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SOME REMARKS ABOUT PARAMETRIZATIONS OF

INTRINSIC REGULAR SURFACES IN THE

HEISENBERG GROUP

Francesco Bigolin and Davide Vittone

Abstract

We prove that, in general, H-regular surfaces in the Heisenberg
group H1 are not bi-Lipschitz equivalent to the plane R2 en-
dowed with the “parabolic” distance, which instead is the model
space for C1 surfaces without characteristic points. In Heisenberg
groups Hn, H-regular surfaces can be seen as intrinsic graphs: we
show that such parametrizations do not belong to Sobolev classes
of metric-space valued maps.

1. Introduction

In the last few years, a systematic attempt to develop Analysis and
Geometry in Metric Spaces has become the object of many studies. In
particular, the Heisenberg group H

n, endowed with the so called Carnot-
Carathéodory distance dc, has provided a fruitful setting for these inves-
tigations. One of the main questions which have arisen concerns how to
develop a general theory of “intrinsically regular” hypersurfaces: in [10]
B. Franchi, R. Serapioni and F. Serra Cassano introduced the notion
of H-regular hypersurface, which was later proved to be a “good” one
by several evidences provided by different authors. It is easy to see
that Euclidean C1 surfaces without characteristic points (see [4]) are
in fact H-regular. On the contrary, there is a huge gap between these
two notions, since H-regular surfaces can be fractals from the Euclidean
viewpoint (see [12]). Accurate studies of H-regular surfaces have been
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carried out in [2], [5], [7]; we address the reader to [6], [15] for a more
comprehensive introduction to the Heisenberg group and H-regular hy-
persurfaces.

A problem raised in [10], directly related to the theory of rectifiability
in the Heisenberg group (see also [1], [10], [11], [13], [14]), is the fol-
lowing one: is it possible to see H-regular hypersurfaces as bi-Lipschitz
deformations of a given “model” metric space? Here, by bi-Lipschitz we
mean Lipschitz continuous maps with Lipschitz continuous inverse map.
In [8] D. R. Cole and S. D. Pauls have proved that, in the setting of the
first Heisenberg group H

1, any noncharacteristic C1 surface S can be
locally parametrized by means of a Lipschitz homeomorphism defined
on (an open subset of) the plane R

2
η,τ endowed with the “parabolic”

distance

(1.1) ̺
(

(η, τ), (η′, τ ′)
)

:= |η − η′|+ |τ − τ ′|1/2.

Cole-Pauls homeomorphism is indeed bi-Lipschitz continuous: see The-
orem 3.1. The question of understanding whether general H-regular
surfaces are bi-Lipschitz equivalent to the parabolic plane was left open.
We give a negative answer to this problem, thus providing a further evi-
dence of the gap between C1 and genuine H-regular surfaces. Our main
result is in fact the following

Theorem 1.1. There exists a H-regular hypersurface S ⊂ H
1 and a

point P ∈ S with the following property: any Lipschitz continuous map
Ψ: A → U from an open set A ⊂ R

2 to a neighbourhood U of P on S
cannot be a homeomorphism. In particular, there cannot exist a bi-
Lipschitz parametrization Ψ: (A, ̺)→ (U , dc).

In the paper [10] an Implicit Function Theorem for H-regular sur-
faces was proved, showing that such a surface S ⊂ H

n can be locally
parametrized as the intrinsic graph Φ: ω → S of a function φ : ω → R.
Here ω is an open subset of a maximal subgroup W of H

n. It was
found in [2] that such Φ is bi-Lipschitz continuous provided we endow
ω with a certain quasi-distance ρφ depending on φ itself. It would be
interesting to investigate the regularity of Φ: (ω, d) → (S, dc) with re-
spect to some “fixed” distance d on ω; in this sense, a question risen
in [12] was to understand whether the map Φ belongs to some Sobolev
class W 1,p

