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We provide the gauge-invariant expression for large-scale cosmic microwave background tempera-
ture fluctuations at second-order perturbation theory. This enables us to define unambiguously the
nonlinearity parameter fNL, which is used by experimental collaborations to pin down the level of non-
Gaussianity in the temperature fluctuations. Furthermore, it contains a primordial term encoding all the
information about the non-Gaussianity generated at primordial epochs and about the mechanism which
gave rise to cosmological perturbations, thus neatly disentangling the primordial contribution to non-
Gaussianity from the one caused by the postinflationary evolution.
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Inflation has become the dominant paradigm to under-
stand the initial conditions for the density perturbations
in the early Universe which are the seeds for the large-
scale structure (LSS) and for the cosmic microwave
background (CMB) temperature anisotropies [1]. In the
inflationary picture, primordial density and gravity-wave
fluctuations are created from quantum fluctuations ‘‘red-
shifted’’ out of the horizon during an early period of
superluminal Universe expansion. Despite the simplicity
of the inflationary paradigm, the mechanism by which
cosmological curvature (adiabatic) perturbations are gen-
erated is not yet established. In the standard slow-roll
inflationary scenario associated with one single field, the
inflaton, density perturbations are due to fluctuations of
the inflaton itself when it slowly rolls down along its
potential. In the curvaton mechanism [2] the final curva-
ture perturbation � is produced from an initial isocurva-
ture mode associated with the quantum fluctuations of a
light scalar (other than the inflaton), the curvaton, whose
energy density is negligible during inflation. Recently,
other mechanisms for the generation of cosmological
perturbations have been proposed: the inhomogeneous
reheating scenario [3], ghost inflation [4], and the D-
cceleration scenario [5], to mention a few. A precise
measurement of the spectral index n� of comoving cur-
vature perturbations will provide a powerful constraint to
slow-roll inflation models and the standard scenario for
the generation of cosmological perturbations which pre-
dicts jn� � 1j significantly below unity. However, alter-
native mechanisms generically also predict a value of n�
very close to unity. Thus, even a precise measurement of
the spectral index will not allow us to efficiently dis-
criminate among them. On the other hand, the lack of
gravity-wave signals in CMB anisotropies will not give us
any information about the perturbation generation
mechanism, since alternative mechanisms predict an am-
plitude of gravity waves far too small to be detectable by
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future experiments aimed at observing the B mode of the
CMB polarization.

There is, however, a third observable which will prove
fundamental in providing information about the mecha-
nism chosen by nature to produce the structures we see
today. It is the deviation from a Gaussian statistics, i.e.,
the presence of higher-order connected correlation func-
tions of CMB anisotropies. Since for every scenario there
exists a well defined prediction for the strength of non-
Gaussianity (NG) and its shape as a function of the
parameters, testing the NG level of primordial fluctua-
tions is one of the most powerful probes of inflation [6]
and is crucial to discriminate among different —but oth-
erwise indistinguishable —mechanisms. For instance,
the single-field slow-roll inflation model itself produces
negligible NG, and the dominant contribution comes from
the evolution of the ubiquitous second-order perturba-
tions after inflation, which is potentially detectable with
future observations of CMB temperature and polarization
anisotropies. This effect must exist regardless of the infla-
tionary models, setting the minimum NG level of cos-
mological perturbations. Therefore, if we do not find any
evidence for this ubiquitous NG, then it will challenge our
understanding of the evolution of cosmological perturba-
tions at a deeper level.

Motivated by the extreme relevance of pursuing NG in
the CMB anisotropies, in this Letter we provide the exact
expression for large-scale CMB temperature fluctuations
at second order in perturbation theory. This expression
has various virtues. First, it is gauge invariant. Second,
from it one can unambiguously extract the exact defini-
tion of the nonlinearity parameter fNL, which is used by
the experimental collaborations to pin down the level of
NG in the temperature fluctuations. Third, it contains a
‘‘primordial’’ term encoding all the information about the
NG generated in primordial epochs, namely, during or
immediately after inflation, and depends upon the various
-1  2004 The American Physical Society
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fluctuation generation mechanisms. As such, the expres-
sion neatly disentangles the primordial contribution to the
NG from that arising after inflation. Finally, the expres-
sion applies to all scenarios for the generation of cosmo-
logical perturbations.

