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Abstract
The paper deals with the ergodicity of deterministic zero-sum differential

games with long-time-average cost. Some new sufficient conditions are given,
as well as a class of games that are not ergodic. In particular, we settle the
issue of ergodicity for the simple games whose associated Isaacs equation is a
convex-concave eikonal equation.
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Introduction

We consider a nonlinear system in R
m controlled by two players

ẏ(t) = f(y(t), a(t), b(t)), y(0) = x, a(t) ∈ A, b(t) ∈ B, (1)

and we denote with yx(·) the trajectory starting at x. We are also given a bounded,
uniformly continuous running cost l, and we are interested in the payoffs associated
to the long-time-average cost (briefly, LTAC), namely:

J∞(x, a(·), b(·)) := lim sup
T→∞

1
T

∫ T

0
l(yx(t), a(t), b(t)) dt,

J∞(x, a(·), b(·)) := lim inf
T→∞

1
T

∫ T

0
l(yx(t), a(t), b(t)) dt.

We denote with u − val J∞(x) (respectively, l − val J∞(x)) the upper value of
the zero-sum game with payoff J∞ (respectively, the lower value of the game
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with payoff J∞) which the 1st player a(·) wants to minimize while the 2nd player
b(·) wants to maximize, and the values are in the sense of Varaiya-Roxin-Elliott-
Kalton. We look for conditions under which

u − val J∞(x) = l − val J∞(x) = λ ∀x,

for some constant λ, a property that was called ergodicity of the LTAC game in [3].
The terminology is motivated by the analogy with classical ergodic control theory,
see, e.g., [30,14,28,9,25,6,7,2]. Similar problems were studied for some games by
Fleming and McEneaney [21] in the context of risk-sensitive control, by Carlson
and Haurie [16] within the turnpike theory, and by Kushner [29] for controlled
nondegenerate diffusion processes. There is a large literature on related problems
for discrete-time games; see the survey by Sorin [35].

More recently, several sufficient conditions for the ergodicity of the LTAC game
were given by Ghosh and Rao [24] and Alvarez and the author [3]. Among other
things, these papers clarified the connections with the solvability of the stationary
Hamilton-Jacobi-Isaacs equation associated to the problem and with the long-time
behavior of the value functions of the finite horizon games with the same running
cost. In particular, under the classical Isaacs’ condition

min
b∈B

max
a∈A

{−f(y, a, b)·p−l(y, a, b)} = max
a∈A

min
b∈B

{−f(y, a, b)·p−l(y, a, b)} (2)

for all y, p ∈ R
m, the LTAC game is ergodic with value λ if the viscosity solution

u(t, x) of the evolutive Hamilton-Jacobi-Isaacs equation

∂u

∂t
+ min

b∈B
max
a∈A

{−f(y, a, b) · Dxu − l(y, a, b)} = 0, u(0, x) = 0,

satisfies

lim
t→+∞

u(t, x)
t

= λ, locally uniformly in x,

a property called ergodicity of the lower game. However, the results of the quoted
papers do not give much information on some very simple games such as:{

ẏA(t) = a(t), yA(0) = xA ∈ R
m/2, |a(t)| ≤ 1,

ẏB(t) = b(t), yB(0) = xB ∈ R
m/2, |b(t)| ≤ γ,

(3)

with running cost l = l(yA, yB) independent of the controls and Z
m-periodic.

This is related to the asymptotic behavior of the solution to the convex-concave
eikonal equation

ut + |DxAu| − γ|DxBu| = l(xA, xB), u(0, xA, xB) = 0,

where DxAu, DxBu denote, respectively, the gradient of u with respect to the xA

and the xB variables. >From [3] we can only say that the lower game and the LTAC
game are ergodic if l has a saddle, namely

min
xA

max
xB

l(xA, xB) = max
xB

min
xA

l(xA, xB) =: l,



Differential Games with Long-Time-Average Cost 5

and then the ergodic value is λ = l. Nothing seems to be known if, for instance,
l(xA, xB) = n(xA − xB).