m ((ω, d), (Hn, dc)) of maps between metric spaces. At least
in the H

1 case (see Remark 4.3 therein) it was conjectured that the
parametrization Φ should belong toW 1,4

m ((ω, d), (Hn, dc)), where the dis-
tance on ω is the Euclidean one on W ≡ R

2. We are able to answer in
the negative also to this second question:
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Theorem 1.2. The intrinsic parametrization Φ: ω → S of a H-regular
surface S does not belong to any Sobolev space W 1,p

m ((ω, d), (Hn, dc)) for
1 ≤ p ≤ +∞ when d is the Euclidean distance on ω. The same result
holds when d is the distance dc on ω ⊂ H

n provided Φ is not the inclusion
map ω →֒ H

n (i.e. if φ 6≡ 0).

The paper is organized as follows. Section 2 is devoted to the pre-
sentation of the preliminary material. In Section 3 we give the proof of
Theorem 1.1, while Section 4 contains the one of Theorem 1.2.

Acknowledgements. We wish to express our gratitude to Zoltán M.
Balogh and Giovanna Citti, for having signaled us the problem of the bi-
Lipschitz parametrization of H-regular surfaces and for many invaluable
discussions. We have also to thank Francesco Serra Cassano for several
suggestions.

2. Notations and preliminary results

We will identify H
n with R

2n+1 by means of the coordinates

H
n ∋ P ←→ (x, y, t) ∈ R

n × R
n × R

according to which the group law reads as

(x, y, t) · (x′, y′, t′) =
(

x+ x′, y + y′, t+ t′ + 1
2

∑n
j=1(xjy

′
j − yjx

′
j)
)

.

The group identity is 0 and the inverse element (x, y, t)−1 is (−x,−y,−t).
The Lie algebra of left invariant vector fields is generated by

Xj = ∂xj
− yj

2 ∂t, Yj = ∂yj
+

xj

2 ∂t, for j = 1, . . . , n; T = ∂t,

where as usual we identified vector fields and first order differential op-
erators. The only nonvanishing commutation relationships are given by
[Xj, Yj ] = T for any j = 1, . . . , n. For computational convenience, in-
stead of the usual Carnot-Carathéodory distance dc we will consider the
equivalent distance d∞ on H

n arising from the homogeneous norm

‖P‖∞ := max{|(x, y)|, |t|1/2},

i.e. d∞(P,Q) := ‖Q−1 · P‖∞. Absolutely continuous curves γ with
γ′(s) ∈ span{X1, . . . , Yn} for a.e. s ∈ R are called horizontal.

A continuous function f : Ω ⊂ H
n → R is of class C1

H
(Ω) if its hori-

zontal derivatives

∇Hf := (X1f, . . . , Xnf, Y1f, . . . , Ynf)

are represented, in distributional sense, by continuous functions on the
open set Ω. The inclusion C1(Ω) ⊂ C1

H
(Ω) is strict; see for example [10,

Remark 5.9].
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Definition 2.1. We shall say that S ⊂ H
n is a H-regular hypersurface

if for every P ∈ S there exist an open ball B(P, r) and a function f ∈
C1

H
(B(P, r)) such that

S ∩B(P, r) = {Q ∈ B(P, r) : f(Q) = 0} and ∇Hf 6= 0 on B(P, r).

Euclidean C1 surfaces are H-regular provided they have no charac-
teristic points, i.e. no points where the tangent plane coincides with
span{X1, . . . , Yn}.

It will not be restrictive to consider only H-regular surfaces given as
level sets {f = 0} of C1

H
functions with X1f > 0. With this assumption

in mind, in the following we fix W to be the maximal subgroup of H
n

defined by

W :=exp
(

span{X2, . . . , Xn, Y1, . . . , Yn, T }
)

={(x, y, t) ∈ R
2n+1 : x1 =0}.

