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Abstract. This article investigates the use of the computation of the exact free rigid body
motion as a component of splitting methods for rigid bodies subject to external forces. We review
various matrix and quaternion representations of the solution of the free rigid body equation which
involve Jacobi ellipic functions and elliptic integrals and are amenable to numerical computations.
We consider implementations which are exact (i.e., computed to machine precision) and semiexact
(i.e., approximated via quadrature formulas). We perform a set of extensive numerical comparisons
with state-of-the-art geometrical integrators for rigid bodies, such as the preprocessed discrete Moser–
Veselov method. Our numerical simulations indicate that these techniques, combined with splitting
methods, can be favorably applied to the numerical integration of torqued rigid bodies.
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1. Introduction. The accurate and efficient integration of the equations of mo-
tion of a rigid body under the influence of conservative forces is of great interest in
various fields, particularly mechanics and molecular dynamics (see, e.g., [17]). Split-
ting algorithms are frequently used: the Hamiltonian H = T + V , where T is the
kinetic energy and V is the potential energy, is written as the sum of integrable
terms, whose individual flows can be computed accurately and efficiently (see [11, 21]
for a background on splitting methods).

If the body has two equal moments of inertia, then the flow of T , namely, the
flow of the free rigid body, involves only trigonometric functions. Therefore splittings
based on the computations of the flows of T and of V are widely used; see, e.g.,
[28, 7, 3]. If the body has three different moments of inertia, instead, it is common
practice to further split the flow of T into a number of simpler flows, each of which
is computable in terms of trigonometric functions; see [28, 20, 26, 7, 9]. However,
it is a classical result which dates back to Legendre and Jacobi [13] that, even in
the case of three distinct moments of inertia, the flow of the free rigid body can be
explicitly integrated in terms of special functions—Jacobi elliptic functions for the
angular momentum equation and elliptic integrals or theta functions for the attitude
equation; see, e.g., [2, 31, 16, 14]. Hence, the flow of T is numerically computable
and can be used as a component of splitting algorithms. Because of this, there has
recently been a renewal of interest in the exact integration of the free rigid body and
in its use in splitting methods; see, for example, [6, 29, 30].

The aim of this article is to investigate the potentialities of this approach through
extended comparisons with other existing methods, particularly with those which
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appear to be the state of the art for the integration of the free rigid body with
distinct moments of inertia, that is, a number of splitting algorithms [28, 20, 26, 7]
and the so-called preprocessed discrete Moser–Veselov method of [12]. The latter
method consists of applying the classical discrete Moser–Veselov algorithm [24] to a
free rigid body whose moments of inertia have been suitably modified. This produces
high order approximations of the solution of the original free rigid body problem. The
modified moments of inertia depend on the initial conditions through the integrals of
motion and are given by series expansions in powers of the time step. Truncations of
these series produce integrators of arbitrarily high orders at a very moderate increase
in computational cost. See also [22] for an earlier version of this approach.

The rigid body motion can be described in a variety of ways, for example, by
using Euler angles, rotation matrices, and quaternions. A variety of expressions of
the solution of the equations of motion has been given in each case. In section 2
we derive expressions of the solution which are amenable for numerical computations
by using both rotation matrices and quaternions (as they are generally preferred to
Euler angles in numerical algorithms), and we discuss the link between them. Even
though this is of course nothing else than a revisitation of classical material, we add
a unified and mathematically precise treatment. We also discuss the relationship to
other approaches known in the literature [15, 29].

We consider the implementation of two of these algorithms, one with rotation
matrices and one with quaternions. They both use the elliptic integral of the third
kind, and to compute this function we consider two strategies. One is exact, that
is, computes the required functions to machine precision by means of the well-known
Carlson method [25]. The other, that we call semiexact, uses Gaussian quadrature
of arbitrarily high order and produces high order approximations of the solution of
the free rigid body. At the price of making the error in the evaluation of the integral
depending on the step size of integration, this allows a substantial reduction of the
computational cost.

In section 3 we perform numerical experiments. In particular, in section 3.2 we
consider the free rigid body and compare the methods with those of [12]. We in-
vestigate how the different methods perform for different choices of the moments of
inertia. It should be noted that, as far as the free rigid body is concerned, an obvi-
ous yet important feature of the exact methods is that they can be applied with any
value of the time step, while approximate and semiexact methods must be applied
with small enough time steps in order to achieve a desired accuracy. Furthermore,
implicit methods, such as those of [12], use fixed-point iteration, which might require
small step sizes to converge. These numerical comparisons give some indication on
the potentiality of exact and semiexact algorithms as components of splitting meth-
ods for forced rigid bodies. In fact, compared to approximate methods, exact and
semiexact methods are more robust in their dependence on the size of the time step.
In particular, these methods perform better, compared to others, when using large
step sizes.

Next, in sections 3.3 and 3.4 we investigate numerically the use of exact and
semiexact methods as components of splitting methods for the integration of some
problems involving rigid bodies subject to external forces. Specifically, we consider
some sample cases with and without a fixed point and a case from molecular dynamics.
In molecular dynamics situations the large number of particles implies that most of
the computation time is spent to evaluate the interacting forces, so that an increase
in the time spent to update the individual rigid molecules’ state can be compensated
by the advantage given by the use of larger step sizes.
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Altogether, our conclusion is that the implementation of the exact solution of
the free rigid body is in general a competitive approach compared to other numerical
methods, which is worthy of consideration.

2. The exact solution for the free rigid body.

2.1. The equations of motion. The configuration of a rigid body with a fixed
point is determined by the rotation which transforms a chosen orthonormal frame
{Es

1,E
s
2,E

s
3} fixed in space into a chosen orthonormal frame {Eb

1,E
b
2,E

b
3} attached

to the body, both having the origin in the body’s fixed point. We assume that
Eb

1,E
b
2,E

b
3 are principal axes of inertia of the body. As is customary, we identify

all vectors with their representatives in the body base that we denote with lowercase
fonts (that is, v = (v1, v2, v3)

T is the body representative of V =
∑

i viE
b
i ) and

denote by e1, e2, e3 the vectors of the canonical basis of R3. The configuration of
the body is thus determined by the attitude matrix Q ∈ SO(3) which transforms
body representives into spatial representatives of vectors; in particular, Qes

i = ei for
i = 1, 2, 3.

If m = (m1,m2,m3)
T is the body representative of the angular momentum vector

and I = diag(I1, I2, I3) is the inertia tensor, then the equations of motion can be
written as

ṁ = m × I−1m,(2.1)

Q̇ = Q Î−1m.(2.2)

Here × denotes the vector product in R3 and the hat-map ̂ : R3 → so(3) is defined as

v =

⎛⎝ v1

v2

v3

⎞⎠ �→ v̂ =

⎛⎝ 0 −v3 v2

v3 0 −v1

−v2 v1 0

⎞⎠
and satisfies v̂u = v × u for all u,v ∈ R3.

Equation (2.1) is the Euler equation (written for the angular momentum rather
than for the angular velocity ω = I−1m), while (2.2) is sometimes called the Arnold
equation. These are the left-trivialized Hamilton equations on T ∗SO(3) ≈ SO(3) ×
R3 � (Q,m), with the kinetic energy

T =
m2

1

2I1
+

m2
2

2I2
+

m2
3

2I3

as the Hamiltonian. These equations form a completely integrable Hamiltonian
system—in fact, a superintegrable or noncommutatively integrable system since, be-
sides the kinetic energy, also the three components of the spatial angular momentum
vector Qm are constants of motion (see, for instance, [10] and references therein).
In particular, the norm of the body angular momentum G = ‖m‖ is a constant of
motion.

As we review in this section, (2.1) and (2.2) can be explicitly integrated in terms
of elliptic functions. The integration is done in two steps. First, the Euler equation
(2.1) is integrated to give m(t). Then the Arnold equation (2.2) becomes a time-
dependent linear equation for Q(t), whose integration exploits in an essential manner
the constancy of the spatial angular momentum vector. We shall review different
representations of the solution, including some that use quaternions instead of rotation
matrices.
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Note that, due to the obvious SO(3)-symmetry and scaling invariance of (2.1)
and (2.2), we may restrict ourselves to describe their solutions with initial conditions
(Q0,m0) at t = t0 such that

Q0 = 1 , ‖m0‖ = 1 .

