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We find that the conjectured heterotic SO(32) five-brane sigma model develops necessarily k-anomalies,
and we investigate their form. We show that these anomalies can be absorbed by modifications of the
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10 supergravity. The k-anomalies induce in particular a quantum deformation of the torsion constraint
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1. Introduction

There are a few brane-excitations of M-theory that are still
waiting for a low energy description in terms of a classical super-
symmetric action. Examples are the systems of multiple D-branes
[1] and M2-branes [2], while among the single branes the most
prominent missing classical action is that of the heterotic five-
brane. For the SO(32) heterotic five-brane the field content has
been determined in [3], while for the E8 × E8 five-brane even the
field content is still unknown. Despite the fact that these clas-
sical five-brane actions are not explicitly known, the believe in
their existence is still alive. The main motivations for this credo
are that they exist as excitations, in that they are the S-duals
of the corresponding fundamental heterotic strings, and that all
other five-brane excitations, the NS5-brane [4], the D5-brane [5]
and the M5-brane [6,7] admit, actually, supersymmetric – better,
k-symmetric – local classical actions.

The interest in generic p-brane σ -models stems from their
deep relationship with the dynamics of the background field
theory in which they are embedded: a brane can move con-
sistently only in a supergravity target-space whose dynamics is
properly constrained, i.e. whose fields satisfy “effective” equa-
tions of motion. In the case of string σ -models there are several
methods to derive this effective dynamics. In the supersymmet-
ric Green–Schwarz approach it can be determined through the
β-function method, relying on conformal invariance [8], or, al-

* Address for correspondence: Dipartimento di Fisica, Università degli Studi di
Padova, Italy.

E-mail address: kurt.lechner@pd.infn.it.
0370-2693/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2010.08.041
ternatively, through the k-anomaly method [9–12], see below for
details. These two methods are related since, in a certain sense, the
square of a k-transformation amounts to a conformal transforma-
tion [13]. Unfortunately, the efficiency of these methods is reduced
by the absence of a manifest covariant quantization procedure
for the Green–Schwarz string. On the other hand, the manifestly
supersymmetric pure-spinor approach [14] does entail neither k-
symmetry nor conformal invariance, and the role of the k-anomaly
and conformal methods is played by the requirement of nihilpo-
tency of a certain BRST charge Q .

For p-branes with p > 1, instead, the pure spinor approach
is not available and, moreover, these objects are not conformally
invariant. Under these circumstances k-symmetry – and the k-
anomaly method – regain their fundamental roles for the deriva-
tion of the effective target-space dynamics. In this Letter we en-
force this method for the (conjectured) heterotic SO(32) five-brane
σ -model, to analyze its relation with N = 1, D = 10 supergravity
in superspace, as the low energy approximation of heterotic string
theory. From a phenomenological point of view this string theory
appears still most promising due to the presence of non-Abelian
gauge fields already in ten dimensions; for the SO(32)-theory see,
e.g., [15–17]. From this point of view the heterotic five-brane gains
its interest from its direct relationship with the one-loop corrected
modified Bianchi identity of the seven-form,

dH7 = β ′ X8, (1.1)

where X8 is given in (1.3) and 1/β ′ is the brane tension. An open
problem in string theory regards, indeed, the supersymmetrization
of this Bianchi identity in superspace. For recent progress in this
direction see [18] and [19]. One purpose of this Letter is to envis-
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age an – at least in principle – systematic approach to attack this
problem.

Since the low energy dynamics of the heterotic five-brane is
known only in its geometric sector – the one described by xm(σ )

and ϑμ(σ ) – the analysis of this Letter will rely essentially only
on the symmetries this brane is supposed to have. The results
of the Letter are summarized as follows: (1) the conjectured het-
erotic SO(32) five-brane σ -model entails necessarily k-anomalies,
whose building block we determine explicitly; (2) the cancella-
tion of these anomalies requires a modification of the “classical”
superspace constraints of H7 and of the torsion T A ; (3) the Wess–
Zumino consistency condition fulfilled by the k-anomalies ensures
that the so modified H7 and T A satisfy automatically the modified
Bianchi identity (1.1) and the torsion Bianchi identity DT A = E B R A

B .
A fundamental point of our analysis is that the target-space poly-
nomial X8 implies necessarily the presence of several k-anomalies;
(4) the k-anomalies induce, in particular, non-vanishing deforma-
tions of first order in β ′ of the dimension-zero torsion,

T a
αβ = 2γ a

αβ + o
(
β ′),

and of the constraints of H7, in agreement with [19,22]. The
steps (2) and (3) represent the basic ingredients of the “k-anomaly
method”.

