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Cognitive processing was investigated interictally in 18 children with migraine
without aura and 18 age-matched controls by measuring event-related potentials
(ERPs) and reaction times (RTs) during an acoustic oddball paradigm. Results
showed that N100 amplitude evoked by frequent stimuli was significantly smaller
in patients compared with controls. Habituation of target P300 amplitude was
observed in patients but not in controls. Mean RTs were equivalent in the two
groups, but migraine children made more errors than controls.  
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Introduction

 

Visual and auditory evoked potentials have been
largely investigated in adult and juvenile migraine
patients. Several studies report that, in the interictal
period, increased amplitude and lack of habituation
(i.e. amplitude decrease), or even potentiation, of
visual evoked potentials (VEPs) N1-P1 component
characterize migraineurs (especially with aura) com-
pared with controls (1–4). With repeated presenta-
tion of the same auditory stimulus at increasing
intensities, the auditory evoked potentials (AEPs)
of migraineurs show a steeper amplitude/intensity
function slope compared with healthy controls. The
stronger intensity dependence of AEPs N1-P2 com-
ponent between attacks has been repeatedly
observed in both adults and children with migraine
(5–7).

Overall, these dysfunctions are thought to reflect
functional cortical hyperexcitability, possibly
depending on abnormal central aminergic transmis-
sion (8). The migraine attack could be the final result
of the failure of cortical mechanisms protecting
against sensory overstimulation (9–11).

The recording of VEPs and AEPs provides a tool
to assess sensory processing but does not yield infor-
mation about later stages of stimulus evaluation,

involving cognitive functions such as attention and
memory. Clinical observations and neuropsycholog-
ical evaluations of cognitive abilities in adult and
young migraineurs indicate an association between
migraine (especially with aura) and short- and long-
term impairment of cognitive abilities, such as mem-
ory, attention, visuomotor processing and reasoning
(12–15). In this view, the recording of modifications
of electrical brain activity that are largely dependent
on psychological variables, i.e. the event-related
potentials (ERPs), represents a useful method to
investigate the temporal succession of elementary
cognitive processes.

Both adult and young migraine sufferers are gen-
erally reported to show higher interictal contingent
negative variation (CNV) amplitude compared with
controls, indicating increased cortical excitability
and abnormal orienting activity (16, 17). There is
evidence that the higher mean CNV amplitude
recorded in migraineurs is the result of retarded
habituation over blocks of trials (18–20).

Compared with CNV data, the results of ERP
studies employing the oddball paradigm to investi-
gate cognitive processing in migraine sufferers dur-
ing the pain-free period are much less conclusive.
Adults suffering from migraine without aura have
been reported to show prolonged latency and
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reduced amplitude of target P300 compared with
controls (21, 22). Other investigators did not find any
significant difference between pain-free migraineurs
without aura and tension-type headache sufferers in
either P300 amplitude or latency elicited in an odd-
ball task (23). The lack of a control group, however,
makes it difficult to give this evidence a clearcut
meaning.

Lack or deficit of normal habituation of target
P300 amplitude and latency was observed in adult
migraineurs without aura in the interictal interval
(9, 24–27). These results, together with the above-
mentioned VEP and CNV data, suggest that
deficient habituation across repetitive stimulation
may represent a general characteristic of migraine
patients between attacks, affecting both early and
advanced steps of information processing.

Migraine children have been reported to show
increased P300 amplitude and reduced habituation
of both P300 amplitude and latency compared with
healthy controls (28). Therefore, some abnormalities
in cognitive processing are thought to be already
detectable in young migraineurs, and not only in
adult patients.

Although most electrophysiological studies on
cognitive functions in migraineurs have focused on
P300 data, the amplitude and/or latency of earlier
ERP components, i.e. N100, P200 and N200, have
also been assessed (21–29). Whereas no differences
between patients and controls have been repeatedly
reported for other ERP components, some results
indicate that auditory N100 latency shows abnormal
features in migraineurs. Specifically, N100 latency
was reduced in adult patients and prolonged in
migraine children, compared with controls (22, 29).
Therefore, thorough investigation of N100 latency
abnormalities deserves further consideration.

