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On classes defining a homological dimension

Francesca Mantese and Alberto Tonolo

Abstract. A class F of objects of an abelian category A is said to define a homological dimension if
for any object in A the length of any F -resolution is uniquely determined. In the present paper we
investigate classes satisfying this property.

Key words. Homological dimension, abelian categories, cotorsion pairs.

AMS classification. 18G20, 16E10.

Introduction

In general the class of the objects of a given abelian category A is too complex to
admit any satisfactory classification. Starting from a known subclass F of A, one may
try to approximate arbitrary objects by the objects in F . This approach has successfully
been followed over the past few decades for categories of modules through the theory
of precovers and preenvelopes, or left and right approximations (see [6] or [8] for a
detailed list of references).

Another point of view could be to measure the “distance” of any object in A from
the class F , introducing a notion of dimension with respect to the class F , computed
by means of F-resolutions. In this framework, the notions of projective dimension,
weak dimension, Gorenstein dimension of modules have been deeply studied.

Our aim is to define a good concept of dimension with respect to a wide family
of classes of objects. We say that a class F of objects of an abelian category A de-
fines a homological dimension if for any object in A, the length of any F-resolution is
uniquely determined (see Definition 1.6). In such a way to each object in A one can
associate an F-invariant number which represents locally the relevance of F .

In the first section we study several properties of classes defining a homological
dimension; in particular we discuss their closure properties and the connection with
precover classes and cotorsion pairs. In the second section, using tools from derived
categories, we generalize the Auslander notion of Gorenstein dimension to arbitrary
abelian categories. We consider a homological dimension associated to an adjoint pair
(Φ, Ψ) of contravariant functors, obtaining again the classical Gorenstein dimension on
R-modules in case Φ = Ψ = Hom(−, R) for a commutative noetherian ring R.
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432 F. Mantese and A. Tonolo

1 Homological dimension

Definition 1.1 (cf. [2]). Let F be a class of objects in an abelian category A. We say
that an object M in A has left F-dimension ≤ α, α ∈ N ∪ {∞}, if there exists a long
exact sequence

. . . → Fi → Fi−1 → . . . → F1 → F0 → M → 0

with Fi ∈ F ∪ {0}, and Fi = 0 for i > α. We denote by Fα the class of objects M
of left F-dimension ≤ α (shortly Fdim M ≤ α), and by F<∞ the class of objects of
finite left F-dimension.

In general there exist objects which have not a left F-dimension: in particular all
objects which are not quotients of objects in F . We denote by F the class of all objects
in A which are homomorphic image of objects in F .

Remark 1.2. If A has enough projectives and F is closed under direct summands, then
F = A if and only if F contains all projective objects.

In particular, if A = R-Mod, denoted by P and F l the classes of projective and flat
modules respectively, then P = R-Mod and F l = R-Mod, and left P- and left F l-
dimensions are the usual projective and flat (or weak) dimensions of a module.

Definition 1.3. We say that A has global left F-dimension ≤ α (resp. < ∞), α ∈
N ∪ {∞}, if for each object M in A we have Fdim M ≤ α (resp. < ∞).

Clearly A has global left F-dimension ≤ ∞ if and only if A = F .
In any abelian category A it is possible (see [13, Ch. VII]) to define, for any pair

of object A, B ∈ A, the family ExtiA(A, B) of equivalence classes of exact sequences
of length i with left end B and right end A, with respect to the Yoneda equivalence
relation. The family ExtiA(A, B) in general is not a set (see [7, Ch. VI]); nevertheless
it can be equipped with an additive structure and become a big abelian group. The
big abelian groups are defined in the same way as ordinary abelian groups, except
than the underlying class need not be a set. Quoting [13], “[. . . ] we are prevented
from talking about the category of big abelian groups because the class of morphisms
between a given pair of big groups need not be a set. Nevertheless this will not keep
us from talking about kernels, cokernels, images, exact sequences, etc., for big abelian
groups.” If A has enough injectives or projectives, then ExtiA(A, B) is an abelian group
for each A, B ∈ A.