An explicit evaluation of the k-anomalies of the heterotic five-
brane would thus lead to explicit and consistent expressions for
the modified constraints. These constraints are usually “deter-
mined” solving superspace Bianchi identities, and we present such
a “minimal” solution [19] in Section 4.1, see Eqs. (3.11), (4.7),
(4.13), (4.14). The reliability of this minimal solution could thus be
tested upon comparison with the constraints derived through the
k-anomaly method. Eventually the results of this Letter provide a
concrete reason for why one should insist on the validity of (1.1)
in superspace.

In a certain sense the present Letter represents a generalization
of the analysis of [9], from the heterotic string to the heterotic five-
brane: with this respect the main difference between strings and
five-branes is that for the heterotic string the first order deforma-
tions (in that case in α′) of the classical constraints of T A and H3
are all vanishing.

1.1. Gauge anomaly cancellation

What is known about the heterotic SO(32) five-brane are its
gauge group G = SO(32) × SU(2), and its d = 6, N = 1 supersym-
metric field content [3]: the “geometric” sector is made out of
a hypermultiplet that is singlet under G , described by the fields
(xm, ϑμ), and the “heterotic” sector is made out of an SU(2) Super-
Yang–Mills multiplet, and of a hypermultiplet belonging to the rep-
resentation (32,2) of G . The fermions of the hypermultiplets and
of the Yang–Mills multiplet have opposite chirality in d = 6, and
the total anomaly polynomial 2π I8 has been computed in [20],
see [21] for a preliminary analysis,

I8 = X8 + (X4 + χ4)Z4. (1.2)

Here X8 and X4 are the standard target-space polynomials (re-
lated to the ten-dimensional Green–Schwarz anomaly polynomial
through X12 = X4 X8),

X8 = 1

192

(
trR4 + 1

4

(
trR2)2 − trR2trF 2 + 8trF 4),

X4 = 1

4

(
trR2 − trF 2), (1.3)

and
χ4 = 1

8
εABC D T AB T C D ,

Z4 = 1

48

(
trR2 − 2trT 2 − 24trS2). (1.4)

R, F , S and T are the two-form curvatures, divided by 2π , asso-
ciated respectively to SO(1,9), SO(32), SU(2) and to the SO(4)-
normal bundle. As shown in [20], the gauge anomaly (1.2) can be
cancelled via the inflow mechanism through the local W Z -term
on the five-brane worldvolume,

1

β ′

∫
B6 + 1

α′

∫
B2 Z4, (1.5)

where B6 and B2 are the dual gauge potentials of N = 1, D = 10
supergravity. The curvature associated to B2 satisfies the Bianchi
identity dH3 = α′ X4. The peculiar form of the polynomial (1.2),
that allows this cancellation mechanism, emerges through a num-
ber of cancellations that seem miraculous, supporting thus strongly
the hypothesis that a consistent low energy effective action for the
heterotic SO(32) five-brane should exist.

In this Letter we will be concerned only with the irreducible
part of (1.2), i.e. with X8, in that the interpretation of the fac-
torized term of (1.2) requires presumably the knowledge of the
detailed dynamics of the heterotic sector.

2. Super five-brane σ -model: action and symmetries

In this section we present the k-invariant super five-brane σ -
model in a ten-dimensional supergravity background, that we con-
sider as the building block describing the geometric sector of the
heterotic five-brane. We use this model to deduce the form of
the symmetries and the BRST algebra that should characterize also
the heterotic five-brane. In the next section we will then use this
algebra to analyze the σ -model one-loop effective action of the
heterotic five-brane. So, strictly speaking, the analysis of this sec-
tion applies to the super five-brane.

The action of the super five-brane, rescaled by β ′ , is standard,

I[Z ] =
∫ (√

g d6σ + B6
)
. (2.1)

The supercoordinate field is Z M(σ ) = (xm(σ ),ϑμ(σ )), m = 0, . . . ,9,
μ = 1, . . . ,16, and g = −det gij , where the induced metric is
gij = V a

i V b
j ηab , and V A

i = ∂i Z M E A
M(Z). A = {a,α} stands for a ten-

dimensional vector index and a sixteen-dimensional spinor index,
and i, j = 0,1, . . . ,5 are worldvolume indices that will be raised
and lowered with the metric gij . The second term in (2.1) is the
pullback on the worldvolume of the superspace six-form B6(Z).
Target superspace zehnbein, connection, torsion and curvature are
denoted respectively by E A = dZ M E A

M , Ω B
A , T A = dE A + E BΩB

A =
1
2 E B EC T A

C B , R A
B = dΩA

B +ΩA
BΩC

B . We define the zero-order su-
perspace constraints for H7 = dB6 and T A as,

T̃ a
αβ = 2γ a

αβ, T̃ a
bα = 0, T̃ γ

αβ = 0, (2.2)

H̃αβa1···a5 = −2(γa1···a5)αβ, H̃αa1···a6 = 0, (2.3)

where it is understood that the components of H̃7 with more than
two spinor indices vanish. This choice of constraints is convenient
in that the dilaton ϕ appears in the field strength dB2, but not
in dB6. The constraints (2.2), (2.3) entail a solution of the Bianchi
identities DT A = E B R A

B , dH7 = 0, that describes pure N = 1, D =
10 supergravity.

