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24 ETH Zürich, Zürich, Switzerland

Received: 4 July 2006 /
Published online: 24 October 2006 − © Springer-Verlag / Società Italiana di Fisica 2006
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Abstract. A search for exotic Θ+ baryon via Θ+→ p+K0S decay mode in the NOMAD νµN data is re-
ported. The special background generation procedure was developed. The proton identification criteria are
tuned to maximize the sensitivity to the Θ+ signal as a function of xF which allows to study the Θ

+ pro-
duction mechanism. We do not observe any evidence for the Θ+ state in the NOMAD data. We provide an
upper limit on Θ+ production rate at 90% CL as 2.13×10−3 per neutrino interaction.

PACS. 13.15.+g; 13.60.Le; 13.87.Fh; 14.40.Ev

1 Introduction

In the last three years an intense experimental activity has
been carried out to search for exotic baryon states with
charge and flavor requiring a minimal valence quark con-
figuration of four quarks and one antiquark (such states
are often referred to as “pentaquarks”). Searches for exotic
baryon states have a ∼ 30 year history, but a theoretical
paper by Diakonov, Petrov and Polyakov [1] has triggered
practically all recent activity.
The LEPS Collaboration was the first to report the

observation of the Θ+ (uudds̄) state with positive strange-
ness [2, 3]. Then confirmations followed from DIANA
(ITEP) [4], CLAS [5–8], ELSA (SAPHIR) [9], old (anti)
neutrino bubble chambers data (WA21, WA25, WA59,
E180, E632) reanalyzed by ITEP physicists [10], HER-
MES [11], SVD (IHEP) [12], COSY-TOF [13], LHE
(JINR) [14], HEPANL – HERA (ZEUS) [15, 16]. A narrow
peak in the invariant mass distributions of pK0S or nK

+

pairs with a mass of � 1530–1540MeV/c2 and a width
of less than 25MeV/c2 was observed in all these experi-
ments with significances of 4–8 σ’s. Searches for narrow
pentaquark states were then performed in almost every ac-
celerator experiment in the world, providing evidence or
hints for a variety of pentaquark candidates: Θ+, Ξ−−5 ,
Θ++, and Θ0c . However, after this initial flurry of positive
results, negative results, in particular from high statistics
experiments, started to dominate the field. As an example
of a negative search we quote the HERA-B experiment
at DESY [17] that observed neither the Θ+ resonance in
the pK0S invariant mass distribution nor the Ξ

−−(1860)
(another member of the antidecuplet of exotic baryons)
decaying to Ξ−π−. Also the BES Collaboration [18] re-
ported no Θ(1540) signal in ψ(2S) and J/ψ hadronic
decays to K0SpK

−n̄ and K0S p̄K
+n. The PHENIX experi-

ment at RHIC [19] has seen no anti–pentaquark Θ̄− in
the decay channel K−n̄. Also the BABAR [20] and the
CDF [21] experiments have provided no evidence for Θ+.
Possible explanations for such a controversial experimental
situation could be ascribed to specific production mech-
anisms yielding pentaquarks only for specific initial state
particles. However, the CLAS experiment at Jefferson
Lab has recently reported the results of a new analysis of
photon–deuterium interactions with a statistics six times
larger than the earlier event sample which showed a posi-
tive result. In this new analysis no Θ+ peak was seen [22].
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A review of the experimental evidence for and against the
existence of pentaquarks is presented in [23].
This article describes a search for the lightest member

of the antidecuplet of exotic baryons, Θ+, in the decay
channel Θ+→ p+K0S from a large sample of neutrino in-
teractions recorded in the NOMAD experiment at CERN.
The paper is organized as follows. In Sect. 2 we give

a brief description of the NOMAD detector, and of the NO-
MAD simulation program (MC). In Sect. 3 we present the
event selection criteria and the tools for K0S and proton
identification. In Sect. 3 we describe checks of the proton
identification procedure and discuss the expected invari-
ant mass resolution of pK0S pairs. We describe in detail
our procedure for determining the shape of the background
distribution in Sect. 4. Based on the background determin-
ation procedure and proton identification, we then develop
a strategy for a “blind” analysis of theΘ+ signal by finding
the proton identification criteria which maximize the sen-
sitivity to the expected signal. This approach is presented
in Sect. 5. In this section we present also the method to es-
timate the signal significance and check the analysis chain
using the observed decays Λ→ p+π− and K0S → π

+π−.
Finally, we “open the box”, i.e. examine the signal in the
data. The conclusions are drawn in Sect. 6.