In the present paper, we present some new conditions for ergodicity and a class
of non-ergodic differential games. The sufficient conditions for ergodicity assume
some form of controllability of each player on some state variables. Different from
the controllability conditions in [3], they depend on the running cost l, that is
assumed independent of the controls, and give an explicit formula for the ergodic
value λ in terms of l. The result of non-ergodicity holds for systems of the form{

ẏA(t) = g(y(t), a(t)), yA(0) = xA ∈ R
m/2, a(t) ∈ A,

ẏB(t) = g(y(t), b(t)), yB(0) = xB ∈ R
m/2, b(t) ∈ B,

(4)

with A = B, and running cost l(x) = n(xA − xB) + h(xA, xB) with a smallness
assumption on h. As a special case we settle the issue of the game (3) with the
running cost l(x) = n(xA − xB) and of the convex-concave eikonal equation: it
is ergodic if and only if γ �= 1.

Undiscounted infinite horizon control problems arise in many applications to
economics and engineering; see [17,14,28] and [16,21,35] for games. Our addi-
tional motivation is that ergodicity plays a crucial role in the theory of singu-
lar perturbation problems for the dimension reduction of multiple-scale systems
[27,14,28,23,36,26,32] and for the homogenization in oscillating media [31,19,5].
A general principle emerging in the papers [8,1,2,4] is that an appropriate form of
ergodicity of the fast variables (for frozen slow variables) ensures the convergence
of the singular perturbation problem, in a suitable sense. The explicit applications
of the results of the present paper to singular perturbations will be presented in a
future article.

The paper is organized as follows. Section 1 recalls some definitions and known
results. Section 2 gives two different sets of sufficient conditions for the ergodicity
of the finite horizon games. Section 3 presents the non-ergodic games. Section 4
applies the preceding results to a slight generalization of the system (3) and of the
convex-concave eikonal equation.

1 Definitions and preliminary results

About the system (1) and the cost we assume throughout the paper that f : R
m ×

A × B �→ R
m and l : R

m × A × B �→ R are continuous and bounded, A and B
are compact metric spaces, and f is Lipschitz continuous in x uniformly in a, b.

We consider the cost functional

J(T, x) = J(T, x, a(·), b(·)) :=
1
T

∫ T

0
l(yx(t), a(t), b(t)) dt,

where yx(·) is the trajectory corresponding to a(·) and b(·). We denote with A and
B, respectively, the sets of open-loop (measurable) controls for the first and second
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player, and with Γ and ∆, respectively, the sets of nonanticipating strategies for the
first and the second player; see, e.g., [18,20,9] for the precise definition. Following
Elliott and Kalton [18], we define the upper and lower values for the finite horizon
game with average cost:

u − val J(T, x) := sup
β∈∆

inf
a∈A

J(T, x, a, β[a]),

l − val J(T, x) := inf
α∈Γ

sup
b∈B

J(T, x, α[b], b).

The player using nonanticipating strategies has an information advantage with
respect to the other, so the inequality l − val J(T, x) ≤ u− val J(T, x) holds; see
[18,20,9]. Moreover, all other reasonable notion of value are between l − val J
and u − val J ; see [18] or Chapter 8 of [9] for a discussion. Therefore, when the
game has a value, i.e., l − val J = u− val J , all notions of value coincide. For the
LTAC game we define:

u − val J∞(x) := sup
β∈∆

inf
a∈A

lim sup
T→∞

J(T, x, a, β[a]),

l − val J∞(x) := inf
α∈Γ

sup
b∈B

lim inf
T→∞

J(T, x, α[b], b).

Note that we chose lim supT→∞ for the upper value and lim infT→∞ for the lower
value, so we expect again that any other definition of ergodic value falls between
them.

We say that the the lower game is (locally uniformly) ergodic if the long time
limit of the finite horizon value exists, locally uniformly in x, and it is constant, i.e.,

l − val J(T, ·) → λ as T → ∞ locally uniformly in R
m.

Similarly, the upper game is ergodic if

u − val J(T, ·) → Λ as T → ∞ locally uniformly in R
m.

The next result gives the precise connection between these properties and the LTAC
game.