We shall indeed do so in order to keep the notational complexity to a minimum, but we
shall indicate the changes which give the general solutions. Depending on notational
convenience, we shall indifferently write m(t) or mt for the value at time t of the
solution of the Euler equation, etc.

From now on, we tacitly assume that the three moments of inertia I1, I2, and I3
are pairwise distinct, and we order them in ascending order: I1 < I2 < I3.

2.2. Solution of the Euler equation. The integration of the Euler equation
(2.1) is a standard matter, and we restrict ourselves to provide the result. As is well
known, the Euler equation can be viewed as a Hamiltonian system with respect to
the Lie–Poisson structure on R3 ≈ so(3)∗ and has the energy T and the norm of the
angular momentum G := ‖m‖ as constants of motion. For given G > 0, the phase
portrait consists of the six equilibria ±Gej , j = 1, 2, 3, of the four stable/unstable
manifolds of the equilibria ±Ge2, which are given by 2TI2 = G2, and of periodic
orbits which fill four disconnected regions of the sphere G = const. The periodic
orbits satisfy either 2TI3 > G2 > 2TI2 or 2TI2 > G2 > 2TI1, and, for given T and
G, there are two of them.

The expression of the periodic solutions involve the three Jacobi elliptic functions
sn, cn, and dn, whose definition is recalled in Appendix A. As mentioned, we consider
only solutions with unit norm. Given T , define the positive constants

Ijh = |Ij − Ih| , Δj = |1 − 2TIj | , Bjh =

(
IjΔh

Ijh

)1/2

for j, h = 1, 2, 3, j �= h, and

k =

(
Δ1I32
Δ3I21

)1/2

, λ1 =

(
Δ1I23
I1I2I3

)1/2

, λ3 =

(
Δ3I12
I1I2I3

)1/2

that we shall use without reference throughout this section.
Proposition 2.1. Let mt be a solution of the Euler equation (2.1) with unit

norm and energy T .
(i) If 2TI2 > 1 > 2TI1, then

(2.3) mt =
(
σB13 dn(λt− ν, k) , B21 sn(λt− ν, k) , B31 cn(λt− ν, k)

)T

,

with λ = σλ3, for some ν ∈ R and σ = ±1.
(ii) If 2TI2 < 1 < 2TI3, then

mt =
(
B13 cn(λt− ν, k−1) , B23 sn(λt− ν, k−1) , σB31 dn(λt− ν, k−1)

)T

,

with λ = σλ1, for some ν ∈ R and σ = ±1.
(iii) If 2TI2 = 1 and mt is not an equilibrium solution, then

mt =
(
σ′B13 sech(λt− ν) , tanh(λt− ν) , σ′B31 sech(λt− ν)

)T

,

with λ = σλ3, for some ν ∈ R, σ = ±1, and σ′ = ±1.
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The proof of these expressions reduces to differentiation; see, e.g., [16]. Solutions
on the stable/unstable manifolds have been included mostly for completeness, as their
need in numerical computations is quite rare. Note that in the first two cases the phase
ν can be taken modulo the period of the Jacobi elliptic functions.

Remark. Solutions with norm G are obtained from the formulas of Proposition 2.1
with the substitutions m �→ Gm and T �→ T/G2.

2.3. Integration of the rotation matrix. There are various derivations of the
solution t �→ Qt of (2.2) for the attitude matrix. They all have in common the use of
the constancy of the angular momentum vector in space to reduce the determination
of Qt to the determination of a planar rotation which, thanks to the knowledge of
the solution of Euler equation, reduces to the evaluation of the integral of a known
function. The procedure is more easily explained in terms of space vectors rather than
of their body representatives.

Let M be the angular momentum vector that, as above, we assume of unit
norm, Bs = {Es

1,E
s
2,E

s
3} be the spatial frame, and Bb = {Eb

1,E
b
2,E

b
3} be the body

frame. M and Bs are fixed in space, while Bb changes with time. Consider any
rotation Pt which takes M into the position of Eb

3 at time t; this rotation depends
on t, and its inverse transforms the body basis Bb into a certain orthonormal frame
Bt = {V t,W t,M}. Similarly, let R be a (time-independent) rotation which trans-
forms Es

3 into M and hence the spatial basis Bs into a certain orthonormal frame
B′ = {V ′,W ′,M}. Since the frames B′ and Bt have the M axis in common, there
is a (time-dependent) rotation Yt of axis M which transforms the former into the
latter. Therefore, the rotation Qt = R ◦ Yt ◦ Pt transforms the spatial basis into the
body basis.

This procedure is not unique in that it depends on the choice of Pt and R but
has the advantage that, for each such choice, the determination of Qt reduces to the
determination of a rotation about a known axis, that is, of an angle. Note that, if Qt

equals the identity at a certain time t0, as we may and do assume, then it is possible
to choose R = P−1

t0 and, correspondingly, Yt0 = 1.
Translated into body coordinates, this procedure leads to a representation of the

attitude matrix Qt as the product PT
t0YtPt, with Pt, Yt ∈ SO(3) such that

(2.4) Ptmt = e3 and Yte3 = e3 ∀ t , Yt0 = 1 .

We begin by giving an expression for the angle ψt of the rotation Yt as a function of
Pt. For shortness, we do it only in case (i) of Proposition 2.1.

Here and in the following we denote by a dot the Euclidean scalar product in R3

(and later on also in R4). Moreover, we use the inner product

〈A,B〉 :=
1

2
tr (ATB)

on the space of 3×3 skew-symmetric matrices. Note that 〈û, v̂〉 = u·v for all u, v ∈ R3.
Proposition 2.2. Consider a solution mt of the Euler equation with unit norm.

Let Pt, Yt ∈ SO(3) be smooth functions which satisfy (2.4), and write Yt = exp(ψtê3)
for some real function ψt. Then

(2.5) Qt := PT
t0YtPt

is the solution of (2.2) with initial datum Qt0 = 1 if and only if

(2.6) ψt =

∫ t

t0

(
2T + 〈ê3, PsṖ

T
s 〉

)
ds (mod2π)
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or, equivalently, if vt and wt are the first two columns of PT
t :

(2.7) ψt =

∫ t

t0

(
2T + ws · v̇s

)
ds (mod2π) .

Proof. Let ωt = I−1mt be the angular velocity. Under hypotheses (2.4), the
matrix Qt as in (2.5) satisfies Qt0 = 1 if and only if ψt0 = 0. Thus, it suffices to prove
that Qt = PT

t0YtPt satisfies Q̇t = Qtω̂t if and only if

(2.8) ψ̇t = 2T + 〈ê3, PtṖ
T
t 〉 .

For simplicity, we omit the indication of the dependency on t. Since Ẏ = ψ̇Y ê3,
differentiating (2.5) gives Q̇ = QPT (ψ̇ê3 + ṖPT )P . Hence, Q̇ = Qω̂ if and only

if ω̂ = PT (ψ̇ê3 + ṖPT )P . Since P ûPT = P̂u for all P ∈ SO(3) and u ∈ R3,

this condition is equivalent to ψ̇ê3 = P̂ω − ṖPT , namely, ψ̇ = 〈ê3, P̂ω + PṖT 〉
given that the matrices ê1, ê2, ê3 form an orthonormal set for the inner product 〈 , 〉
and ṖPT is skew-symmetric. The proof of (2.8) is concluded by observing that

〈ê3, P̂ω〉 = e3 · Pω = PTe3 · ω = m · ω = 2T .
Let us now prove (2.7). From PTe3 = m it follows that P = [v,w,m]T , with

orthonormal vectors v,w,m, and one computes PṖT = −w ·ṁê1 +v ·ṁê2−v ·ẇê3.
Thus 〈ê3, P ṖT 〉 = −v · ẇ = v̇ · w.

Note that any unit vector vt orthogonal to mt can be used to construct the
matrix Pt = [vt,wt,mt]

T , where wt = mt × vt. Since ‖mt‖ = 1 implies that ṁt is
orthogonal to mt, a possible choice is that of taking vt aligned with ṁt. We specialize
the expression of the angle ψt corresponding to this choice. For another choice, see
section 2.6. The expression of ψ uses the elliptic integral of the third kind Π and the
amplitude function am, whose definitions are recalled in Appendix A.