2 The NOMAD detector

The large sample of neutrino interactions, about 1.5 mil-
lions, measured in NOMAD together with the good recon-
struction quality of individual tracks, offer an excellent op-
portunity to search for Θ+→ p+K0S. The NOMAD detec-
tor [24] consisted of an active target of 44 drift chambers,
with a total fiducial mass of 2.7 tons, located in a 0.4 T
dipole magnetic field, as shown in Fig. 1.
The drift chambers [25], made of low Z material

(mainly Carbon) served the double role of a nearly isoscalar
target for neutrino interactions and of the trackingmedium.
The average density of the drift chamber volume was
0.1 g/cm3. These chambers provided an overall efficiency
for charged track reconstruction of better than 95% and
a momentum resolution of approximately 3.5% in the
momentum range of interest (less than 10 GeV/c). Recon-
structed tracks were used to determine the event topology
(the assignment of tracks to vertices), to reconstruct the
vertex position and the track parameters at each vertex
and, finally, to identify the vertex type (primary, sec-
ondary, V 0, etc.). A transition radiation detector [26, 27]
placed at the end of the active target was used for par-
ticle identification. A lead-glass electromagnetic calorime-
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Fig. 1. Side view of the
NOMAD detector

ter [28, 29] located downstream of the tracking region
provided an energy resolution of 3.2%/

√
E[GeV]⊕1% for

electromagnetic showers and was crucial to measure the
total energy flow in neutrino interactions. In addition, an
iron absorber and a set of muon chambers located after
the electromagnetic calorimeter were used for muon iden-
tification, providing a muon detection efficiency of 97% for
momenta greater than 5 GeV/c.
Neutral strange particles were reconstructed and iden-

tified with high efficiency and purity using the V 0-like sig-
nature of their decays [30, 31]. Proton identification needed
further development for the search presented here using
information from the drift chambers, transition radiation
detector and electromagnetic calorimeter.
The NOMADMonte Carlo simulation (MC) is based on

LEPTO 6.1 [32] and JETSET 7.4 [33] generators for neu-
trino interactions, and on a GEANT [34] based program for
the detector response. The relevant JETSET parameters
have been tuned in order to reproduce the yields of strange
particles measured in νµ CC interactions in NOMAD [31].
To define the parton content of the nucleon for the cross-
section calculation we have used the parton density distri-
butions parametrized in [35].

3 Event selection

We have analysed neutrino–nucleon interactions of both
charged (CC) and neutral current (NC) types. These
events are selected with the requirements:

– The reconstructed primary vertex should be within
a fiducial volume (FV) defined by |x, y| < 120 cm, 5<
z < 395 cm (see Fig. 1 for the definition of the NOMAD
coordinate system)
– There should be at least two charged tracks originating
from the primary vertex;
– The visible hadronic energy shouldbe larger than3GeV.

Table 1. Statistics of observed (Nobs) and efficiency corrected
(Ncorr) neutrino CC and NC events in the data

CC NC CC+NC

Nobs 785232 393539 1178771
Ncorr 1017664 481269 1498933

The νµ CC events are identified requiring in addition:

– The presence of an identified muon from the primary
vertex.

The NC sample contains a contamination of about 30%
from unidentified CC events. However, we do not apply
further rejection against this background in order not to re-
duce the statistics. The event purity for the νµ CC selection
is 99.6%. The total sample amounts to about 1.5 million
neutrino events (see Table 1).