Given a class of objects G, we denote by

G⊥m = {M ∈ A : ExtiA(G, M) = 0, ∀1 ≤ i ≤ m, G ∈ G};

the intersection
⋂

m≥1 G⊥m will be denoted by G⊥∞ . Dually, we denote by

⊥mG = {M ∈ A : ExtiA(M,G) = 0, ∀1 ≤ i ≤ m, G ∈ G};

the intersection
⋂

m≥1
⊥mG will be denoted by ⊥∞G.
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On classes defining a homological dimension 433

Definition 1.4 ([13, Ch. VI.6]). Let A be an object of an abelian category A. The
cohomological dimension ch.dim A of A is the least integer n such that the one variable
functor ExtnA(−, A) is not zero.

If A has enough injective objects (e.g., if A is a Grothendieck category) the coho-
mological dimension of an object coincides with its injective dimension.

Proposition 1.5. Assume that A has enough projectives.

(i) If glFdimA ≤ n, n ∈ N, then ch.dim Y ≤ n for each Y ∈ F⊥n+1 .

(ii) If F = ⊥mG for a class G of modules of cohomological dimension less or equal
than n ∈ N, then glFdimA ≤ n.

Proof. Let M be an arbitrary object in A.
(i) Since glFdimA ≤ n, there exists an exact sequence

0 → Fn → Fn−1 → · · · → F1 → F0 → M → 0.

Applying the contravariant functor Hom(−, Y ), since Y ∈ F⊥n+1 , by dimension shift
we get Extn+1

A (M, Y ) ∼= Ext1A(Fn, Y ) = 0. Since Extn+1
A (M, Y ) = 0 for each object

M in A, and the latter has enough projectives, then Extn+i
A (M,Y ) = 0 for each i ≥ 1,

i.e. ch.dim Y ≤ n.
(ii) Consider an exact sequence

0 → Kn → Pn−1 → · · · → P1 → P0 → M → 0

with Pi projective for i = 0, . . . , n − 1. Since Pi ∈ F it is enough to prove that Kn

belongs to F . So let G ∈ G; then ExtiA(Kn, G) ∼= Extn+i
A (M,G) = 0 for 1 ≤ i.

Therefore Kn ∈ ⊥∞G ⊆ ⊥mG = F .

In order to introduce a good measure of the distance between an object of A and a
given class F , the length of a F-resolution has to be uniquely determined.

Definition 1.6. We say that the left F-dimension associated to a class F is homological
(or that the class F defines a homological dimension) if

(i) for any short exact sequence 0 → K → F → M → 0 with F ∈ F and M ∈ F∞,
the object K belongs to F∞;

(ii) for any exact sequence

0 → Kn → Fn−1 → · · · → F1 → F0 → X → 0

with Fi ∈ F , i = 0, 1, . . . , n − 1, and X ∈ Fn, the object Kn belongs to F .

Clearly if A = F we have A = F∞ , and the first condition is empty.
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434 F. Mantese and A. Tonolo

Example 1.7. If A = R-Mod, the classes P and F l define a homological dimension.
The class of free modules defines a homological dimension if and only if it coincides
with the class of projective modules (see Proposition 1.9), e.g. if R is local.

If A is the category of coherent sheaves on a noetherian scheme X , the classes of
the locally free sheaves LF and of the invertible sheaves both define a homological
dimension (see [9, Chp. 2 §5, Chp. 3 §6]). If X is quasi-projective over SpecR, where
R is a noetherian commutative ring, then LF = A.

Note that the notion of homological dimension can be easily dualized obtaining a
notion of homological codimension; for instance, if A = R-Mod, the class of injective
modules defines a homological codimension. Most of the results we obtain in this
paper could be reformulated for this dual concept.