Theorem 1.1. [21,3] If the lower game is ergodic, then

l − val J∞(x) = lim
T→∞

l − val J(T, x) = λ ∀x ∈ R
m; (5)

if the upper game is ergodic, then

u − val J∞(x) = lim
T→∞

u − val J(T, x) = Λ ∀x ∈ R
m. (6)

If the classical Isaacs’ condition (2) holds then the finite horizon game has a
value, which we denote with val J(T, x); see [20,9]. Therefore, we immediately
get the following consequence of Theorem 1.1.
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Corollary 1.1. Assume (2) and that either the lower or the upper game is ergodic.
Then the LTAC game is ergodic, i.e.,

l − val J∞(x) = u − val J∞(x) = lim
T→∞

val J(T, x) = λ, ∀x ∈ R
m.

Remark 1.1. The ergodic value can also be characterized as the limit as δ → 0
of δwδ where wδ solves

δwδ + min
b

max
a

{−f(y, a, b) · Dwδ − l(y, a, b)} = 0, in R
m,

and as the unique constant λ such that there exists a solution of

λ + min
b

max
a

{−f(y, a, b) · Dχ − l(y, a, b)} = 0, in R
m;

see [2,3,24] for the precise statements. We will not use these properties in the
present paper.

2 Sufficient conditions of ergodicity

In this section we prove two results on the ergodicity of the LTAC games. Both make
controllability assumptions on at least one of the players, but they are weaker than
those of Theorem 2.2 in [3]. On the other hand, here we assume the running cost
l = l(y) depends only on the state variables and the controllability assumptions
are designed to get as value of the LTAC game a number depending explicitly on
l. In the first result this is either min l or max l.

We denote with KL the class of continuous functions η : [0, +∞)× [0, +∞) →
[0, +∞) strictly increasing in the first variable, strictly decreasing in the second
variable, and satisfying

η(0, t) = 0 ∀t ≥ 0, lim
t→+∞

η(r, t) = 0 ∀r ≥ 0. (7)

Given a closed target T ⊆ R
m, we say that the system (1) is (uniformly) asymptot-

ically controllable to T in the mean by the first player if the following holds: there
exists a function η ∈ KL and for all x ∈ R

m, there is a strategy α̃ ∈ Γ such that:

1
T

∫ T

0
dist(yx(t), T ) dt ≤ η(‖x‖, T ), ∀b ∈ B, (8)

whereyx(·) is the trajectory corresponding to the strategy α̃ and the control function
b, i.e., it solves

ẏ(t) = f(y(t), α̃[b](t), b(t)), y(0) = x. (9)

Here ‖x‖ := |x| in the general case, whereas when the state space is the m-
dimensional torus T

m = R
m/Z

m (i.e., all data are Z
m-periodic)

‖x‖ := min
k∈Zm

|x − k|,
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and dist(z, T ) := infw∈T ‖z − w‖. The condition (8) means that the first player
can drive asymptotically the state y(t) near the target T , in the sense that the
average distance tends to 0, uniformly with respect to x and the control of the other
player b.

Symmetrically, we say that the system (1) is (uniformly) asymptotically con-
trollable to T by the second player if for all x ∈ R

m, there is a strategy β̃ ∈ ∆
such that:

1
T

∫ T

0
dist(yx(t), T ) dt ≤ η(‖x‖, T ), ∀a ∈ A,

whereyx(·) is the trajectory corresponding to the strategy β̃ and the control function
a, i.e., it solves

ẏ(t) = f(y(t), a(t), β̃[a](t)), y(0) = x.

In the next result we will use as target either the set

argmin l := {y ∈ R
m : l(y) = min l}

or the set

argmax l := {y ∈ R
m : l(y) = max l}.

Proposition 2.1. Assume the running cost is uniformly continuous and indepen-
dent of the controls, i.e., l = l(y).
If the system (1) is asymptotically controllable to T = argmin l in the mean by
the first player, then the lower game is ergodic with value λ = min l.
If the system (1) is asymptotically controllable to T = argmax l in the mean by
the second player, then the upper game is ergodic with value λ = max l.

Proof. We prove only the first statement because the proof of the second is anal-
ogous. Set v(T, x) := l − val J(T, x).