Corollary 2.3. Consider a solution mt of the Euler equation as in (2.3),
with unit norm and energy T such that 2TI2 > 1 > 2TI1. If, in Proposition 2.2,
vt = ‖ṁt‖−1ṁt, then

(2.9) ψt = 2T (t− t0) +
Δ2

λI2

[
Π
(
am(λt− ν), n, k

)
− Π

(
am(λt0 − ν), n, k

)]
,

with k, λ, and ν as in (2.3) and n = B−1
23 .

Proof. The orthogonality of w = m×v and ṁ implies that w · v̇ = w · m̈/‖ṁ‖ .
Since m̈ = d

dt (m × ω) = ṁ × ω + m × ω̇ and ω̇ = ‖ṁ‖I−1v, this gives w · v̇ =

v ·I−1v−ω ·m = v ·I−1v−2T . But from Proposition 2.2 we know that ψ̇ = 2T+w ·v̇.
Hence ψ̇ = v · I−1v. By inserting ṁ = m × I−1m into v, this becomes

ψ̇ =
I1(I23m2m3)

2 + I2(I13m1m3)
2 + I3(I12m1m2)

2

(I1I23m2m3)2 + (I2I13m1m3)2 + (I3I12m1m2)2
.

By using the constancy of T and G2 (= 1) to express m2
1 and m2

3 in terms of T and m2
2,

and then using the expression of m2 from (2.3), this gives

ψ̇ = 2T − I2Δ1Δ2Δ3

I2
2Δ1Δ3 − I12I23m2

2

= 2T +
Δ2/I2

1 −B−2
23 sn2(λt− ν)

.

The proof is concluded by integrating between t0 and t, taking into account (4.2) of
Appendix A.
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This algorithm equals that of [16], except for the sign of ψ. A similar algorithm
is given in [8].

Remark. If 2TI3 > 1 > 2TI2, then ψt is as in (2.9) with k replaced by k−1, with
λ and ν as in point (ii) of Proposition 2.2, and with n = B−1

21 .

2.4. The equations of motion in quaternionic form. We consider now the
quaternionic formulation of the free rigid body. For general references on quaternions,
see, e.g., [19]. Quaternions (of unit norm) are the points of the three sphere S3 =
{q ∈ R4 : ‖q‖ = 1} equipped with a certain Lie group structure. As is customary, we
write q = (q0, q) ∈ R×R3 and refer to q0 and q = (q1, q2, q3) as the scalar and vector
parts of q, respectively. Then

S3 = {q = (q0, q) ∈ R × R3 : q2
0 + ‖q‖2 = 1}

is a Lie group with product

(2.10) (p0,p)(q0, q) := (p0q0 − p · q, p0q + q0p + p × q).

The identity element of S3 is e = (1,0), and the inverse of q = (q0, q) ∈ S3 is
q−1 = (q0,−q).

The “Euler–Rodriguez” map E : S3 → SO(3) defined by

(2.11) E(q) = 1 + 2q0q̂ + 2q̂2

is a 2 : 1 surjective submersion. It is not injective since E(q) = E(−q) and each
rotation matrix has two preimages. Hence, S3 is a double covering of SO(3). If E(q) is
a rotation of angle ψ and axis e ∈ R3, ‖e‖ = 1, then q = (cos ψ

2 ,±e sin ψ
2 ). Moreover,

the map E is a group homomorphism since

E(qp) = E(q)E(p) ∀q, p ∈ S3.

Thus, the quaternionic formulation of the equations of motion of the rigid body is a
formulation on a covering space. Each motion of the rigid body in SO(3) corresponds
to two (nonintersecting) motions in S3, and it is immaterial which one is considered.
The “equation of motion of the rigid body in quaternion form” is the differential
equation on T ∗S3 which describes these motions. Analogously to what is done in the
case of SO(3), we give this equation in left-trivialized form.

The Lie algebra s3 = TeS
3 of S3 can be identified with R3 equipped with the cross

product as a commutator. It is convenient, however, to identify s3 with the subspace
{0} × R3 of R4 = R × R3:

s
3 =

{
u = (0,u) : u ∈ R3

}
so as to be able to exploit the fact that the quaternion product (2.10) extends to R4.
Note that, if u = (0,u) and v = (0,v) are in s3, then uv = (−u · v,u × v) ∈ R × R3

need not be in s3. Instead, if u = (0,u) ∈ s3 and q ∈ S3, then quq−1 ∈ s3; see also
(2.14) below. We shall also use the Euclidean product of R4 that we denote by a dot.

A simple calculation shows that the derivative at the identity of the covering map
E : S3 → SO(3) is the map E∗ := TeE : s3 → so(3) given by

(2.12) E∗(u) = 2û , u = (0,u) ∈ s
3 .
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If qt ∈ S3 and Qt = E(qt), then q−1
t q̇t ∈ s3, QT

t Q̇t ∈ so(3), and

(2.13) E∗(q−1
t q̇t) = QT

t Q̇t .

By general facts about Lie groups and covering maps, the map E∗ is a Lie algebra
isomorphism and hence intertwines the two adjoint representations, that is,

E∗(quq−1) = E(q)E(u)E(q)−1 ∀ q ∈ S3 , u ∈ s
3.

Note that this identity (which, incidentally, can be easily verified by a direct compu-
tation) can also be written as

(2.14) E∗(quq−1) = 2Ê(q)u ∀ q ∈ S3 , u = (0,u) ∈ s
3 .

As a direct consequence of (2.13) and (2.14) we can now state the rigid body equations
of motion on S3.

Proposition 2.4. Assume that mt is a solution of the Euler equation (2.1)
and that qt ∈ S3 is a smooth function. Then Qt := E(qt) is a solution of the Arnold
equation (2.2) if and only if

(2.15) q̇t =
1

2
qtωt,

with ωt = (0, I−1mt).
Clearly, if qt is a solution of (2.15) for a certain mt, then so is −qt, and they

project onto the same rigid body motion E(qt) on SO(3). The choice of the initial
condition qt0 unambiguously selects one of the two. Even though we need not use
this fact, we note for completeness that, written on s3, that is, for mt = (0,mt), the
Euler equation becomes ṁt = 1

2 (mtωt − ωtmt).

2.5. Integration of the quaternion. Solutions of (2.15) can be searched in
a factorized form qt = p−1

t0 ytpt analogous to that of section 2.3. To this end, it is
sufficient to determine pt and yt so that Pt := E(pt) and Yt := E(yt) satisfy properties
(2.4).

Since E∗ is an isomorphism, (2.14) shows that if p ∈ S3, u = (0,u) ∈ s3 and
v = (0,v) ∈ s3, then E(p)u = v if and only if pup−1 = v. Thus, if we write

mt = (0,mt) ∈ s
3 , ej = (0, ej) ∈ s

3 (j = 1, 2, 3) ,

we see that the analogues of conditions (2.4) are

(2.16) ptmtp
−1
t = e3 and yte3y

−1
t = e3 ∀ t , yt0 = e .

(The choice yt0 = −e would be acceptable as well.) We can now state the analogue
of the first part of Proposition 2.2.

Proposition 2.5. Consider a solution mt of the Euler equation with unit norm.
Let pt, yt ∈ S3 be smooth functions which satisfy (2.16). Then

qt := p−1
t0 ytpt

satisfies (2.15) and qt0 = e if and only if yt = (cos ψt

2 , e3 sin ψt

2 ), with

(2.17) ψt =

∫ t

t0

(
2T + 2e3 · psṗ−1

s

)
ds (mod2π) .
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Proof. Define Pt := E(pt) and Yt := E(yt). The latter is a rotation with axis e3 if
and only if yt = ±(cos ψt

2 , e3 sin ψt

2 ) for some ψt, but the plus sign has to be selected
in order to have yt0 = e. Since Yt = exp(ψtê3), by recalling Proposition 2.2 and
observing that qt = p−1

t0 ytpt is a solution of (2.15) if and only if E(qt) = PT
t0YtPt is a

solution of (2.2), we see that all we have to prove is that the expressions (2.17) and
(2.6) of the angle ψ coincide, namely, that

2e3 · pṗ−1 = 〈ê3, P ṖT 〉 .