3.1 K0S identification

K0S mesons are identified through their V
0-like decay

K0S → π
+π− using a kinematic constrained fit [30, 31].

With a purity of 97% we identify 15934 and 7657 K0S
mesons in the CC and NC samples respectively, thus yield-
ing a total statistics of more than 23 k K0S’s. The recon-
structed K0S → π

+π− invariant mass distribution in the
νµ CC (left) and νµ NC (right) subsamples are shown in
Fig. 2. The two distributions have the sameK0S mass mean
value, 497.9MeV/c2, in agreement with the PDG value,
and a width compatible with the expected experimental
resolution of ∼ 9.5MeV/c2.

3.2 Proton reconstruction

The identification of protons is the most difficult part of
the present analysis. As the NOMAD experiment does not
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Fig. 2. Reconstructed K0S → π
+π− invariant mass distribution in the νµ CC (left) and νµ NC (right) data subsamples

include a dedicated detector for proton identification, we
developed a special procedure for this purpose. The main
background in the proton selection is the π+ contamina-
tion since pions are about 2.5 times more abundant than
protons. However the π+ contamination can be suppressed
exploiting the differences in the behaviour of protons and
pions propagating through the NOMAD detector. We use
three sub-detectors which can provide substantial rejection
factors against pions:

1. The Drift Chambers (DC). A low energy proton ranges
out faster than a pion of the same momentum. Thus
a correlation between the particle momentum and its
path length can be used as a discriminator between pro-
tons and pions. The momentum interval of applicability
of this method is below 600MeV/c.

2. The Transition Radiation Detector (TRD). The energy
deposition of protons and pions in the TRD is very
different due to the larger proton ionization loss for
momenta below 1GeV/c, allowing a good pion–proton
separation in this momentum interval. A modest dis-
crimination is also possible for momenta above 3 GeV/c
because of relativistic rise effects.

3. The Electromagnetic Calorimeter (ECAL). The proton
sample can be cleaned further by taking into account
the different Cherenkov light emission of protons and
pions of the same momentum.

As a preliminary quality selection for the candidate
proton track we require :

– more than 7 hits on the DC track in order to have a re-
liable fit;
– the distance between the primary vertex and the first
hit of the track to be smaller than 15 cm;
– the relative error on the track momentum to be smaller
than 0.3;
– the coordinate of the last hit of the stopped particle
to be within a fiducial volume (FV) defined as |x| <
120 cm, −110< y < 100 cm, 35< z < 380 cm, which is
smaller than the FV used in the event selection in order
to reduce edge effects;

– the particles reaching the TRD to cross at least 6 TRD
planes (out of 9 in total) in order to allow for the TRD
identification algorithm.

The initial sample of positively charged tracks is split
into two subsamples: those that passed the quality criteria
and those that did not. The identification cuts can be ap-
plied only to the positive tracks that passed the quality cri-
teria. Charged particles were all assumed to be pions in the
standard reconstruction program, resulting in a system-
atic underestimation of the reconstructed proton momen-
tum (prec) at small momenta. The difference ∆p between
the true and reconstructed proton momentum was studied
with the help of the MC, and the following parametrization
was found to describe the effect :

∆p= 0.33e
−3.5prec
GeV/c GeV/c . (1)

Fig. 3. The mean value of the invariant mass of pπ− pairs from
identified Λ’s as a function of the reconstructed proton mo-
mentum with no momentum correction (full circles) and with
momentum correction (stars)
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The difference ∆p decreases with prec, becoming neg-
ligible at about 0.8 GeV/c. The reconstructed proton mo-
mentum was corrected accordingly. The effect of this pro-
ton correction was tested on a reconstructed sample of Λ
hyperons identified by their displaced decay vertex. Fig-
ure 3 displays the mean value of the invariant pπ− mass
as a function of the reconstructed proton momentum with-
out and with the ∆p correction. There is an improvement
in the reconstructed Λ mass when correcting the recon-
structed proton momentum, especially at low momenta.