Fix x and consider the strategy α̃ ∈ Γ from the asymptotic controllability
assumption. If yx(·) = yx(·, b) is the corresponding trajectory and z(t) is its
projection on the target, i.e.,

dist(yx(t), T ) = ‖yx(t) − z(t)‖, z(t) ∈ T ,

then the choice T = argmin l gives

l(yx(t)) ≤ ωl(‖yx(t) − z(t)‖) + l(z(t)) = ωl(dist(yx(t), T )) + min l,

where ωl is the modulus of continuity of l. We recall that ωl is defined by

|l(x) − l(y)| ≤ ωl(‖x − y‖), ∀x, y ∈ R
m, lim

r→0
ωl(r) = 0,
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and it is not restrictive to assume its concavity. Therefore, Jensen’s inequality
and (8) imply, for all b ∈ B,

1
T

∫ T

0
ωl(dist(yx(t), T )) dt ≤ ωl(η(‖x‖, T )).

Then:

v(T, x) ≤ sup
b∈B

1
T

∫ T

0
l(yx(t)) dt ≤ ωl(η(‖x‖, T )) + min l.

On the other hand, v(T, x) ≥ min l by definition, thus

lim
T→∞

v(T, x) = min l,

uniformly in x for ‖x‖ bounded. �

An immediate consequence of this proposition and of Corollary 1.1 is the fol-
lowing.

Corollary 2.1. Assume the Isaacs’ condition (2) and that the system (1) is asymp-
totically controllable either to argmin l by the first player or to argmax l by the
second player. Then the LTAC game is ergodic, i.e.,

l − val J∞(x) = u − val J∞(x) = lim
T→∞

val J(T, x) = λ, ∀x ∈ R
m.

Moreover, λ = min l in the former case and λ = max l in the latter.

Remark 2.1. The main improvement of this result with respect to Corollary 2.1
in [3] is that here we assume only the controllability in the mean to a target, instead
of the bounded-time controllability to each point of the state space. On the other
hand, here we must assume the independence of l from the controls a, b.

Remark 2.2. A sufficient condition for the asymptotic controllability in the mean
is that the system (1) be locally bounded-time controllable to T by the first player,
i.e., for each x there exist S(‖x‖) > 0 and a strategy α̃ ∈ Γ such that for all control
functions b ∈ B there is a time t# = t#(x, α̃, b, T ) with the properties

t# ≤ S(‖x‖) and yx(t) ∈ T for all t ≥ t#.

In other words, the first player can drive the system from any initial position x to
some point of the target T within a time that is uniformly bounded for bounded x,
and keep it forever on T , for all possible behaviors of the second player. The proof
of Proposition 2.1 shows that this strategy is optimal for the first player. This kind
of behavior is called a turnpike; see [17,16].
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The sufficient condition described above can be better studied by splitting it in
two: reaching T and remaining in T afterwards. The first amounts to the local
boundedness of the lower value of the generalized pursuit-evasion game with target
T . This occurs if such value function is finite and continuous, and a sufficient
condition for it is the existence of a continuous supersolution U of the Isaacs
equation for minimum-time problems

min
b∈B

max
a∈A

{−f(y, a, b) · DU} ≥ 1 in R
m \ T ,

such that U = 0 on T ; see [12,33]. As for the second property, it is the viability of
T by the first player against the second. This is well understood and has explicit
characterizations; see [15,11].

Remark 2.3. Another sufficient condition for the asymptotic controllability in
the mean is that the system (1) be worst-case stabilizable to T by the first player,
i.e., there exists κ ∈ KL and for each x there exists a strategy α̃ ∈ Γ such that:

dist(yx(t), T ) ≤ κ(‖x‖, t), ∀b ∈ B, ∀t ≥ 0, (10)

whereyx(·) is the trajectory corresponding to the strategy α̃ and the control function
b. In fact, it is enough to take

η(r, T ) =
1
T

∫ T

0
κ(r, t) dt.