In order to obtain our gauge-independent formula for
the temperature anisotropies we first perturb a spatially
flat Robertson-Walker background. Here we follow the
formalism of Ref. [7] expanding metric perturbations in
a first and a second-order part as

g00 � �a2�1� 2��1� ���2��;
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where the scale factor a��� is a function of the conformal
time �. The functions ��r�; !̂�r�

i ;  
�r� and �̂�r�

ij , where �r� �
�1; 2�, stand for the rth-order perturbations of the metric.
It is standard use to split the perturbations into the so-
called scalar, vector, and tensor parts, according to their
transformation properties with respect to the three-
dimensional space with metric �ij, where scalar parts
are related to a scalar potential, vector parts to transverse
(divergence-free) vectors, and tensor parts to transverse
trace-free tensors. Thus� and  are scalar perturbations,
and for instance, !̂�r�

i � @i!
�r� �!�r�

i , where !�r� is the
scalar part and !�r�

i is a transverse vector, i.e., @i!�r�
i � 0.

The metric perturbations will transform according to an
infinitesimal change of coordinates. From now on we
limit ourselves to a second-order time shift �!

�� ��1� �
1
2 ��

0
�1���1� � ��2��, where a prime denotes

differentiation with respect to conformal time. In gen-
eral, a gauge corresponds to a choice of coordinates
defining a slicing of spacetime into hypersurfaces (at
fixed time �) and a threading into lines (correspond-
ing to fixed spatial coordinates x), but in this Letter
only the former is relevant so that gauge invariant can
be taken to mean independent of the slicing [8]. For
example, under the time shift, the first-order spatial cur-
vature perturbation  �1� transforms as  �1� !  �1� �

H��1� (here H � a0=a), while ��1� ! ��1� � �0
�1� �

H��1�, !̂�1�
i ! !̂�1�

i � @i��1�, and the traceless part of
the spatial metric �̂�1�

ij turns out to be gauge invariant.
At second order in the perturbations we just give some
useful examples like the transformation of the energy
density and the curvature perturbation [7] ��2��!

��2��� �0��2� � ��1���00��1� � �0�0
�1� � 2��1��0� and
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;i �H��2�. In particular,

there exists an extension at second order of the well-

known gauge-invariant variable � �1� � � �1� �H ��1��
�0
231301
(the curvature perturbation on uniform density hyper-
surfaces). It is given by � � � �1� � �1=2�� �2�, where [8,9]
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The key point here is that the gauge-invariant comoving
curvature perturbation � �2� remains constant on super-
horizon scales after it has been generated and possible
isocurvature perturbations are no longer present. There-
fore, � �2� provides all the necessary information about
the primordial level of NG generated either during in-
flation, as in the standard scenario, or immediately after
it, as in the curvaton scenario. Different scenarios are
characterized by different values of � �2�, while the post-
inflationary nonlinear evolution due to gravity is common
to all of them [6,10–12]. For example, in standard single-
field inflation, � �2� is generated during inflation and its
value is � �2� � 2�� �1��2 �O�n� � 1� [10,13].

We now construct in a gauge-invariant way tempera-
ture anisotropies at second order. Temperature anisotro-
pies beyond the linear regime have been calculated in
Refs. [14], following the photons path from last-
scattering to the observer in terms of perturbed geode-
sics. The linear temperature anisotropies read [14]

	T�1�

T
� ��1�

E � v�1�iE ei � ��1�E �
Z �E

�O
d�A�1�0; (3)

where A�1� 
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i e

i � 1
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ij e

iej, the sub-
script E indicates that quantities are evaluated at last
scattering, ei is a spatial unit vector specifying the di-
rection of observation, and the integral is evaluated along
the line-of-sight parametrized by the affine parameter �.
Equation (3) includes the intrinsic fractional temperature
fluctuation at emission �E , the Doppler effect due to
emitter’s velocity v�1�iE , and the gravitational redshift of
photons, including the integrated Sachs-Wolfe (ISW) ef-
fect. We omitted monopoles due to the observer O (e.g.,
the gravitational potential  �1�

O evaluated at the event of
observation), which, being independent of the angular
coordinate, can be always recast into the definition of
temperature anisotropies [15]. Notice, however, that the
physical meaning of each contribution in Eq. (3) is not
gauge invariant, as the different terms are gauge depen-
dent. However, it is easy to show that the whole expression
(3) is gauge invariant. Since the temperature T is a scalar,
the intrinsic temperature fluctuation transforms as ��1�E !

