-negligibility remains an interesting open question in stratified
groups of step higher than two, when dðSÞ < Q � k. As an interesting point to be inves-
tigated, we emphasize the correspondence between dSðxÞ, dðSÞ and the numbers D 0ðxÞ,
DHðSÞ introduced by Gromov in [27], 0.6.B, where he also indicates how, for a smooth
manifold, DHðSÞ must correspond to the Hausdor¤ dimension of S.

In the last part of this work, we study some examples of 2-dimensional submanifolds
of di¤erent degrees in the Engel group. Despite d-negligibility is an open question in groups
of step higher than two, our formula (1.4) shows the validity of (1.5) for these examples.
This fact suggests that d-negligibility should hold in any stratified group for submanifolds
of arbitrary degree, possibly requiring higher regularity.

2. Preliminaries

A stratified group G with topological dimension q is a simply connected nilpotent Lie
group with Lie algebra G having the grading

G ¼ V1 l � � �lVi;ð2:1Þ

that satisfies the conditions Viþ1 ¼ ½V1;Vi� for every if 1 and Viþ1 ¼ f0g, where i is the
step of G. For every r > 0, a natural group automorphism dr : G ! G can be defined as
the unique algebra homomorphism such that

drðXÞ :¼ rX for every X A V1:

This one parameter group of mappings forms the family of the so-called dilations of G.
Notice that simply connected nilpotent Lie groups are di¤eomorphic to their Lie algebra
through the exponential mapping exp : G ! G, hence dilations are automatically defined
as group isomorphisms of G and will be denoted by the same symbol dr.
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We will say that r is a homogeneous distance on G if it is a continuous distance of G
satisfying the following conditions:

rðzx; zyÞ ¼ rðx; yÞ and r
�
drðxÞ; drðyÞ

�
¼ rrðx; yÞ for all x; y; z A G; r > 0:ð2:2Þ

Important examples of homogeneous distances are the well known Carnot-Carathéodory
distance and the homogeneous distance constructed in [23].

In the sequel, we will denote by Hd and Sd , the d-dimensional Hausdor¤ and spher-
ical Hausdor¤ measures induced by a fixed homogeneous distance r, respectively. Open
balls of radius r > 0 and centered at x with respect to r will be denoted by Bx; r and the
corresponding closed balls will be denoted by Dx; r. The number Q denotes the Hausdor¤
dimension of G with respect to r.

According to (2.1), we say that an ordered set of vectors

ðX1;X2; . . . ;XqÞ ¼ ðX 1
1 ; . . .X

1
m1
;X 2

1 ; . . . ;X
2
m2
; . . . ;X i

1; . . . ;X
i

mi
Þ

is an adapted basis of G i¤ mk ¼ dim Vk and

X k
1 ; . . . ;X

k
mk

is a basis of the layer Vk for every k ¼ 1; . . . ; i.

Definition 2.1. Let ðX1;X2; . . . ;XqÞ be an adapted basis of G. The degree dð jÞ of Xj

is the unique integer k such that Xj A Vk. Let

XJ :¼ Xj15� � �5Xjp

be a simple p-vector of LpG, where J ¼ ð j1; j2; . . . ; jpÞ and 1e j1 < j2 < � � � < jp e q. The
degree of XJ is the integer dðJÞ defined by the sum dð j1Þ þ � � � þ dð jpÞ.

Notice that the degree of a p-vector is independent from the adapted basis we have
chosen. In the sequel, we will fix a graded metric g on G, namely, a left invariant Riemann-
ian metric on G such that the subspaces Vk’s are orthogonal. It is easy to observe that
all left invariant Riemannian metrics such that ðX1; . . . ;XqÞ is an orthonormal basis are
graded metrics and the family of XJ ’s forms an orthonormal basis of LpðGÞ with respect
to the induced metric. The norm induced by g on LpðGÞ will be simply denoted by j � j.

Definition 2.2. When an adapted basis ðX1; . . . ;XqÞ is also orthonormal with respect
to the fixed graded metric g, it is called graded basis.

Definition 2.3 (Degree of p-vectors). Let t A LpðGÞ be a simple p-vector and let
1e reQ be a natural number. Let t ¼

P
J

tJXJ , tJ A R, be represented with respect to

the fixed adapted basis ðX1; . . . ;XqÞ. The projection of t with degree r is defined as

ðtÞr ¼
P

dðJÞ¼r

tJXJ :ð2:3Þ
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The degree of t is defined as the integer

dðtÞ ¼ maxfk A N : such that tk 3 0g:

In the sequel, also an arbitrary auxiliary Riemannian metric ~gg will be understood. We
define tSðxÞ as the unit tangent p-vector to a C1 submanifold S at x A S with respect to the
metric ~gg, i.e. jtSðxÞj~gg ¼ 1. The degree of x is defined as

dSðxÞ ¼ d
�
tSðxÞ

�
ð2:4Þ

and the degree of S is dðSÞ ¼ max
x AS

dSðxÞ. We will say that x A S has maximum degree if

dSðxÞ ¼ dðSÞ. It is not di‰cult to check that these definitions are independent from the
fixed adapted basis X1; . . . ;Xq, then they only depend on the tangent subbundle TS and
of the grading of G, namely they depend on the ‘‘geometric’’ position of the points with
respect to the grading (2.1). According to (2.3), we define td

SðxÞ as the part of tSðxÞ with
maximum degree d ¼ dðSÞ, namely,

td
SðxÞ ¼

�
tSðxÞ

�
d
:ð2:5Þ

If g is a fixed graded metric, then we will simply write

jtd
SðxÞj ¼ jtd

SðxÞjg:ð2:6Þ

Definition 2.4. Let x A S be a point of maximum degree. Then we define

PSðxÞ ¼ fy A G : y ¼ expðvÞ with v A G and v5td
SðxÞ ¼ 0g:

As a consequence of Corollary 3.6, we will see that PSðxÞ is a subgroup of G.

2.1. Graded coordinates. In the sequel the adapted basis ðX1; . . . ;XqÞ will be fixed.
The exponential mapping exp : G ! G induces a group law CðX ;Y Þ on G for every
X ;Y A G. We have

expðX Þ � expðY Þ ¼ exp
�
CðX ;YÞ

�
:ð2:7Þ

Recall that CðX ;YÞ can be computed explicitly thanks to the Baker-Campbell-Hausdor¤
formula: for each multi-index of nonnegative integers a ¼ ða1; . . . ; alÞ we define

jaj :¼ a1 þ � � � þ al ;

a! :¼ a1! � � � al !;

and we will say that l is the length of a. If b ¼ ðb1; . . . ; blÞ is another multi-index of length l

such that al þ bl f 1, and if X ;Y A G we set

CabðX ;YÞ :¼ ðad XÞa1ðad Y Þb1 . . . ðad XÞal ðad Y Þbl�1
Y if bl > 0;

ðad XÞa1ðad Y Þb1 . . . ðad XÞal�1
X if bl ¼ 0:

(

We used the notation ðad XÞðYÞ :¼ ½X ;Y �, agreeing that ðad XÞ0 is the identity. According
to [48], the Baker-Campbell-Hausdor¤ formula is stated as follows:
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CðX ;YÞ :¼
Pi
l¼1

ð�1Þ lþ1

l

P
a¼ða1;...;alÞ
b¼ðb1;...;blÞ
aiþbif1 Ei

1

a!b!ja þ bjCabðX ;YÞ:ð2:8Þ

For every adapted basis ðX1; . . . ;XqÞ, we can introduce a system of graded coordinates on
G given by

F : Rq ! G; FðxÞ ¼ exp

�Pq
j¼1

xjXj

�
;ð2:9Þ

where exp : G ! G is the exponential mapping. Then the group law

FðxÞ � FðyÞ ¼ F
�
Pðx; yÞ

�
ð2:10Þ

is translated with respect to coordinates of Rq as

x � y ¼ Pðx; yÞ ¼ x þ y þ Qðx; yÞ;ð2:11Þ

where the Baker-Campbell-Hausdor¤ formula (2.8) implies that P ¼ ðP1; . . . ;PqÞ and
Q ¼ ðQ1; . . . ;QqÞ are polynomial vector fields.

It is also easy to check that dilations read in these coordinates as

drðxÞ ¼ ðrx1; . . . ; r
dð jÞxj; . . . ; r ixqÞ for every r > 0:

From definition of dilations and the Baker-Campbell-Hausdor¤ formula, it follows that
Qiðx; yÞ are homogeneous polynomials with respect to dilations, i.e.