4 The background

Random K0S–proton pairs produce combinatorial back-
ground in the K0Sp invariant mass (M(K

0
Sp) ≡M) dis-

tribution. Understanding the shape of this background is
crucial in the search for a possible Θ+ signal. We studied
this background in three different ways:

1. MC events contain no Θ+ and could be used, there-
fore,to study the background for this analysis. However,
the small fraction of proton–K0S pairs with an invari-
ant mass in the interesting mass region would require
a very large sample of MC events to reduce statistical
fluctuations.

2. We combined protons and K0S
′
s from different events

in the data, thus making fake pairs, paying special at-
tention that the original data distributions of multi-
plicity, proton and kaon momenta, and their relative
opening angle, were well reproduced in the final fake
pair sample.

Fig. 4. K0Sπ
+ invariant mass

distribution in the data, su-
perimposed with the back-
ground generated without
hadronic jet rotation (left),
and with hadronic jet rotation
(right)

Fig. 5. pπ− (left) and π+π−

(right) invariant mass dis-
tribution (points with error
bars) superimposed to the es-
timated background

3. A polynomial fit to the M distribution of the data
themselves, excluding the Θ+ mass region, can also be
used to describe the background for the Θ+ search.

The fake pair technique is extensively used in the liter-
ature. However, it is necessary to ensure that the two inde-
pendent events used in the mixing have similar hadronic jet
momenta both in magnitude and direction. If two events
with different jet momenta are mixed, then the fake pair
technique systematically underestimates the background
at small M(K0Sp) invariant masses. This is illustrated in
the left panel of Fig. 4 which shows the K0Sπ

+ invari-
ant mass distribution in the data, superimposed with the
background generated without changing the hadronic jet
directions. The background is normalized to the data at
M(K0Sπ

+) = 1400MeV/c2. The data show a clear K∗+

peak at ∼ 890MeV/c2. However, the background under
this peak is obviously underestimated. Therefore, in our
procedure we first rotate each data event such that the
hadronic jet momentum is aligned along the z-axis. We
then select events respecting the original multiplicity of
positive tracks andK0S in the data and make random pairs.
The right panel of Fig. 4 shows the same K0Sπ

+ invariant
mass distribution in the data superimposed with the back-
ground generated according to our procedure. There is now
a clear agreement with the data distribution, except for the
K∗+ peak which the fake pair technique cannot reproduce.
We have checked the background generation proced-

ure on samples of Λ→ pπ− and K0S → π
+π− events, using

only tracks originating from the primary interaction vertex
in order to artificially increase the background. Figure 5
shows pπ− and π+π− invariant mass distributions super-
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Fig. 6. Invariant mass distribution of pairs of one positively charged track (assumed to be a proton) and aK0S for the data (points
with error bars) and for the fake pair background (shadowed area). (Left) Proton identification has not been used. (Right) “Opti-
mal” proton identification. Data in the “signal” region (1510<M < 1550 MeV/c2) are not shown. Dashed curve is fit of the data
by a polynomial excluding the “signal” region

imposed with the predicted background estimated using
our fake pair procedure. From these plots we conclude that
our background generation procedure provides a realistic
background estimate in these cases as well.
It is worth mentioning however that the fake pair

tecnique does not take into account contributions from
resonances which introduce correlations in M different
from those generated by making random pairs. Σ(1660)−
Σ(2250) decaying into proton and kaon andK�→K0Sπ de-
cays with the pion taken as the proton might be important
sources of distortion of the background shape. With help of
MC we find a negligible contribution ofΣ(1660)−Σ(2250)
resonances toK0Sp invariant mass distribution whileK

�→
K0Sπ decays increase the background by 5%–10% at small
M ∼ 1500MeV/c2. Therefore we renormalize the back-
ground distribution obtained by fake pair procedure by
a ratio of two K0Sp distributions obtained with help of MC
with and without K�→K0Sπ decays. Finally the obtained
background distribution is normalized to the data distri-
bution atM > 1650MeV/c2. Figure 6 shows the invariant
mass distributions of combinations of a positively charged
track, assumed to be a proton, and a K0S for the data and
for the fake pair background, without using proton identifi-
cation and with “optimal” proton identification (defined in
Sect. 5.1). The “signal” interval 1510<M < 1550MeV/c2

is excluded in the data. There is good agreement between
the shapes of the data and background distributions. Poly-
nomial fits of the data excluding the “signal” interval
1510<M < 1550MeV/c2 is also shown as dashed curves.
There is a reasonable agreement of the background shapes
obtained by fake pair procedure and by a polynomial fit of
the data.