We also write (y, t) to denote a point (0, y, t) ∈W if n = 1; if n ≥ 2 we
write (y1, z, t) ∈ R× R

2n−2 × R instead of (0, x2, . . . , xn, y1, . . . , yn, t) ∈
W, where z = (x2, . . . , xn, y2, . . . , yn).

Theorem 2.2 (Implicit Function Theorem, [10]). Let S = {f = 0} be
a H-regular hypersurface given as the level set of a C1

H
function f with

X1f > 0. Then, locally on S, there exists a unique continuous map
φ : ω ⊂W→ R such that S = Φ(ω), where Φ is defined by

(2.1) Φ(A) := A · (φ(A), 0, . . . , 0) = exp(φ(A)X1)(A).

Moreover, Φ is a homeomorphism.

The explicit structure of Φ is given by

Φ(y, t) =
(

φ(y, t), y, t− 1
2yφ(y, t)

)

, if n = 1

Φ(y1, z, t) =
(

φ(y1, z, t), x2, . . . , xn, y1, y2, . . . , yn,

t− 1
2y1φ(y1, z, t)

)

, if n ≥ 2.

This not being restrictive, we will always suppose that the whole sur-
face S coincides with the image of Φ. It was proved in [12] that Φ is
1/2-Hölder continuous (in fact, also slightly better, see Corollary 4.5
in [2]) when the distance on ω ⊂ W ≡ R

2n is the Euclidean one, but
not, in general, of class C0,α for α > 1

2 .
The problem of the regularity of φ and Φ, that from now on will always

be related by (2.1), was addressed in [2], [5], [7]. In particular, in [2] it
was proved that the map Φ: ω → S is bi-Lipschitz continuous provided
we endow ω with a certain quasi-distance ρφ, that depends on φ itself.
Explicitly, for A,B ∈ ω one has
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• if n = 1, A = (y, t), B = (y′, t′), then

ρφ(A,B) := |y′ − y|+
∣

∣t′ − t− 1
2 (φ(A) + φ(B))(y′ − y)

∣

∣

1/2
;

• if n ≥ 2, A =
(

y1, (x2, . . . , xn, y2, . . . , yn), t
)

, B =
(

y′1, (x
′
2, . . . , x

′
n,

y′2, . . . , y
′
n), t

)

, then

ρφ(A,B) :=
∑n

j=2 |x
′
j − xj |+

∑n
j=1 |y

′
j − yj |

+
∣

∣

∣
t′ − t− 1

2 (φ(A) + φ(B))(y′1 − y1) + 1
2

∑n
j=2(x

′
jyj − xjy

′
j)
∣

∣

∣

1/2

.

If S is H-regular, ρφ turns out to be a quasi-metric, i.e. the triangular
inequality is replaced by

ρφ(A,B) ≤ K
(

ρφ(A,C) + ρφ(C,B)
)

for any A,B,C ∈ ω

for a certain K ≥ 1. The problem of finding a bi-Lipschitz parametriza-
tion of S is therefore equivalent to that of finding a bi-Lipschitz
parametrization of (ω, ρφ). Moreover, curves on S with finite length
(i.e. horizontal curves) correspond, via Φ, to curves with finite length
in (ω, ρφ).

It turns out that the parametrization φ of a H-regular surface S is
“regular” (i.e. differentiable in a specific sense, see [2], [7]) along the
directions

(2.2)

Xj = ∂xj
− yj

2 ∂t for 2 ≤ j ≤ n

Wφ := Y1 + φT = ∂y1
+ φ∂t

Yj = ∂yj
+

xj

2 ∂t for 2 ≤ j ≤ n.

Remark 2.3. We will not enter into details regarding the intrinsic gra-
dient ∇φφ := (X1φ, . . . , Xnφ,W

φφ, Y2φ, . . . , Ynφ) of parametrizations φ
of H-regular surfaces: we refer again to [2], [7]. Let us only recall that
∇φφ : ω → R

2n−1 is a continuous function which determines the hori-
zontal normal to the surface.