��1�E � �T0=T���1� � ��1�E �H��1�, having used the fact
that the temperature scales as T / a�1. Notice, instead,
that the velocity v�1�iE does not change. Therefore, using
-2
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the transformations of metric perturbations we find
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where we have used the fact that the integral is evaluated
along the line-of-sight which can be parametrized by the
background geodesics x�0�� � ��; ��O � �E�e

i (with
d�=d� � 1), and the decomposition for the total deriva-
tive along the path for a generic function f��; xi���, f0 �
@f
@� �

df
d�� @ife

i. Equation (4) shows that the expression
(3) for first-order temperature anisotropies is indeed
gauge invariant (up to monopole terms related to the
observer O). Temperature anisotropies can be easily writ-
ten in terms of particular combinations of perturbations
which are manifestly gauge invariant. For the gravi-
tational potentials we consider the gauge-invariant
definitions  �1�

GI � �1��H!�1� and ��1�
GI ���1��

H!�1��!�1�0 . For the �0� i� component of the metric
and the traceless part of the spatial metric we define
!�1�GI
i � !�1�

i and �̂�1�GI
ij � �̂�1�

ij . For the matter variables
we use a gauge-invariant intrinsic temperature fluctuation
��1�GI � ��1� �H!�1�, while the velocity itself is gauge
invariant v�1�iGI � v�1�i under time shifts. Following the
same steps leading to Eq. (4) one gets the linear tempera-
ture anisotropies in Eq. (3) in terms of these gauge-
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invariant quantities
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where A�1�
GI � ��1�

GI �  �1�
GI �!�1�GI

i ei �
1
2 �̂

�1�GI
ij eiej and we

omitted the subscript E. For the primordial fluctuations
we are interested in the large-scale modes set by the
curvature perturbation � �1�. Defining a gauge-invariant
density perturbation ��1��GI � ��1��� �0!�1�, we write
the curvature perturbation as � �1�GI � � �1�

GI �H ���1� 	
�GI=�0�. Since for adiabatic perturbations in the radiation
(�) and matter (m) eras �1=4����1���=��� � �1=3�	
���1��m=�m�, one can write the intrinsic temperature
fluctuation as ��1� � �1=4����1���=��� � �H ���1��=�0�

and a gauge-invariant definition is ��1�GI � �H ���1� 	
�GI=�

0�. In the large-scale limit, from Einstein equations,
in the matter era ��1�
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large-scale limit of temperature anisotropies (5)
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GI=3, i.e., the usual Sachs-Wolfe effect.
At second order, the procedure is similar to the one

described so long, though more lengthy and cumbersome.
We only provide the reader with the main steps to get the
final expression. The second-order temperature fluctua-
tions in terms of metric perturbations read [14]
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Here I2 is the second-order ISW [14] I2��E� �
R�E
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!̂�1�iei � I1��� and k�1�i��� � �2��1�ei � !̂�1�i �
�̂�1�ijej � Ii1��� are the photon wave vectors, with I1���
given by the integral in Eq. (3) and Ii1��� is obtained from
the same integral replacing the time derivative with a
spatial gradient. Finally in Eq. (6) x�1�0��� �R
�
�O
d�0��2��1� � !̂�1�

i e
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d�0�2 �1�ei � !̂�1�i � �̂�1�ijej � ��� �0�A�1�;i are

the geodesics at first order, and d�1�i � ei � ei�k�1�i

jei�k�1�ij
is the

direction of the photon emission. As usual, we have
omitted the monopole terms due to the observer. Using
the transformation rules of Ref. [7], it is possible to check
that the expression (6) is gauge invariant. We can express
the second-order anisotropies in terms of explicitly
gauge-invariant quantities, whose definition proceeds as
for the linear case, by choosing the shifts ��r� such that
!�r� � 0. For example, we consider the gauge-invariant
gravitational potential [12]
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where ��2� � !�2� �!�1�!�1�0 � r�2@i��4 �1�@i!
�1� �

2!�1�0@i!�1�. Expressing the second-order temperature
anisotropies (6) in terms of our gauge-invariant quantities
and taking the large-scale limit we find 	T�2�

GI =T �
�1=2���2�

GI � �1=2����1�
GI �

2 � �1=2���2�GI ���1�
GI�

�1�
GI (having

dropped the subscript E), and the gauge-invariant intrin-
sic temperature fluctuation at emission is ��2�GI � �1=4�	
���2��GI