5 Θ+ analysis tools

5.1 The proton identification strategy

The Θ+ signal is expected to appear as a narrow peak in
the invariant mass distribution ofK0S–proton pairs.K

0
S are

identified using their V 0-like signature (see Sect. 3.1). To

separate protons from π+, for each positively charged track
we build likelihoods under the proton and π+ hypothe-
sis using the information from DC, TRD, and ECAL (see
Sect. 3.2), and we take their ratios LDC, LTRD, LECAL:

LDC(p, L), L− track length

LTRD(p, εTRD), εTRD− energy release in TRD

LECAL(p, εECAL), εECAL− energy release in ECAL

p− track momentum . (2)

We optimize the cuts for the proton identification like-
lihood ratios maximizing the sensitivity to the expected
Θ+ signal. These “optimal” cuts are not necessarily those
which maximize the purity of the proton sample.
The best approach for tuning the proton identification

cuts would be to maximize the sensitivity using a detailed
Monte Carlo for Θ+ production. However, given the poor
knowledge on the properties of this particle, there is no
available MC generator describing the production of ex-
otic baryons. We create, therefore, “fake” Θ+ states in the
NOMAD event generator by using pairs of protons andK0S
with invariant mass close to the mass of Θ+ state. How-
ever, in this approach the momentum distribution of these
“fake”Θ+ states is determined by the momentum distribu-
tion of protons and K0S from the primary vertex. This can
result in wrong “optimal” cuts if the true momentum dis-
tribution of Θ+ particles is very different. We try to avoid
this problem by subdividing the original MC sample into
several narrow bins of xF and optimizing the cuts for each
xF interval independently. The xF variable is defined as the
ratio of the longitudinal projection of the Θ+ momentum
on the hadronic jet momentum to the hadronic jet energy
in the hadronic center-of-mass frame. The variable xF is
in the range (−1, 1) with negative (positive) values often
called the target (current) fragmentation regions.
The procedure of tuning the proton identification cuts

is then as follows:

– We build “fake” Θ+ states by taking K0S–proton pairs
with 1510<M < 1550MeV/c2. Assuming noΘ+ polar-
ization, a flat distribution of cos θ∗ is expected, where
θ∗ is the angle between the proton momentum in the
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Fig. 7. Invariant mass distri-
butions of proton–π− pairs
for −0.6 < xF < −0.3 inter-
val. (Left, up) MC, no pro-
ton identification; (Right, up)
MC, with “optimal” proton
identification; (Left, down)
data, no proton identifica-
tion; (Right, down) data, with
“optimal” proton identifica-
tion. The curves represent
the predicted background and
the amount of Λ→ pπ− sig-
nal maximizing the signal/√
background ratio (see
Sect. 5.1)

Θ+ rest frame and the Θ+ momentum in the labora-
tory. We reweight the cos θ∗ distribution so obtained to
make it flat. This is our MC “signal”.
– Any other combination of a K0S and a positive track
not identified as a proton, but with an assigned proton
mass, is taken as the MC background if its invariant
massM falls in the same mass interval.
– We split the “fake” Θ+ states into several intervals of
positive track momentum. We vary the cuts on LDC,
LTRD, LECAL simultaneously in each interval and find
those cuts which maximize the signal/

√
background

ratio.