The equations of motion following from (2.1) for xm and ϑμ

respectively are,
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Di V i
a = − 1

6!√g
εi1···i6 V A1

i1
· · · V A6

i6
(dB6)aA6···A1 , (2.4)

[
γ j(1 − γ )

]α
β

V β

j = 0. (2.5)

The derivative Di in (2.4) is covariant w.r.t. SO(1,9) Lorentz-
transformations and d = 6 diffeomorphisms. In (2.5) we introduced
the 16 × 16 matrices,

γi = V a
i γa, γ = 1

6!√g
εi1···i6γi1···i6 , γ 2 = 1. (2.6)

The matrices 1
2 (1 ± γ ) are thus projectors.

2.1. BRST-symmetry

The action (2.1) is invariant under d = 6 diffeomorphisms, with
an anticommuting ghost field ci , and under k-transformations,
with a spinorial commuting ghost field kα ,

δZ M = ci∂i Z M + �α Eα
M , �α ≡ 1

2
(1 + γ )αβkβ . (2.7)

While under diffeomorphisms I[Z ] is invariant for arbitrary back-
ground fields, under k-transformations it is invariant only if these
fields are suitably constrained. This feature becomes manifest if
one realizes that the variation of (2.1) under (2.7) can be written
as,

δ I =
∫

d6σ
(√

g V i
a V B

i �α
(
T a
γ B − T̃ a

γ B

)
− 1

6!ε
i1···i6 V A1

i1
· · · V A6

i6
�α(dB6 − H̃)αA1···A6

)
. (2.8)

Hence, I is invariant if one imposes on T A and dB6 the constraints
(2.2), (2.3). To derive (2.8) one has to use the variation,

δV A
i = c j∂ j V A

i + ∂ic
j V A

j + Di�
A − V B

i LB
A + V B

i �C T A
C B , (2.9)

where,

�a ≡ 0, La
b = �γ Ωγ a

b, Lα
β = 1

4
Lab

(
γ ab)

α
β,

La
α = 0 = Lα

a.

It is a characteristics of k-transformations that the associated
BRST-algebra closes only on-shell, and that it is infinitely reducible,
in the sense that it requires “ghosts for ghosts”. The transforma-
tions of the ghost fields that lead to an on-shell nihilpotent BRST-
operator – δ2 = 0 – can be determined to be,1

δci = −c j∂ jc
i + �γ i�, (2.10)

δkα = −ci∂ik
α − kβ Lβ

α − (
�γ i�

)
V α

i

+ (V iγa�)
[
γ γ i(γ a − V a

j γ
j)]α

βkβ + 1

2
(1 − γ )αβkβ

2 ,

(2.11)

where (V iγa�) ≡ V α
i (γa)αβ�β etc., and kβ

2 indicates the second
generation ghost, with ghost number two. The above transfor-
mations follow from the requirement δ2 Z M = 0, upon enforcing
the equation of motion (2.5) for ϑμ . The presence of the term
1
2 (1 − γ )k2 follows essentially from the definition of the spinor
� in (2.7), that determines k only modulo “left-handed” fermions.
On the other hand, this term is needed in δk, because otherwise
the operator δ would not square to zero on k. For completeness

1 Our operator δ acts from the right.
we list the transformation laws for the whole tower of ghosts kn ,
n = 1,2, . . . , k1 ≡ k, although their explicit form will not be needed
in what follows. Imposing δ2kn = 0 for all n, iteratively and sup-
pressing spinor indices, one obtains,2

δkn = 1

2
δγ (kn − δkn−1) + 1

2
(1 ± γ )kn+1, n � 2, (2.12)

where the sign is + (−) for n even (odd). The transformation of
the matrix γ in (2.6) is computed to be,

δγ = γ γ i(γa − V j
aγ j

)
δV a

i ,

where δV a
i is given in (2.9). The above transformation laws ensure

also that δ2ci = 0. Notice also the identity V a
i �γ i� = �γ a�, im-

plied by γ� = γ .
Despite the fact that the above formulae look rather compli-

cated, the transformation law for �α turns out to be rather simple,
and fortunately it is all we shall need below,