This property was studied by Soravia [33,34] and the author and Cesaroni [10].
They characterized it in terms of the existence of a Lyapunov pair, that is, a lower
semicontinuous W , continuous at ∂T and proper, and a Lipschitz h, both positive
off T and null on T , such that:

min
b∈B

max
a∈A

{−f(y, a, b) · DW} ≥ h(x) in R
m,

in the viscosity sense. Related notions are known in the context of robust control
[13,22].

The second result of this section concern systems of the form:
ẏA(t) = fA(y(t), a(t), b(t)), yA(0) = xA ∈ R

mA ,

ẏB(t) = fB(y(t), a(t), b(t)), yB(0) = xB ∈ R
mB ,

y(t) = (yA(t), yB(t)).
(11)

We will assume the asymptotic controllability by the first player to the target

T ∗ :=
{

(zA, zB) ∈ R
m : l(zA, zB) ≤ max

yB
min
yA

l(yA, yB)
}

. (12)
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Moreover, we will assume for some closed set TB ⊆ R
mB that the state variables

yB are (uniformly) asymptotically controllable to TB in the mean by the second
player in the following sense: there exists a functionη : [0, ∞) → [0, ∞) satisfying
(7) and for all x ∈ R

m there is a strategy β̃ ∈ ∆ such that:

1
T

∫ T

0
dist(yB

x (t), TB) dt ≤ η(‖x‖, T ), ∀a ∈ A. (13)

Proposition 2.2. Assume the system (1) is of the form (11), l = l(yA, yB), and
(2) holds. Suppose also that the system is asymptotically controllable in the mean
by the first player to T ∗ and the state variables yB are asymptotically controllable
in the mean by the second player to:

TB = argmax min
yA

l(yA, ·)

:=
{

zB ∈ R
mB : min

yA
l(yA, zB) = max

yB
min
yA

l(yA, yB)
}

. (14)

Then the LTAC game is ergodic and its value is:

l − val J∞(x) = u− val J∞(x) = λ := max
yB

min
yA

l(yA, yB), ∀x ∈ R
m. (15)

Proof. The Isaacs conditions (2) implies the existence of the value of the finite
horizon games and we set v(T, x) := l − val J(T, x) = u − val J(T, x). By
repeating the proof of Proposition 2.1 with the target T ∗ we obtain:

l(yx(t)) ≤ ωl(‖yx(t) − z(t)‖) + l(z(t))

≤ ωl(dist(yx(t), T )) + max
yB

min
yA

l(yA, yB), (16)

and then
v(T, x) ≤ ωl(η(‖x‖, T )) + λ.

To get the opposite inequality fix x and consider the strategy b̃ ∈ ∆ from the
asymptotic controllability assumption on the yB variables. Let yx(·) = yx(·, a) be
the corresponding trajectory and zB(t) the projection of its component yB

x (t) on
the target TB , i.e.,

dist(yB
x (t), TB) = ‖yB

x (t) − zB(t)‖, zB(t) ∈ TB .

Then the definition of TB gives

l(yx(t)) ≥ l(yA
x (t), zB(t)) − ωl(‖yB

x (t) − zB(t)‖)

≥ max
yB

min
yA

l(yA, yB) − ωl(dist(yB
x (t), TB)), (17)
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where the modulus of continuity ωl is defined by (2). The concavity of ωl, Jensen’s
inequality, and (13) imply, for all a ∈ A,

1
T

∫ T

0
ωl(dist(yB

x (t), TB)) dt ≤ ωl(η(‖x‖, T )).

Finally, the definition of upper value gives

v(T, x) ≥ inf
a∈A

1
T

∫ T

0
l(yx(t)) dt ≥ λ − ωl(η(‖x‖, T )),

and therefore limT→∞ v(T, x) = λ uniformly in x, for ‖x‖ bounded. �

Remark 2.4. The main differences of this result with respect to Proposition 2.2
in [3] is that here we do not assume that the cost l has a saddle and we make
different controllability assumptions that give an advantage to the first player.

Remark 2.5. By exchanging the assumptions on the two players and replacing
maxmin with minmax in the targets, it is easy to give a symmetric result where the
value of the LTAC game is:

λ = min
yA∈R

mA

max
yB∈R

mB

l(yA, yB).