In the sequel we study closure properties of classes defining a homological dimen-
sion.

Let F be a class of modules and 0 → A → F → C → 0 be an exact sequence with
F ∈ F . Thus, for any i ≥ 1 in N, if A ∈ Fi−1 then C ∈ Fi.

Lemma 1.8. Let F be a class of objects in A and 0 → A → F → C → 0 be an
exact sequence with F ∈ F . If F defines a homological dimension and C ∈ Fi, then
A ∈ Fi−1. In particular F is closed under kernels of epimorphisms.

Proof. By the definition of homological dimension, A belongs to F∞. Therefore con-
sider an exact sequence

0 → Ki−1 → Fi−2 → · · · → F1 → F0 → A → 0

with Fj ∈ F . Since

0 → Ki−1 → Fi−2 → · · · → F1 → F0 → F → C → 0

is an F-resolution for C and Fdim C ≤ i, we get that Ki−1 ∈ F .

Proposition 1.9. Let F be a class of objects defining a homological dimension. If F is
closed under countable direct sums, then F is closed under direct summands.

Proof. Let L ⊕ M = F ∈ F ; consider the short exact sequence

0 → L → L ⊕ (M ⊕ L)(ω) → (M ⊕ L)(ω) → 0;

since both (M ⊕L)(ω) and L⊕ (M ⊕L)(ω) ∼= (L⊕M)(ω) belong to F , also L belongs
to F .

In the next theorem we compare the F-dimension of objects in a short exact se-
quence.
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On classes defining a homological dimension 435

Theorem 1.10. Assume F defines a homological dimension and it is closed under finite
direct sums. Let 0 → A → B → C → 0 be a short exact sequence. Then for each
i ∈ N we have that

(1i) if B and C belong to Fi then A belongs to Fi;

(2i) if A and B belong to Fi then C belongs to Fi+1.

If F is closed under extensions, then

(3i) if A and C belong to Fi+1, then B belongs to Fi+1;

(4i) if B ∈ Fi and C ∈ Fi+1, then A belongs to Fi.

Proof. (1) – (2): If i = 0, (20) is clearly true by definition and (10) follows by Fdim C=
0 ≤ 1 and the fact that F defines a homological dimension. Assume (1i−1) and (2i−1)
true for i − 1 ≥ 0. Let us consider the pullback diagram

0 0

0 �� A ��

��

B ��

��

C �� 0

0 �� PB
��

��

FB
��

��

C �� 0

KB

��

KB

��

0

��

0

��

(∗)

with FB in F .
(1i): By Lemma 1.8 both KB and PB in diagram (∗) belong to Fi−1, and so by

induction A ∈ Fi.
(2i): Let now A and B be in Fi; there exist FB ∈ F and an epimorphism π : FB →

B. Consider the following pullback diagram:
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436 F. Mantese and A. Tonolo

0 0

0 �� A �� B
g

��

��

C ��

��

0

0 �� A �� PC

p
��

��

FB
��

g◦π

��

0

KC

��

KC

��

0

��

0

��

Since PC is a pullback, there exists j : FB → PC such that p ◦ j = 1FB
. Then the

middle exact sequence splits, and therefore PC = A ⊕ FB; since F is closed under
finite direct sums, PC belongs to Fi. Therefore by (1i) we have KC ∈ Fi and hence C
belongs to Fi+1.

(3) – (4): If i = 0, (40) follows by the definition of homological dimension. Since
F is closed under extensions, if A and C are in F , also B belongs to F . Then, if A
and C belong to F1, we can consider the pullback diagram (∗) with FB in F . Since C
belongs to F1, then PB belongs to F ; since A belongs to F1, then also KB belongs to
F , and therefore B belongs to F1. Assume (3i−1) and (4i−1) true for i − 1 ≥ 0.