Pi

�
drðxÞ; drðyÞ

�
¼ rdðiÞ Piðx; yÞ and Qi

�
drðxÞ; drðyÞ

�
¼ rdðiÞ Qiðx; yÞ:ð2:12Þ

As a result, we get

Q1 ¼ � � � ¼ Qm1
¼ 0;

Qiðx; yÞ ¼ Qi

� P
dð jÞ<i

xjej;
P

dð jÞ<i

yjej

�
;

8><
>:ð2:13Þ

where ðe1; . . . ; eqÞ denotes the canonical basis of Rq and dðiÞ > 1.

Given a system of graded coordinates F : Rq ! G, we say that a function p : G ! R

is a polynomial on G if the composition p � F�1 is a polynomial on Rq; we say that p is an
homogeneous polynomial of degree l if it is a polynomial and p

�
drðxÞ

�
¼ rlpðxÞ for any

x A G and r > 0. It is not di‰cult to prove that p is a homogeneous polynomial of degree
l if and only if p � F�1 is a sum of monomials

xl1
1 xl2

2 � � � xlq
q with

Pq
i¼1

dð jÞlj ¼ l:
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Moreover, the notions of polynomial, homogeneous polynomial (and its degree) do not de-
pend on the choice of graded coordinates F . Observe also that homogeneous polynomials
of degree 0 are constants.

Any left invariant vector field Xj of our fixed adapted basis has a canonical represen-
tation as left invariant vector field ðF�1Þ�ðXjÞ of Rq, where F is defined in (2.9). We will use
the same notation to indicate this vector field in Rq. The left invariance of Xj in Rq implies
that

Xj f ðxÞ ¼ qyj
ð f � lxÞð0Þ ¼ df ðxÞ qP

qyj

ðx; 0Þ
� �

;

where lxðyÞ ¼ x � y A Rq and f A CyðRqÞ. As a consequence, we have

XjðxÞ ¼
Pq
i¼1

XijðxÞqi ¼
Pq
i¼1

qPi

qyj

ðx; 0Þqi ¼ qj þ
P

dðiÞ>dð jÞ

qQi

qyj

ðx; 0Þqi:ð2:14Þ

By di¤erentiating (2.12) we get

Xij

�
drðxÞ

�
¼ qPi

qyj

�
drðxÞ; 0

�
¼ rdðiÞ�dð jÞ qPi

qyj

ðx; 0Þ ¼ rdðiÞ�dð jÞ XijðxÞ;ð2:15Þ

i.e. Xij are homogeneous polynomials of degree dðiÞ � dð jÞ.

Next we present a key result in the proof of Lemma 3.10.

Lemma 2.5. Let J H f1; 2; . . . ; qg be such that F ¼ spanfXj : j A Jg is a subalgebra

of G, where ðX1; . . . ;XqÞ is an adapted basis of G. Then for every index i B J, the polynomial

Qiðx; yÞ lies in the ideal generated by fxl ; yl : l B Jg, namely, we have

Qiðx; yÞ ¼
P

l B J;dðlÞ<dðiÞ

�
xlRilðx; yÞ þ ylSilðx; yÞ

�
;ð2:16Þ

where Ril , Sil are homogeneous polynomials of degree dðiÞ � dðlÞ.

Proof. Let us fix x; y A Rq and consider

X :¼
Pq
j¼1

xjXj; Y :¼
Pq
j¼1

yjXj:

By (2.7), (2.10) and the Baker-Campbell-Hausdor¤ formula (2.8), we have

CðX ;YÞ ¼
Pq
j¼1

Pjðx; yÞXj:

Therefore, defining pi : G ! R as the function which associates to every vector its Xi’s
coe‰cient, we clearly have Piðx; yÞ ¼ pi

�
CðX ;Y Þ

�
. Thus, formulae (2.8) and (2.11)

yield
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Qiðx; yÞ ¼
Pi
l¼1

ð�1Þ lþ1

l

P
a¼ða1;...;alÞ
b¼ðb1;...;blÞ
aiþbif1 Ei

1

a!b!ja þ bj pi

�
CabðX ;YÞ

�
� xi � yi:

Observe that CabðX ;YÞ is a commutator of X and Y , whose length is equal to ja þ bj; as
the sum of commutator with length 1 gives X þ Y we get

Qiðx; yÞ ¼
Pi
l¼1

ð�1Þ lþ1

l

P
a¼ða1;...;alÞ
b¼ðb1;...;blÞ
aiþbif1 Ei
jaþbjf2

1

a!b!ja þ bj pi

�
CabðX ;Y Þ

�
:

When the commutator CabðX ;Y Þ has length hf 2, we can decompose it into the sum of
commutators of the vector fields fxlXl ; ylXl : 1e l e qg. Let us focus our attention on an
individual addend of this sum and consider its projection pi. Clearly, this addend is a com-
mutator of length h. If this term is a commutator containing an element of the family
fxlXl ; ylXl : l B Jg, then its projection pi will be a multiple of xl or yl for some l B J, i.e.
the projection pi of this term is a polynomial of the ideal

fxl ; yl : l B Jg:

On the other hand, if in the fixed commutator only elements of fxlXl ; ylXl : l A Jg appear,
then it belongs to F. In view of our hypothesis, we have FX spanfXig ¼ f0g, hence its
projection through pi vanishes. This fact along with (2.13) proves that Qiðx; yÞ has the
form (2.16). r

The next definition introduces the metric factor associated with a simple p-vector.
Notice that this definition generalized the notion of metric factor first introduced in [33].

Definition 2.6 (Metric factor). Let G be a stratified Lie algebra equipped with a
graded metric g and a homogeneous distance r. Let t be a simple p-vector of LpðGÞ. We
define LðtÞ as the unique subspace associated with t. The metric factor is defined by

yðtÞ ¼ H
p

j�j
�
F�1

�
exp
�
LðtÞ

�
XB1

��
;ð2:17Þ

where F : Rq ! G is a system of graded coordinates with respect to an adapted orthonor-
mal basis ðX1; . . . ;XqÞ. The p-dimensional Hausdor¤ measure with respect to the Eucli-
dean norm of Rq has been denoted by H

p

j�j and B1 is the open unit ball centered at e, with
radius r with respect to the fixed homogeneous distance r.

3. Blow-up at points of maximum degree

Lemma 3.1. Let S be a p-dimensional submanifold of class C1 and let x A S be a point

of maximum degree. Then we can find

� a graded basis X1; . . . ;Xq of G,

� a neighbourhood U of x,

� a basis v1ðyÞ; . . . ; vpðyÞ of TyS for all y A U
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such that writing vjðyÞ ¼
Pq
i¼1

CijðyÞXiðyÞ, we have

CðyÞ :¼ ðCijÞ i¼1;...;q
j¼1;...;p

¼

Ida1
0 � � � 0

O1ðyÞ � � � � �

0 Ida2
� � � 0

0 O2ðyÞ � � � �

..

. ..
. . .

. ..
.

0 0 � � � Idai

0 0 � � � OiðyÞ

2
666666666666664

3
777777777777775

ð3:1Þ

where ak are integers satisfying 0e ak emk and a1 þ � � � þ ai ¼ p. The ðmk � akÞ � ak-

matrix valued continuous functions Ok vanish at x and � denote continuous bounded matrix

valued functions.

Proof. Observing that the degree of a point in S is invariant under left translations,
it is not restrictive assuming that x coincides with the unit element e of G.