Remark 2.6. No controllability assumption is necessary for ergodicity, and in
general, the ergodic value λ can be any number between min l and max l. For
instance, by a classical result of Jacobi (see, e.g., [7,2]), the system ẏ(t) = ξ with
ξ ·k �= 0 for all k ∈ Z

m is uniformly ergodic for all Z
m-periodic l, and the ergodic

value is λ =
∫
[0,1]m l(y) dy.

Remark 2.7. The results of this section can be extended to control systems driven
by stochastic differential equations, as in Sec. 4 of [3]. We postpone this to a future
paper.

3 Sufficient conditions for non-ergodicity

In this section we give some examples of games that are not ergodic. Let us
first recall that a simple reason for non-ergodicity is the unboundedness of the
trajectories, as shown in the next example.

Example 3.1. Consider the system ẏ = y and running cost l such that there exist
the limits limx→+∞ l(x) = l+ and limx→−∞ l(x) = l−. Then val J(T, x) =
1
T

∫ T

0 l(xet) dt converges as t → +∞ to l+ if x > 0, to l(0) if x = 0, and to l−
if x < 0.
However, also on a compact state space such as T

2, many systems are not ergodic,
such as the next simple example.
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Example 3.2. In R
2 take the system ẏ = (1, 0) and l Z

2-periodic. Then
val J(T, x) = 1

T

∫ T

0 l(x1 + t, x2) dt converges as t → +∞ to
∫
[0,1]2 l(s, x2) ds.

The main result of the section is about systems of the form (11) under assump-
tions that allow the controllability of the variables yA by the first player and of yB

by the second player as in the ergodic games described in [3]. However, the run-
ning cost does not have a saddle and the system is completely fair, in the sense that
both groups of variables have the same dynamics. Here are the precise assump-
tions. Suppose first that the vector field fA is independent of b, fB does not depend
on a, and l depends only on the state y. Then the Isaacs condition (2) holds and
the Hamiltonian takes the split form:

H(y, p) := min
b∈B

max
a∈A

{−f(y, a, b) · p − l(y, a, b)}

= max
a∈A

{−fA(y, a) · pA} + min
b∈B

{−fB(y, b) · pB} − l(y), p = (pA, pB).

Assume further that A = B, mA = mB = m/2, and fA = fB =: g, so the
system takes the form (4). Then, if we define the reduced Hamiltonian

Hr(y, q) := max
a∈A

{−g(y, a) · q}, q ∈ R
m/2,

the Hamiltonian H becomes

H(y, p) = Hr(y, pA) − Hr(y, −pB) − l(y), p = (pA, pB). (18)

We will also take the running cost of the form

l(y) = n(yA − yB) + h(yA, yB), y = (yA, yB), (19)

and make assumptions of the functions n : R
m/2 → R and h : R

m → R.

Theorem 3.1. Assume the Hamiltonian H has the form (18) with running cost
of the form (19) and n, h bounded and uniformly continuous. If

sup h − inf h < sup n − inf n, (20)

then the lower and the upper game are not ergodic.

Proof. We explain first the idea in the special case h ≡ 0, n ∈ C1. In this case,
u(t, y) := t n(yA − yB) solves the Hamilton-Jacobi-Isaacs equation:

ut + Hr(y, DyAu) − Hr(y, −DyBu) = n(yA − yB).

If v(t, y) is the value function of the finite horizon game, then tv(t, y) solves the
partial differential equation in viscosity sense [20,9] and takes the same initial
value 0 at t = 0. By the uniqueness of the viscosity solution to the Cauchy problem
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[9], tv(t, y) = u(t, y). Then v(t, y) = n(yA −yB) does not converge to a constant
as t → ∞ because n is not constant.