(4i): Let us consider the pullback diagram

0 0

0 �� A �� B ��

��

C ��

��

0

0 �� A �� PC
��

��

FC
��

��

0

KC

��

KC

��

0

��

0

��

with FC ∈ F ; then KC belongs to Fi. Since B belongs to Fi, by (3i−1) we have that
PC ∈ Fi, and hence, by (1i), A belongs to Fi.
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On classes defining a homological dimension 437

(3i): Since F is closed under extensions, we can consider the pullback diagram (∗)
with FB in F . By Lemma 1.8, PB belongs to Fi; then KB ∈ Fi by (4i), and hence B
belongs to Fi+1.

Remark 1.11. It follows that if F is closed under finite direct sums and F is closed
under extensions, then

• the class F<∞ is closed under extensions, kernels of epimorphisms and cokernels
of monomorphisms;

• the classes Fi, i ≥ 0, are closed under kernels of epimorphisms; if i ≥ 1, they are
closed also under extensions.

Proposition 1.12. Assume F defines a homological dimension, it is closed under finite
direct sums, and F = A. Then also Fi and F<∞ define a homological dimension for
any i ≥ 1.

Proof. Since F = A, also Fi = A = F<∞. Therefore condition 1 in Definition 1.6 is
empty in both the cases. Let M be an object admitting an Fi-resolution

0 → Fi,n → Fi,n−1 → · · · → Fi,0 → M → 0.

Consider an exact sequence 0 → K → F ′
i,n−1 → · · · → F ′

i,0 → M → 0 with F ′
i,j ∈ Fi.

From the first sequence, applying recursively Theorem 1.10(2i), we get that M ∈ Fn+i.
Applying recursively Theorem 1.10(4i) to the second exact sequence we obtain that
K ∈ Fi. Since each finite F<∞ resolution is actually an Fm resolution for a suitable
m ∈ N, we conclude that also F<∞ defines a homological dimension.

In case the abelian category A has enough projectives, a relevant family of classes
defining a homological dimension is given by the left orthogonal of any class.

Proposition 1.13. Assume A has enough projectives, and let G be a class of objects in
A. Then F = ⊥mG, 1 ≤ m ∈ N, defines a homological dimension if and only if

F = ⊥∞G.

In such a case A = F .

Proof. Assume F = ⊥mG defines a homological dimension. Let us prove that F =
⊥m+1G; then we conclude inductively. Consider an arbitrary object F ∈ F . Consider a
short exact sequence

0 → K → P → F → 0

with P projective; since P belongs to F , by Lemma 1.8 we have that also K ∈ F .
Therefore for each G ∈ G we have

Extm+1
A (F,G) ∼= ExtmA(K, G) = 0,

because K ∈ F .
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438 F. Mantese and A. Tonolo

Conversely, let us prove that F = ⊥∞G defines a homological dimension. Clearly,
containing F the projectives, each object has left F-dimension ≤ ∞. Let M be an
object with Fdim M ≤ n, n ∈ N. Then there exists an exact sequence

0 → F ′
n → F ′

n−1 → · · · → F ′
1 → F ′

0 → M → 0

with F ′
i ∈ F for i = 0, . . . , n. Let us consider an exact sequence

0 → Kn → Fn−1 → · · · → F1 → F0 → M → 0

with Fi ∈ F for i = 0, . . . , n − 1. Let us show that Kn ∈ F . In fact, let X ∈ G. Then
ExtiA(Kn, X) ∼= Extn+i

A (M,X) ∼= ExtiA(F ′
n, X) = 0 for each i ≥ 1.

Example 1.14. (i) Since Z has global dimension 1, the class W = ⊥1Z = ⊥∞Z
of Whitehead abelian groups defines a homological dimension. By Proposition
1.5(ii) we have glWdim Z ≤ 1.

(ii) Any torsion free class in a category of modules defines a homological dimension,
since it is closed under submodules. In general it is not the left orthogonal of any
class. Consider for example the class R of reduced abelian groups; since R⊥∞

is the class of divisible groups, ⊥∞(R⊥∞) is the whole class of abelian groups.
Therefore R cannot be the left orthogonal of a class, otherwise ⊥∞(R⊥∞) would
be equal to R.