Studies reporting reaction times (RTs) and error
data (omissions to targets and responses to stan-
dards) recorded during an oddball paradigm either
document no significant differences between pain-
free patients and controls in mean RTs (26, 28), or
longer RTs and more errors in migraineurs than in
controls (22). Thus, it is not entirely clear if some
kind of cognitive impairment in migraine patients is
also reflected in the level of speed and quality of task
performance.

An expansion of research on cognitive processing
in juvenile migraine by means of ERPs and perfor-
mance data recording is needed in order to under-
stand better which features differentiate young
patients from healthy children, and to clarify their
functional and pathophysiological meaning. The
present study was aimed at investigating ERPs, mea-

sured interictally during an auditory oddball para-
digm, in children suffering from migraine without
aura. In addition to N100 and P300 latency and
amplitude, the mismatch negativity (MMN) was
also computed. This negative deflection is thought
to reflect an early, preattentive mismatch-detection
process activated by a change in repetitive auditory
stimulation (30). To our knowledge, MMN in
migraine patients is an issue which has never been
addressed by researchers so far. By evaluating MMN
in migraine children we wanted to investigate the
possible association of the migraine disease with
abnormalities in preattentive processes, such as
auditory sensory memory and automatic change
detection. Strict criteria for sample selection and con-
trol age-matching were employed, thus avoiding
possible confounding variables due to sample inho-
mogeneity. Measurement of RTs and errors was also
utilized, in order to assess speed and accuracy of
behavioural responding and allow correlation of
ERP component amplitude and latency with behav-
ioural performance.

Our evaluation was focused on the interictal inter-
val, since we were interested in the putative cogni-
tive abnormalities that may represent a basal
condition in the migraine individual (9).

 

Methods

 

Participants

 

Eighteen patients (eight males, 10 females) partici-
pated in the study. All the participants were out-
patients of the Department of Paediatrics, University
of Padova. Mean age was 10.6 

 

±

 

 2.1 years (range 8–
14 years).

Physicians experienced in headache diagnosis had
documented they were affected by migraine without
aura according to the diagnostic criteria of the Inter-
national Headache Society (31). Inclusion criteria
were: at least one migraine episode per month, at
least 6 months’ illness duration, last migraine epi-
sode at least 3 days prior to investigation. Neurolog-
ical examination had excluded the presence of any
neurological disorder. The clinical data of the
patients are presented in Table 1.

At the time of investigation no patients were tak-
ing any prophylactic medication or receiving non-
pharmacological treatments.

Their participation in the study took place on a
symptom-free day.

The control group included 18 age-matched
healthy participants (11 males, seven females),
mainly recruited in local schools and sport/leisure
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centres. They had no recurrent headache episodes,
or first-degree relatives affected by migraine. Mean
age was 10.7 

 

±

 

 2 years (range 8–14 years).

 

Procedure

 

Written informed consent was obtained after the
nature and aim of the study had been fully explained
to the parents of the children.

Participants were seated in a comfortable arm-
chair in a quiet, light-attenuated room and were pre-
sented with a white fixation cross at the centre of a
19-in computer monitor placed 1 m in front of them.
Three hundred stimuli were presented in three
blocks of 100 trials each. Standard (80%) and target
(20%) tones (1000 and 2000 Hz sinusoids, 100 ms
duration, 65 dB SL) were delivered binaurally
through an earphone every 2 s, in a pseudorandom
fashion (no two targets were presented in succes-
sion; the number of standard stimuli between targets
varied between two and six, each appearing four
times per block). Tones presentation and RT record-
ing were accomplished by MEL 2.0 software (Micro
Experimental Laboratory, Psychology Software
Tools, Inc., Pittsburgh, PA, USA) (32).

Participants were instructed to keep their eyes
on the fixation cross and to limit eye movements to
spontaneous blinking for the entire task duration.
The space bar on a comp Keyboard had to be pressed
with the forefinger of their dominant hand as soon
as a target was presented. Mean RTs were recorded
in ms from the pressing of the space bar, and the
proportion of errors (false alarms, omissions, and
total) was calculated.