The general case is a perturbation of the preceding one. Take a mollification
nε ∈ C1 of n such that nε → n as ε → 0 uniformly in R

m/2. Consider u(t, y) :=
t nε(yA − yB) + tc, for a constant c to be determined. Then:

ut + Hr(y, DyAu) − Hr(y, −DyBu) = nε(yA − yB) + c (21)

and the right-hand side is ≥ n(yA − yB) + h(y) for c = suph + δ, δ > 0, if ε
is small enough. Therefore the comparison principle between viscosity sub- and
supersolutions [9] gives:

v(t, y) ≤ nε(yA − yB) + c, ∀ t, y,

and for y1 such that n(yA
1 − yB

1 ) is close to inf n and ε small enough

v(t, y1) ≤ inf n + sup h + 2δ. (22)

On the other hand, the right-hand side of (21) is ≤ n(yA − yB) + h(y) for
c = inf h − δ and ε small enough. Then:

v(t, y) ≥ nε(yA − yB) + c, ∀ t, y

and
v(t, y2) ≥ sup n + inf h − 2δ, (23)

if n(yA
2 − yB

2 ) is close to sup n and ε is small enough. By condition (20) we can
choose δ so that the right-hand side of (22) is smaller than the right-hand side
of (23). Then v(t, y) cannot converge to a constant as t → ∞. �

4 An example: the convex-concave eikonal equation

In this section we fix g : R
m → R Lipschitzean and such that g(y) ≥ go > 0,

and discuss the ergodicity of the games where the system is
ẏA(t) = g(y(t))a(t), yA(0) = xA ∈ R

m/2, |a(t)| ≤ 1,

ẏB(t) = g(y(t))b(t), yB(0) = xB ∈ R
m/2, |b(t)| ≤ γ,

y(t) = (yA(t), yB(t)),
(24)

for all values of the parameter γ > 0. For a running cost l independent of the
controls, the finite horizon game has a value val(t, x) := l − val J(t, x) = u −
val J(t, x), and u(t, x) = t val(t, x) solves the Hamilton-Jacobi-Isaacs equation

ut + g(x)|DxAu| − γg(x)|DxBu| = l(x), u(0, x) = 0, (25)
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that we call the convex-concave eikonal equation. As in the preceding section we
take l of the form

l(y) = n(yA − yB) + h(yA, yB), y = (yA, yB).

We also need a compact state space, so we assume for simplicity that all data
g, n, h are Z

m periodic. We recall that the paper by Alvarez and the author
[3] covers only the case that n ≡ 0 and h has a saddle point, and then the
value of the LTAC game is λ = minyA∈Rm/2 maxyB∈Rm/2 h(yA, yB) =
maxyB∈Rm/2 minyA∈Rm/2 h(yA, yB).

Corollary 4.1. Under the preceding assumptions, the upper, lower, and LTAC
game are ergodic under either one of the following conditions:

i) γ < 1 and h = h(yB) is independent of yA, and in this case

lim
t→∞

v(t, x) = minn + max h;

ii) γ > 1 and h = h(yA) is independent of yB , and in this case

lim
t→∞

v(t, x) = max n + min h.

If, instead, γ = 1 and

sup h − inf h < sup n − inf n,

then the upper and lower game are not ergodic.

Proof. If γ < 1, since the dynamics of the yA and the yB variables is the same,
but the first player can drive yA at higher speed, for any fixed z ∈ R

m/2 the first
player can drive the system from any initial position to yA = yB + z in finite time
for all controls of the second player. Since T

m is compact this can be done in a
uniformly bounded time. In particular, the system is asymptotically controllable
by the first player to the set

Tn :=
{
(yA, yB) ∈ R

m : yA − yB ∈ argmin n
}

.

If h ≡ 0 we can conclude by Proposition 2.1. Note that in this case we do not need
the controllability of yB by the second player.

In the general case, we observe that Tn is a subset of the target T ∗ defined
by (12), because here:

max
yB∈Rm/2

min
yA∈Rm/2

l(yA, yB) = minn + max
yB∈Rm/2

h(yB).

Therefore the system is asymptotically controllable to T ∗ by the first player.
On the other hand, the variables yB are bounded time controllable by the second

player to any point of R
m/2; therefore they are also asymptotically controllable to

TB . Then Proposition 2.2 gives the conclusion i).
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The statement ii) is proved in the same way by reversing the roles of the two
players. In this case:

min
yA∈Rm/2

max
yB∈Rm/2

l(yA, yB) = max n + min
yA∈Rm/2

h(yA).

Finally, the case γ = 1 follows immediately from Theorem 3.1. �
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