Step 1. Here we wish to find the graded basis ðX1; . . . ;XqÞ of G and the basis
v1; . . . ; vp of TeS required in the statement of the lemma and that satisfy (3.1) when y ¼ e.
Let us fix a basis ðt1; . . . ; tpÞ of TeS and use the same notation to denote the corresponding
basis of left invariant vector fields of G. We denote by pk the canonical projection of G onto
Vk. Let 0e ai emi be the dimension of the subspace spanned by

piðt1Þ; . . . ; piðtqÞ:

Taking linear combinations of tj we can suppose that the first ai vectors fpiðtjÞg1ejeai
form

an orthonormal set of Vi, with respect to the fixed graded metric g. Then we set

X i
j :¼ piðtjÞ A Vi and v i

j :¼ tj A TeS;

whenever 1e j e ai. Adding proper linear combinations of these tj to the remaining vec-
tors of the basis, we can assume that ft i�1

j :¼ tjþaig1ejep�ai
are linearly independent and

that

piðt i�1
j Þ ¼ 0 whenever j ¼ 1; . . . ; p � ai:

Now consider the p � ai vectors

pi�1ðt i�1
1 Þ; . . . ; pi�1ðt i�1

p�ai
Þ

and let 0e ai�1 emi�1 be the rank of the subspace of Vi�1 generated by these vectors. Tak-
ing linear combinations of t i�1

j , we can suppose that pi�1ðt i�1
j Þ with j ¼ 1; . . . ; ai�1 form an

orthonormal set of Vi�1 and that defining ft i�2
j :¼ t i�1

jþai�1
g1ejep�ai�ai�1

we have

pi�1ðt i�2
j Þ ¼ 0 whenever j ¼ 1; . . . ; p � ai � ai�1:
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Then we set

X i�1
j :¼ pi�1ðt i�1

j Þ A Vi�1 and v i�1
j :¼ t i�1

j A TeS

for every j ¼ 1; . . . ; ai�1. Repeating this argument in analogous way, we obtain integers ak

with 0e ak emk for every k ¼ 1; . . . ; i and vectors

X k
j A Vk; vk

j A TeS; where k ¼ 1; . . . ; i and j ¼ 1; . . . ; ak:

Notice that a1 þ � � � þ ai ¼ p and that

ðv1
1 ; . . . ; v1

a1
; . . . ; v i

1; . . . ; v
i
ai
Þð3:2Þ

is a basis of TeS. We complete the X k
j ’s to a graded basis

ðX 1
1 ; . . . ;X

1
m1
;X 2

1 ; . . . ;X
2
m2
; . . . ;X i

1; . . . ;X
i

mi
Þ

of G, that will be also denoted by ðX1; . . . ;XqÞ. It is convenient to relabel the basis (3.2) as

ðv1; . . . ; vpÞ, hence we write vj ¼
Pq
i¼1

CijXi obtaining

C :¼ ðCijÞ ¼

Ida1
� � � � �

0 � � � � �

0 Ida2
� � � �

0 0 � � � �

..

. ..
. . .

. ..
.

0 0 � � � Idai

0 0 � � � 0

2
666666666666664

3
777777777777775
:

Performing suitable linear combinations of vj’s, we can assume that

C ¼

Ida1
0 � � � 0

0 � � � � �

0 Ida2
� � � 0

0 0 � � � �

..

. ..
. . .

. ..
.

0 0 � � � Idai

0 0 � � � 0

2
666666666666664

3
777777777777775
:ð3:3Þ

Step 2. The basis ðv1; . . . ; vpÞ of TeS can be extended to a frame of continuous vec-
tor fields

�
v1ðyÞ; . . . ; vpðyÞ

�
on S defined in neighbourhood U of e. Thanks to the previous

step, defining vjðyÞ ¼
Pq
i¼1

CijðyÞXiðyÞ we have
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CðyÞ :¼
�
CijðyÞ

�
¼

Ida1
þ oð1Þ oð1Þ � � � oð1Þ

oð1Þ � � � � �

oð1Þ Ida2
þ oð1Þ � � � oð1Þ

oð1Þ oð1Þ � � � �

..

. ..
. . .

. ..
.

oð1Þ oð1Þ � � � Idai þ oð1Þ
oð1Þ oð1Þ � � � oð1Þ

2
666666666666664

3
777777777777775

where oð1Þ denotes a matrix-valued continuous function vanishing at e. Observing that
Idak

þ oð1Þ are still invertible for every y in a smaller neighbourhood U 0 HU of e, we can
replace the vj’s with linear combinations to get

CðyÞ ¼

Ida1
þ oð1Þ 0 � � � 0

oð1Þ � � � � �

0 Ida2
þ oð1Þ � � � 0

oð1Þ oð1Þ � � � �

..

. ..
. . .

. ..
.

0 0 � � � Idai þ oð1Þ
oð1Þ oð1Þ � � � oð1Þ

2
666666666666664

3
777777777777775
:

The same argument leads us to define a new frame with matrix

CðyÞ ¼

Ida1
0 � � � 0

O1ðyÞ � � � � �

0 Ida2
� � � 0

oð1Þ O2ðyÞ � � � �

..

. ..
. . .

. ..
.

0 0 � � � Idai

oð1Þ oð1Þ � � � OiðyÞ

2
666666666666664

3
777777777777775
;ð3:4Þ

where Oj are defined in the statement of the present lemma. To finish the proof, it remains
to show that all oð1Þ’s of (3.4) are actually null matrix functions. Here we utilize the fact
that the submanifold has maximum degree at e. Notice that the simple p-vector

v1ðyÞ5� � �5vpðyÞ ¼
P
J

aJðyÞXJðyÞ

is proportional to the tangent vector tSðyÞ. In addition, if J ¼ ð j1; . . . ; jpÞ, then aJðyÞ is the
determinant of the p � p submatrix obtained taking the j1-th; j2-th; . . . ; jp�1-th and jp-th
rows of CðyÞ. From (3.3) we immediately conclude that dSðeÞ ¼ a1 þ 2a2 þ � � � þ iai. Fi-
nally, where one entry of some oð1Þ does not vanish, it is possible to find some J0 such
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that dðJ0Þ > a1 þ 2a2 þ � � � þ iai and aJ0
ðyÞ3 0. This would imply dSðyÞ > dSðeÞ, contra-

dicting the assumption that dSðeÞ ¼ max
y AU 0

dSðyÞ. r

Remark 3.2. It is easy to interpret the statement and the proof of Lemma 3.1 in the
case some ak vanishes. Clearly, the ak columns in (3.1) intersecting Iak

and then the corre-
sponding vectors vk

j disappear.

Remark 3.3. Clearly, when S is of class C r the vj’s of the previous lemma are of
class C r�1. In fact, the linear transformations performed in the proof of Lemma 3.1 are of
class C r�1.

The previous lemma allows us to state the following definitions.

Definition 3.4. Let S be a C1 smooth submanifold and let x A S be a point of maxi-
mum degree. Then we can define the degree s : f1; . . . ; pg ! N induced by S at x as
follows:

sð jÞ ¼ i if
Pi�1

s¼1

as < j e
Pi

s¼1

as;

where ai are defined in Lemma 3.1.

Definition 3.5. Let S be a C1 smooth submanifold and let x A S be a point of maxi-
mum degree. Then we will denote by

ðX 1
1 ; . . . ;X 1

m1
; . . . ;X i

1; . . . ;X
i

mi
Þ and ðv1

1 ; . . . ; v1
a1
; . . . ; v i

1; . . . ; v
i
ai
Þ

the frames on G and on a neighbourhood U of z in S, respectively, which satisfy the con-
ditions of Lemma 3.1. We will also indicate these frames by

ðX1; . . . ;XqÞ and ðv1; . . . ; vpÞ:

Corollary 3.6. Let S be a C1 smooth submanifold with x A S satisfying dSðxÞ ¼ dðSÞ.
Then td

SðxÞ is a simple p-vector which is proportional to

X 1
1 5� � �5X 1

a1
5� � �5X i

15� � �5X i
ai
;

then we also have

PSðxÞ ¼ expðspanfX 1
1 ; . . . ;X

1
a1
; . . . ;X i

1; . . . ;X
i
ai
gÞ:

Proof. By expression (3.1), tSðxÞ is clearly proportional to

X 1
1 5� � �5X 1

a1
5� � �5X i

15� � �5X i
ai
þ R;ð3:5Þ

where R is a linear combination of simple p-vectors with degree less than dðX 1
1 5� � �5X i

ai
Þ.

Then d ¼ dðX 1
1 5� � �5X i

ai
Þ and td

SðxÞ is proportional to X 1
1 5� � �5X i

ai
. r
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Definition 3.7. We will denote by

ðX 1
1 ; . . . ;X

1
a1
; . . . ;X i

1; . . . ;X
i
ai
Þð3:6Þ

the frame of Corollary 3.6, arising from Lemma 3.1, and by

pSðxÞ : G ! PSðxÞð3:7Þ

the corresponding canonical projection.