At the end of each block, a notice on the monitor
signalled the participant that it was possible to take
a pause and that he/she was free to operate the
beginning of the following block by pressing the
space bar on the keyboard.

One training run of stimuli (including 10 stan-
dards and three targets) was done before starting

data recording, to ensure that all participants under-
stood the procedure. Total task duration was about
15 min.

 

ERP recording and measurement

 

The electroencephalogram (EEG) was recorded from
Fz, Cz and Pz according to the 10–20 International
System (33) with three surface Ag/AgCl electrodes
referred to linked mastoids. Electrode impedance
was kept below 10 k

 

W

 

. Vertical and horizontal eye
movements were recorded with electrodes placed
above and below the left eye and on the outer canthi
of both eyes. High-pass and low-pass filters were
set at 0.16 Hz and 40 Hz, respectively. Sampling rate
was 500 Hz. Signals were filtered and amplified by
a SynAmps unit amplifier (Neuroscan, Inc., Compu-
medics, Ltd, El Paso, TX, USA).

The EEG was corrected for eye movements and
blink artefacts using a regression-based weighting
coefficients technique (34), as implemented in the
SCAN 4.1 software (Edit module; Neurosoft, Inc.).
EEG epochs of 

 

-

 

200 to 1000 ms poststimulus, base-
line corrected by subtraction of the average prestim-
ulus voltage, were averaged separately for rare and
frequent tones. Trials with signal exceeding 

 

±

 

100 

 

m

 

V
amplitude in any recording channel were excluded
from averaging. For the target tone stimuli, only cor-
rectly detected responses were averaged; for the
standard stimuli, false alarms were rejected. The
mean number of target and standard epochs in
the average was 229 and 57, respectively.

After visual inspection of grand averages and
individual averages, peak amplitudes in the 70–150
and 250–400-ms windows from stimulus presenta-
tion were calculated for N100 and P300, respectively.
Peaks were automatically quantified in the above-
indicated windows by a peak detection option in
SCAN 4.1 software, and visually checked for accu-
racy by a trained experimenter blind as to subjects’
group. If the program made inaccurate measures

 

Table 1

 

Clinical data of the migraine children

Duration of migraine, years (mean 

 

±

 

 SD; range) 3.2 

 

± 

 

1.8 (9 months to 8.5 years)
Number of attacks/month (mean 

 

±

 

 SD; range) 3 

 

±

 

 2 (1–8)
Severity of attacks (% of sample) Severe (55.6)

Moderate/severe (44.4)
Duration of single attack, h (% of sample)

 

<

 

1 (5.5)
1–2 (16.7)
2–3 (5.6)
3–5 (33.3)
6–12 (38.9)
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due to broad or multiple peaks, the experimenter
corrected the measurement and the new value was
recorded. Latency was calculated as the time of peak
from stimulus presentation.

In addition, ERPs to the frequent stimuli were sub-
tracted from ERPs to the deviant stimuli to obtain a
difference wave. Peak amplitude in the 170–300-ms
window in Fz was calculated as an estimation of the
MMN, and its latency was also measured.

P300 habituation was quantified by evaluating
amplitude and latency in the three blocks separately.

 

Statistical analysis

 

Repeated measures 

 

ANOVA

 

s with two levels for the
group factor (Controls and Migraineurs), two levels
of stimulus-type (Standard and Target) and three
levels of site (Fz, Cz, Pz) were performed on N100
and P300 amplitude and latency. A 2 (Group: Con-
trols and Migraineurs) 

 

¥

 

3 (Block: I, II, III) 

 

¥

 

3 (Site:
Fz, Cz, Pz) 

 

ANOVA

 

 was performed on target P300
amplitude and latency for habituation assessment.

Unadjusted 

 

P

 

-values for effects within variables
having more than two levels are reported, together
with the Geisser–Greenhouse epsilon (35).

