
Static Analysis, Abstract Interpretation and Verification
in (Constraint Logic) Programming

Giorgio Delzanno1, Roberto Giacobazzi2, and Francesco Ranzato3

1 Università di Genova, Italy
giorgio@disi.unige.it
2 Università di Verona, Italy

roberto.giacobazzi@univr.it
3 Università di Padova, Italy

francesco.ranzato@unipd.it

Abstract. We survey some general principles and methodologies for program
analysis and verification. In particular, we focus on abstract interpretation and
model checking techniques, and on their applications to constraint logic programs.

Introduction

Logic programming has served as a unique training ground for static analysis, abstract
interpretation and verification. Operational and denotational semantics of logic pro-
grams feature simple and clean inductive definitions that made it possible to apply a
variety of known analysis and verification techniques and tools and to define new ones
tailored to solve specific problems arisen in logic programming (e.g. variable aliasing
and unification). We survey here some general notions and methods — in particular ab-
stract interpretation and model checking — for analysing and verifying programs and
systems, especially focused to (constraint) logic programs.

In Section 1 we first review the principles of the abstract interpretation approach, in
particular methodologies for designing abstract domains through systematic techniques
such as abstract domain refinement and simplification. We then show how these meth-
ods have been applied in the systematic design of analyses and semantics in the context
of logic programming.

In Section 2 we recall the main concepts underlying model checking. In model
checking, the behavior of a program is described by a finite graph (a Kripke model) that
describes the set of all reachable states. In this setting, temporal formulae can be used
to naturally specify functional properties of the system (e.g. safety and absence of star-
vation). The model checking problem consists in checking the temporal specification
against the model of the system. For specifications given in Computation Tree Logic
(CTL), the algorithm for deciding the model checking problem is based on a fixpoint
semantics of the temporal connectives. We exploit here this connection to establish a
link between CTL model checking and the fixpoint semantics of logic programs. We
then discuss implications of this link with a particular focus on the utilization of evalua-
tion strategies used for logic programming as a tool for model checking of infinite-state
concurrent systems.

A. Dovier, E. Pontelli (Eds.): 25 Years of Logic Programming, LNCS 6125, pp. 136–158, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Static Analysis, Abstract Interpretation and Verification 137

In Section 3 we focus on abstract interpretation-based model checking. In abstract
model checking, the verification of a temporal specification is performed in an abstract
model that can be designed as an abstract interpretation of the concrete system. In par-
ticular, we concentrate on strong preservation properties of abstract models, namely on
the equivalence of verifying temporal specifications in abstract and concrete models.
Strong preservation is highly desirable since it allows us to draw consequences on the
concrete model from negative answers on the abstract model. We survey how abstract
interpretation allows to cast strong preservation as a completeness property of abstract
models and consequently how this provides systematic methods to design strongly pre-
serving abstract models through abstract domain refinements.

Finally, in Section 4 we discuss how methods used for evaluation and analysis of
logic programs can be used to extend verification methods based on abstract model
checking, e.g., to the case of infinite-state systems.

1 Semantics, Static Analysis and Abstract Interpretation

1.1 Abstract Interpretation Basics

One fundamental feature of abstract interpretation is that most properties in approximat-
ing semantics, like precision, completeness, and compositionality, which may involve
complex operators, fixpoints etc., all depend upon the notion of abstraction, which is
precisely and uniquely determined by the chosen domain of properties [16]. Central in
the design of abstract interpretations is therefore the notion of domain. This is the case
for instance in program analysis, in type inference and in comparative semantics, where
the various abstract (approximate) semantics all correspond to suitable abstractions,
namely domains.

In the following, 〈C,≤,∨,∧,�,⊥〉 denotes a generic complete lattice C, with or-
dering ≤, lub ∨, glb ∧, greatest element (top) �, and least element (bottom) ⊥. The
downward closure of a subset S ⊆ C is defined as ↓S � {x ∈ C | ∃y ∈ S. x ≤ y},
where ↓x is a shorthand for ↓{x}. The upward closure ↑ is dually defined. The notation
C ∼= D denotes that C and D are isomorphic, possibly ordered, structures. Recall that
a function f : C → D is (Scott-)continuous if f preserves lub’s of (nonempty) chains
iff f preserves lub’s of directed subsets. In what follows, we consider abstract interpre-
tation based on Galois connections or, equivalently, closure operators [15,16]. A pair of
functions f : A → B and g : B → A between posets forms an adjunction, or Galois
connection (GC for short), denoted by (A, f,B, g), if