In the following results we are interested in giving necessary or sufficient conditions
for a class defining a homological dimension to be a left orthogonal.

Lemma 1.15. Assume A has enough projectives. If F defines a homological dimension
and it contains the projectives, then F⊥1 = F⊥∞ .

Proof. Let M be an object in F⊥1 and F ∈ F . Consider a short exact sequence
0 → F ′ → P → F → 0 with P projective; since F defines a homological dimension
also F ′ belongs to F . Applying HomA(−, M) we get Exti+1

A (F,M) ∼= ExtiA(F ′, M);
then Ext2A(F,M) = 0 and we conclude by induction.

Theorem 1.16. Assume A has enough projectives, and let F be a special precover
class. Then F defines a homological dimension if and only if F = ⊥∞(F⊥∞).

Proof. If F = ⊥∞(F⊥∞), by Proposition 1.13 we get that F defines a homological
dimension.

Conversely, suppose that F defines a homological dimension. Let us prove that
F = ⊥1(F⊥∞). Of course F ⊆ ⊥1(F⊥∞). Let now M ∈ ⊥1(F⊥∞); consider a special
F-precover 0 → K → F → M → 0. Since by the previous lemma K ∈ F⊥1 = F⊥∞ ,
we get Ext1R(M,K) = 0. Since the special precover classes are closed under direct
summands [8, Section 2.1], then M ≤⊕ F belongs to F . Again by Proposition 1.13
we conclude that F = ⊥∞(F⊥∞).

Brought to you by | Biblioteca del (Degli studi di Padova)
Authenticated | 172.16.1.226

Download Date | 2/7/12 12:45 PM



On classes defining a homological dimension 439

Most of the examples of classes defining a homological dimension give special
precovers. Nevertheless observe that this is not always the case: Eklof and Shelah in
[5] proved that, consistently with ZFC, the class of Whitehead abelian groups, which
defines a homological dimension (see Example 1.14), does not provide precovers. In
particular they proved that Q, which has W-dimension 1, does not admit W-precover.

Remark 1.17. If F is a special precover class and it defines a homological dimension,
then for each module M it is possible to get an F-resolution

· · · → Fi → · · · → F1 → F0 → M → 0

such that, denoted by Ωi
F(M) the i-th F syzygy of M , the induced map Fj →

Ωj−1
F (M) is a special F-precover of Ωj−1

F (M). Therefore, in such a case our defi-
nition of F-dimension coincides with the definition given by Enochs and Jenda (see [6,
Definition 8.4.1]).

Other significative classes defining a homological dimension are those studied by
Auslander–Buchweitz in [2]. In that paper they introduced the notion of Ext-injective
cogenerator for an additively closed exact subcategory F of A: an additively closed
subcategory ω ⊆ F is an Ext-injective cogenerator for F if ω ⊆ F⊥∞ and for any
F ∈ F there exists an exact sequence 0 → F → X → F ′ → 0 where F ′ ∈ F and
X ∈ ω.

Proposition 1.18 ([2, Propositions 2.1, 3.3]). Let F be an additively closed exact sub-
category of A closed under kernels of epimorphisms. If F admits an Ext-injective
cogenerator ω, then F defines a homological dimension. Moreover, if any object has
finite F-dimension, then F = ⊥∞G, where G is the class of objects in A of finite ω-
dimension.

We conclude this section remarking the connection between classes defining a ho-
mological dimension and cotorsion pairs in categories of modules. So we assume
A = R-Mod, the category of left R-modules over a ring R.

Definition 1.19. Let A and B be two classes of modules. The pair (A,B) is called
a cotorsion pair if A = ⊥1B and A⊥1 = B. The pair (A,B) is called an hereditary
cotorsion pair if A = ⊥∞B or equivalently A⊥∞ = B.