Newman–Keuls tests (

 

P

 

 

 

<

 

 0.05) were used for 

 

post
hoc

 

 comparisons.
Student’s 

 

t

 

-test for independent samples (two-
tailed) was used to compare the two groups in MMN
amplitude and latency, and in mean RTs and error
proportions. RTs in the three blocks were assessed
by means of a 2 (Group: Controls and Migraineurs)

 

¥

 

3 (Block: I, II, III) 

 

ANOVA

 

.
Correlations between behavioural (RTs and pro-

portions of response errors), clinical (illness duration
and frequency of attacks) and electrophysiological
(ERP components amplitude and latency) data were
computed. Pearson product-moment correlation
coefficients (

 

r

 

) are reported.

 

Results

 

Tables 2a and 2b report 

 

ANOVA

 

 results for N100 and
P300 amplitude and latency.

 

N100

 

Figure 1 shows the grand averages for target and
standard stimuli in juvenile migraineurs and
controls.

 

Table 2a

 

Results of 2 (Group) 

 

¥

 

2 (Stimulus) 

 

¥

 

3 (Site) 

 

ANOVA

 

 on N100 and P300 amplitude and latency

N100 amplitude N100 latency P300 amplitude P300 latency

Group NS NS NS NS
Stimulus NS NS

 

F

 

 [1,34] = 183.82,

 

P

 

 

 

<

 

 0.0001
NS

Site

 

F

 

 [2,68] = 87.98,

 

P

 

 

 

<

 

 0.0001

 

F

 

 [2,68] = 28.95,

 

P

 

 

 

<

 

 0.0001

 

F

 

 [2,68] = 131.37,

 

P

 

 

 

<

 

 0.0001

 

F

 

 [2,68] = 26.37,

 

P

 

 

 

<

 

 0.0001

 

e = 

 

0.82

 

e = 

 

0.71

 

e = 

 

0.87

 

e = 

 

0.95
Group 

 

¥ 

 

Stimulus

 

F

 

 [1,34] = 5.77,

 

P

 

 

 

<

 

 0.021
NS NS

 

F

 

 [1,34] = 3.18,

 

P

 

 

 

<

 

 0.08
Group 

 

¥ 

 

Site NS NS NS NS
Stimulus 

 

¥ 

 

Site

 

F

 

 [2,68] = 6.89, 

 

P

 

 

 

<

 

 0.001
NS

 

F

 

 [2,68] = 71.24,

 

P

 

 

 

<

 

 0.0001
NS

Group 

 

¥ 

 

Stimulus 

 

¥ 

 

Site NS NS NS NS

 

Table 2b

 

Results of 2 (Group) 

 

¥

 

3 (Site) 

 

¥

 

3 (Block) 

 

ANOVA

 

 on target P300 amplitude and latency

P300 amplitude P300 latency

Group NS NS
Site

 

F

 

 [2,68] = 144.95, 

 

P

 

 

 

<

 

 0.0001, 

 

e = 

 

0.77

 

F

 

 [2,68] = 20.91, 

 

P

 

 

 

<

 

 0.0001, 

 

e = 

 

0.94
Block

 

F

 

 [2,68] = 3.89, 

 

P

 

 

 

<

 

 0.024, 

 

e = 

 

0.90

 

F

 

 [2,68] = 3.23, 

 

P

 

 

 

<

 

 0.045, 

 

e = 

 

0.93
Group 

 

¥ 

 

Site NS NS
Group 

 

¥ 

 

Block

 

F

 

 [2,68] = 3.38, 

 

P

 

 

 

<

 

 0.039, 

 

e = 

 

0.90 NS
Site 

 

¥ 

 

Block NS NS
Group 

 

¥ 

 

Block 

 

¥ 

 

Site

 

F

 

 [4,136] = 4.52, 

 

P

 

 

 

<

 

 0.001 NS
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A significant group–stimulus interaction was
found, showing that N100 amplitude to standard
stimuli was significantly smaller in migraineurs than
in controls (Fig. 2).

N100 amplitude had a frontal distribution, being
larger at Fz (

 

-11.2 mV) compared with Cz (-7.4 mV)
and Pz (-3.68 mV). The difference between Cz and Pz
was also significant.