δ�α = −ci∂i�
α − �β Lβ

α − (
�γ i�

)
V α

i . (2.13)

2.2. Quantization

As anticipated above, the quantization of the super five-brane
in a flat target superspace – as the quantization of the string
in Green–Schwarz formulation – encounters two main difficulties:
(1) the BRST-algebra closes only on shell and, (2) k-symmetry is
infinitely reducible, requiring an infinite number of ghost fields. In
the case of the Green–Schwarz string these problems force eventu-
ally a non-covariant quantization scheme, to truncate the infinite
tower of ghosts. For a generic p-brane the first difficulty can, actu-
ally, be overcome employing the Batalin–Vilkovisky approach [23],
that allows to quantize systems with open gauge algebra, while
the second difficulty represents still an open problem. On the con-
trary, for a p-brane in a curved target superspace, as our σ -model
(2.1), one can employ the background field method combined with
a normal coordinate expansion, and in this framework one can
overcome both difficulties, as outlined in [21]. More precisely, one
can impose on the external classical fields the equations of motion,
avoiding thus the rather cumbersome Batalin–Vilkovisky approach,
and one can furthermore impose a covariant background gauge on
the quantum fields, in which the infinite ghosts do not propagate.
The practical outcome is that in this way one can define perturba-
tively a quantum effective action Γ = I + β ′ I1 + o(β ′ 2), that – in
absence of anomalies – would satisfy the on-shell relation δΓ = 0.

3. k-anomalies

We assume now that the quantum effective action Γ of the
heterotic five-brane entails the BRST-symmetry constructed in the
previous section. This functional defines then a local anomaly
through,

δΓ = A, (3.1)

that, thanks to δ2 = 0, satisfies the on-shell Wess–Zumino consis-
tency condition,

δA = 0, (3.2)

that will play a fundamental role in what follows. In the follow-
ing we will work at the one loop order, i.e. at first order in β ′ . In

2 This recursive relation holds if one shifts the ghost k2 in (2.11) to absorb from

δk all terms proportional to (1 − γ ), i.e. such that δk = 1
2 (1 + γ )δk + 1

2 (1 − γ )k2.
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the rest of the Letter we will show that the anomaly A is neces-
sarily non-vanishing, that (3.2) implies that this anomaly can be
cancelled by modifying the superspace constraints (2.2), (2.3) at
first order in β ′ , and that these modifications realize a consistent
solution of the superspace Bianchi identities,

DT A = E B R B
A, dH7 = β ′ X8. (3.3)

The anomaly has to be a local functional of ghost-number one,
i.e. linear in kα and ci . Since diffeomorphism anomalies can be
traded for local Lorentz-anomalies, that have already been deter-
mined in (1.2), it is sufficient to consider A linear in kα . Moreover,
since the variations δZ M involve kα only through �α , A is linear
in �α . In analogy with [11] we make the Ansatz,

A = −
∫

d6σ
(√

g V i
a V B

i �γ Sa
γ B

+ 1

6!ε
i1···i6 V A1

i1
· · · V A6

i6
�γ Wγ A6···A1

)
≡ A1 + A2, (3.4)

where we introduced the targetspace superforms, of first order
in β ′ ,

Sa = 1

2
EC E B Sa

BC , W7 = 1

7! E A7 · · · E A1 W A1···A7 . (3.5)

Notice that the purely vectorial components of these fields do not
enter (3.4). We do not assert that (3.4) is the most general form
of the anomaly, but we will show that on the heterotic five-brane
anomalies of this kind are necessarily present. As we will see, the
forms Sa and W7 represent the quantum corrections to the classi-
cal constraints (2.2) and (2.3) for T a and H7 respectively.

3.1. Wess–Zumino consistency condition

We impose now the Wess–Zumino consistency (3.2) on (3.4).
δA2 is most easily computed noting that one has A2 = − ∫

i�W7,
where i� denotes the inner product of a superform with the
vector �M ≡ �α Eα

M . Since A2 is invariant under d = 6 dif-
feomorphisms, the variation (2.7) reduces to δZ M = �M , that
corresponds formally to a superdiffeomorphism in D = 10, and
for a superdiffeomorphism-BRST transformation on a generic p-
superform Φ we have,

δ(i�Φ) = 1

2
(i�i�d + di�i�)Φ.

This leads to,

δA2 = −1

2

∫
i�i� dW7

= −1

2

∫
d6σ

1

6!ε
i1···i6 V A1

i1
· · · V A6

i6
�α�β(dW7)αβ A6···A1 .