∀x ∈ A.∀y ∈ B. f(x) ≤B y ⇔ x ≤A g(y).

f (resp. g) is called the left- (right-) adjoint to g (f) and it is an additive (co-additive)
function, i.e., f preserves lub’s (glb’s) of all subsets ofA (empty set included). Additive
and co-additive functions f admit, respectively, right f+ and left f− adjoint as follows:
f+ � λx. ∨ {y | f(y) ≤ x } and f− � λx. ∧ {y | x ≤ f(y)}. Let us also recall that
(f+)− = (f−)+ = f . In GC-based abstract interpretation the concrete C and abstract
A domains are often assumed to be complete lattices and are related by abstraction
α : C → A and concretization γ : A → C maps forming a GC (C,α,A, γ). If in

138 G. Delzanno, R. Giacobazzi, and F. Ranzato

addition ∀a ∈ A. α(γ(a)) = a, then (C,α,A, γ) is called a Galois insertion (GI).
When (C,α,A, γ) is a GI each value of the abstract domainA is useful in representing
C, namely all the elements of A represent distinct members of C, being γ 1-1. Any
GC may be lifted to a GI by identifying in an equivalence class those values of the
abstract domain with the same concretization. This process is known as reduction of the
abstract domain. An (upper) closure operator on a poset C is a map ρ : C → C which
is monotone, idempotent, and extensive (∀x ∈ C. x ≤ ρ(x)). The set of all closure
operators on C is denoted by uco(C). Each closure operator ρ is uniquely determined
by its image ρ(C) as follows: ρ(x) � ∧{y ∈ ρ(C) | x ≤ y}. A fundamental property of
closure operators is that if C is a complete lattice then both 〈uco(C),�〉, where � is the
pointwise ordering, and 〈ρ(C),≤C〉 are complete lattices. It is well known since [16]
that abstract domains can be equivalently specified either as Galois insertions or as
closure operators on the concrete domain. In particular, a subset X ⊆ C is the image of
a closure ρ onC iffX is a Moore-family ofC, i.e.,X = M(X) � {∧S ∈ C | S ⊆ X}
(where ∧∅ = � ∈ M(X)) iff X is isomorphic to an abstract domain A in a GI
(C,α,A, γ). For any subsetX ⊆ C, M(X) is called the Moore-closure ofX in C, i.e.,
M(X) is the least (w.r.t. set-inclusion) subset ofC which containsX and it is a Moore-
family of C. 〈uco(C),�〉 is isomorphic to the so-called lattice 〈Abs(C),�〉 of abstract
interpretations ofC [16]. Hence, given any two abstractionsA,B ∈ Abs(C),A is more
precise (or conrete) thanB, denoted byA � B, whenB ⊆ A as Moore families ofC. In
the following, it is particularly convenient to identify an abstract domain A ∈ Abs(C)
as (image of) a closure operator on C, which, as a function, is denoted by ρA.

1.2 Backward and Forward Completeness

Soundness of an abstraction can be specified in two equivalent ways [15]. Let C be a
concrete domain, (C,α,A, γ) a Galois insertion, f : C → C a concrete semantic op-
eration and f � : A → A a corresponding abstract operation. Then, (C,α,A, γ) and f �

give rise to a sound abstraction whenα◦f � f �◦α, or equivalently (by adjunction) when
f◦γ � γ◦f �. While the above two definitions of soundness are equivalent, it turns out that
they are not equivalent when equality is required and they encode two different forms of
completeness: in the first case, α◦f = f �◦α is called backward (B-) completeness while
f◦γ = γ◦f � is called forward (F -) completeness — the reason for these names will be
clear later in the paper. B-completeness (see [44]) corresponds to ask that the abstract
function f � perfectly mimics the concrete function f when the latter is approximated in
A, viz. both functions are compared in the abstract domain A. On the other hand, F -
completeness (see [37]) corresponds to ask that f � perfectly mimics the function f when
applied to the same abstract value, viz. they are both compared in the concrete domain
C.