νS(P ) =

(

−
1

√

1 + |∇φφ|2
,

∇φφ
√

1 + |∇φφ|2

)

(Φ−1(P )).

In particular, horizontal curves on S have derivatives lying in the linear
space generated by the vectors

(2.3)

(

(Xjφ) ◦ Φ−1
)

X1 +Xj (j = 2, . . . , n)
(

(Wφφ) ◦ Φ−1
)

X1 + Y1
(

(Yjφ) ◦ Φ−1
)

X1 + Yj (j = 2, . . . , n).
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In fact, the derivative of such a curve at a point P , whenever it ex-
ists, belongs to the blow up of S at P , which is the “vertical” maximal
subgroup “orthogonal” to νS(P ).

In the sequel we will need the following result, which allows to exhibit
examples of H-regular surfaces in H

1 which are not of class C1.

Theorem 2.4 ([2, Corollary 5.11]). Suppose n = 1 and φ : ω ⊂ W ≡
R

2
y,t → R is a continuous map depending only on the second vari-

able t, namely φ(y, t) = ϕ(t). Assume that ϕ2 is of class C1; then
the image Φ(ω) is a H-regular surface in H

1. Moreover, (Wφφ)(y, t) =
1
2 (ϕ2)′(t).

Finally, we need to define Sobolev classes of maps between metric
spaces; we refer to [3] and the references therein. Given two metric
spaces (M,dM ), (N, dN ), a nonnegative Radon measure µ on M and
1 ≤ p ≤ +∞, we will say that u : M → N belongs to the Sobolev
space W 1,p

m ((M,dM ), (N, dN )) if there exists g : M → [0,+∞] with g ∈
Lp(M,dµ) and

(2.4) dN (u(A), u(B)) ≤
(

g(A) + g(B)
)

dM (A,B) for any A,B ∈M.

We will always be concerned with the case M = ω, (N, dN ) = (Hn, d∞)
and µ = L2n.

3. Proof of Theorem 1.1

As mentioned in the Introduction, H-regular surfaces of class C1 can
be modeled on the parabolic plane (1.1), as specified in the following
result. The first part of the statement was proved by D. R. Cole and
S. D. Pauls [8].

Theorem 3.1. Let S be a C1 surface; then for any non characteristic
point P ∈ S there is a Lipschitz continuous homeomorphism

Ψ: (A, ̺) −→ (U , d∞),

from an open set A ⊂ R
2 to a neighbourhood U of P in S, with Lipschitz

continuous inverse map Ψ−1.

Proof: It is not restrictive to suppose that P = 0 and that a neigh-
bourhood U ⊂ S of 0 is parametrized by a C1 function φ : ω → R

with φ(0) = 0. Let us introduce the map

ψ : A → ω

(η, τ) 7→ exp(ηWφ)(0, τ)
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which is defined, possibly restricting ω, on a proper open set A ⊂ R
2. It

is not difficult to notice that the Lipschitz homeomorphism Ψ: A → U
introduced by D. R. Cole and S. D. Pauls is Ψ = Φ ◦ ψ. Since Φ is a
(ρφ-d∞) bi-Lipschitz homeomorphism, it will be sufficient to show that
the inverse map ψ−1 is (ρφ-̺)-Lipschitz continuous.

To this aim, for any A = (y, t) ∈ ω let us introduce the curve τA
solution of the ODE

τA(y) = t, τ̇A(s) = φ(s, τA(s)).

It is immediate to see that ψ−1(A) = ψ−1(y, t) = (y, τA(0)). The Lips-
chitz estimate we need to prove is therefore

|y′ − y|+ |τB(0)− τA(0)|1/2 ≤ c ρφ(A,B) ∀ A = (y, t), B = (y′, t′) ∈ ω.