The stimulus–site interaction showed that target
N100 was significantly greater than standard at Cz
and Pz, but not at Fz. Moreover, standard N100
amplitude was not significantly different in Cz com-
pared with Pz.

Significant variations in N100 latency were found
as a function of site, with the longest latency
recorded at Fz (119.5 ms), followed by Cz (109.75 ms)

and Pz (105.4 ms). Each site differed significantly
from the other two.

No other significant effect emerged for N100
latency.

MMN

The t-test yielded no significant differences
between the two groups, either for MMN
amplitude (t = 1.32, P < 0.194) or for its latency
(t = 1.28,  P < 0.209).  Nevertheless,  it  is  worth  not-
ing a tendency for migraineurs to show greater
amplitude and  shorter  latency  compared  with
controls  (-3.30 mV and 221.03 ms vs -0.931 mV and
236.09 ms; see Fig. 3).

Figure 1 Grand average waveforms at Fz, Cz and Pz for target (right panel) and standard stimuli (left panel) in controls and 
migraineurs.
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P300

Target stimuli showed significantly greater P300
amplitude than standards.

P300 amplitude also varied between sites, being
parietally maximal (Pz: 14.17 mV) and frontally min-
imal (Fz: 4.14 mV), with intermediate values at Cz
(10.36 mV). Post hoc tests showed that amplitude at
each site differed significantly from the other two.

The difference between P300 amplitude to rare
and frequent stimuli was more evident in Pz com-
pared with Cz and Fz, even though post hoc tests
revealed that the differences between the two stimuli
were significant in all three sites.

P300 latency showed a marginally significant
group–stimulus interaction (F [1,34] = 3.18, P < 0.08),
indicating that P300 latency for frequent stimuli was
longer in migraineurs than in controls. Moreover,
controls displayed approximately the same latency
for standards and targets, whereas in migraineurs a
slower latency was observed for frequent than for
rare stimuli.

The significant site main effect indicated that
latency was longest at Fz (330.25 ms) compared with
Cz (309.5 ms) and Pz (303.32 ms). The difference
between Cz and Pz was non-significant.

Evaluation of target P300 amplitude in the three
blocks showed a main effect of site, with maximal
amplitude at Pz (24.43 mV), intermediate at Cz
(18.88 mV), and minimal at Fz (8.54 mV). As indicated
by post hoc tests, each site differed significantly from
the other two.

A significant P300 amplitude reduction across
blocks was observed; post hoc tests showed that only
block I and block III significantly differed from each
other (18.65 and 15.67 mV, respectively).

The significant group–block interaction showed
that target P300 amplitude dropped in the third
block in migraine children, whereas controls showed
no significant change across task.

The group–block–site interaction illustrates how
the above-mentioned effect was stronger at Fz and
Cz compared with Pz (Fig. 4).

The same analysis performed on P300 latency
showed a block main effect, with P300 latency
increasing significantly from block I (307.29 ms) to
block III (317.75 ms). Block II (312.76 ms) did not
differ significantly from blocks I and III.

A main effect of site showed that latency was sig-
nificantly longer at Fz (326.63 ms) than Cz and Pz
(305.6 and 305.55 ms, respectively). The difference
between Cz and Pz was non-significant.

Task performance

RT data from one patient were lost because of equip-
ment failure, therefore the age-matched control was
also excluded from statistical analysis. As a conse-

Figure 2 N100 amplitude for standard and target stimuli in 
controls and migraineurs. �, Standard; �, target.
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Figure 3 Difference waveforms (target minus standard) of the 
grand-average event-related potentials at Fz in controls and 
migraineurs.
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quence, for RTs the number of subjects in each group
is 17.

Speed of response (RTs) was equivalent in the
two groups (t = 0.99, NS; migraineurs = 378.50 ±
79.48 ms, controls = 404.26 ± 71.16 ms). Although
performance accuracy was fairly high in both
groups, the total proportion of errors (false alarms
and omissions) was significanly higher in migraine
children than in controls (1.81 and 0.33%, respec-
tively; t = -2.13, P < 0.04; Fig. 5). Separate analysis
for omissions and false alarms showed significance
for omissions only.