We stress that, by Proposition 1.13, the hereditary cotorsion pairs are exactly the
cotorsion pairs (A,B) such that A defines a homological dimension.

Example 1.20. Let R be a commutative domain. A module M is Matlis cotorsion
provided that Ext1R(Q, M) = 0, where Q is the quotient field of R. Since Q is flat,
the class MC of Matlis cotorsion modules contains the class EC := F l⊥1 of Enochs
cotorsion modules. Denoted by T F the class of torsion-free modules, the latter class
EC contains the class WC := T F⊥ of Warfield cotorsion modules. Thus we have the
following chain of cotorsion pairs, ordered with respect to the inclusion on the first
class:

(⊥1MC,MC) ≤ (F l = ⊥1EC, EC) ≤ (T F = ⊥1WC,WC).
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The modules in ⊥1MC are called strongly flat. The Enochs and Warfield cotorsion pairs
(F l, EC) and (T F ,WC) are hereditary and the classes of flat and torsion free modules,
as well known, define a homological dimension. In general the Matlis cotorsion pair
(⊥1MC,MC) is not hereditary and therefore strongly flat modules do not define a ho-
mological dimension; precisely, the Matlis cotorsion pair is hereditary, and so strongly
flat modules define a homological dimension, if and only if the quotient field Q of R
has projective dimension ≤ 1, i.e. R is a Matlis domain [12, Section 10].

2 Generalizing the Gorenstein dimension

Auslander in [1] introduced the notion of Gorenstein dimension for finite modules over
a commutative noetherian ring. More precisely, let R be a commutative noetherian
ring; following [4, Definition 1.1.2] we say that a finite R-module M belongs to the
G-class G(R) if

(i) ExtmR (M,R) = 0 for m > 0;

(ii) ExtmR (HomR(M, R), R) = 0 for m > 0;

(iii) the canonical morphism δM : M → HomR(HomR(M,R), R), δM (x)(ψ) = ψ(x),
is an isomorphism.

Any finite module admitting a G(R)-resolution of length n is said to have Gorenstein
dimension at most n. In [4, Theorem 1.2.7] it is shown that G(R) defines a homological
dimension on the category of finite R-modules.

Given an abelian category A, we denote by K(A) (resp. K+(A), K−(A), Kb(A))
the homotopy category of unbounded (resp. bounded below, bounded above, bounded)
complexes of objects of A and by D(A) (resp. D+(A), D−(A), Db(A)) the associated
derived category. In the sequel with D∗(A) or D†(A) we will denote any of these
derived categories.

Consider a right adjoint pair of contravariant functors (Φ, Ψ) between the abelian
categories A and B, with the natural morphisms η and ξ as unities. Following [9,
Theorem 5.1], to guarantee the existence of the derived functors R∗Φ : D∗(A) → D(B)
and R†Ψ : D†(B) → D(A), we assume the existence of triangulated subcategories P
of K∗(A) and Q of K†(B) such that:

• every object of K∗(A) and every object of K†(B) admits a quasi-isomorphism
into objects of P and Q, respectively;

• if P and Q are exact complexes in P and Q, then also Φ(P ) and Ψ(Q) are exact.

Given complexes X ∈ D∗(A) and Y ∈ D†(B), we have R∗ΦX = ΦP and
R†ΨY = ΨQ, where P is a complex in P quasi-isomorphic to X , and Q is a com-
plex in Q quasi-isomorphic to Y .

The functor Φ has cohomological dimension ≤ n if, for each A in A, we have
Hi(R∗ΦA) = 0 for |i| > n.

An object A in A is called Φ-acyclic if Hi(R∗ΦA) = 0 for any i �= 0. Similarly,
Ψ -acyclic objects in B are defined.
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Definition 2.1. We say that an object A ∈ A belongs to the class GΦΨ if

(i) A is Φ-acyclic;

(ii) Φ(A) is Ψ -acyclic;

(iii) the morphism ηA : A → ΨΦ(A) is an isomorphism.