Recall that the best correct approximation of f on the abstract domain A is defined
to be the abstract function α◦f◦γ. It turns out (this is a simple extension of a characteri-
zation in [44]) that, given an abstract domainA, there exists an either B- or F -complete
abstract function f � defined on A iff the best correct approximation of f on A is, re-
spectively, either B- or F -complete. This means that both B- and F -completeness are
properties of abstract domains, namely a property of the GI (C,α,A, γ). Therefore, one

Static Analysis, Abstract Interpretation and Verification 139

•
•
•
•

•

•��
��

��
��

����������

����

Z

[0, +∞]

[0, 10]

[0, 2]

[0]

[−∞, 0]

•
•
•
◦

◦

◦��
��

��
��

����������

����

Z

[0, +∞]

[0, 10]

[0, 2]

[0]

[−∞, 0]

•
◦
◦
•

•

◦��
��

��
��

����������

����

Z

[0, +∞]

[0, 10]

[0, 2]

[0]

[−∞, 0]

Sign+ ρa ρb

Fig. 1. The abstract domain Sign+ and two abstractions

may define B- and F -completeness as follows: an abstract domain A ∈ Abs(C) is B-
(F -) complete for a semantic function f if ρA◦f = ρA◦f◦ρA (f◦ρA = ρA◦f◦ρA).

While B-completeness is well known in abstract interpretation and corresponds to
the standard notion of completeness [44,60], the notion of forward completeness is less
known. B-completeness for a domain A means that the expessive power of A is such
that no loss of precision is accumulated in A by abstracting in A itself the arguments
of a semantic function f . Conversely, F -completeness means that no loss of precision
is accumulated by approximating in A the result of the function f when computed on
abstract values in A. This justifies the choice of the backward and forward terminology
above. We denote by, respectively, F(C, f) and B(C, f) the set of F - and B- complete
abstractions of C for f . It is worth noting that in general F(C, f) �⊆ B(C, f) and
F(C, f) �⊆ B(C, f), namely B- and F -completeness are incomparable notions.

Example 1. Let Sign+ be the simple abstraction of 〈℘(Z),⊆〉 for analysing integer
variables depicted in Fig. 1. Consider the pointwise square operation sq : ℘(Z) → ℘(Z)
defined as follows: sq(X) � {x2 | x ∈ X }. Let ρ ∈ uco(℘(Z)) be the closure oper-
ator associated with Sign+, i.e. ρ = γSign+ ◦ αSign+ , where the abstraction and con-
cretization maps are the obvious ones. The best correct approximation of sq in Sign+ is
sq� : Sign+ → Sign+ defined as sq�(X) � ρ(sq(X)), with X ∈ Sign+. It is easy to
note that the closure operators ρa � {Z, [0,+∞], [0, 10]} and ρb � {Z, [0, 2], [0]}, de-
fined by their images — the images of ρa and ρb are depicted as bullets in Fig. 1 — are
such that:

– ρa ∈ F(Sign+, sq�) but ρa �∈ B(Sign+, sq�): for example, ρa(sq�(ρa([0]))) =
[0,+∞] while ρa(sq�([0])) = [0, 10];

– ρb ∈ B(Sign+, sq�) but ρb �∈ F(Sign+, sq�): for example, ρb(sq�(ρb([0, 2]))) =
Z while sq�(ρb([0, 2])) = [0, 10]. ��

One key result in [44] provides a constructive characterization of the structure of ab-
stract domains that are B-complete for continuous functions. Given a function f : C →
C and S ⊆ C, f−1(S) denotes the inverse image of f in S, i.e., {x ∈ C | f(x) ∈ S }.
Then, [44] shows that

140 G. Delzanno, R. Giacobazzi, and F. Ranzato

ρ ∈ uco(C) is B-complete for f ⇔
⋃

y∈ρ(C)

max(f−1(↓y)) ⊆ ρ(C) (∗)

Let us consider Example 1. It is easy to see that ρa is not B-complete because ρa

does not include the maximal inverse image of sq� of the subset ↓ [0, 10], namely

max(sq�−1(↓ [0, 10])) = {[0, 2]}.
An analogous (and trivial to prove) result can be stated for F -completeness. In this

case, F -complete domains can be characterized for merely monotone operations as
follows:

ρ ∈ uco(C) is F -complete for f ⇔ f(ρ(C)) ⊆ ρ(C) (∗∗)
Thus, while B-complete domains ρ are closed under (maximal) inverse images of the
function f on ρ(C), F -complete domains ρ are closed under direct images of f on
ρ(C). It is easy to see in Example 1 that ρb is not F -complete because ρb does not
include the direct image of sq�, for instance the value [0, 10] = sq�([0, 2]). Char-
acterizations (∗) and (∗∗) together establish a tight relationship between B- and F -
completeness, which can be specified as an adjunction when the concrete function ad-
mits a right adjoint. In fact, it turns out that if f : C → C is an additive function (and
therefore admits right adjoint f+) then