If y′ = y we have

|τB(0)− τA(0)| =

∣

∣

∣

∣

t′ − t+

∫ 0

y

[φ(s, τB(s))− φ(s, τA(s))] ds

∣

∣

∣

∣

≤ |t′ − t|+ c1

∫ 0

y

|τB(s)− τA(s)| ds

and by Gronwall’s lemma one concludes that

|τB(0)− τA(0)|1/2 ≤ c2|t
′ − t|1/2 = ρφ(A,B).

If y′ 6= y we define C := exp((y − y′)Wφ)(B) = (y, t′′). We refer to [2,
Theorem 3.8] for the proof of the inequality |t′′ − t′|1/2 ≤ c3ρφ(A,B);
with this in our hands we can conclude in a stroke since

|y′ − y|+ |τB(0)− τA(0)|1/2 = |y′ − y|+ |τC(0)− τA(0)|1/2

≤ |y′ − y|+ c2|t
′′ − t|1/2

≤ c ρφ(A,B).

As we said, Theorem 3.1 fails to hold for general H-regular surfaces:
the idea for constructing a counterexample lies in the possibility of find-
ing H-regular surfaces which are connected by curves with finite length,
and to notice that the parabolic plane does not share this property.
Clearly, C1 noncharacterictic surfaces are not connected by means of
such curves.

Let us consider the intrinsic graph S := Φ(W) of the map

(3.1) φ(y, t) :=

{

− tα

1−α if t ≥ 0

0 if t < 0.
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The exponent α is such that 1
2 < α < 1: S is therefore H-regular thanks

to Theorem 2.4 and (Wφφ)(y, t) = α
(1−α)2 t

2α−1 if t ≥ 0, (Wφφ)(y, t) = 0

otherwise. The surface is constituted by the union of the two C1 surfaces

S+ := {(x, y, t) ∈ H
n : t+ 1

2xy > 0, x = − 1
1−α

(

t+ 1
2xy

)α
}

S− := {(0, y, t) ∈ H
1 : t < 0}

glued together along the horizontal line L := {(0, y, 0) : y ∈ R}; S is
clearly not C1 regular at points of L.

Proof of Theorem 1.1: Let us consider the H-regular surface S para-
metrized by the map φ in (3.1) and the point P = (0, 0, 0) ∈ S; let
Ψ be as in the statement of the theorem.

For any fixed τ the curve γτ := Ψ(·, τ) : R → H
1 is Lipschitz con-

tinuous; therefore (see Remark 2.3) it is tangent to the vector field
W := Y1 + (Wφφ ◦ Φ−1)X1 on S. In particular, the support of γτ is
contained in integral lines of W . It is a matter of fact that the pro-
jection Φ−1(γ) of an integral curve γ of W is an integral curve of Wφ

in W.
Let us investigate the behaviour of the integral curves of Wφ, i.e. the

solutions of the Cauchy problem

c′(s) = Wφ(c(s)) = ∂y + φ(c(s))∂t.

More precisely, if c(s) = (cy(s), ct(s)) we have

c′y = 1 and c′t = −
cαt

1− α
.

Lipschitz regularity of the coefficients of this ODE is violated at
points (y, 0), therefore we cannot expect uniqueness of solutions when-
ever ct = 0. By standard considerations on this kind of problem we can
divide the solutions of the ODE into two families {c+w}w∈R and {c−ζ }ζ≤0:

c+w(s) =

{

(s, (w − s)
1

1−α ) if s ≤ w

(s, 0) if s ≥ w
(3.2)

c−ζ (s) = (s, ζ).(3.3)

Notice that, for a given curve c+w , the parameterw denotes the point (w, 0)
where it meets the horizontal axis y. We will also write c++

w to denote
the restriction of c+w to ] −∞, w], i.e. the part of c+w lying in the upper
halfplane. The upper (closed) halfplane is connected by means of c−0 and
of paths of type c+w .
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It will not be restrictive to suppose Ψ(0, 0)=0 ∈ S and U=Φ
(

]−δ, δ[2
)

for some positive δ. Let us denote by ψ the (̺-ρφ)-Lipschitz induced map
ψ := Φ−1 ◦Ψ: A →]− δ, δ[2, which is such that ψ(0, 0) = (0, 0); suppose
by contradiction that it is also a homeomorphism. Then the set

K := ψ−1{(0, t) : t ∈ [0, δ/2]}

is a compact subset of A and for sufficiently small r > 0

(3.4) {(η + h, τ) : (η, τ) ∈ K,−r ≤ h ≤ r} ⊂ A.