� =��� � 3���1�GI �
2. We have dropped those terms

which represent integrated contributions and other
second-order small-scale effects that can be distinguished
from the large-scale part through their peculiar scale
dependence. At this point we make use of Einstein’s
equations. We take the expression for � �2� in Eq. (2), and
we use the �0� 0� component and the traceless part of the
-3
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�i� j� Einstein’s equation at second order [see Eqs. (153)
and (155) of Ref. [6]]. Thus, on large scales we find that
the temperature anisotropies are given by

	T�2�
GI

T
�
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18
���1�

GI �
2 �

K

10
�

1

10
�� �2�GI � 2�� �1�GI �
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where we have defined a kernel K � 10r�4 	
@i@

j�@i �1�@j 
�1�� � r�2�103 @

i �1�@i 
�1��. Equation (8) is

the main result of this Letter. It clearly shows that there
are two contributions to the final nonlinearity in the
large-scale temperature anisotropies. The contribution,
�� �2�GI � 2�� �1�GI �

2, comes from the primordial conditions
set during or after inflation. They are encoded in the
curvature perturbation � , which remains constant once
it has been generated. The remaining part of Eq. (8)
describes the post-inflation processing of the primordial
non-Gaussian signal due to the nonlinear gravitational
dynamics, including also second-order corrections at last
scattering to the Sachs-Wolfe effect [14]. Thus, the ex-
pression in Eq. (8) allows to neatly disentangle the pri-
mordial contribution to NG from that coming from that
arising after inflation.While the nonlinear evolution after
inflation is the same in each scenario, the primordial
content will depend on the particular mechanism gener-
ating the perturbations. We parametrize the primordial
NG in the terms of the conserved curvature perturbation
(in the radiation or matter dominated epochs) � �2� �
2a�� �1��2, where a depends on the physics of a given
scenario. For example, in the curvaton case a � �3=4r� �
r=2, where r � ��#=��D is the relative curvaton contri-
bution to the total energy density at curvaton decay [6]. In
the minimal picture for the inhomogeneous reheating
scenario, a � 1=4. For the other scenarios we refer the
reader to Ref. [6]. From Eq. (8) we can extract the non-
linearity parameter fNL which is usually adopted to
phenomenologically parametrize the NG level of cos-
mological perturbations and has become the standard
quantity to be observationally constrained by CMB ex-
periments [16,17]. The definition of fNL adopted in the
analyses performed in Refs. [16,17] goes through the
conventional Sachs-Wolfe formula 	T=T � ��=3 where
� is Bardeen’s potential [18], which is conventionally
expanded as (up to a constant offset, which only affects
the temperature monopole) � � �L � fNL � ��L�

2, with
�L � ���1�

GI . Here the ? product reminds the fact that the
nonlinearity parameter might have a nontrivial scale
dependence [6]. Therefore, using � �1� � � 5

3 
�1�
GI during

matter domination, from Eq. (8) we read the nonlinearity
parameter in momentum space

fNL�k1;k2� � �

�
5

3
�1� a� �

1

6
�

3

10
K

�
� 1; (9)

where K � 10�k1 � k3��k2 � k3�=k
4 � 10

3 k1 � k2=k
2 with

k3 � k1 � k2 � 0 and k � jk3j. In fact, the formula (9)
already accounts for an additional nonlinear effect enter-
ing in the CMB angular three-point function from the
231301
angular averaging performed with a perturbed line ele-
ment d��1� 2 �1�

GI � [6], implying a �1 shift in fNL. In
particular, within the standard scenario where cosmo-
logical perturbations are due to the inflaton, the primor-
dial contribution to NG is given by a � 1� 1

4 �n� � 1�
[10,13], where the spectral index is expressed in terms of
the usual slow-roll parameters as n� � 1 � �6%� 2�
[1]. The nonlinearity parameter from inflation now reads

finfNL � �
5

12
�n� � 1� �

5

6
�

3

10
K: (10)

Therefore, the main NG contribution comes from the
post-inflation evolution of the second-order perturbations
which give rise to order-one coefficients, while the pri-
mordial contribution is proportional to jn� � 1j � 1.
This is true even in the ‘‘squeezed’’ limit first discussed
by Maldacena [19], where one of the wave numbers is
much smaller than the other two, e.g., k1 � k2;3 and
K ! 0.
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