Let PṖT = â, with a ∈ R3. Then (2.12) and (2.13) together show that pṗ−1 =
(0, 1

2a). Hence 2e3 · pṗ−1 = e3 · a = 〈ê3, â〉.
In order to make the previous result applicable, we need to give conditions on

the quaternion pt which ensure that it satisfies ptmtp
−1
t = e3 and then to express the

angle ψt in terms of the components of pt. This is the content of the following lemma.
Lemma 2.6. Consider a solution m = (m1,m2,m3)

T : R → R3 of the Euler
equation with unit norm and m3(t) �= −1 for all t. Then four smooth functions
p0, p1, p2, p3 : R → R are the components of a function p : R → S3 which satisfies
(2.16) if and only if

p1 =
p3m1 + p0m2

1 + m3
, p2 =

p3m2 − p0m1

1 + m3
,(2.18)

p2
0 + p2

3 =
1 + m3

2
.(2.19)

In that case

(2.20) 2T + 2e3 · pṗ−1 =
2T + I−1

3 m3

1 + m3
+ 4

p3ṗ0 − p0ṗ3

1 + m3
.

Proof. A computation shows that the four components of pm = (−p · m, p0m +
p × m) equal those of e3p = (−p · e3, p0e3 − p × e3) if and only p0, p1, p2, p3 satisfy
(2.18). Condition (2.19) ensures that (p0, p1, p2, p3) has norm one. Next, by using
(2.18) one computes

e3 · pṗ−1 = (p3ṗ0 − p0ṗ3) + (p2ṗ1 − p1ṗ2) = 2
p3ṗ0 − p0ṗ3

1 + m3
− m1ṁ2 −m2ṁ1

2(1 + m3)
,

and the conclusion follows by observing that m1ṁ2 −m2ṁ1 = e3 · m × (m × ω) =
2Tm3 − ω3, where as usual ω is the angular velocity.

Thus, any choice of p0 and p3 satisfying (2.19) leads to a quaternionic imple-
mentation of the free rigid body motion. For instance, taking p0 = c0

√
1 + m3 and

p3 = c3
√

1 + m3 with constants c0 and c3 such that c20 +c23 = 1
2 leads to a particularly

simple expression for ψ̇. Taking, for instance, c0 = 1√
2

and c3 = 0 gives the following.

Corollary 2.7. Consider a solution m(t) of the Euler equation as in (2.3),
with unit norm and energy T such that 2TI2 > 1 > 2TI1. Then quaternions p(t) and

y(t) =
(
cos ψ(t)

2 , e3 sin ψ(t)
2

)
as in Proposition 2.5 are given by

p(t) =
1√
2

(√
1 + m3(t) ,

m2(t)√
1 + m3(t)

, − m1(t)√
1 + m3(t)

, 0

)
,

ψ(t) =
t− t0
I3

+
I31

I1I3λ

[
Π (ϕ(t), n, k) + f(t) − Π (ϕ(t0), n, k) − f(t0)

]
,
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where ϕ(s) = am(λs− ν, k), with λ, k, and ν as in (2.3), n = −(B31/B13)
2, and

f(s) = B−1
21 B13B31 arctan

(
B−1

13 B21 sd(λs− ν, k)
)
.

Proof. If 2TI2 > 1 > 2TI1, then m3 > −1 for all times. With the given choice

of p0 and p3 the right-hand side of (2.20) reduces to 2T+m3/I3
1+m3

, namely, 1
I3

+ Δ3/I3
1+m3

.

From (2.3), m3 = acn(λt − ν, k), with a = B31. Since 0 < a < 1, n := a2

a2−1 < 0 and
thus [5, page 215]∫

du

1 + acn(u, k)
=

1

1 − a2

[
Π
(
am(u, k), n, k

)
− af1(u)

]
,

with f1(u) = C tan−1(C−1sd(u, k)), C = [(1− a2)/(k2 + (1− k2)a2)]1/2. The proof is
concluded with a little bit of algebra.

This is a rescaled version of the algorithm presented by Kosenko in [15]. This is
the algorithm we use in the numerical work of the next section.

2.6. Relation between quaternion and matrix algorithms. We discuss
now very shortly how to translate into quaternionic form q = p−1

t0 ytpt a given rep-
resentation Qt = PT

t0YtPt of the attitude matrix as in Proposition 2.2. This clearly
reduces to determining a quaternion pt such that Pt = E(pt). This operation involves
“inverting” a two-to-one map and can of course be done only up to the overall sign
of p, but this is immaterial in the present context given that the product p−1

t0 ytpt is
independent of the sign of p.

As usual, we assume that ‖m‖ = 1 and 2TI2 > 1 > 2TI1. Thus m3 �= ±1, and
we can invoke Lemma 2.6, which implies that a quaternion p such that E(p) = P is
determined, up to the sign, once p2

3 and the relative signs of p0 and p3 are known. If
p = (p0, p1, p2, p3), then, from (2.11),

E(p) =

⎛⎝ 1 − 2(p2
2 + p2

3) −2p0p3 + 2p1p2 2p0p2 + 2p1p3

2p0p3 + 2p1p2 1 − 2(p2
1 + p2

3) −2p0p1 + 2p2p3

−2p0p2 + 2p1p3 2p0p1 + 2p2p3 1 − 2(p2
1 + p2

2)

⎞⎠ .

Equating the three diagonals entries of this matrix to those of P = [v,w,m]T gives
4p2

1 = 1 + v1 − w2 −m3, 4p2
2 = 1 − v1 + w2 −m3, and

(2.21) 4p2
3 = 1 − v1 − w2 + m3.

If p0 and p3 are both nonzero, then their relative sign is determined by the equality

4p0p3 = v2 − w1,

which is obtained by equating entries (1, 2) and (2, 1) of the two matrices E(p) and P .
As an example, the algorithm of Corollary 2.3 uses v = ‖ṁ‖−1ṁ = ‖ṁ‖−1m×I−1m
and hence w = m × v = ‖ṁ‖−1(2Tm − I−1m). Thus, (2.21) gives

p2
3 =

1 + m3

4
+

I32m2

4I2I3‖ṁ‖
(
m3 −B32

)
.

The other components of the quaternion p are computed as just explained, and the
angle ψ is as in Corollary 2.3.
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As another example, take v = m×e3

‖m×e3‖ . Then v1 = (1 − m2
3)

−1/2m2, w2 =

(1 −m2
3)

−1/2m2m3, and

p2
3 =

1 + m3

4
− m2(1 + m3)

4
√

1 −m2
3

.

This produces a quaternion version of the algorithm based on rotation matrices re-
cently considered by van Zon and Schofield [29]. The rotation angle is

ψ =

∫ t

t0

2TI3 −m2
3

I3(1 −m2
3)
ds =

t− t0
I3

+
I31

λI3I1

(
Π(am(λt− ν), n, k) − Π(am(λt0 − ν, n, k))

)
,

with n = −B−2
31 B−2

13 .
Remark. There is another possibility for constructing a quaternion p such that

pmp−1 = e3, which is used in [15]. This is based on the fact that, given any three
orthonormal vectors v1,v2,v3 ∈ R3 and a vector m ∈ R3 with unit norm, one has

(2.22) pmp−1 = v3, with p =
v2 + v1m

‖v2 + v1m‖ ,

where, as usual, vi = (0,vi) and n = (0,m). Reference [15] uses v3 = e3, v1 =
γ1e1 + γ2e2, and v2 = γ2e1 − γ1e2, with γ1, γ2 ∈ R. It is elementary to verify
(2.22) by direct computation if vi = ei, i = 1, 2, 3. Otherwise, there is a quaternion
s ∈ S3 such that E(s)ei = vi, i = 1, 2, 3. Then p = k(se2s

−1 + se2s
−1m), with

k = ‖se2s
−1+se2s

−1m‖−1, and a simple computation shows that v3p−pm = s
[
e3(e2+

e1n)−(e2+e1n)n
]
s−1 for n = sms−1. Here the term between square brackets vanishes

by virtue of the previous observation.

3. Numerical experiments.

3.1. Numerical implementation. The exact algorithms described in this pa-
per require the computation of elliptic integrals of the first and third kinds. Elliptic
integrals of the first kind are computed very rapidly by using standard algorithms
such as the arithmetic geometric mean and ascending/descending Landen transfor-
mations [1]. These can be used also for the elliptic integral of the third kind, but their
performance is not so uniform, and other algorithms are preferred instead. In [29]
the authors use a method based on theta functions. Our implementation makes use
of Carlson’s algorithms rf, rj, and rc that have been acclaimed to produce accurate
values for large sets of parameters. These methods are described in detail in [25]
and are the most common routines for elliptic integrals of the third kind in several
scientific libraries.