(3.6)

The evaluation of the variation of A1 is more cumbersome, and
requires explicit use of (2.9), (2.13), as well as of the equa-
tions of motion (2.4), (2.5). Our operator δ is nihilpotent, indeed,
only on-shell.3 In particular, (2.4) has to be used because δV β

i ,
see (2.9), contains Di�

β , and an integration by parts gives then
rise to Di V ia . Eventually, after a rather long calculation one ob-
tains,

3 In the case of the heterotic five-brane equations (2.4) and (2.5) are necessarily
modified but, as mentioned above, their use can be avoided by applying the Batalin–
Vilkovisky approach.
δA1 = −1

2

∫
d6σ

[
3
√

g V i
a V C

i �α�β
(

D[C Sa
αβ) + T̃ D[αβ Sa

DC)

)
− 28

6! ε
i1···i6 V A1

i1
· · · V A6

i6
�α�β Sc[αβ H̃c A6···A1)

]
. (3.7)

The terms in the round brackets in (3.7) are graded antisym-
metrized in αβC , and in (3.7) there is a graded antisymmetriza-
tion over αβ A6 · · · A1. Eventually the total anomaly must satisfy
δA1 + δA2 = 0, and one could argue that the terms proportional
to εi1···i6 and the ones proportional to V i

a V C
i should vanish sepa-

rately. However, there can be a migration between these two types
of terms. Indeed, given an arbitrary two-superform Sγ with com-
ponents,

Sγ = 1

2
E B EC Sγ

C B , (3.8)

one can prove the identity,

28

6! ε
i1···i6 V A1

i1
· · · V A6

i6
�α�β Sγ

[αβ H̃γ A6···A1)

= 3
√

gV i
a V C

i �α�β S D[αβ T̃ a
DC). (3.9)

It can be seen that this is, actually, the unique way of transforming
a term of the εi1···i6 -type into one of the V i

a V C
i -type. Adding and

subtracting (3.9) from (3.7), (3.7), δA = δA1 + δA2 can eventually
be written as,

δA = −1

2

∫
d6σ

[
3
√

gV i
a V C

i �α�β
(

D[C Sa
αβ)

+ T̃ D[αβ Sa
DC) + S D[αβ T̃ a

DC)

)
− 1

6!ε
i1···i6 V A1

i1
· · · V A6

i6
�α�β

× (
28S D[αβ H̃ D A6···A1) − (dW7)αβ A6···A1

)]
. (3.10)

3.2. k-anomaly cancellation and Bianchi identities

At first order in β ′ the variation of the quantum effective action
Γ = I + β ′ I1 amounts to,

δΓ = δ I + A,

where A is given in (3.4). The classical action I of the heterotic
five-brane – that must be a completion of (2.1) – is unknown. But
since it must be invariant once T a and dB6 satisfy the classical
constraints (2.2), (2.3), we assume that δ I is still given by (2.8).
The requirement of anomaly cancellation δΓ = 0, demands then
that the torsion constraints for T a have to be corrected according
to,

T a
γ B = T̃ a

γ B + Sa
γ B , (3.11)

and that one has to impose the constraints Ĥ7 = H̃7 to the modi-
fied curvature seven-superform,

Ĥ7 ≡ dB6 + W7 ⇒ dĤ7 = dW7. (3.12)

However, these new identifications for the constraints are consis-
tent only if they satisfy the relevant Bianchi identities. But this is
guaranteed – and this is the fundamental point – by the consis-
tency condition δA = 0, given (3.10). In fact, defining, see (3.8),

T α
γ B = T̃ α

γ B + Sα
γ B , (3.13)

and remembering that T̃ A
BC and H̃7 satisfy the Bianchi identities

DT a = Eb Rb
a and dH7 = 0 at zero order in β ′ , up to first order in

β ′ (3.10) can be recast into,
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δA = −1

2

∫
d6σ

[
3
√

gV i
a V C

i �α�β
(

DT a − Eb Rb
a)

αβC

− 1

6!ε
i1···i6 V A1

i1
· · · V A6

i6
�α�β(dH̃7 − dW7)αβ A6···A1

]
.

(3.14)

Notice that the term involving the curvature Rb
a does, actually,

drop out from this expression, since R A
B is Lie-algebra valued, i.e.

Rβ
a = 0 = Rb

α , Rab = −Rba . To examine the content of the identity
δA = 0 we define the three-superform,

K a ≡ DT a − Eb Rb
a = 1

6
E B EC E D K a

DC B .