Corollary 3.8. Let e A S be such that dSðeÞ ¼ dðSÞ. Let us embed S into Rq by the

system of graded coordinates F induced by fX k
j gk¼1;...; i; j¼1;...;mk

. Then there exists a func-

tion

j : AHRp ! Rq�p;

x ¼ ðx1
1 ; . . . ; x

1
a1
; . . . ; x i

ai
Þ 7! ðj1

a1þ1; . . . ; j
1
m1
; . . . ; ji

aiþ1; . . . ; j
i
mi
ÞðxÞ;

defined on an open neighbourhood AHRp of zero, such that jð0Þ ¼ 0 and SIFðAÞ, where

F is the mapping defined by

F : A ! Rq;

x !
�
x1

1 ; . . . ; x
1
a1
; j1

a1þ1ðxÞ; . . . ; j1
m1
ðxÞ; . . . ; x i

1; . . . ; x
i
ai
; ji

aiþ1ðxÞ; . . . ; ji
mi
ðxÞ
�ð3:8Þ

and satisfying ‘Fð0Þ ¼ Cð0Þ, with C given by Lemma 3.1.

Proof. Representing pSðxÞ with respect to our graded coordinates, we obtain

~ppSðxÞ : Rq ! Rp;

x 7! ðx1
1 ; . . . ; x

1
a1
; . . . ; x i

1; . . . ; x
i
ai
Þ:

Taking its restriction

p : S ! Rp;

x 7! ðx1
1 ; . . . ; x

1
a1
; . . . ; x i

1; . . . ; x
i
ai
Þ;

we wish to prove that p is invertible near 0, i.e. that dpð0Þ : T0S ! Rp is onto. According to
(3.1) and the fact that p is the restriction of a linear mapping, it follows that dp

�
vk

j ð0Þ
�
¼ qxk

j

for every k ¼ 1; . . . ; i and j ¼ 1; . . . ; ak. This implies the existence of F ¼ p�1
jU having the re-

presentation (3.8), hence one can easily check that dp
�
qxk

j
F ð0Þ

�
¼ qxk

j
also holds for every

k ¼ 1; . . . ; i and j ¼ 1; . . . ; ak. As a consequence, invertibility of dpð0Þ : T0S ! Rp gives
vk

j ð0Þ ¼ qxk
j
F ð0Þ. It follows that each column of ‘Fð0Þ equals the corresponding one of

Cð0Þ. r

From now on, we will assume that S is a C1;1 submanifold of G.

Lemma 3.9. Let x A S be such that dSðxÞ ¼ dðSÞ. Then PSðxÞ is a subgroup.
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Proof. Posing d ¼ dðSÞ, due to Corollary 3.6, td
SðxÞ is proportional to the simple

p-vector

X 1
1 5� � �5X 1

a1
5� � �5X i

15� � �5X i
ai
:

We define F as the space of linear combinations of vectors fX k
j g

k¼1;...; i
j¼1;...;ak

. It su‰ces to prove
that each bracket ½X k

j ;X l
i � lies in F for every 1e k, l e i, 1e j e ak and 1e ie al . Tak-

ing into account Remark 3.3, we can find Lipschitz functions fr, cs, which vanish at x

whenever dðrÞ ¼ k or dðsÞ ¼ l, such that

vk
j ¼ X k

j þ
P

dðrÞek

frXr and vl
i ¼ X l

i þ
P

dðsÞel

csXs:

For a.e. y belonging to a neighbourhood U of x, we have

½vk
j ; v

l
i � ¼

�
X k

j þ
P

dðrÞek

frXr;X l
i þ

P
dðsÞel

csXs

�
ð3:9Þ

¼ ½X k
j ;X

l
i � þ

P
dðrÞek

fr½Xr;X
l

i � þ
P

dðsÞel

cs½X k
j ;Xs�

þ
P

dðrÞek;dðsÞel

frcs½Xr;Xs�

þ
P

dðsÞel

ðX k
j csÞXs �

P
dðrÞek

ðX l
i frÞXr

þ
P

dðrÞek;dðsÞel

�
fr ðXrcsÞXs � cs ðXscrÞXr

�
:

By Frobenius theorem we know that this vector is tangent to S, i.e. it is a linear combina-
tion of v1

1 ; . . . ; v
i
ai

and lies in V1 l � � �lVkþl , hence Lemma 3.1 implies that it must be of
the form

½vk
j ; vl

i � ¼
P

sðrÞekþl

arvr:

Projecting both sides of the previous identity onto Vkþl , we get

½X k
j ;X

l
i � þ

P
dðrÞ¼k

fr½Xr;X
l

i � þ
P

dðsÞ¼l

cs½X k
j ;Xs� þ

P
dðrÞ¼k;dðsÞ¼l

frcs½Xr;Xs�

¼
P

sðrÞ¼kþl

arpkþlðvrÞ:

From (3.1) the projections pkþl

�
vrðyÞ

�
converge to a linear combination of vectors X kþl

i as
y goes to x, where 1e ie akþl . We can find a sequence of points ðynÞ contained in U ,
where ½vk

j ; v
l
i � is defined and yn ! x as n ! y. Then the coe‰cients ar are defined on yn

and up to extracting subsequences it is not restrictive assuming that arðynÞ, which is
bounded since S is C1;1, converges for every r such that sðrÞe k þ l. Thus, restricting the
previous equality on the set fyng and taking the limit as n ! y, it follows that ½X k

j ;X
l

i � is a
linear combination of fX kþl

i g1eieakþl
. This ends the proof. r

Let us consider the parameters l ¼ ðl1
1 ; . . . ; l

1
a1
; . . . ; li

1; . . . ; l
i
ai
Þ A Rp and a point e A S

with dSðeÞ ¼ dðSÞ. We aim to study properties of solution gðt; lÞ of the Cauchy problem
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qtgðt; lÞ ¼
P

k¼1;...; i
j¼1;...;ak

lk
j vk

j

�
gðt; lÞ

�
tk�1;

gð0; lÞ ¼ 0;

8><
>:ð3:10Þ

where the vector fields vk
j are defined in Lemma 3.1 with x ¼ e.

For every compact set LHRp, there exists a positive number t0 ¼ t0ðLÞ such that
gð�; lÞ is defined on ½0; t0� for every l A L.

The next lemma gives crucial estimates on the coordinates of gð�; lÞ. Notice that
graded coordinates arising from the corresponding graded basis ðX1; . . . ;XqÞ will be under-
stood.

Lemma 3.10. Let gð�; lÞ be the solution of (3.10). Then for every k ¼ 1; . . . ; i and

every j ¼ 1; . . . ;mk there exist homogeneous polynomials gk
j of degree k, that vanish when

k ¼ 1, have the form gk
j ðl

1
1 ; . . . ; l

1
a1
; . . . ; lk�1

1 ; . . . ; lk�1
ak�1

Þ when k > 1, satisfy gk
j ð0Þ ¼ 0 and,

finally, the estimates

gk
j ðt; lÞ ¼

�
lk

j =k þ gk
j ðl

1
1 ; . . . ; l

k�1
ak�1

Þ
�
tk þ Oðtkþ1Þ if 1e j e ak;

Oðtkþ1Þ if ak þ 1e j emk

(
ð3:11Þ

hold for every l A L and every t A ½0; t0�.

Proof. From (2.14) and (2.15), we have Xs ¼
Pq
i¼1

Xis ei where

XisðxÞ ¼
dis if dðiÞe dðsÞ;
uisðx1

1 ; . . . ; x
1
m1
; . . . ; x

dðiÞ�1
1 ; . . . ; x

dðiÞ�1
mdðiÞ�1Þ if dðiÞ > dðsÞ;

(
ð3:12Þ

and uis is a homogeneous polynomial satisfying uis

�
drðxÞ

�
¼ rdðiÞ�dðsÞuisðxÞ. Setting

~ll ¼ ~llðtÞ ¼ ðl1
1 ; . . . ; l

1
a1
; l2

1t; . . . ; l2
a2

t; . . . ; li
1t i�1; . . . ; li

ai
t i�1Þ A Rp

and taking into account the expression of vj given in Lemma 3.1, we can write the Cauchy
problem (3.10) as

qtgðt; lÞ ¼
Pp
r¼1

vr

�
gðt; lÞ

�
~llrðtÞ ¼

Pp
r¼1

Pq
s¼1

Csr

�
gðt; lÞ

�
Xs

�
gðt; lÞ

�
~llrðtÞ;ð3:13Þ

where Cð�Þ is given by Lemma 3.1. Now we fix l A L and write for simplicity g in place of
gð�; lÞ. The coordinates of g will be also denoted as

ðg1
1 ; . . . ; g

1
m1
; . . . ; gi1; . . . ; g

i
mi
Þ:

Step 1. We start proving (3.11) for the coordinates of g belonging to the first layer,
i.e.

g1
j ðtÞ ¼ l1

j t if 1e j e a1;

g1
j ðtÞ ¼ Oðt2Þ if a1 þ 1e j em1:

(
ð3:14Þ
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In view of (3.13), we get

_gg1
j ¼

Pp
r¼1

Pq
s¼1

CsrðgÞXjsðgÞ~llr:

For 1e j e a1 we have 1 ¼ dð jÞe dðsÞ, then (3.12) imply that Xjs ¼ djs, whence

_gg1
j ¼

Pp
r¼1

CjrðgÞ~llr ¼ ~llj ¼ l1
j ;

where the second equality follows from (3.1), which implies CjrðxÞ ¼ djr. This shows the
first equality of (3.14).