B(℘(S), f) = F(℘(S), f+). (‡)

Moreover, it is always possible, by relying on (∗) and (∗∗), to associate with each
continuous semantic function f : C → C a corresponding domain refinement that
transforms any abstract domain A into the closest (most abstract) B-/F -complete do-
main for f which includes (i.e., is more precise than) A. This provides the notions of
B- and F -complete shell [44]. The domain transformers RB

f : uco(C) → uco(C) and
RF

f : uco(C) → uco(C) are defined as follows:

– RB
f � λX ∈ uco(C).M(

⋃
y∈X max(f−1(↓y)));

– RF
f � λX ∈ uco(C).M(f(X)).

It is immediate to note that both RB
f and RF

f are monotone operators on uco(C).
The following equivalence, which follows from (∗) and (∗∗), characterizes in a unique
domain-equational form the B-/F -complete shell of abstract domains for a continuous
function f : C → C. Let A ∈ uco(C) and � ∈ {B,F}:

X � A and X is �-complete for f ⇔ X = A �R�
f (X).

Therefore, the most abstract domain that includes A and is �-complete for f is

�- Shellf (A) � gfp(λX.A �R�
f (X)).

This domain is called the �-complete shell of A with respect to f .

Static Analysis, Abstract Interpretation and Verification 141

1.3 Abstract Domain Refinement and Simplification

In recent years, systematic design methods of program analysis frameworks attracted a
growing interest. This is mainly justified by the fact that the most successful static an-
alyzers are parametric with respect to the property of interest [20] and therefore allow
to easily handle a variety of possible analyses. Moreover, automatic methods for tuning
static analyses in accuracy and cost are needed in order either to avoid reimplementa-
tion when these analyses are modified or to minimize false alarms. Similar construc-
tions are also used in designing semantics by abstract interpretation (e.g., Hoare logic
as tensor product [14] and compositional semantics as reduced power [33,42]) and in
type inference (e.g., polymorphism as disjunctive completion [13,52]). Formal methods
that compare/transform abstract interpretations are therefore inherently based on corre-
sponding methods to compare/transform abstract domains. A domain, at any level of
abstraction, is a set of mathematical objects which represent the properties of interest
about a computational system and that are partially ordered with respect to their rela-
tive degree of precision. In program analysis, for instance, the design of a static analyzer
basically corresponds to study a particular abstract domain, while modifying domains
corresponds to modify analyses. As shown for instance in [71] for a reconstruction of
groundness analysis in logic programming, the design of a complex abstract domain is
generally the result of a number of steps which can be in some cases made systematic by
applying suitable domain transformers to simpler domains for the property of interest.

The main idea behind domain transformers in abstract interpretation consists in de-
signing abstract domains systematically from the specification of some simpler domains
of basic properties of interest and then solving a recursive domain equation in order
to achieve completeness with respect to some target precision level. This game can be
played for most of the existing abstract domain transformers, by viewing them as in-
stances of completeness refinements: (1) in program analysis, where a given simple (and
imprecise) analysis is refined until completeness is reached by avoiding specific fami-
lies of false alarms, and (2) in program semantics where a given observation is refined
towards completeness in order to attain compositionality, condensation properties, etc.

The foundations of a theory of abstract domain transformers were layed by Cousot
and Cousot [16] in 1979. In that seminal work the authors introduced the main struc-
ture of abstract domains enjoying Galois connections and some fundamental operators
for systematically compose domains in order to achieve attribute independent and rela-
tional analyses (respectively, the reduced product and reduced power operations). Since
then, a number of papers put forward novel domain transformers and studied the impact
of these operations in designing abstract interpreters for specific program analysis and
languages. These include Cousot and Cousot’s reduced product, disjunctive comple-
tion and reduced cardinal power [16,17,18]; Nielson’s tensor product [61]; Giacobazzi
et al.’s dependencies, dual-Moore-set completion, complete kernels and shells, Heyt-
ing completion, and least disjunctive basis [40,44,46]; Cortesi et al.’s open product,
pattern completion, and complementation [11]. The notions of domain refinement and
domain simplification, introduced in [27,39], provided the very first generalization of
these ideas. Intuitively, a refinement is any domain operator that performs an action of
refinement with respect to the standard precision ordering �, i.e., that adds information

142 G. Delzanno, R. Giacobazzi, and F. Ranzato

to domains; on the other hand, simplificators and compressors perform the dual action
of “taking out” information from domains. Still these operators represent a basis for any
design of abstractions.