We check this procedure on a sample of Λ→ pπ−

events. Figure 7 displays the invariant mass distributions
of proton–π− pairs in both MC and data without proton
identification and with “optimal” for the Λ→ pπ− obser-
vation proton identification, for −0.6< xF < −0.3. With
“optimal” proton identification the significance of the
Λ→ pπ− signal increases in both MC and data samples.
In Table 2 we show numbers of pK0S pairs and purity

of proton samples in the data for two subsets of events:
without proton identification and with “optimal” proton
identification. These numbers are shown for all entries and
for “signal” region (1510<M < 1550MeV/c2).

5.2 The pK0S mass resolution

The expected mass resolution of the pK0S pair is estimated
as follows.

– For MC events we calculate the invariant masses of the
generated and reconstructed pK0S pairs, and we fit the
distribution of the difference between the two values by

Table 2. Numbers of pK0S pairs and purity of proton samples
in the data for two subsets of events: without proton identifica-
tion and with “optimal” proton identification. These numbers
are shown for all entries and for “signal” region: 1510 <M <
1550 MeV/c2

N(pK0S) purity (in %)
all “signal” all “signal”

no ID 53463 1856 23 16.4
“optimal” ID 40561 1090 27.8 22.1

a Gaussian whose width is taken as the mass resolution
(method “A”).
– Using the measured momenta of the proton (p1) and of
the K0S (p2), the angle θ between p1 and p2, and the
associated errors σ(p1) and σ(p2) we find (neglecting
errors in cos θ):

M2invσ
2(Minv) =

(
E2

E1
p1−p2 cos θ

)2
σ2(p1)

+

(
E1

E2
p2−p1 cos θ

)2
σ2(p2) . (3)

This method, “B”, can be applied to both MC and data
events.

Figure 8 displays the expected mass resolution of pK0S
pairs as a function of their reconstructed invariant mass,
as obtained using method “A” (MC only), or method “B”
(for both MC and data). The results agree well with each
other and predict a resolution of about 8.8MeV/c2 at the
Θ+ mass (1530MeV/c2).
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Fig. 8. Expected invariant mass resolution of proton–K0S pairs
as a function of the invariant mass for method “A” (MC only),
and for method “B” (MC and data). See text for details

5.3 The statistical analysis

An estimation of the signal significance in the data is per-
formed as follows:

Fig. 9. Invariant mass dis-
tributions of pairs of a posi-
tively charged track (assumed
to be a proton) and a K0S in
the data, for −1< xF <−0.6.
(Left) No proton identifica-
tion; (Right) Optimized pro-
ton identification. The curves
represent the predicted back-
ground and the amount of
Θ+ signal maximizing SL (see
Sect. 5.3)

Fig. 10. Invariant mass dis-
tributions of pairs of a posi-
tively charged track (assumed
to be a proton) and a K0S
in the data, for −0.6 < xF <
−0.3. (Left) No proton iden-
tification; (Right) Optimized
proton identification. The
curves represent the predicted
background and the amount
of Θ+ signal maximizing SL
(see Sect. 5.3)

1. A possible difference in the proton cos θ∗ distribution
for the signal and background is exploited to improve
the signal sensitivity. We take allK0S–proton pairs with
1510<M < 1550MeV/c2, and we split them into 10 in-
tervals with similar statistics: five mass intervals with
cos θ∗ in the interval [−1,−0.5), and another five mass
intervals with cos θ∗ in the interval [−0.5, 1]. The total
mass interval (1510<M < 1550MeV/c2) covers well
the expectedΘ+ mass. The mass bin width, 10MeV/c2,
is comparable to the expected invariant mass resolution
ofK0S–proton pairs.

2. We compute two likelihoods:

lnLB =
∑

i=1,10

(−bi+ni ln bi)

lnLB+S =
∑

i=1,10

(−bi− si+ni ln (bi+ si)) , (4)

where bi, si, ni are the number of predicted background
and signal events, and observed data events in the i-th
bin.