Now we consider the case a1 þ 1e j em1. Due to (3.12) and 1 ¼ dð jÞe dðsÞ, we
have

_gg1
j ¼

Pp
r¼1

CjrðgÞ~llr ¼
P

sðrÞ¼1

CjrðgÞ~llr þ
P

sðrÞf2

CjrðgÞ~llr:ð3:15Þ

From (3.1), we have CjrðyÞ ¼ oð1Þ whenever sðrÞ ¼ 1, hence Cjr

�
gðtÞ
�
¼ oðtÞ. From the

same formula, we deduce that CjrðxÞ is bounded whenever sðrÞf 2, and for the same indi-
ces r we also have ~llr ¼ OðtÞ, hence the second sum of (3.15) is equal to OðtÞ. We have
shown that _gg1

j ¼ OðtÞ for every a1 þ 1e j em, therefore the second equality of (3.14) is
proved.

Step 2. We will prove (3.11) by induction on k ¼ 1; . . . ; i. The previous step yields
these estimates for k ¼ 1. Let us fix k f 2 and suppose that (3.11) holds for all integers less
than or equal to k � 1. Next, we wish to prove (3.11) for components of g with degree k

and for any fixed 1e j emk. We denote by i the unique integer between 1 and q such
that Xi ¼ X k

j and accordingly we have gi ¼ gk
j , where dðiÞ ¼ k. Taking into account

(3.12) and that Csr vanishes when dðsÞ > sðrÞ, it follows that

_ggi ¼
Pp
r¼1

Pq
s¼1

XisðgÞCsrðgÞ~llr ¼
P

1erep
dðsÞedðiÞ
dðsÞesðrÞ

XisðgÞCsrðgÞ~llr:ð3:16Þ

We split this sum into three sums

_ggk
j ¼ _ggi ¼

P
1erep

dðiÞesðrÞ

CirðgÞ~llr þ
P

1erep
dðsÞ<dðiÞ
dðsÞ¼sðrÞ

XisðgÞCsrðgÞ~llr þ
P

1erep
dðsÞ<dðiÞ
dðsÞ<sðrÞ

XisðgÞCsrðgÞ~llr:ð3:17Þ

We first consider the case 1e j e ak. Then (3.1) implies that CirðxÞ ¼ dir, therefore the first
term of (3.17) coincides with ~lliðtÞ ¼ lk

j tk�1. Now we deal with the remaining terms. Our
inductive hypothesis yields

g l
sðt; lÞ ¼

�
l l

s=l þ gl
sðl

1
1 ; . . . ; l

l�1
al�1

Þ þ OðtÞ
�
tl if 1e se al ;

OðtÞtl if al þ 1e seml ;

(
ð3:18Þ
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whenever l e k � 1, where gl
s is a homogeneous polynomial of degree l. Due to (3.12), Xis

are homogeneous polynomials of degree dðiÞ � dðsÞ ¼ k � dðsÞ > 0, then applying (3.18),
we achieve

Xisðg1
1 ; . . . ; g

k�1
mk�1

Þ ¼
�
Nisðl1

1 ; . . . ; l
k�1
ak�1

Þ þ OðtÞ
�
tk�dðsÞð3:19Þ

whenever dðsÞe dðiÞ ¼ k and uis ¼ dis if dðsÞ ¼ k. Notice that Nis are homogeneous poly-
nomials of degree k � dðsÞ since it is a composition of the homogeneous polynomial Xis

and of the homogeneous polynomials l l
s=l þ gl

sðl
1
1 ; . . . ; l

l�1
al�1

Þ with degree l.

Let us focus our attention on the second sum of (3.17). By definition of ~ll, we have
~llr ¼ l

sðrÞ
lðrÞ tsðrÞ�1, for some 1e lðrÞe asðrÞ, hence this second term equals

P
1erep

dðsÞ<dðiÞ
dðsÞ¼sðrÞ

½Csrð0Þ þ OðtÞ�½Nisðl1
1 ; . . . ; l

k�1
ak�1

Þtk�dðsÞ þ Oðtk�dðsÞþ1Þ�lsðrÞ
lðrÞ tsðrÞ�1

¼
P

1erep
dðsÞ<dðiÞ
dðsÞ¼sðrÞ

Csrð0ÞNisðl1
1 ; . . . ; l

k�1
ak�1

ÞldðsÞ
lðrÞ tk�1 þ OðtkÞ

¼ ~NNiðl1
1 ; . . . ; l

k�1
ak�1

Þtk�1 þ OðtkÞ;

where ~NNi is a homogeneous polynomial of degree k ¼ dðiÞ. From (3.19) and taking into
account the definition of ~llr, the last term of (3.17) can be written asP

1erep
dðsÞ<dðiÞ
dðsÞ<sðrÞ

Csr

�
gðtÞ
�
½Nisðl1

1 ; . . . ; l
k�1
ak�1

Þtk�dðsÞ þ Oðtk�dðsÞþ1Þ�OðtsðrÞ�1Þ

¼
P

1erep
dðsÞ<dðiÞ
dðsÞ<sðrÞ

Oðtk�dðsÞþsðrÞ�1Þ ¼ OðtkÞ:

Summing up the results obtained for the three sums of (3.17), we have shown that

_ggk
j ðtÞ ¼

�
lk

j þ ~NNiðl1
1 ; . . . ; l

k�1
ak�1

Þ
�
tk�1 þ OðtkÞ

whence the first part of (3.11) follows.

Next, we consider the case ak þ 1e j emk. In this case we decompose (3.16) into the
following two sums

_ggi ¼
P

1erep
kesðrÞ

CirðgÞ~llr þ
P

1erep
dðsÞ<k

dðsÞesðrÞ

XisðgÞCsrðgÞ~llr:ð3:20Þ

The first term of (3.20) can be written as

P
1erep
kesðrÞ

CirðgÞ~llr ¼
P

1erep
k¼sðrÞ

CirðgÞ~llr þ
P

1erep
k<sðrÞ

CirðgÞ~llr:
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From (3.1), the Lipschitz function CirðxÞ vanishes at zero when ak þ 1e j emk and
dðiÞ ¼ sðrÞ, then Cir

�
gðtÞ
�
¼ OðtÞ and

P
1erep
kesðrÞ

CirðgÞ~llr ¼
P

1erep
k¼sðrÞ

OðtÞtk�1 þ
P

1erep
k<sðrÞ

Oð1ÞtsðrÞ�1 ¼ OðtkÞ:ð3:21Þ

Let us now consider the second term of (3.20). According to (3.19), we know that
Xis

�
gðtÞ
�
¼ Oðtk�dðsÞÞ. Unfortunately, this estimate is not enough for our purposes, as one

can check observing that ~llr ¼ OðtsðrÞ�1Þ and Csr ¼ Oð1Þ for some of s, r. To improve the
estimate on Xis we will use Lemma 3.9, according to which the subspace spanned by

ðX 1
1 ; . . . ;X

1
a1
; . . . ;X i

1; . . . ;X
i
ai
Þ

is a subalgebra. Then we define

F ¼ spanfX k
s : 1e k e i; 1e se akg

along with the set J, that is given by the condition

F ¼ spanfXj : j A Jg:

We first notice that i B J, due to our assumption ak þ 1e j emk. This will allow us to ap-
ply Lemma 2.5, according to which we have

Piðx; yÞ ¼ xi þ yi þ Qiðx; yÞ ¼ xi þ yi þ
P

l B J;dðlÞ<k

�
xlRilðx; yÞ þ ylSilðx; yÞ

�
:

As a result, assuming that s A J, we obtain the key formula

XisðxÞ ¼
qPi

qys

ðx; 0Þ ¼
P

l B J;dðlÞ<k

xl

qRil

qys

ðx; 0Þ;

where qys
Rilðx; 0Þ is a homogeneous polynomial of degree k � dðsÞ � dðlÞ. By both induc-

tive hypothesis and definition of J, we get

glðtÞ ¼ OðtdðlÞþ1Þ;

for every l B J such that dðlÞ < k. By these estimates, we achieve

Xis

�
gðtÞ
�
¼

P
l B J;dðlÞ<k

glðtÞ
qRil

qys

�
gðtÞ; 0

�
¼

P
l B J;dðlÞ<k

OðtdðlÞþ1ÞOðtk�dðsÞ�dðlÞÞ ¼ Oðtkþ1�dðsÞÞ:

Then it is convenient to split the second term of (3.20) as follows:

P
r¼1;...;p
dðsÞ<k

dðsÞesðrÞ

XisðgÞCsrðgÞ~llr ¼
P

r¼1;...;p
dðsÞ<k

dðsÞesðrÞ
s A J

XisðgÞCsrðgÞ~llr þ
P

r¼1;...;p
dðsÞ<k

dðsÞesðrÞ
s B J

XisðgÞCsrðgÞ~llr;ð3:22Þ

where the first sum of the previous decomposition can be estimated as
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P
1erep
dðsÞ<k

dðsÞesðrÞ
s A J

XisðgÞCsrðgÞ~llr ¼
P

1erep
dðsÞ<k

dðsÞesðrÞ
s A J

Oðtkþ1�dðsÞÞOð1ÞOðtsðrÞ�1Þ ¼ OðtkÞ:ð3:23Þ

Finally, we consider the second sum of (3.22), writing it as

P
1erep
dðsÞ<k

dðsÞesðrÞ
s B J

XisðgÞCsrðgÞ~llr ¼
P

1erep
dðsÞ<k

dðsÞ¼sðrÞ
s B J

XisðgÞCsrðgÞ~llr þ
P

1erep
dðsÞ<k

dðsÞ<sðrÞ
s B J

XisðgÞCsrðgÞ~llr:ð3:24Þ

The first term of (3.24) can be written as

P
1erep
dðsÞ<k

dðsÞ¼sðrÞ
s B J

Oðtk�dðsÞÞOðtÞOðtsðrÞ�1Þ ¼ OðtkÞ;

where we have used the fact that CsrðxÞ ¼ OðjxjÞ when dðsÞ ¼ sðrÞ and s B J, according to
(3.1). The second term of (3.24) corresponds to the sum

P
1erep
dðsÞ<k

dðsÞ<sðrÞ
s B J

Oðtk�dðsÞÞOð1ÞOðtsðrÞ�1Þ ¼ OðtkÞ:

As a result, the second term of (3.22) is also equal to some OðtkÞ, hence taking into account
(3.23) we get that the second term of (3.20) is OðtkÞ. Thus, taking into account (3.20)
and (3.21) we achieve _ggðtÞ ¼ OðtkÞ, which proves the second part of (3.11) and ends the
proof. r

Remark 3.11. Analyzing the previous proof, it is easy to realize that the functions
OðtkÞ appearing in the statement of Lemma 3.10 can be estimated by tk, uniformly with
respect to l varying in a compact set: there exists a constant M > 0 such that

jgk
j ðt; lÞ � ½lk

j =k þ gk
j ðl

1
1 ; . . . ; l

k�1
ak�1

Þ�tkjeMtkþ1 if 1e j e ak;

jgk
j ðt; lÞjeMtkþ1 if ak þ 1e j emk

ð3:25Þ

for all l belonging to a compact set L and every t < t0: here and in the following, we have
set gl :¼ gð�; lÞ.

Our next step will be to prove that our curves gð�; lÞ cover a neighbourhood of a point
with maximum degree. To do this, we fix graded coordinates with respect to the basis ðX k

j Þ
and consider the di¤eomorphism G : Rp ! Rp arising from Lemma 3.10 and that can be
associated with any point of maximum degree in a C1;1 smooth submanifold. We set

GiðlÞ ¼ li=sðiÞ þ giðl1; . . . ; l
T

sðiÞ�1

s¼1

as

Þ;ð3:26Þ

where ðg1; . . . ; gpÞ ¼ ðg1
1 ; . . . ; g

1
a1
; . . . ; g i

1; . . . ; g
i
ai
Þ and gk

j are given by Lemma 3.10. Then
Gð0Þ ¼ 0 and by explicit computation of the inverse function, the definition (3.26) implies
global invertibility of G.
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Remark 3.12. The di¤eomorphism G also permits us to state Lemma 3.10 as

gðt; lÞ ¼ dt

�
GðlÞ þ OðtÞ

�
A Rq;ð3:27Þ

where GðlÞ belongs to Rp � f0g, precisely, it lies in the p-dimensional subspace PSðxÞ with
respect to the associated graded coordinates.

We will denote by cðt; lÞ the projection of gðt; lÞ on PSðxÞ, namely

cðt; lÞ ¼ ~ppSðxÞ
�
gðt; lÞ

�
;ð3:28Þ

where ~ppSðxÞ represents pSðxÞ of (3.7) with respect to graded coordinates arising from (3.6).
In the sequel, the estimates

ciðt; lÞ ¼ GiðlÞtsðiÞ þ OðtsðiÞþ1Þð3:29Þ

will be used. They follow from Lemma 3.10 and the definitions of c and G.

Lemma 3.13. There exists t0 > 0 such that for every t1 A �0; t0½, there exists a neigh-

bourhood V of 0 such that

V XSH fgðt; lÞ : l A G�1ðS p�1Þ and 0e t < t1g:

Proof. We fix t0 > 0 as in Lemma 3.10, where we have chosen L ¼ G�1ðS p�1Þ. Let
t1 A �0; t0½ be arbitrarily fixed. Taking into account Corollary 3.8, it su‰ces to prove that
the set fcðt; lÞ : l A L; 0e t < t1g covers a neighbourhood of 0 in Rp. For each t A �0; t1½,
we define the ‘‘projected dilations’’ Dt ¼ ~ppSðxÞ � dt corresponding to the following di¤eo-
morphisms of Rp

Dtðy1; . . . ; ypÞ ¼ ðtsð1Þy1; . . . ; t
sðiÞyi; . . . ; t

sðpÞypÞ:

Now we can rewrite (3.29) as

cðt; lÞ ¼ Dt

�
GðlÞ þ OðtÞ

�
;ð3:30Þ

where OðtÞ is uniform with respect to l varying in G�1ðS p�1Þ, according to Remark 3.11.
Then we define the mapping

Lt : S p�1 ! Rp;

u 7! D1=t

�
c
�
t;G�1ðuÞ

��
;

and (3.30) implies

LtðuÞ ¼ u þ OðtÞ:

As a consequence, Lt ! IdS p�1 as t ! 0, uniformly with respect to u A S p�1. Then, for any
su‰ciently small 0 < t < t1, we have LtðS p�1ÞXB

j�j
1=2 ¼ j and Lt is homotopic to IdS p�1 in

RpnfAg for all A A B
j�j
1=2. Here we have used the notation Bj�j

r to denote the Euclidean ball of
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radius r > 0 centered at the origin. In particular, since IdS p�1 is not homotopic to a con-
stant, Lt is not homotopic to a constant in RpnfAg for all A A B

j�j
1=2. Now, we are in the

position to prove that

fcðt; lÞ : l A G�1ðS p�1Þ and 0e t < tg

covers the open neighbourhood of 0 in Rp given by Dt

�
F�1ðB1=2ÞXPSðeÞ

�
that leads us to

the conclusion. By contradiction, if this were not true, then we could find a point A A B1=2

such that A3D1=t

�
clðtÞ

�
for all l A G�1ðS p�1Þ and 0e t < t, but then

H : ½0; t� � S p�1 ! RpnfAg;

ðs; uÞ 7! D1=t

�
c
�
s;G�1ðuÞ

��
would provide a homotopy in RpnfAg between the constant 0 and Lt, which cannot
exist. r

As important consequence of Lemma 3.10, we are in the position to give the

Proof of Theorem 1.1. We first notice that PSðxÞ is a subgroup of G, due to Lemma
3.9. Setting Sx; r :¼ d1=rðx�1SÞ, it is su‰cient to prove (see [3], Proposition 4.5.5) that
Sx; r XDR converges to PXDR in the Kuratowski sense, i.e. that

(i) if y ¼ lim
n!y

yn for some sequence fyng such that yn A Sx; rn
XDR and rn ! 0, then

y A PSðxÞXDR;

(ii) if y A PSðxÞXDR, then there are yr A Sx; r XDR such that yr ! y.