As mentioned in the introduction, an alternative to the exact computation of
the elliptic integral of the third kind is the approximation by a quadrature method.
We will refer to the methods obtained in this manner as semiexact methods. These,
by construction, integrate the angular momentum exactly. They also preserve Qm
(because of the properties of the matrix P in Proposition 2.2). Moreover, they will
be time-symmetric if the underlying quadrature formula is symmetric.
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In [30], the integral ∫ u

u0

ds

1 − n sn2 s

is approximated by a quadrature based on Hermite interpolation, as the function sn
and its derivative can be easily computed at the end points of the interval. Alterna-
tively, one can write the same integral in the Legendre form:

(3.1)

∫ am(u)

am(u0)

dθ

(1 − n sin2 θ)
√

1 − k2 sin2 θ
.

This format is convenient when using quadrature formulas because it requires tabu-
lating the sine function in the quadrature nodes instead of sn(λ(t − ν)). Thus, (3.1)
can be approximated as∫ am(u)

am(u0)

f(θ)dθ ≈
p∑

i=1

bif(ϕ0 + aiΔϕ),

where Δϕ = am(u) − am(u0) and bi and ai are weights and nodes of a quadrature
formula, respectively. We use Gaussian quadrature (i.e., quadrature based on orthogo-
nal polynomials), because of its high order. In particular, Gauss–Legendre quadrature
with p points attains the maximal quadrature order 2p. The coefficients and weights
for the Gaussian–Legendre quadrature method of order 10 (5 nodes) used in this paper
are reported in Appendix B. Our numerical experiments indicate that this approxi-
mation is very effective. For instance, the 5-point Gauss–Legendre quadrature (order
10) gives very accurate results even for moderately large step sizes and reduces the
overall cost of the methods by 2/3.

With respect to the exact methods, the semiexact methods obtained with this
approach are more directly comparable to the methods of [12].

3.2. Free rigid body. In this section we compare the algorithms discussed in
this paper with the preprocessed Rattle/discrete Moser–Veselov (DMV) of Hairer and
Vilmart [12]. The latter are, in our opinion, the state-of-the-art approximation meth-
ods insofar as the rigid body is concerned. The comparison is done by using FOR-
TRAN routines. The methods we compare are dmv6, dmv8, and dmv10, the methods
based on the preprocessed Rattle algorithms of order 6, 8, and 10, respectively, the
two exact methods with the rotation matrix of section 2.3, and the rotation quater-
nion of section 2.5 along with their semiexact variants in which the elliptic integral
is approximated by Gauss–Legendre quadrature formulas of order 6, 8, and 10. As
explained in the introduction, in order to do these comparisons, we integrate the flow
of the free rigid body in a time interval [0, Tfin] by repeated application of the time-h
algorithms.

In the first experiment (see Figure 3.1, top plot) we display

(3.2) averageI,m0
log10 ||Qreference(Tfin; I,m0) −Qcomputed(Tfin|h; I,m0)||∞

(or the analogous quantity of the quaternion) against the CPU-time averages of the
different methods when Tfin = 10, with twenty different step sizes h ranging from
about 0.4 down to 0.01. The absolute value of the indicator (3.2) corresponds to the
average number of significant digits of the attitude matrix with step size h at time
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Fig. 3.1. Left: Average log of error versus average CPU times in the attitude rotation (100
runs) for random initial conditions and random moments of inertia. Right: Relative cost (with
respect to the cheapest method) versus step size. The methods computing the exact solutions are
more expensive than the approximated ones, but their relative cost rate improves for large time
steps. The DMV methods converge 75 out of the 100 runs. The failures are not taken into account
when computing the averages.

Tfin.1 The set of initial parameters, shared by all of the methods, is determined as
follows. We choose a random inertia tensor, normalized so that I1 < I2 < I3 = 1,
thereafter a random initial normalized angular momentum in the first quadrant. This
is not a restriction, as scaling both the inertia tensor and the angular momentum is
equivalent to a time reparametrization. The initial condition for the attitude matrix
is the identity matrix that, for quaternions, is (1, 0, 0, 0). The reference solution is
computed with Matlab’s ode45 routine, setting both relative and absolute errors to
machine precision. The average CPU is computed as the mean of 100 runs.

1Our methods compute exactly the angular momentum, while the DMV methods do not. How-
ever, both classes of methods preserve exactly the kinetic energy, the norm of the angular momentum,
and the spatial angular momentum Qm and are time-reversible and Lie–Poisson integrators for the
angular momentum. The DMV methods and the semiexact methods are not symplectic.
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Figure 3.1 indicates that the exact methods are clearly more expensive, but they
always converge (against 75 successes for the methods dmv6, dmv8, and dmv10 that
depend on a step size “small enough” for the fixed-point iterations to converge). The
diverging runs of the DMV methods are not taken into account when computing
averages. Good behavior is displayed also by the semiexact methods. Their cost is
about 1/3 of the methods using the exact elliptic integral (and this is reasonable,
because the exact routines compute 3 elliptic integrals of the third kind: the complete
one between 0 and π/2 and two incomplete ones between 0 and φ, where 0 ≤ φ ≤ π/2).
The right plot in Figure 3.1 displays the relative cost of the methods, computed as

average cost of method X

minall methods aver. cost of method X
,

so that the bottom line equals one by definition. The DMV are the cheapest methods,
and their cost increases very slowly with the order of the method. We see that the
relative cost of the exact and semiexact methods is higher for small step sizes and
lower for large step sizes. This indicates that the exact and semiexact methods are of
interest in numerical simulations that use large step sizes, for which the DMV might
have problems in converging.

The exact and semiexact methods discussed in this paper reveal a worse accu-
mulation of roundoff error for small step sizes (see Figure 3.1, left plot). This can be
partly explained by the fact that the routines for the attitude rotation make repeated
use of the exact solution of the angular momentum. However, with exact methods it
is not necessary to perform many tiny steps for integrating to the final time: a single
time stepping is enough, and this avoids the problems related to the accumulation of
roundoff error. To improve on propagation of roundoff, it is also possible to perform a
simple projection at the end of each time step; in the quaternion case this amounts to
dividing the attitude quaternion by its norm. In general, when exact and semiexact
methods are applied within a splitting method, the value of the parameters (angular
momentum, attitude, energy) will change before and after one free rigid body step,
and hence we do not foresee problems of roundoff accumulation.

What about the accuracy of the exact methods using matrices or quaternions?
Numerical experiments reveal that the accuracy of the two exact methods is very
comparable and also their cost. Methods using quaternions to represent rotations
are usually faster than their matrix counterpart, but here the computational time is
dominated by the evaluation of the elliptic integrals.

Our extensive numerical experiments revealed that the performance of the semiex-
act and the DMV methods depended heavily on the matrix of inertia I and the initial
condition m0 for the angular momentum. To understand this dependence, we have
followed a procedure similar to the one used in [9]. Since normalizing the matrix of in-
ertia is equivalent to a time reparametrization, it is sufficient to consider values of the
form I1/I3 < I2/I3 < 1. This reduces to considering two parameters, say, x = I1/I3
and y = I2/I3. As Ii + Ij ≥ Ik, the problem is reduced to considering values of x and
y in the triangle

T = {(x, y) ∈ R2 : 0 < 1 − y ≤ x < y < 1}

(see Figure 3.2).
We construct a discretization of this triangle by superimposing a rectangular grid

(100 points in the x direction and 50 in the y direction). For each point (x, y) in the
interior of the triangle, we solve 20 initial value problems with initial condition m0
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Fig. 3.2. Parametrization domain for the matrix of inertia. x-axis: I1/I3, y-axis: I2/I3.

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

Fig. 3.3. Average log10 error for the various values of the matrix of inertia with step size
h = 0.4. Comparison of exact methods. Top: Matrix case. Bottom: Quaternion case.

in the first octant. This set of initial parameters is identical for all of the methods.
Thereafter, we compute the average (3.2) for each method (nonconverging runs for
the DMV methods are discarded). The results of the experiments are shown in Fig-
ures 3.3, 3.4(a), 3.4(c), and 3.4(e), computed with integration step size h = 0.4, and
Figures 3.4(b), 3.4(d), and 3.4(f), computed with integration step size h = 0.04.