Choosing in the first line of (3.14) the index C = γ , the condition
δA = 0 implies first of all that K a vanishes in the sector with three
spinorial indices,

K a
αβγ = 0. (3.15)

Choosing instead C = c, in the sector with two spinorial indices
and one vector index we obtain,

K (ac)
αβ = 0, (3.16)

because V i
a V ic is symmetric in a and c. But, as shown in [10],

the conditions (3.15), (3.16) are precisely the ones under which
a consistent first order solution of the whole set of Bianchi identities
DT A = E B R B

A can be found.
Similarly, defining the closed eight-superform K8 ≡ dH̃7 −dW7,

the vanishing of the second line of (3.14) implies that K8 vanishes
in all sectors with at least two spinorial indices,

Kαβ A1···A6 = 0. (3.17)

Actually, in the sector with two spinorial and six vectorial indices
the vanishing of the second line of (3.14) implies,

Kαβa1···a6 = (
γ b)

αβ
Aba1···a6 + (γb[a1···a4)αβ Bb

a5a6],

where A and B are arbitrary completely antisymmetric tensors.
However, the A-tensor can be eliminated by choosing appropri-
ately the vectorial components Wa1···a7 of W7, and the B-tensor
can be eliminated by choosing appropriately the vectorial com-
ponents Sa

bc of Sa , see (3.5). This is possible because both these
components do not enter into (3.4). Since K8 is a closed superform,
(3.17) guarantees that K8 vanishes identically, see, e.g., [19,24].
This means that also the Bianchi identity dĤ7 = dW7 in (3.12)
admits a consistent solution, once one imposes on Ĥ7 the con-
straints (2.3).

In conclusion, the consistency condition δA = 0 ensures that
the modified curvatures (3.11), (3.12), (3.13), necessary for anomaly
cancellation, satisfy the required superspace Bianchi identities.

4. The k-anomaly of the heterotic five-brane and a coupled
cohomology

In this section we show that anomalies of the type A1 as well
as those of the type A2 are necessarily present in the heterotic
five-brane quantum effective action Γ = I + β ′ I1, and determine
their form.

To this end we remember that Γ is also plagued by the gauge
anomalies (1.2), in particular by the anomaly due to the target-
space induced polynomial X8, that represents a gauge-anomaly AG

associated to the group G ≡ SO(1,9) × SO(32). If we call the corre-
sponding nihilpotent BRST operator δG , δ2

G = 0, and use the stan-
dard transgression formalism X8 = dω7, δGω7 = dω1, we have,
6
δGΓ = AG = β ′
∫

ω1
6. (4.1)

But since k-transformations preserve G , we have also the opera-
torial identity δδG = −δGδ. Inserting (3.1) and (4.1) in the identity
(δ + δG)2 Γ = 0, one obtains then the “coupled cohomology prob-
lem”,

δA = 0, δG AG = 0, δG A + δAG = 0. (4.2)

While the first two relations are automatically satisfied, the third
identity gives us new information about the k-anomaly A. First
of all, since AG is not invariant under k-transformations, A is
necessarily non-vanishing. Moreover, AG is known and so we can
elaborate the third identity in (4.2) to get a concrete informa-
tion on A. Since on (the pull-back of) a targetspace form Φ

the k-transformations δZ M = �M act as the Lie-derivative δΦ =
(i�d + di�)Φ , we have,

δAG = β ′
∫

δω1
6 = β ′

∫
i�dω1

6

= β ′
∫

i�δGω7 = δG

(
β ′

∫
i�ω7

)
. (4.3)

The third relation in (4.2) becomes then δG(A + β ′ ∫ i�ω7) = 0,
meaning that we have,

A = −β ′
∫

i�ω7 + A0, (4.4)

where A0 is an (SO(32) and Lorentz)-invariant k-anomaly. Compar-
ing with the general form (3.4) and recalling that A2 = − ∫

i�W7,
we see that we must have,

W7 = β ′ω7 − Y7, (4.5)

where Y7 is an invariant super-form of order β ′ . From (4.5) we
conclude in particular that A2 is non-vanishing. Given this form of
W7 we may rewrite (3.12) as,

Ĥ7 + Y7 = dB6 + β ′ω7, d(Ĥ7 + Y7) = β ′ X8. (4.6)

We have thus derived (1.1), with the identification,

H7 = Ĥ7 + Y7. (4.7)

Since the constraints for Ĥ7 are the classical ones given in
(2.3), we see that Y7 represents the quantum corrections to the H7-
constraints.