3. We compute the signal statistical significance as:

SL =
√
2 (lnLB+S− lnLB) . (5)

4. We find the resonance mass position M and Breit–
Wigner width Γ and the number of signal events Ns
which maximize SL.

For thebackgroundweuse theproceduredecribed inSect. 4.
The signal is modeled by a Breit–Wigner distorted by
aGaussian resolutionwith σ = 8.8MeV/c2. This algorithm
was checked on several generated distributions containing
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Fig. 11. Invariant mass dis-
tributions of pairs of a posi-
tively charged track (assumed
to be a proton) and a K0S in
the data, for −0.3 < xF < 0.
(Left) No proton identifica-
tion; (Right) Optimized pro-
ton identification. The curves
represent the predicted back-
ground and the amount of
Θ+ signal maximizing SL (see
Sect. 5.3)

Fig. 12. Invariant mass dis-
tributions of pairs of a posi-
tively charged track (assumed
to be a proton) and a K0S
in the data, for 0 < xF < 0.4.
(Left) No proton identifica-
tion; (Right) Optimized pro-
ton identification. The curves
represent the predicted back-
ground and the amount of
Θ+ signal maximizing SL (see
Sect. 5.3)

Fig. 13. Invariant mass dis-
tributions of pairs of a posi-
tively charged track (assumed
to be a proton) and a K0S
in the data, for 0.4 < xF < 1.
(Left) No proton identifica-
tion; (Right) Optimized pro-
ton identification. The curves
represent the predicted back-
ground and the amount of
Θ+ signal maximizing SL (see
Sect. 5.3)

Fig. 14. Invariant mass dis-
tributions of pairs of a posi-
tively charged track (assumed
to be a proton) and a K0S
in the data, for −1 < xF < 1.
(Left) No proton identifica-
tion; (Right) Optimized pro-
ton identification. The curves
represent the predicted back-
ground and the amount of
Θ+ signal maximizing SL (see
Sect. 5.3)

a Breit–Wigner signal of width Γ distorted by a Gaussian
resolution of width σ and superimposed on a fluctuating
background. We considered three cases, σ � Γ , σ = Γ ,

σ� Γ , and found that in all cases the procedure of maxi-
mizing SL correctly determined the number of signal events
and Γ (with Γ around zero for the case σ� Γ ).
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Table 3. Upper limits (90% CL) on the number of Θ+ candidates (Nups )
and on the Θ+ production rate (Rup, in units of events per 103 interac-
tions) for the case of no proton identification and with optimal proton
identification

xF interval [−1,−0.6) (−0.6,−0.3) (−0.3, 0) (0, 0.4) (0.4, 1] all

no ID
Ns (fit) 18 26 35 30 65 77
SL 1.96 1.49 1.01 1.18 2.61 1.82
N
up
s 41 61 88 81 101 161
Rup 3 .84 2 .18 1 .74 1 .37 0 .83 4 .36
optimal ID
Ns (fit) 12 29 –26 –34 24 –33
SL 1.38 1.72 1.35 1.85 1.25 0.97
N
up
s 28 68 39 36 52 67
Rup 2 .80 2 .60 0 .84 0 .79 1 .00 2 .13

Fig. 15. xF distribution of
a potential Θ+ signal in the
data. (Left) No proton iden-
tification; (Right) Optimized
proton identification

5.4 Opening the box

We split the data into five xF intervals: [−1,−0.6), (−0.6,
−0.3), (−0.3, 0), (0, 0.4), (0.4, 1]. In each interval we
optimize the proton identification cuts as described in
Sect. 3.2, and estimate a possible signal in the region
1510<M < 1550MeV/c2 as described in Sect. 5.3. Fig-
ures 9–13 display the results. From these plots we conclude
that we observe no evidence for the Θ+ state in any xF
interval.
In Fig. 14 we display the invariant mass distributions of

combinations of a positively charged track (assumed to be
a proton) and a K0S for the two cases of no proton identifi-
cation and optimum proton identification, for−1<xF < 1.
Table 3 summarizes the results and provides also the up-
per limits at 90% confidence level (CL) on the number of
Θ+s candidates (Nups ) and on the production rate R

up for
both cases. The calculation of the upper limits for the pro-
duction rate include corrections for inefficiencies, including
the lack of detection of K0L mesons, and take into account
theK0S→ π

+π− branching ratio. The results are presented
for each bin of xF, and also integrated over xF. Figure 16
displays the sensitivity and upper limits (90% CL) for the
Θ+ production rate as a function of xF. The upper lim-
its are given as three curves, each corresponding to a fixed
Θ+ mass, obtained by varying both the number of signal
events and the Θ+ width to maximize SL as outlined in
Sect. 5.3.