It is not restrictive assuming that x ¼ e. To prove (i), we set zn ¼ drn
ðynÞ A SXDrnR. From

(3.27), we can find t1 > 0 arbitrarily small such that

inf
u AS p�1

ju þ Oðt1Þj > 0;ð3:31Þ

where j � j is the Euclidean norm and OðtÞ is defined in (3.27). Then for n su‰ciently large
and taking t1 < t0 Lemma 3.13 yields a sequence ftngH �0; t1½ and ln A G�1ðS p�1Þ such
that gðtn; lnÞ ¼ drn

yn. Due to (3.27), we achieve

dtn=rn

�
GðlnÞ þ OðtnÞ

�
¼ yn;

hence (3.31) implies that tn=rn is bounded. Up to subsequences, we can assume that
GðlnÞ ! z and tn=rn ! s, then yn ! dsz ¼ y. From Remark 3.12, we know that
GðlÞ A PSðxÞ with respect to our graded coordinates, hence y A PSðxÞ. To prove (ii), we
choose y A PSðxÞXDR and set l ¼ G�1ðyÞ. By Lemma 3.10 there exists r0 > 0 depending
on the compact set G�1

�
DR XPSðxÞ

�
such that the solution r ! gðr; l 0Þ of (3.10) is defined

on ½0; r0� for every l 0 A G�1
�
DR XPSðxÞ

�
. Clearly, gðr; l 0Þ A S, then (3.27) implies that

d1=r

�
S
�
C yr ¼ d1=r

�
gðr; lÞ

�
! GðlÞ ¼ y:

This ends the proof. r
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Proof of Theorem 1.2. Without loss of generality we assume that x is the identity
element e and consider graded coordinates F : Rq ! G centered at 0 with respect to
X k

j . Notice that balls F�1ðBx; rÞ in Rq through graded coordinates will be simply
denoted by Bx; r. According to Corollary 3.8, we parametrize S by the C1;1 function
j : AHPSðeÞ ! Rq�p, such that S is the image of

F : AHPSðeÞ ! Rq;

y 7!
�

y1
1 ; . . . ; y1

a1
; j1

a1þ1ðyÞ; . . . ; j1
m1
ðyÞ; . . . ; y i

1; . . . ; y i
ai
; ji

aiþ1ðyÞ; . . . ; ji
mi
ðyÞ
�
:

For any su‰ciently small r > 0, we have

lim
r#0

~mmpðSXBrÞ
rd

¼ 1

rd

Ð
F�1ðBrÞ

J~ggFðyÞ dyð3:32Þ

¼
Ð

D1=rðF�1ðBrÞÞ
J~ggF

�
DrðyÞ

�
dy;

where Dr ¼ drjPSðeÞ and its Jacobian is exactly equal to rd and ~mmp is the p-dimensional Rie-
mannian measure on S with respect to the metric ~gg. Notice that

D1=r

�
F�1ðBrÞ

�
¼ ðd1=r �F � DrÞ�1ðB1Þ

is the set of elements y A PSðeÞ such that

y1
1 ; . . . ; y1

a1
;
j1
a1þ1ðDryÞ

r
; . . . ;

j1
m1
ðDryÞ
r

; . . . ; y i
1; . . . ; y i

ai
;
ji
aiþ1ðDryÞ

r i
; . . . ;

ji
mi
ðDryÞ
r i

 !

belongs to B1 and that

D1=r

�
F�1ðBrÞ

�
¼ ~ppSðeÞðS0; r XB1Þ;

where ~ppSðeÞ is the projection pSðeÞ with respect to graded coordinates, i.e. the mapping

Rq C ðz1
1 ; . . . ; z

1
m1
; . . . ; z i

1; . . . ; z
i
mi
Þ 7! ðz1

1 ; . . . ; z
1
a1
; . . . ; z i

1; . . . ; z
i
ai
Þ A PSðeÞ:

We will denote the projection ~ppSðeÞ by p. By continuity of p, for every e > 0 we can find
a neighbourhood NHRq of PSðeÞXD1 such that pðNÞHPSðeÞXB1þe; by Theorem 1.1
and the definition of Hausdor¤ convergence, for su‰ciently small r we have S0; r XD1 HN
and so

D1=rðBrÞH pðS0; r XD1ÞHPSðeÞXB1þe:ð3:33Þ

If we also prove that

PSðeÞXB1�eHD1=r

�
F�1ðBrÞ

�
ð3:34Þ

for small r, we will have wd1=rðF�1ðBrÞÞ ! wPSðeÞXB1
in L1

�
PSðeÞ

�
. This fact and (3.32) imply

that

225Magnani and Vittone, Submanifolds in stratified groups

Bereitgestellt von | Biblioteca del (Biblioteca del)
Angemeldet | 172.16.1.226

Heruntergeladen am | 16.01.12 17:03



lim
r#0

~mmpðSXBrÞ
rd

¼ J~ggFð0ÞLp
�
PSðeÞXB1

�
¼ J~ggFð0Þy

�
td
Sð0Þ

�
:

By Corollary 3.8 we know that ‘Fð0Þ ¼ Cð0Þ, where C is given by Lemma 3.1; therefore
J~ggFð0Þ must coincide with the Jacobian of the matrix Cð0Þ, i.e. with jv1ð0Þ5� � �5vpð0Þj~gg.
By virtue of Corollary 3.6, we have

jtd
SðeÞj ¼

X 1
1 5� � �5X i

a1
5� � �5X i

15� � �5X i
ai

jv1ð0Þ5� � �5vpð0Þj~gg

�����
�����
g

¼ 1

jv1ð0Þ5� � �5vpð0Þj~gg
:

Finally, it remains to prove (3.34). We fix

y ¼ ðy1; . . . ; ypÞ ¼ ðy1
1 ; . . . ; y1

a1
; . . . ; y i

ai
Þ A PSðeÞXB1�e

and set z :¼ drðyÞ A Bð1�eÞr. Let t0 > 0 be as in Lemma 3.13 and consider t1 A �0; t0½ to be
chosen later. By the same lemma, for every r > 0 su‰ciently small there exist l A G�1ðS p�1Þ
and t A ½0; t1½ such that FðzÞ ¼ gðt; lÞ. Since jGðlÞj ¼ 1, we can find 1e ie p such that
jGiðlÞjf 1=

ffiffiffi
p

p
. Notice that

pSðeÞ
�
FðzÞ

�
¼ z ¼ pSðeÞ

�
gðt; lÞ

�
¼ cðt; lÞ;ð3:35Þ

then (3.29) implies

MtsðiÞþ1
f jGiðlÞjtsðiÞ � jzijf tsðiÞ=

ffiffiffi
p

p � jyijrsðiÞ;

where M > 0 is given in Remark 3.11 with L ¼ G�1ðS p�1Þ. It follows that

ð1= ffiffiffi
p

p � Mt1ÞtsðiÞ e ð1= ffiffiffi
p

p � MtÞtsðiÞ e jyijrsðiÞ:

Now, we can choose t1 > 0 such that 1=
ffiffiffi
p

p � Mt1 f e > 0, getting a constant N > 0 de-
pending only on p, jyj and M such that

teNr:ð3:36Þ

Taking into account (3.35) and the explicit estimates of (3.25), we get some 1e k e i and
aj þ 1e j emj such that

jciðt; lÞj ¼ jgk
j ðt; zÞj ¼ jjk

j ðzÞjeMtkþ1;

where we notice that k ¼ sðiÞ. By (3.36), the previous estimate yields

jjk
j ðdryÞj ¼ jjk

j ðzÞje ~MMrkþ1;ð3:37Þ

where ~MM ¼ MN kþ1. Estimate (3.37) has been obtained with ~MM independent from r > 0
su‰ciently small. Therefore

y1
1 ; . . . ; y1

a1
;
j1
a1þ1ðdryÞ

r
; . . . ;

j1
m1
ðdryÞ
r

; . . . ; y i
1; . . . ; y i

ai
;
ji
aiþ1ðdryÞ

r i
; . . . ;

ji
mi
ðdryÞ
r i

 !
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belongs to B1 definitely as r goes to zero, namely, y A D1=rF
�1ðBrÞ for r > 0 small enough.