Evaluation of RTs in the three blocks only revealed
a block main effect (F [2,64] = 6.47, P < 0.002,
e = 0.79), showing that RTs increased significantly
from block I (379.32 ms) to block III (399.71 ms).
Block II (395.09 ms) did not differ significantly from
block III.

Correlations

N100 and P300 latency and amplitude for standard
and target stimuli were correlated with RTs and pro-
portions of errors. In the patients group, target P300
latency at Pz was significantly correlated with mean
RTs, showing that longer latencies corresponded to
slower RTs (r = 0.64; P < 0.006; the correlations for
the other sites were only marginally significant).
Moreover, target P300 amplitude at Fz and Cz (and
marginally at Pz) showed a significant negative cor-
relation with mean RTs (r = -0.65; P < 0.004, and
r = -0.53; P < 0.026, respectively), indicating that
smaller P300 amplitude corresponded to longer RTs.

Illness duration and frequency of attacks were
correlated with behavioural (RTs and proportions of
errors) and ERP data (N100 and P300 amplitude and
latency of standard and target stimuli at Fz, Cz and
Pz) in the patients group. A marginally significant

correlation (r = 0.45; P < 0.056) was found between
illness duration and standard N100 amplitude
recorded at Fz, showing that longer disease durations
corresponded to smaller standard N100 amplitudes.

The other correlations were non-significant. No
significant correlations emerged in the controls
group.

Discussion

A significant group difference in ERPs emerged for
N100 amplitude to standard stimuli, with migraine
children showing smaller amplitude than healthy
controls. Selective attention has been shown to mod-
ulate N100 amplitude, which is larger to attended
stimuli compared with ignored ones (36). Unlike
controls, migraine children showed significant
amplitude difference between standard and target
N100, which may indicate they focused their atten-
tion on task-relevant stimuli while ignoring the irrel-
evant ones.

On the other hand, experimental evidence suggest
that the auditory N100 has multiple subcomponents,
one of which is supposed to be sensitive to alertness
level (37). Indeed, N100 amplitude reduction reflects
decrements in arousal or vigilance level (38, 39). The
smaller N100 amplitude to the frequently occurring
stimuli in patients compared with controls might
indicate a lower level of alertness, possibly due to
the highly repetitive stimulation features (40).

Correlations between behavioural, clinical and
electrophysiological data showed that in migraine
children longer illness durations were marginally
correlated with smaller standard N100 amplitudes.
This finding indicates that the overall standard N100
amplitude reduction observed in the group of
patients compared with controls is directly related to
the length of time each child has been suffering from
migraine. Indeed, there is at least some evidence
in the literature suggesting a relationship between
disease duration and VEP alterations in adult
migraineurs (41, 42). These data, together with our
findings, would favour the viewing of some electro-
physiological abnormalities in migraineurs as a con-
sequence of the disease, or a perpetuating factor,
more than a pathogenic characteristic.

The observed tendency towards greater amplitude
and shorter latency of MMN in young patients com-
pared with controls may indicate an enhanced ori-
enting response towards physical stimulus change.

Overall, differences in information processing
between migraine children and healthy controls may
involve early attentive functions and/or level of
arousal, but further study is needed to corroborate

Figure 5 Mean proportion of errors (omissions and false 
alarms) in controls and migraineurs.
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this assumption and clarify its theoretical and prac-
tical implications.

A somehow striking finding, that target P300
amplitude habituated in migraine children but not
in controls, contradicts the literature data about
VEPs, CNV and, partially, the oddball P300, indicat-
ing lack of habituation in migraineurs. One possible
explanation is related to the fact that P300 amplitude
is sensitive to motivation, insofar as increased moti-
vation results in greater amplitude (43). The
observed lack of P300 amplitude decrease across
blocks in controls may indicate that the same degree
of motivation was maintained for the whole task
duration. In contrast, migraine children may have
undergone a decline in task involvement due to
motivational deficit or fatigue.