Let us set

r+ := sup{η > 0 : ψ(η, 0) ∈ R× {0}} ≥ 0

r− := inf{η < 0 : ψ(η, 0) ∈ R× {0} ≤ 0.

One cannot have r+ = r− = 0; indeed, this would imply

{ψ(η, 0) : η > 0} ⊂ Im c++
0 \{0} and {ψ(η, 0) : η < 0} ⊂ Im c++

0 \{0},

and by continuity (ψ(0, 0) = 0) we obtain

{ψ(η, 0) : η > 0} ∩ {ψ(η, 0) : η < 0} 6= ∅

i.e. ψ is not injective, a contradiction.
Therefore, one between r+ and r− is nonzero: by substituting ψ with

ψ(−η, τ) if necessary, we can suppose that r+ > 0. One has

{ψ(η, 0) : 0 ≤ η ≤ r+} ⊂ R× {0},

otherwise the curve ψ(·, 0)|[0,r+] would “leave” the horizontal axis R ×
{0} and then “return” on it after some time. This could be possible
only by covering forward and then backward a piece of some c++

w , and
contradicting in particular the injectivity of ψ. We can choose r ∈ ]0, r+[
such that (3.4) holds. Set A := ψ(r, 0) = (ȳ, 0); by continuity one must
have

(3.5)
[0, ȳ]× {0} ⊂ {ψ(η, 0) : 0 ≤ η < r} if ȳ > 0

[ȳ, 0]× {0} ⊂ {ψ(η, 0) : 0 ≤ η < r} if ȳ < 0.

Since A 6= 0 (i.e. ȳ 6= 0) we easily find an ǫ > 0 such that

V1 ∩ V2 = ∅,

where

V1 :=
⋃

0<w<ǫ

Im c++
w and V2 :=

⋃

ȳ−ǫ<w<ȳ+ǫ

Im c++
w .
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Notice that A ∈ V2, since A ∈ c++
ȳ . Now, it is not difficult to prove that,

in order to join a point A1 ∈ V1 with a point A2 ∈ V2 by following only
integral lines of Wφ, one must cover the whole segment I defined by

I := [ǫ, ȳ − ǫ]× {0} if ȳ > 0, I := [ȳ + ǫ, 0]× {0} if ȳ < 0.

Setting (ηt, τt) := ψ−1(0, t), one has

lim
t→0

ψ(ηt + r, τt) = ψ(r, 0) = A.

For sufficiently small t > 0 the curve ψ(·, τt) joins A1 := (0, t) ∈ V1 to
A2 := ψ(ηt+r, τt) following only integral lines ofWφ; moreover, A2 must
belong to V2. This implies that I ⊂ Imψ(·, τt); since (see (3.5)) we have
also I ⊂ Imψ(·, 0), this would contradict the injectivity of ψ provided
we are able to choose a sufficiently small t such that τt 6= 0. Were this
not possible, there would exist λ > 0 such that ψ−1(0, t) = (ηt, 0) for
any t ∈ [0, λ], i.e.

{0} × [0, λ] ⊂ Imψ(·, 0).

Therefore the image Φ({0}×[0, λ]) would be a horizontal curve, while it
can be easily checked that this is not the case. A contradiction arises
and the proof is completed.