Given (4.6), also A1 must be non-vanishing. The reason for this
is that, as shown in [25], as long as one imposes in D = 10, N = 1
supergravity the dimension-zero-torsion constraint T a

αβ = 2γ a
αβ ,

the invariant seven-superform is necessarily closed: this is in con-
trast to (4.6), that requires instead d(Ĥ7 + Y7) �= 0. The validity of
(4.6) implies thus that the dimension-zero-torsion in (3.11) gains
necessarily a non-vanishing deformation Sa

αβ . Also A1 is, therefore,
non-vanishing. Eventually, as we will see in the next section, the
solution of (4.6) requires on top of this also a non-vanishing Y7.

4.1. Comparison with a minimal superspace solution

Recently a first order “minimal” solution of (1.1), or equivalently
(4.6), has been proposed in [19]. The author uses a different set
of superspace constraints, but since different choices of constraints
are related by (more or less complicated) field redefinitions, all our
conclusions above hold true. We present now a third set of con-
straints – a slight “deformation” of the ones in [19] – for reasons
that will be explained in a moment. We replace (2.2) and (2.3) by,
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T̃ a
αβ = 2γ a

αβ, T̃ a
bα = 0,

T̃ γ
αβ = 2δ

γ
(αλβ) − (

γ a)
αβ

(γa)
γ δλδ, (4.8)

H̃αβa1···a5 = −2e−2ϕ(γa1···a5)αβ,

H̃αa1···a6 = −2e−2ϕ(γa1···a6)α
βλβ, (4.9)

where ϕ is the dilaton, and λα = Dαϕ . In this framework (2.1)
is replaced by I[Z ] = ∫

(e−2ϕ√
g d6σ + B6), and the anomaly A1 in

(3.4) by A1 = − ∫
(e−2ϕ√

gV i
a V B

i �γ Sa
γ B)d6σ , while the expression

of A2 remains the same. The main advantage of this choice con-
sists in the fact that at zero-order in β ′ it entails the “symmetric”
parametrizations for the SO(32)- and SO(1,9)-curvatures F and R ,
see [25],

Rαβcd = 0 = Fαβ, Raαcd = 2(γa)αβ T β

cd,

Faα = 2(γa)αβχβ,

where T α
ab is the gravitino field strength and χα is the gluino. As

a consequence the components of X8 in (1.3) with more than four
spinor indices vanish. Eq. (4.6) is then automatically satisfied in
the sectors with more than four spinor indices, if one sets the
components of Y7 with more than two spinor indices to zero. In
the sector with four spinor indices (4.6) is, instead, non-trivial and
reads,(
2γ a

αβ + Sa
αβ

)(−2e−2ϕ(γabcde)γ δ + Yγ δabcde
)

= 8β ′(γb)αϕ(γc)βε(γd)γρ(γe)δσ Cϕερσ , (4.10)

where antisymmetrization over bcde and symmetrization over
αβγ δ are understood, and we have inserted the parametrization
(3.11) for T a

αβ . The completely antisymmetric tensor Cϕερσ is given
by,

Cϕερσ = tr
(
T ϕ T εT ρ T σ

) + 1

4
tr

(
T ϕ T ε

)
tr

(
T ρ T σ

)
− tr

(
T ϕ T ε

)
tr

(
χρχσ

) + 8tr
(
χϕχεχρχσ

)
, (4.11)

where T α stands for the matrix valued spinor field T α
ab , and an-

tisymmetrization over ϕερσ is understood. Notice that at order
zero in β ′ (4.10) is identically satisfied, while at first order in β ′
it amounts exactly to the vanishing of the second line in (3.10)
in the sector proportional to four powers of V α

i (remember that
dW7 = β ′ X8 − dY7). Due to complete antisymmetry the general
decomposition of (4.11) is,

Cϕερσ = (γa1a2a3)
[ϕε(γb1b2b3)

ρσ ]

× (
Aa1a2a3b1b2|b3 + ηa1b1 Ba2a3|b2b3

)
, (4.12)

where the tensors Aabcde| f and Bbc|ef span respectively dimension
1050 and 770 irreducible representations of SO(1,9). Using the
identity,

(γ[bc)(α
(ϕ(γde])β)

ε)

= − 1

12

[(
γ g)

αβ
(γgbcde)

ϕε + (
γ g)ϕε

(γgbcde)αβ

]
+ 1

3
(γbcde)(α

(ϕδβ)
ε),

and performing the (a bit cumbersome) gamma matrix algebra, the
right-hand side of (4.10) can then be written as,

(γb)αϕ(γc)βε(γd)γρ(γe)δσ Cϕερσ

= 1
(γbcdeg)αβ(γa1a2a3a4a5)γ δ Aa1a2a3a4a5|g
10
+ (
γ g)

αβ

[
36(γbca1a2a3)γ δ Adeg

a1a2|a3

+ 24
(
γ h)