Note that, since the category of modules over a ring R has enough projectives, the
total derived functor R Hom(−, R) always exists (see [14]). Thus the class GΦΨ for the
adjoint pair (Φ, Ψ) = (Hom(−, R), Hom(−, R)) in the category of finite R-modules,
coincides with the G(R)-class introduced above if R is a commutative noetherian ring.

We want to prove that the class GΦΨ associated to the right adjoint pair (Φ, Ψ)
always defines a homological dimension.

First we prove that the GΦΨ -dimension can be computed using the cohomology
groups Hi(R∗Φ). As a consequence it follows that, when the category A has enough
projectives, the GΦΨ -dimension can be compared with the projective dimension (cf. [4,
Proposition 1.2.10]).

Proposition 2.2. Let A be an object in A of finite GΦΨ -dimension. Then:

(a) GΦΨ -dim A = sup{i : Hi(R∗ΦA)} �= 0.

(b) If A has enough projectives, then GΦΨ -dim A ≤ pd A.

Proof. (a) Let GΦΨ -dim A = n. Therefore there exists an exact sequence 0 → Gn →
Gn−1 → . . . → G0 → A → 0 with Gi ∈ GΦΨ , i = 0, 1, . . . , n. By shift dimension we
get Hi(R∗ΦA) = 0 for each i > n. If sup{i : Hi(R∗ΦA) �= 0} < n, let K be the cok-
ernel of Gn → Gn−1. We will prove that K belongs to GΦΨ contradicting the assump-
tion GΦΨ -dim A = n. Indeed, K is Φ-acyclic since Hi(R∗ΦK) ∼= H(i+n−1)(R∗ΦA) =
0 for each i > 0; applying Ψ to the short exact sequence 0 → ΦK → ΦGn−1 →
ΦGn → 0 and comparing it with the short exact sequence 0 → Gn → Gn−1 → K → 0,
we get that ΦK is Ψ -acyclic and the unity ηK is an isomorphism.

(b) If A has enough projectives, then any object A in A admits a projective resolu-
tion P . Since the projectives are Φ-acyclic, we have R∗ΦA = ΦP and then

sup{i : Hi(R∗ΦA) �= 0} = sup{i : Hi(ΦP ) �= 0} ≤ pd A.

Observe that, differently from the G(R)-dimension, the inequality between the
GΦΨ -dimension and the projective dimension can be strict also for objects of finite
projective dimension (cf. [4, Proposition 1.2.10]).

Example 2.3. Let Λ be the path algebra of the quiver

1 �� 2 �� 3.

Let us consider the module ΛU =
1
2
3
⊕ 2

3 ⊕ 2 and let S = EndΛ(U). Consider the

adjoint pair (HomΛ(−, U), HomS(−, U)): since Ext1Λ(U, U) = 0, Ext1S(S, U) = 0
and U ∼= HomS(HomΛ(U, U), U), the Λ-module U belongs to GΦΨ , where (Φ, Ψ) =
(HomΛ(−, U), HomS(−, U)). Thus U has projective dimension one, but obviously
GΦΨ -dimension 0.
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In order to prove that the class GΦΨ defines a homological dimension, we also need
to recall some notions and results on derived categories. By [10, Lemma 13.6] we know
that, in our assumptions, (R∗Φ,R†Ψ) is a right adjoint pair in the derived categories
D∗(A) and D†(B), with unities η̂ and ξ̂ naturally inherited from the unities η and ξ. In
[11] a complex X ∈ D∗(A) is called D-reflexive if the morphism η̂X is an isomorphism
in D∗(A). An object A ∈ A is called D-reflexive if it is D-reflexive as a stalk complex.