Remark 3.2. In the spirit of Federer’s approach to rectifiability see [9],
[1]) it would be interesting to understand if H-regular surfaces can
be seen as Lipschitz images of the parabolic plane. In this sense,
Theorem 1.1 essentially says that one cannot expect injectivity of the
parametrization, since the images on S of horizontal lines (·, t) ⊂ (R2, ̺)
are somehow “forced to meet”.

The surface S can be locally parametrized by means of Lipschitz im-
ages of the parabolic plane. This clearly follows from Theorem 3.1 for
neighbourhoods of points in S+ ∪ S−. For points P ∈ L, it will be suffi-
cient to observe that P−1S = S (thus reducing to the case P = 0) and
to show that the map

ψ(η, τ) :=

{

c+τ−1(η) if τ > 0

c−τ (η) if τ ≤ 0,

is (̺-ρφ)-Lipschitz continuous from a neighbourhood of (0, 0) to a neigh-
bourhood of (0, 0) in W. Explicitly, we have

ψ(η, τ) =











(η, (τ − 1− η)1/1−α) if τ > 0 and η ≤ τ − 1

(η, 0) if τ > 0 and η ≥ τ − 1

(η, τ) if τ ≤ 0.

Clearly, ψ is not injective, as ψ(0, τ) = (0, 0) for any τ ∈ [0, 1].
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It is not difficult (see [2]) to show that integral curves of Wφ are
(locally) Lipschitz continuous with respect to ρφ; in particular

ρφ(ψ(η1, τ), ψ(η2, τ)) ≤ c|η1 − η2|

for (η1, τ), (η2, τ) in a neighbourhood of (0, 0). It will therefore be suffi-
cient to prove that

ρφ(ψ(η, τ1), ψ(η, τ2)) ≤ C|τ1 − τ2|
1/2

for some C > 0 and any (η, τ1), (η, τ2) in a neighbourhood of (0, 0). We
have several cases to take into account. If τ1, τ2 > 0, η ≤ τ1 − 1 and
η ≤ τ2 − 1 then

ρφ(ψ(η, τ1), ψ(η, τ2)) = |(τ1 − 1− η)1/1−α − (τ2 − 1− η)1/1−α|1/2

≤ C|τ1 − τ2|
1/2,

where we used that s 7→ s1/1−α is locally Lipschitz continuous since
1/(1− α) > 2. If τ1, τ2 > 0 and τ2 − 1 ≤ η ≤ τ1 − 1 then

ρφ(ψ(η, τ1), ψ(η, τ2)) = (τ1 − 1− η)1/2(1−α) ≤ (τ1 − τ2)
1/2(1−α)

≤ C|τ1 − τ2|
1/2.

If τ1 > 0, τ2 ≤ 0 and η ≤ τ1 − 1 we can restrict to η ≥ −1 to get

ρφ(ψ(η, τ1), ψ(η, τ2)) = ((τ1 − 1− η)1/1−α − τ2)
1/2

≤ (τ
1/1−α
1 − τ2)

1/2 ≤ (Cτ1 − (C ∨ 1)τ2)
1/2.

The remaining cases τ1 > 0, τ2 ≤ 0, η > τ1 − 1 and τ1, τ2 ≤ 0 are easy
to handle.

The problem of finding bi-Lipschitz (or even just Lipschitz) parametri-
zations of H-regular surfaces in H

n, n ≥ 2, is still open even for smooth
hypersurfaces. The model space should be R × H

n−1 ≡ R
2n endowed

with the product distance

̺
(

(η,A), (η′, A′)
)

:= |η − η′|+ d∞(A,A′), (η,A), (η′, A′) ∈ R×H
n−1.

It can be easily seen that this distance is equivalent to the restriction
of d∞ to R

2n ≡W, as both of them are homogeneous and left invariant
on W.

Moreover, it is not clear whether the statement of Theorem 1.1 ex-
tends to the higher dimensional case n ≥ 2; namely, if there exist H-reg-
ular hypersurfaces in H

n that are not bi-Lipschitz homeomorphic to
R × H

n. Notice, for instance, that R × H
n−1 is connected by means of
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finite length curves; the same happens for any H-regular surface, the sub-
group W being always connected by integral curves of span{X2, . . . , Xn,
Wφ, Y2, . . . , Yn} when n ≥ 2 (see [2], [7]).

4. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2, that will follow
from Lemma 4.1 below in case Φ is not the inclusion ω ⊂ W →֒ H

n

(i.e. when φ 6≡ 0). When φ ≡ 0, Theorem 1.2 still holds when d is the
Euclidean distance on ω (see Remark 4.2) but not for d = dc|ω, since in
this case Φ is clearly an isometry.

In the following, d will be used to denote any of the metric dc|ω or the
Euclidean distance on ω; we will just use the fact that, locally in ω,

(4.1) d
(

(y1, z, t), (y
′
1, z, t)

)

≤ C|y1 − y
′
1|

for some C > 0. Lemma 4.1 treats only the case n ≥ 2, the generalization
to n = 1 being straightforward.

Lemma 4.1. Let φ : ω ⊂ R
2n → R be a continuous, not identically

vanishing function; then there exists no measurable function g : ω →
[0,+∞] such that

(a) g is L2n-a.e. finite;

(b) for any A = (y1, x2, . . . , xn, y2, . . . , yn, t), A
′ = (y′1, x

′
2, . . . , x

′
n,

y′2, . . . , y
′
n, t

′) ∈ ω it holds

∣

∣

∣

∣

∣

∣

t′ − t− 1
2 (φ(A′) + φ(A))(y′1 − y1) + 1

2

n
∑

j=2

(x′jyj − xjy
′
j)

∣

∣

∣

∣

∣

∣

1/2

≤
(

g(A′) + g(A)
)

d(A′, A).

Proof: We reason by contradiction. Since L2n
(

{φ 6= 0}∩{|g| < +∞}
)

>
0 there exist z̄, t̄ such that

L1
(

{y1 ∈ R : (y1, z̄, t̄) ∈ ω, φ(y1, z̄, t̄) 6= 0, |g(y1, z̄, t̄)| <∞}
)

> 0.

In particular there is M > 0 with L1(EM ) > 0, where EM is defined by

EM := {y ∈ R : (y1, z̄, t̄) ∈ ω, φ(y1, z̄, t̄) 6= 0, |g(y1, z̄, t̄)| ≤M}.

Let us choose a Lebesgue point ȳ ∈ EM of EM ; in particular, φ(ȳ1, z̄, t̄) 6=

0, |g(ȳ1, z̄, t̄)| ≤M and there exists a sequence {yj
1}j∈N ⊂ EM with yj

1 →
ȳ1. By exploiting condition (b) and using (4.1) for points A = (ȳ1, z̄, t̄),
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Aj = (yj
1, z̄, t̄) we achieve

| 12 (φ(A) + φ(Aj))(yj
1 − ȳ1)|

1/2 ≤ (g(A) + g(Aj)) d(A,Aj)

≤ 2CM |yj − ȳ|

whence
|φ(A) + φ(Aj)| ≤ 8C2M2|yj

1 − ȳ1|.

We then let j → ∞ and use the continuity of φ to obtain φ(A) = 0, a
contradiction.

Remark 4.2. When φ ≡ 0 and d is the Euclidean distance on ω, the
statement of Lemma 4.1 (and consequently Theorem 1.2) still holds.
Reasoning as before, we can in fact choose ȳ1, z̄ and M > 0 such that

(4.2) L1
(

{t ∈ R : (ȳ1, z̄, t) ∈ ω, |g(ȳ1, z̄, t)| ≤M}
)

> 0.

Consider then a Lebesgue point t̄ for the set in (4.2) and a sequence tj →
t̄ in the same set. Exploiting condition (b) and using (4.1) we now obtain

|tj − t̄|1/2 ≤ 2CM |tj − t̄|

for any j, a contradiction.
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