For the largest step size h = 0.4 the exact methods described in this paper per-
form very similarly and show a uniform accuracy. We compare then the semiexact
methods of order 6, 8, and 10 and the DMV ones of the same order. It should be
mentioned that the pictures corresponding to semiexact methods using matrix rota-
tions or quaternions are virtually indistinguishable from each order; for this reason,
we show only one of the two. Both the semiexact and the DMV methods reveal a
worse approximation in the proximity of the top left corner

(3.3) 0 ≈ x =
I1
I3

� y =
I2
I3

≈ 1 =
I3
I3

,

namely, when the smallest moment of inertia is much smaller than the two others.
This behavior of the numerical methods is due to the fact that, when I1 goes to zero,
one of the periods of the free rigid body motion tends to zero. To resolve these motions
accurately, numerical integrators must use small step sizes. The DMV methods have
on average less accuracy, and they failed to converge for several initial conditions.
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step-size h = 0.4 step-size h = 0.04

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

−20

−15

−10

−5

0

(a) (b)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

−20

−15

−10

−5

0

(c) (d)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

−20

−15

−10

−5

0

−20

−15

−10

−5

0

(e) (f)

Fig. 3.4. Average log10 error for the various values of the matrix of inertia with step size
h = 0.4 (left) and h = 0.04 (right): (a) and (b) Order 6. Top: Semiexact with quadrature order
6. Bottom: dmv6. (c) and (d) Order 8. Top: Semiexact with quadrature order 8. Bottom: dmv8.
(e) and (f) Order 10. Top: Semiexact with quadrature order 10. Bottom: dmv10.
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For the next value of the step size (h = 0.04) the exact methods reveal a worse
accumulation of roundoff error (not shown), already observed in Figure 3.1. This
accumulation disappears if the integration in [0, Tfin] is performed with a single time
step. The DMVs, in particular dmv10, perform very well in the whole triangle, except
for the top left corner.

The conclusion is that exact and semiexact methods are of interest for large step
sizes and, in particular, for values of the moments of inertia in the region (3.3).

3.3. Torqued systems and perturbations of free rigid body motions. In
this section we consider systems of the form

(3.4) H(m, Q) = T (m) + V (Q),

where T is the kinetic energy of the free rigid body and the potential energy V de-
scribes some external torque. As mentioned in the introduction, a standard approach
to solve this problem is to split it into a free rigid body motion coming from the
kinetic part

(3.5) S1 =

{
ṁ = m × I−1m,

Q̇ = Q Î−1m

plus a torqued motion, namely,

(3.6) S2 =

{
ṁ = f(Q),

Q̇ = 0,

where f(Q) = −rot(QT ∂V
∂Q ). Here the rot function maps matrices to vectors, first by

associating to a matrix a skew-symmetric one and then by identifying the latter with
a vector

rot(A) = skew−1(A−AT ),

where skew(v) = v̂; see also [26].
Thereafter, the flows of the S1 and S2 systems are composed by means of a

splitting method [21].
The most commonly used is the symplectic second order Störmer/Verlet scheme

(m, Q)(j+1) = ϕ
[S2]
h/2 ◦ ϕ[S1]

h ◦ ϕ[S2]
h/2((m, Q)(j)), j = 0, 1, . . . ,

where ϕ
[S1]
h and ϕ

[S2]
h represent the flows of S1 and S2, respectively. Some higher order

splitting schemes are presented in Appendix C. These are state-of-the-art optimized
schemes with a very small leading error [4]. We will use these methods for the remain-
ing experiments. All of the remaining experiments are performed in MATLAB. For
the rigid body part, we use the rotation-matrix exact method of section 2.3, which
we will call RB for reference.

One of the most popular methods for approximating the free rigid body system
(3.5) is a second order method proposed by McLachlan and Reich (see [7]). This
method, which we will call MR, is time-reversible and preserves the Poisson structure
of the system. In brief, the MR method is based on a splitting of the Hamiltonian
(3.4) into four parts:

H̃1 =
m2

1

2I1
, H̃2 =

m2
2

2I2
, H̃3 =

m2
3

2I3
, H̃4 = V (Q).
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Each of the corresponding Hamiltonian vector fields can be integrated exactly (H̃1,
H̃2, and H̃3 correspond to the vector field (3.5)), and the symmetric composition of
the flows gives rise to the approximation scheme

(m, Q)(j+1) = ΦMR((m, Q)(j)),

where

ΦMR = ϕ4,h/2 ◦ ΦT,h ◦ ϕ4,h/2.

Here

ΦT,h = ϕ1,h/2 ◦ ϕ2,h/2 ◦ ϕ3,h ◦ ϕ2,h/2 ◦ ϕ1,h/2

is the contribution from the kinetic parts H̃1, H̃2, and H̃3, where the flows of the
kinetic parts corresponds to elementary rotations in R3.

3.3.1. The heavy top. As a first study case, we consider a nearly integrable
situation, the rigid body with a fixed point in a small constant-gravity field. The
Hamiltonian is

(3.7) H = T + εV (Q), 0 < ε � 1,

with

V (Q) = eT
3 Q

Tu0

for a constant vector u0. The vector u = QTu0 describes the position of the center
of mass times the (normalized) acceleration of gravity. This potential V corresponds
to f(Q) = (u2,−u1, 0)T , where u1 and u2 are components of u.

A symplectic splitting method of order p that treats the free rigid body part
exactly would typically have a nearby Hamiltonian of the form

H̃ = H + εV + O(εhp),

and hence, if the step size of integration is small enough, the numerical error remains
smaller with respect to the perturbation parameter; see, e.g., [3]. If the rigid body part
is resolved by a symplectic method of order r, typically r ≥ p, the nearby Hamiltonian
has the form

H̃ = H + εV + O(hr) + O(εhp),

and thus, in order to have an error that goes to zero as ε goes to zero, one has to take
smaller step sizes h.

This behavior is displayed in Figure 3.5 for two values of ε (left plot: ε = 10−3;
right plot: ε = 10−6). We compare different splitting schemes of various order for the
system S1 + S2. Moreover, we compare the same splitting techniques using an exact
method or a further MR splitting for the free rigid body motion. As the MR method
has only order two, we boost its order to p (the same as the underlying splitting
scheme) by using Yoshida’s technique [32].

The initial conditions, identical for all of the methods, are chosen as follows.
Having fixed a value of ε, we choose a random inertia tensor, normalized so that
I1 = 1. Having chosen the first two components of m0 randomly, the remaining one
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Fig. 3.5. Average relative energy errors versus computational time, perturbed rigid body, ε =
10−3 (left plot), and ε = 10−6 (right plot). Initial kinetic energy T0 = 1. Solid lines: Splitting
methods using RB. Dashed-dotted lines: Splitting methods using MR approximation for the rigid
body motion boosted to the same order of the splitting scheme.

is determined to match T0 = 1. The vector u0 is taken equal to e3, and Q0 is the
identity matrix.

Several splitting methods are compared, and each timing and relative Hamiltonian
error is averaged (mean value) over 20 different initial conditions (each with new
I,m0). The methods are implemented so that all of the splitting schemes perform
the same number of force evaluations. This is done as follows: start with the following
basic time steps: h ∈ {8, 5, 4, 2, 1.75, 1.5, 1.25, 1, 0.5}. For a splitting method with s
stages (s is the number of evaluations of the force), we use hs = csh = s

10h. For
instance, for the sixth order 10-stages method S610, cs = 1; for the Störmer–Verlet
splitting (V2), cs = 1

10 . The integration is performed in the interval [0, 20].
Figure 3.5 indicates that the more we boost the order of the MR scheme, the more

the cost of the splitting method becomes similar to the one using the exact solution
of the rigid body. This is evident especially for schemes that have a large number of
stages (S610, RKN6a14). Moreover, it is also evident that composing MR to a higher
order scheme by using Yoshida’s technique yields methods with a high leading error
term that dominates the small error of the optimized splitting scheme. Finally, note
that only the methods using the exact integrator produce an error that is smaller
than ε even for very large choices of the step size. This is evident for ε = 10−3 but,
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in particular, for ε = 10−6. The conclusion is that the use of the exact algorithm for
the rigid body is definitively of interest in the integration of perturbed systems (see
also [3, 6]).

3.3.2. Satellite simulation. We consider a simplified model describing the mo-
tion of a satellite in a circular orbit of radius r around the Earth [18]. Denote that
μ = gM , where g is the gravitational constant and M is the mass of the Earth. The
potential energy of this system is given by

(3.8) V (Q) = 3
μ

2r3
(QTe3) · IQTe3,

where I is the inertia tensor and e3 is the canonical vector (0, 0, 1)T in R3. The torque
associated to this potential becomes

(3.9) f(Q) = 3
μ

r3
(QTe3) × I(QTe3).