γ δ
Abcdeg|h + 16

(
γbcd

a1a2
)
γ δ

Beg|a1a2

]
,

where (anti)symmetrizations are understood. Consequently (4.10)
admits the solution,

Sa
αβ = −2β ′

5
e2ϕ(γb1b2b3b4b5)αβ Ab1b2b3b4b5|a, (4.13)

Yαβa1a2a3a4a5 = 16β ′(15
(
γ cde[a1a2

)
αβ

Aa3a4a5]cd|e
+ 6

(
γ b)

αβ
Aa1a2a3a4a5|b

+ 10
(
γ bc [a1a2a3

)
αβ

Ba4a5]|bc
)
. (4.14)

Notice that the right-hand sides of these formulae are quartic in
the fermions. Formula (4.13) has been derived for the first time
in [19], where it has also been shown that the remaining compo-
nents of Sa , Sα and Y7 are consistently determined by the Bianichi
identities (3.3), but their expressions are presumably much more
complicated. Actually, the general solution of (4.10) allows also
for terms in Sa

αβ that belong to the irreducible representations
1a ⊕ 45 ⊕ 54 ⊕ 210a , and correspondingly for terms in Yαβa1a2a3a4a5

that belong to 1b ⊕ 45 ⊕ 54 ⊕ 210a ⊕ 210b . However, all these
tensors can be eliminated through field redefinitions of Ea , Eα ,
and B6, see [27]. From the anomaly point of view these terms can
be seen to correspond to trivial k-anomalies, that can be absorbed
subtracting local counterterms from Γ .

If one trusts in this minimal solution, the present Letter makes
the testable (once a consistent formulation has been found) pre-
diction, that the heterotic five-brane carries the k-anomalies (3.4),
where the forms W7 and Sa are given by (4.5), (4.13) and (4.14),
Sa
αβ and Yαβa1a2a3a4a5 being thus particular fourth order polynomi-

als in χα and T α
ab .

5. Concluding remarks

Whereas it is by no means clear that the low energy dynamics
of the heterotic five-brane can be described by a local σ -model,
there are at least two indications in favor of this assumption. The
first is that the gauge anomalies cancel, and the second is that
there exists a first order superspace solution of the associated
Bianchi identity (1.1). What we have shown in this Letter is that
a k-symmetric σ -model, together with its one-loop k-anomalies,
are perfectly consistent with this solution. The other main reason
in favor of such a model is obviously the general duality paradigm,
that foresees five-branes as S-duals of strings.

With respect to the heterotic string σ -model [10], from the re-
sults of our analysis the following main differences between strings
and five-branes arise. For the string the k-anomaly is again a sum
of two terms like in (3.4), where W7 is replaced by a three-form
W3 = α′ω3 − Y3, analogous to (4.5). This leads to H3 ≡ Ĥ3 + Y3 =
dB2 + α′ω3, entailing the modified Bianchi identity dH3 = α′ X4,
where dω3 = X4. But in that case the three-form Y3 vanished at
first order in α′ , Y3 = o(α′ 2), in that no one-loop k-anomaly of
this kind was revealed. The H3-constraints received, therefore, no
corrections at first order in α′ . Similarly, in the case of the string
also the anomaly A1 in (3.4) turned out to be zero at first order
in α′ , Sa = o(α′ 2), so that also the constraints for T a received no
first order corrections in α′ . There exists, actually, a consistent all
order solution of the Bianchi-identity dH3 = α′ X4 [26], that main-
tains the dimension-zero-constraint T a

αβ = 2γ a
αβ at all orders in α′ .

In the case of the heterotic five-brane, instead, Y7 as well as Sa are
already non-vanishing at first order in β ′ .

The main open problem regarding the heterotic five-brane is
the absence of a complete classical σ -model action, that de-
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scribes also the heterotic sector. From the point of view of the
present Letter another open problem regards the (cancellation of
the) k-anomaly associated necessarily – via coupled cohomology as
in (4.2) – to the factorized gauge-anomaly (X4 + χ4)Z4. But since
this anomaly is not a purely “target-space” anomaly, its form can
be investigated probably only once also the dynamics of the het-
erotic sector is explicitly known.

The method presented in this Letter can presumably be ap-
plied also to the M5-brane in D = 11. In that case the classical
action is complicated by the presence of the self-interacting chi-
ral two-form on the worldvolume, but this time, in addition to the
anomaly polynomial X (M5)

8 [28], also the complete k-invariant clas-
sical action is known [6,7]. This allows for a “true” analysis, and no
longer for only a “conjectured” one, that could in particular shed
new light on non-minimal N = 1, D = 11 supergravity [29].
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