We also measure the xF distribution of a potential
Θ+ state as follows. We build the xF distributions in two
side-bands, 1460 < M < 1500MeV/c2 and 1580 < M <
1600MeV/c2. We then normalize the average of these two
distributions to the expected number of background events
in the “signal” region (1510 < M < 1550MeV/c2), and
subtract it from the xF distribution of the data in the
“signal” region. The result can be considered as the xF

Fig. 16. Sensitivity and upper limits at 90% CL for Θ+ pro-
duction rates as a function of xF, for Θ

+ masses of 1510, 1530,
1550 MeV/c2
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distribution of the signal, and could shed a light on the
Θ+ production mechanism. Figure 15 displays the result
with no proton identification and with optimal proton
identification. We observe no statistically significant accu-
mulation of events at any xF value.

6 Conclusions

We have performed a blind search for theΘ+ exotic baryon
in the Θ+ → p+K0S decay mode in the NOMAD νµN
data. We have built a robust background estimation pro-
cedure which has been tested against various known cases
like Λ→ pπ−, K0S → π

+π− and K�→K0Sπ. In all cases
good agreement between data and estimated background
has been found. Good agreement has also been found be-
tween the invariant mass (M) distribution of K0S–proton
pairs in the data and the estimated background in the
whole mass region excluding theΘ+ signal region.We have
developed proton identification tools based on the discrim-
ination power of three sub-detectors, and we have tuned
the proton identification criteria by maximizing the sensi-
tivity to the expected signal in five xF intervals indepen-
dently. We have checked this approach for Λ→ pπ− and
found that this procedure indeed maximizes the signal sig-
nificance in both MC and data. Finally, we have “opened
the box”, i.e. examined theΘ+ signal in the data and found
good agreement between the data and the background for
the wholeM region, including the “signal” region, in each
xF interval. We observe no evidence, therefore, for any Θ

+

signal in the Θ+→ p+K0S decay channel in the NOMAD
νµN data. We give an upper limit at 90% CL on Θ

+ pro-
duction rate of 2.13×10−3 events per neutrino interaction
atM = 1530MeV/c2 after integrating over xF.
It is interesting to compare this result with the re-

cent analysis of old bubble chamber neutrino experiments
which provide an estimation of the Θ+ production rate
as large as ∼ 10−3 events per neutrino interaction[10]. As
shown in Fig. 16, for a large fraction of the xF range, except
in the region xF→−1, such a value is excluded. Unfortu-
nately, [10] does not provide information on the xF region
in which a Θ+ signal was observed. Furthermore, in [10] we
find no information that the background estimation pro-
cedure took into account the effects mentioned in Sect. 4,
which can result in an underestimation of the background
and thus in an overestimation of both the signal signifi-
cance and the production rate.
Preliminary NOMAD results from searches for the ex-

otic Θ+ baryon reported earlier [36], quoting a hint for
a signal with a statistical significance of 4.3σ, suffered
from an incorrect background estimation, which did not
take into account the effects mentioned in Sect. 4. The re-
sults reported in [36] are obtained on a smaller sample
of the NOMAD data. The positives of that sample were
subjected for a cleaner proton identification which yielded
an increase of the purity of the protons sample from 23%
to 51.5% with about factor six lost of the statistics. The
difference in shapes of K0Sp invariant mass distributions
reported in [36] and in Fig. 6 is due to an additional re-

quirement imposed in [36] on energy of protons to be larger
than that ofK0S .
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