We simulate the motion of the satellite by using the same parameters as in [23],
namely,

I1 = 1.7 × 104, I2 = 3.7 × 104, I3 = 5.4 × 104,

with

μ = 3.986 × 1014, r = 1.5 × 105,

in the interval [0, 400]. The initial angular momentum is m0 = I (15,−15, 15)T .
The initial attitude Q0 is the identity matrix. The system has an energy H0 =
1.21595664× 107, which is conserved in time. This experiment was also considered in
[6]. The splitting method based on the exact approximation of the rigid body is very
accurate. The motion of the center of mass (left column) and the relative error on
the energy H0 (right column) for the splitting method RKN6a14 employing our exact
solution are shown in Figure 3.6. The integration is performed in the interval [0, 400]
with step size h = 0.1 (top) and h = 0.05 (bottom). The relative error on the energy
(see Figure 3.6), which is of the order of 10−7 for h = 0.1 and 10−10 for h = 0.05,
indicates that H0 is preserved to 7 and 10 digits, respectively. The corresponding
plots for the evaluation of the flow of T with the MR splitting method are shown in
Figure 3.7.

3.4. Molecular dynamics simulation: Soft dipolar spheres. We consider a
molecular dynamics simulation, where molecules are modeled as dipolar soft spheres.
This model is of interest because it can be used to study water and aqueous solu-
tions, as water molecules can be described by small dipoles. We consider the system
described in example b in Appendix A of [7], which we recall here for completeness.
Denote by mi the total mass of the ith body, by qi the position of its center of mass,
by pi its linear momentum, by Qi its orientation, and, finally, by mi its angular
momentum in the body frame. The system has Hamiltonian

(3.10) H(q,p,m,Q) = T (p,m) + V (q,Q),

where T refers to the total kinetic energy

T (p,m) =
∑
i

(T trans
i (pi) + T rot

i (mi)),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2104 E. CELLEDONI, F. FASSÒ, N. SÄFSTRÖM, AND A. ZANNA
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Fig. 3.6. Satellite simulation. Left column: Center of mass (QT e3) by the splitting method
RKN6a14 with step size h = 0.1 (top) and h = 0.05 (bottom). Right: Relative error on the energy
corresponding to the same step sizes. See text for details.

consisting of the sum of the translational and rotational kinetic energies of each body

T trans
i (pi) =

‖pi‖2

2
, T rot

i (mi) =
1

2
mi · (I−1

i mi),

where Ii = diag(Ii,1, I,2, Ii,3) is the inertia tensor of the ith body, while V is the
potential energy, describing the interaction between dipoles, that is assumed to de-
pend on the position and orientation only. Furthermore, V =

∑
j>i Vi,j , where Vi,j

describes the interaction between dipole i and dipole j. We suppose that

Vi,j(qi,Qi,qj ,Qj) = V short
i,j + V dip

i,j ,

where

V short
i,j = 4ε

(
σ

ri,j

)12

, ri,j = qi − qj , ri,j = ‖ri,j‖,

describes the short range interaction between particles i and j, while

V dip
i,j =

1

r3
i,j

μi · μj −
3

r5
i,j

(μi · ri,j)(μj · ri,j)
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Fig. 3.7. Satellite simulation. Left column: Center of mass (QT e3) by the splitting method
MR with step size h = 0.1 (top) and h = 0.05 (bottom). Right: Relative error on the energy
corresponding to the same step sizes. See text for details.

is the term modeling the dipole interaction, where μi is the orientation of the ith dipole
vector. If μ̄i is an initial fixed reference orientation for the dipole, then μi = Qiμ̄i.

The Hamiltonian (3.10) is separable, as the potential energy is independent of
momenta and angular momenta. As before, we split the system as H = T + V ,
yielding

(3.11)

q̇i =
pi

mi
,

ṗi = 0,

ṁi = mi × (I−1
i mi),

Q̇i = Qi
̂(I−1
i mi)

and

(3.12)

q̇i = 0,

ṗi = − ∂V

∂qi
,

ṁi = −rot

(
Q�

i

∂V

∂Qi

)
,

Q̇i = 0.
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Fig. 3.8. Error in the Hamiltoninan versus computational time for 100 particles. Several
splitting methods are compared. See text for details.

We approximate the original system with full Hamiltonian (3.10) by a composition
of the flows of (3.11) and (3.12), by using some of the optimized splitting schemes
introduced earlier. In [30] the authors use a similar approach. The main difference
is in the choice of the splitting schemes (Störmer–Verlet and a fourth order Forest–
Ruth-like scheme) and the implementation of the RB method. One of the standard
methods, used in several packages for molecular dynamics simulations, for instance,
the ORIENT package [27], is that described in [7]. The method consists of a Störmer–
Verlet splitting plus a further splitting of the rigid body kinetic energy (that is, the
MR method described earlier in section 3.3). Here we will denote the same method
by V2+MR.

It is important to stress that, for a sufficiently large number of particles, approx-
imating the rigid body equations by a inexpensive method, such as MR, or a more
expensive one, such as the exact RB, is irrelevant, as the cost of this part grows only
linearly with the number of particles. The computationally most demanding part in
this simulation is the solution of (3.12), namely, the computation of the potential,
whose cost grows quadratically with the number of particles.

This appears clearly in our first example: we compare different splitting methods
for a system of 100 particles, for a relatively short time integration (Tfin = 1). All
of the methods use a fixed step size, appropriately scaled for each splitting scheme,
to require the same number of function evaluations. For the reference method, the
V2+MR, we use step size h = 10−1 × 1/2i for i = 0, . . . , 7; i.e., for the largest step
size h = 0.1, one has 10 potential evaluations, and thus the x-axis in Figure 3.8 can
be interpreted as a number of function evaluations as well. Similarly, the sixth order
splitting method S610+RB, with 10 internal stages requiring potential evaluations,
is implemented with step size h = 1. The results of the simulation are displayed
in Figure 3.8. The methods are implemented by using the RB method (solid line)
and the MR method (dashed-dotted line). Coalescence of stages is exploited for all
methods.

The initial conditions for the experiment were taken as follows: the masses mi

are chosen to be 1, qi = N × randn(3, 1), N = 100 being the number of particles
and randn(3, 1) a vector with random components (Gaussian distribution) between
−1 and 1; pi = 0,mi = 0, Qi random orthogonal matrix, μi = (0, 1, 1)T , σ = ε = 1,
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Fig. 3.9. Average errors versus CPU time for different values of the energy H0 and 100 runs
per each of the step sizes 1, 1/2, 1/4, and 1/8. Number of particles N = 125. For small energy
values, the splitting methods based on the exact RB integrator perform better than those with the
MR splitting. For higher values of the energy, the error due to the splitting H = T + V is much
higher than the error for the RB part, and it dominates the total error.

with a resulting energy H0 = 0.14134185611814. The moments of inertia are those of
water (I1 = 1, I2 = 1.88, and I3 = 2.88).

In the next numerical example (Figure 3.9), we test the same methods for different
energies. The initial conditions are chosen as follows: we take 125 particles that we
position on a lattice of dimension 5×5×5. The initial positions are then perturbed by
1% (Gaussian normal distribution). The initial orientations are random orthogonal
matrices. With these parameters, we compute the initial energy, and then we change
the linear momentum of the particles in positions q1 = (1, 1, 1)T and q125 = (5, 5, 5)T

to achieve the target energy H0. For each step size h = 1, 1/2, 1/4, 1/8 of the basic
method SR610, we perform 100 simulations (choosing every time a different initial
condition), and we average the error and the computational time (arithmetic mean).

Finally, having observed that Nyström schemes behave very well for this class of
problems, the method RKN4b6 is compared to RKN6a14 in Figure 3.10. The number
of function evaluations for the two methods is the same. The initial conditions are
as before, except for the number of averages (which is 1) and the time of integration,
with Tfin = 10.