We observe that N linearly depends on jyj and is independent from r > 0, then the constant
~MM in (3.37) can be fixed independently from y varying in the bounded set PSðeÞXB1�e,

whence (3.34) follows. r

As it has been mentioned in the introduction, it is easy to find groups where non-
horizontal submanifolds of a given topological dimension cannot exist.

Example 3.14. Let us consider the 5-dimensional stratified group E5 with a basis
X1; . . . ;X5 subject to the only nontrivial relations

½X1;X2� ¼ X3; ½X1;X3� ¼ X4; ½X1;X4� ¼ X5

and the grading

V1 ¼ spanfX1;X2g; V2 ¼ spanfX3g; V3 ¼ spanfX4g; V4 ¼ spanfX5g:

Then m ¼ 2 and a 2-dimensional submanifold has codimension k ¼ 3. As a result,
m � k < 0 hence any 2-dimensional submanifold S satisfies dðSÞ < Q � k ¼ 11 � 3 ¼ 8.
In other words, all 2-dimensional submanifolds of E5 are horizontal.

4. Some applications in the Engel group

In this section we wish to present examples of 2-dimensional submanifolds of all pos-
sible degrees in the Engel group E4.

We represent E4 as R4 equipped with the vector fields Xi ¼
P4
j¼1

A
j
i ðxÞej, where

AðxÞ ¼

1 0 0 0

0 1 0 0

0 x1 1 0

0 x2
1=2 x1 1

0
BBB@

1
CCCA;

ðe1; e2; e3; e4Þ is the canonical basis of R4 and x ¼ ðx1; x2; x3; x4Þ.

Let F : U ! R4 be the parametrization of a 2-dimensional submanifold S, where U

is an open subset of R2. We set u ¼ ðu1; u2Þ ¼ ðx; yÞ A U and consider Fui
¼
P4
j¼1

F j
ui

ej.
Taking into account that

AðxÞ�1 ¼

1 0 0 0

0 1 0 0

0 �x1 1 0

0 x2
1=2 �x1 1

0
BBB@

1
CCCA

and that

ei ¼
P4
j¼1

�
AðxÞ�1� j

i
Xj;ð4:1Þ
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we obtain

Fui
¼ F1

ui
X1 þF2

ui
X2 þ ðF3

ui
�F1 F2

ui
ÞX3 þ F4

ui
�F1 F3

ui
þ ðF1Þ2

2
F2

ui

 !
X4:

It follows that

Fx5Fy ¼ F12
u X15X2 þ ðF13

u �F1F12
u ÞX15X3ð4:2Þ

þ F14
u �F1 F13

u þ ðF1Þ2

2
F12

u

 !
X15X4

þF23
u X25X3 þ F24

u �F1 F23
u

� �
X25X4

þ F34
u þ ðF1Þ2

2
F23

u �F1F24
u

 !
X35X4;

where we have set

F ij
u ¼ det

F i
x F i

y

F j
x F j

y

 !
:

In the sequel, we will use (4.2) to obtain nontrivial examples of 2-dimensional submanifolds
with di¤erent degrees in E4.

Remark 4.1. Recall that 2-dimensional submanifolds of degree 2 in E4 cannot exist,
due to non-integrability of the horizontal distribution spanfX1;X2g.

The next example wants to give a rather general method to obtain nontrivial exam-
ples of 2-dimensional submanifolds of degree 3. Clearly, the submanifold fð0; x2; x3; 0Þg is
the simplest example, as one can check using (4.2).

Example 4.2. Having degree three means that the first order fully non-linear condi-
tions

F34
u þ ðF1Þ2

2
F23

u �F1F24
u ¼ 0;

F24
u �F1 F23

u ¼ 0;

F14
u �F1 F13

u þ ðF1Þ2

2
F12

u ¼ 0

8>>>>>><
>>>>>>:

ð4:3Þ

must hold. By elementary properties of determinants, one can realize that the previous sys-
tem is equivalent to requiring that

‘F3 �F1‘F2 is parallel to ‘F4 � ðF1Þ2

2
‘F2;ð4:4Þ

‘F2 is parallel to ‘F4 �F1 ‘F3;ð4:5Þ

‘F1 is parallel to ‘F4 �F1 ‘F3 þ ðF1Þ2

2
‘F2:ð4:6Þ
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We restrict our search to submanifolds with F1ðx; yÞ ¼ x and F23
u 3 0 on U . This implies

that ‘F2 3 0 and so (4.5) is equivalent to the existence of a function l : U ! R such that

‘F4 � x‘F3 ¼ l‘F2:

Imposing the further assumptions lðuÞ ¼ �x2=2 it follows that

‘F4 ¼ � x2

2
‘F2 þ x‘F3;ð4:7Þ

whence also (4.6) is satisfied; since

xð‘F3 � x‘F2Þ ¼ ‘F4 � x2

2
‘F2;

it follows that also (4.4) is satisfied, namely, the system (4.3) holds whenever we are able to
find F satisfying (4.7). Clearly, we have an ample choice of families of functions F2, F3, F4

satisfying (4.7). We choose the injective embedding of R2 into R4 defined by

Fðx; yÞ ¼

x

x þ ey

xey þ x2

2

x3

6
þ x2

2
ey

0
BBBBBBBB@

1
CCCCCCCCA
:

One can check that dS
�
Fðx; yÞ

�
¼ 3 for every ðx; yÞ A R2, where S ¼ FðR2Þ. Here the part

of tS with maximum degree is

t3
S

�
Fðx; yÞ

�
¼ � eyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ x2

2

� �2

ð1 þ e2yÞ

s X25X3

and due to (1.4), the spherical Hausdor¤ measure of bounded portions of S is positive and
finite.

It is clear that submanifolds of higher degree are easier to be contructed.

Example 4.3. Let us consider

Fðx; yÞ ¼ x; y;
y2

2
;

y2

2

� �
:

Then we have

F12
u ¼ 1; F13

u ¼ y; F14
u ¼ y;

F23
u ¼ 0; F24

u ¼ 0; F34
u ¼ 0:
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By (4.2) we have

Fx5Fy ¼ X15X2 þ y � xð ÞX15X3 þ y � xy þ x2

2

� �
X15X4:ð4:8Þ

Recall that Sr is the subset of points in S with degree equal to r. With this notation we have

S4 ¼ fFðx; yÞ : y A �0; 2½gW fFðx; yÞ : y A Rn½0; 2� and jy � xj2 3 y2 � 2yg;

S3 ¼ fFðy þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 2y

p
; yÞ : s A f1;�1g and y A Rn½0; 2�g;

S2 ¼ fFð0; 0Þ;Fð2; 2Þg:

We will check that the curves

Rn½0; 2� C y ! gðyÞ ¼ Fðy þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 2y

p
; yÞ

with s A f1;�1g have degree constantly equal to 2. Due to (4.1), we achieve

_gg ¼ _gg1X1 þ _gg2X2 þ ð _gg3 � g1 _gg2ÞX3 þ _gg4 � g1 _gg3 þ ðg1Þ2

2
_gg2

 !
X4;

where one can check that

_gg4 � g1 _gg3 þ ðg1Þ2

2
_gg2

 !
¼ 0 and ð _gg3 � g1 _gg2Þ ¼ �s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 2y

p
3 0:ð4:9Þ

It follows that S3 is the union of two curves with degree constantly equal to 2. Applying
(1.4) we get that S2

KS3 is positive and finite on bounded open pieces of S3, hence
S4ðS3Þ ¼ 0. In particular, we have proved that

S4ðSnS4Þ ¼ 0;

then the Hausdor¤ dimension of S is 4 and furthermore S4
CS is positive and finite on

open bounded pieces of S. Clearly, (1.4) holds.

Example 4.4. Using (4.2) one can check that 2-dimensional submanifolds given by

Fðx; yÞ ¼

0

F2ðx; yÞ
F3ðx; yÞ
F4ðx; yÞ

0
BBB@

1
CCCA

where F34
u 3 0 have degree 5¼ Q � k. Notice that these submanifolds are then non-

horizontal.

Remark 4.5. Let us consider S as in Example 4.3. It is easy to check that

d1=rSXDR ! S XDR
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where

S ¼ fðx1; 0; 0; x4Þ : x4 f 0g:

Clearly, S cannot be a subgroup of E4, since all p-dimensional subgroups of stratified
groups are homeomorphic to Rp, see [48]. This fact, may occur since the origin in S has
not maximum degree, as one can check in Example 4.3.

Acknowledgements. We are grateful to Giuseppe Della Sala for fruitful discussions.
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