Many domain refinements can be specified as F -complete refinements with respect
to a given semantic operation [35]. Intuitively, a domain refinement can be viewed as
adding the functionalities of a given semantic operation of interest, that is, the direct
image of a semantic function. As a result of the above properties of complete abstrac-
tions, this corresponds to say that a domain refinement can be specified as (greatest)
solution of a F -completeness equation. As recalled above in (‡), whenever the seman-
tic operation is additive, such a characterization can be put in an equivalent formulation
in terms of B-completeness.

Clearly, the construction of domains by iterative refinement (e.g., by solving a re-
cursive domain equation) may lead to excessively complex domains for practical ap-
plications, as well as it may be interesting to isolate inner structures inside complex
domains that model precisely some basic properties around which complex abstract do-
mains are built. As observed in [39], it is possible to define a dual theory of domain
simplificators and compressors, which shares with the above theory of domain refine-
ments precisely the same, but dual, ideas and constructions. The common aspects of
simplificators and compressors is that they both reduce precision in domains. A typical
pattern for domain simplificators is the operation that transforms a given domainA into
the most concrete (when it exists) among the abstractions of A which is complete for a
given function. Like refinements, also simplificators and compressors have a construc-
tive definition as (greatest) solutions of (systems of) recursive domain equations [44].
The main difference between simplificators and compressors can be grasped by viewing
how they react when composed with the corresponding refinements, when they exist.
Assume that an idempotent refinement R is given. R admits a simplificator S when, for
any abstraction X , R(S(X)) = S(X) and S(R(X)) = R(X). This holds when both
R and S transform domains to meet a given common property, like, for instance in the
above case, completeness. A relevant example of domain refinement which has a cor-
responding simplificator is in fact the complete shell refinement in [44]. The complete
shell refinement, given a domainA, returns the most abstract domain which includesA
and is complete for some given semantic operation f ; the corresponding simplificator,
called complete core, returns the most concrete domain which is contained in A and is
complete for f . Compressors, instead, act like “zip” runs on files. If R is a given do-
main refinement, C is a compressor for R if, for any abstraction X , R(X) = R(C(X))
and C(R(X)) = C(X), namely when C(X) is the most abstract domain B such that
R(B) = R(X), and this basically holds when the whole refined domain R(X) can
be fully reconstructed by refinement from its so-called basis B = C(X). A domain
theoretic definition of abstract domain compressors has been introduced in [41]. Exam-
ples of domain compressors include complementation [11,28], which is the compressor
associated with reduced product, and least disjunctive basis [40], which is associated
with the disjunctive completion refinement. Clearly, not all refinements admit a corre-
sponding simplificator or compressor. Moreover, as suggested by the above definitions,
it is possible to relate refinements and simplificators/compressors by means adjunctions
[35,39].

Static Analysis, Abstract Interpretation and Verification 143

1.4 How to Cook an Abstract Domain or Semantics

The above methods can be used as a recipe for “cooking” an abstract domain/semantics
for specific applications.

1. Specify a concrete semantics for the considered programming language, with a
(possibly many sorted algebra as) concrete domain C = 〈C, op1, . . . , opn〉;

2. Identify, as a subset of the lattice of abstract interpretations, some basic semantics
properties π ⊆ Abs(C) that are to be preserved by the abstraction process;

3. Design a suitable refinement Rπ which adds to domains some functionalities of the
concrete algebra C, in such a way that Rπ(X) = X ⇒ X ∈ π;

4. Define an adequate abstract domain A that encodes the basic properties of interest
(e.g. the basic properties to analyze) concerning concrete data objects;

5. Solve the (system) of recursive domain equationsX = A �Rπ(X).

Step (1) is common to any abstract interpretation, and corresponds to the design of a
suitable base (typically collecting) semantics. Step (2) is instead a meta-level operation:
The designer has to identify the common structure of any domain which shares a given
semantic property that has to be preserved in the abstraction process. This may include
completeness, compositionality, and any combination of semantic properties of interest
for the specific application. A taxonomy of basic observable properties of semantics
is essential in order to solve this problem, see e.g. [21] for a recent account on the
logic programming case. Step (3) is strongly related to step (2) and is based on the
theory of domain refinements described above [39]. Step (4) strongly needs a creative
contribution of the designer, which has to guess a minimal domain of basic properties of
interest for concrete data objects. Compressors may provide here a tool for simplifying
and adapting the solutions envisaged at design time. Steps (5) is standard. Most of these
steps, in particular (3) and (5), are systematic and, in most cases, constructive.