These experiments indicate that the main source of error for this problem is the
splitting H = T +V . This seems consistent with conclusions on the water simulations
in [30]. In particular, a lower global error as a result of using the exact RB integrator
becomes visible only in the step size asymptotic regime (as h → 0; see Figure 3.8).
Furthermore, how small the step size h must be, to see the positive effect of the exact
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10
0

10
1

10
2

10
3

10
−20

10
−15

10
−10

10
−5

H
0
=0.1

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

H
0
=0.5

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

H
0
=1

10
1

10
2

10
−15

10
−10

10
−5

H
0
 = −0.1

Fig. 3.10. Error versus CPU time. Comparison of two RKN splittings of order 4 and 6, on
the interval [0, 10], 125 particles, for some initial conditions. The sharp increase of the error for
the sixth order method is due to the fact that the step size is too large. The RKN46 method (crosses
with solid and dashed-dotted lines) is the same as in Figure 3.9.

RB integrator, seems to depend on the total energy of the system. For low energies,
the error with the exact method becomes smaller at a larger step size. For higher
energies, the error with the exact method becomes smaller only at very small values
of h; see Figures 3.9–3.10.

Our conclusion is that the use of an exact RB integrator is favorable for simula-
tions where higher precision is required (for instance, low energy). For higher energies,
the effect of having an exact integrator for the RB part appears to be less relevant
unless other techniques are used.

4. Conclusions. The main purpose of this paper has been to understand whether
and when the use of an exact solution of the free rigid body equations as a component
of splitting methods is a competitive geometric integrator.

We have reviewed various algorithms for the computation of the exact solution of
the free rigid body equations providing a common framework. We have implemented
two concrete approaches based on rotation matrices and quaternions. The algorithms
require the computation of an elliptic integral of the third kind, which we either
compute to machine accuracy (exact methods) or approximate by Gauss–Legendre
quadrature (semiexact methods). We have performed numerous experiments com-
paring these methods to preprocessed discrete Moser–Veselov methods (experiments
on the free rigid body problem) and to various splitting methods (experiments on
torqued rigid bodies).
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In conclusion, the exact methods, though more expensive, are very robust and
behave uniformly well for all choices of the principal moments of inertia and initial
conditions, independently of the step size of integration.

If cost is an issue, semiexact methods are a good compromise. They are much
cheaper than the exact ones, while sharing most of the geometric properties2 and being
robust for large step sizes and arbitrary values of the principal moments of inertia.
This is an advantage compared to implicit methods using fixed-point iteration that
might require small step sizes to converge (e.g., the cheaper DMV).

Our conclusion is that the implementation of the exact solution of the free rigid
body is competitive as a numerical approach and has the advantage that it can be
used as a building block for splitting methods of high order.

When used as a component of splitting methods the exact and semiexact meth-
ods are definitively of interest in the case of perturbed free rigid body problems. In
molecular dynamics simulations, using the exact rigid body motion gives a clear ad-
vantage compared to other splittings only in the low energy case. However, even in
the general case, the cost due to any rigid body integrator (approximate or exact)
is growing only linearly as a function of the number of particles, while the number
of interparticle force evaluations is growing quadratically and dominates the overall
computational cost.

Appendices.

Appendix A. Jacobi elliptic functions. We collect here a few facts about the
elliptic functions we use in the article. Given 0 ≤ k < 1, the function

(4.1) ϕ �→ F (ϕ, k) :=

∫ ϕ

0

dθ√
1 − k2 sin2 θ

is called an (incomplete) elliptic integral of the first type with modulus k and is a
diffeomorphism R → R. Its inverse F ( · , k) is an odd function

am( · , k) : R →
(
− π

2
,
π

2

)
,

which is called the amplitude of modulus k. The Jacobi elliptic functions sn and cn
of modulus k are the functions R → [−1, 1] defined as

sn(u, k) = sin(am(u, k)) , cn(u, k) = cos(am(u, k)),

respectively, and are periodic of period 4K(k), where K(k) = F (π2 , k) (the so-called
complete elliptic integral of the first type of modulus k). Moreover,

dn(u, k) =
√

1 − k2sn(u, k)2 , sd(u, k) =
sn(u, k)

dn(u, k)
.

For given k, the u-derivatives of these functions satisfy sn′ = cn dn, cn′ = −sn dn,
and dn′ = −k2sn cn.

The (incomplete) elliptic integral of the third kind with modulus 0 < k ≤ 1 and
parameter n ∈ R is the function Π( · , n, k) : (−π

2 ,
π
2 ) → R defined by

(4.2) Π(ϕ, n, k) :=

∫ ϕ

0

dθ

(1 − n sin2 θ)
√

1 − k2 sin2 θ

2Symplecticity is lost, but the methods are time-reversible as long as the underlying quadrature
is symmetric. Also, the DMV methods are time-reversible but not symplectic.
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(Legendre form) or, equivalently,

Π(ϕ, n, k) =

∫ F (ϕ,k)

0

ds

1 − n sn(s, k)2
.

Appendix B. Coefficients of the Gauss quadrature. For completeness, we
report the coefficients of the Gaussian quadrature of order 10 shifted to the interval
[0, 1]:

(4.3)

a1 = 0.04691007703067, b1 = 0.11846344252809,
a2 = 0.23076534494716, b2 = 0.23931433524968,
a3 = 0.5, b3 = 0.28444444444444,
a4 = 0.76923465505284, b4 = b2,
a5 = 0.95308992296933, b5 = b1.

For the qudrature of order 6 and 8 the coefficients have closed form and can be
found, for instance, in [1].

Appendix C. Coefficients of the splitting schemes. Given the differential
equation

y′ = F (y) = A(y) + B(y),

denote by ϕ
[F ]
τ the flow of the vector-field F from time t to time t + τ . Given a

numerical approximation y(j) ≈ y(tj), we consider symmetric splitting schemes of the
type

y(j+1) = ϕ
[A]
a1h

◦ ϕ[B]
b1h

◦ ϕ[A]
a2h

◦ · · · ◦ ϕ[A]
am+1h

◦ · · ·ϕ[B]
b1h

◦ ϕ[A]
a1h

y(j),

where h = tj+1 − tj . A typical splitting is obtained by separating the contributions
arising from the kinetic (A) and potential (B) energy of the system. For this reason,
(twice) the number s of the coefficients bi is called the stage number of the splitting
method. The effective error is defined as Ef = s p

√
||c||2, where c is the vector of

coefficients of the elementary differentials of the leading error term and p is the order
of the method. We refer to [4, 21] for background and notation.

For completeness, we report the coefficients of the methods used in this paper.
Störmer–Verlet scheme (V2):

(4.4) a1 = 1/2, b1 = 1,

(order 2, one stage).
S610 method (order 6, 10 stages, effective error Ef = 1.12):

(4.5)

a1 = 0.0502627644003922, b1 = 0.148816447901042,
a2 = 0.413514300428344, b2 = −0.132385865767784,
a3 = 0.0450798897943977, b3 = 0.067307604692185,
a4 = −0.188054853819569, b4 = 0.432666402578175,
a5 = 0.541960678450780, b5 = 1/2 − (b1 + · · · + b4),
a6 = 1 − 2(a1 + · · · + a5).

S46 (order 4, 6 stages, effective error Ef = 0.56):

(4.6)

a1 = 0.07920369643119565, b1 = 0.209515106613362,
a2 = 0.353172906049774, b2 = 0.143851773179818,
a3 = −0.04206508035771952, b3 = 1/2 − (b1 + b2),
a4 = 1 − 2(a1 + a2 + a3).
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The splittings above are generic in the sense that the A and B part are inter-
changeable. This is not the case for the next methods, which are based on Nyström
schemes for separable Hamiltonians.

RKN4b6 (order 4, (7)6 stages, effective error Ef = 0.28):

(4.7)

b1 = 0.0829844064174052, a1 = 0.245298957184271,
b2 = 0.396309801498368, a2 = 0.604872665711080,
b3 = −0.0390563049223486, a3 = 1/2 − (a1 + a2),
b4 = 1 − 2(b1 + b2 + b3).

RKN6a14 (order 6, 14 stages, effective error Ef = 0.63):

(4.8)

a1 = 0.0378593198406116, b1 = 0.09171915262446165,
a2 = 0.102635633102435, b2 = 0.183983170005006,
a3 = −0.0258678882665587, b3 = −0.05653436583288827,
a4 = 0.314241403071477, b4 = 0.004914688774712854,
a5 = −0.130144459517415, b5 = 0.143761127168358,
a6 = 0.106417700369543, b6 = 0.328567693746804,
a7 = −0.00879424312851058, b7 = 1/2 − (b1 + · · · + b6),
a8 = 1 − 2(a1 + · · · + a7).
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