Lemma 2.4. Let X ∈ A such that X is Φ-acyclic and Φ(X) is Ψ -acyclic. Then η̂X is
a quasi-isomorphism if and only if ηX is an isomorphism. In particular any object in
GΦΨ is D-reflexive.

Proof. In general, if C ∈ D∗(A) and L is a complex quasi-isomorphic to C such that
any term Li of L is Φ-acyclic and Φ(Li) is Ψ -acyclic, then η̂C coincides with ηL, where
ηL is the term-to-term extension of the unity η to the triangulated category K∗(A) (cf.
[11]). Then we easily get the statement.

Corollary 2.5. Any object A in A of finite GΦΨ -dimension is D-reflexive.

Proof. Let GΦΨ -dim A = n. Therefore there exists an exact sequence 0 → Gn →
Gn−1 → . . . → G0 → A → 0 with Gi ∈ GΦΨ , i = 0, 1, . . . , n. Therefore in the
bounded derived category Db(A), A is quasi-isomorphic to the complex G := 0 →
Gn → Gn−1 → . . . → G0 → 0. Since G is a complex with D-reflexive terms by
Lemma 2.4, we conclude by [11, Theorem 3.1 (1)] that A is D-reflexive.

Proposition 2.6. If X ∈ A is Φ-acyclic and D-reflexive, then X belongs to GΦΨ .

Proof. Since X is Φ-acyclic, R∗ΦX is quasi isomorphic to the stalk complex Φ(X).
Moreover, for X is D-reflexive, we get that R†Ψ(ΦX) ∼= R†Ψ(R∗ΦX) is quasi-
isomorphic to X . Thus Hi(R†Ψ(ΦX)) = 0 for any i �= 0 and so ΦX is Ψ -acyclic.
Finally we conclude since, by the previous lemma, ηX is an isomorphism.

Theorem 2.7. The class GΦΨ defines a homological dimension.

Proof. Let us consider a long exact sequence 0 → Gn → Gn−1 → · · · → G0 →
X → 0 with Gi ∈ GΦΨ . By Corollary 2.5, X is D-reflexive. Consider now a long
exact sequence 0 → Xn → Fn−1 → · · · → F0 → X → 0 with Fi ∈ GΦΨ . The
D-reflexive objects are a thick subcategory of A (see [11]), i.e., if two terms of a short
exact sequence in A are D-reflexive, then also the third is D-reflexive. Therefore, by
induction, it follows that Xn is D-reflexive. Since by Proposition 2.2 Hi(R∗ΦX) = 0
for each i > n, by shift dimension Xn is Φ-acyclic, and so we conclude that Xn belongs
to GΦΨ .

In [11], the authors were interested in characterizing the D-reflexive objects associ-
ated to a given adjoint pair (Φ, Ψ). Assume A is a module category and denote by FPn

the class of modules A which have an exact resolution

Pn−1 → · · · → P1 → P0 → A → 0,

where the Pi’s are finitely generated projectives. In particular FP1 is the class of
finitely generated modules. Then the D-reflexive modules in FPn can be characterized
through their GΦΨ -dimension.
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Theorem 2.8. Let A = R-Mod for an arbitrary ring R. Assume RR to be D-reflexive
and Φ of cohomological dimension ≤ n. Then a module M ∈ FPn is D-reflexive if and
only if it has GΦΨ -dimension ≤ n.

Proof. The sufficiency of the finiteness of the GΦΨ -dimension is proved in Corol-
lary 2.5. Conversely, suppose M to be a D-reflexive module in FPn. Let 0 → K →
Pn−1 → · · · → P0 → M → 0 be an exact sequence with the Pi’s finitely generated
projectives. Since RR is assumed to be D-reflexive, any Pi is D-reflexive, and so we
get that K is D-reflexive. Since Φ has cohomological dimension ≤ n, by shift dimen-
sion we get that K is Φ-acyclic. Then, by Proposition 2.6, we conclude that K belongs
to GΦΨ .
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