The significant positive correlation between RTs
and target P300 latency in the patient group is an
indication that overt response was emitted after
evaluation of the task-relevant stimulus was com-
pleted. However, speed of response was inversely
related to the amount of attentional resources
employed for stimulus processing (represented by
P300 amplitude), indicating that when fewer
resources were used, motor response was delayed.
This pattern of relationships between speed of
response and P300 features may also be related to
the poorer performance accuracy observed in
migraine children compared with controls, even
though correlations with the proportion of errors
were non-significant.

It is also possible that the habituation deficit found
for target P300 latency of migraineurs in visual
active oddball paradigms (25) is related, at least in
part, to the hyperexcitability of the visual cortex,
which has been repeatedly documented by VEP
recording in migraine with and without aura (4).
Hypersensitivity of other brain sensory areas in
migraine patients is also supposed on the basis of
empirical evidence (44), but it might play a less
prominent role in determining deficient habituation
when auditory stimuli are employed in active odd-
ball tasks.

Another important aspect of migraine pathology
might explain the P300 amplitude decrease in our
group of patients. In adult migraineurs, habituation
of VEPs and intensity dependence of AEPs (45, 46),
habituation of P300 latency (26) and CNV amplitude
(47, 48) tend to show maximal abnormality shortly
before the attack, then normalize during the attack
and for the next few days after the crisis. Periodic
changes are also present in young migraineurs’ CNV
amplitude and habituation (49). In the subjects
selected for our study, the last attack had occurred

at least 3 days prior to the investigation, therefore all
the patients had presumably completed the normal-
ization period. However, the delay between the day
of recording and the next ictal episode was not
recorded in our present investigation. Considering
the wide range of frequency of attacks in our patient
sample (one to eight per month), the time interval to
the next crisis is also supposed to be greatly variable.
Therefore, the patients might have happened to be
investigated in very different phases of the migraine
cycle, ranging from the refractory interval following
the attack to the preattack period. As a consequence,
varying degrees of interictal abnormalities could
have been detected. This source of uncontrolled vari-
ability might be partially responsible for our find-
ings and represent a potential limitation.

Some methodological reasons could also account
for P300 amplitude habituation in our group of
migraine children. The lack of target P300 amplitude
habituation (and, indeed, potentiation) in migraine
subjects has been found in studies using acoustic
passive oddball tasks (9, 24). This condition is prob-
ably more sensitive for the process of habituation to
emerge in controls, since repetitive stimulation is not
associated with the active attentional engagement
that is necessary to detect and respond to task-rele-
vant stimuli (50). The lack of P300 amplitude habit-
uation in controls might indicate that they succeeded
in maintaining cognitive involvement and atten-
tional allocation over the whole task, whereas its
decrease in migraine children may reflect their grad-
ual withdrawal of attentional engagement and/
or motivation. Similar considerations have been
recently proposed by other authors, albeit stimu-
lated by results obtained with adult migraineurs in
a ‘conditioning-testing’ paradigm (51).

Lastly, other methodological reasons for the dis-
crepancies between our results and those reported
in the literature, as well as among different studies
on this topic, include several procedural features of
the oddball paradigm known to affect ERP compo-
nents, such as number of trials, length of intertrial
interval, and standard/target ratio, and other
elements related to diagnostic criteria for patient
selection and sample size (52). Research projects
adopting converging criteria in task construction
and sample selection could address and possibly
overcome inconclusiveness and inconsistencies in
the results.

The electrophysiological and behavioural data
obtained in this study support the view that children
suffering from migraine without aura show some
evidence of cognitive disturbances, possibly involv-
ing attentive and, less substantially, preattentive
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functions. Difficulties in adjusting their alertness
level and motivational engagement to task demands
may also be important elements contributing to the
general picture.

Systematic investigation of ERPs in childhood
migraine should be pursued to elucidate which mal-
functions of cognitive processes are distinctive fea-
tures of migraine pathology and which might be
related to adjustments to the illness and are possibly
shared by other pain-related diseases.
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