1.5 Applications in Logic Programming

Logic programming has been an ideal programming setting where the above ideas have
found straight application. This because of the clean nature of the declarative semantics
of a (constraint) logic program, which consists of a simple fixpoint solution of a recur-
sive equation on predicates, where ground predicates provide the so called model-based
semantics and possibly nonground predicates provide the so called computed-answer
substitution semantics, also called s-semantics [26]. This motivates the use of logic
programming as a natural and intelligible environment where abstract domain trans-
formers can be tested and applied for a very first practical use, and characterized the
research in abstract interpretation in the years across Y2000 mainly in Padova, Parma,
Pisa and Verona. Of course, all the above definitions and notions hold on generic com-
plete lattices and semantic structures, fulfilling the language independence feature of
abstract interpretation. Here, we list some results in semantics and static program anal-
ysis obtained by applying the above mentioned domain transformers. These results are
characterized by a scattered coverage of known and new properties of semantics of logic
programming, all having a distinctive nature of being systematically derived by means

144 G. Delzanno, R. Giacobazzi, and F. Ranzato

of abstract domain transformations. The result was a puzzle of methods and techniques
for handling semantics and analyses with the ambition of fully developing Strachey’s
programme of “understanding of the mathematical ideas of programming languages
and combine them with other principles of common sense as correctives of exaggera-
tion, allowing the individual reader to draw as moderate conclusions as she/he will”
[74].

Analysis. The abstract domain for relational groundness analysis Pos has been recon-
structed as solution of a completeness problem, i.e., as greatest (w.r.t. �) solution of
the simple recursive abstract domain equationX = G�(X → X) over the concrete
domain of downward-closed sets of idempotent substitutions with respect to vari-
able instantiation, where → is the Heyting completion of an abstract domain [46]
and G is the basic domain for groundness analysis, specifying whether a variable is
ground or not [71]. Disjunctive completion and bases for groundness analysis have
been studied in [40].

The phenomenon of so-called condensation in logic program analysis has been
fully modeled as a completeness property of the underlying abstract domains in
[45]. A static analysis is condensing if (bottom-up) goal-independent and (top-
down) goal-dependent analyses agree, i.e., whenever it is possible to reconstruct
the analysis of a given goal from the result of a goal-independent analysis without
loss of precision. In this case, a condensing domain can always be systematically
derived from a possibly noncondensing one A by solving the recursive domain
equation X = A �X � (X

∧�X) on the concrete quantale of sets of idempotent
substitutions, where the conjunction ∧ in the quantale of idempotent substitutions
is most general unification and where

∧� is the linear refinement with respect to ∧
[45]. Condensing domains for freeness, independence, type representations, pair-
independence, non-pair-sharing, and information-flow analysis have all been de-
rived in this way in [45,56,57,58,73]. A condensing domain for sharing analysis,
i.e., a solution to the equation X = Sh �X � (X

∧�X), with Sh being the domain
for set-sharing, is still unknown. Completeness has been also used in combination
with complementation to prove that set-sharing is redundant for pair-sharing [3].

Semantics. Semantics can be composed and complemented as easy as abstract do-
mains. Applications in logic programming have shown that the semantics S � C,
obtained by complementing [11] the Clark semantics of correct answer substitu-
tions C with respect to the more concrete semantics of computed answer substitu-
tion S, corresponds precisely to the fully abstract semantics for partial computed
answer substitutions [38]. Similar characterizations have been obtained by domain
complementation of Clark vs. Herbrand model-based semantics and call vs. success
pattern semantics [38]. By considering linear refinement, the OR-compositional se-
mantics of logic programs can be systematically derived as least solution of the
recursive domain equation X = S �X � (X

��X) over the concrete quantale of
SLD-traces of atoms where conjunction is trace concatenation	 [42] and

�� is the
linear refinement w.r.t. 	. A more general construction for arbitrary compositional
semantics on traces can be found in [34].

Static Analysis, Abstract Interpretation and Verification 145

2 Temporal Logic and Model Checking

2.1 Basics of Model Checking

Model checking (see e.g. [10]) is a technique for verifying finite state (concurrent)
systems. It has been applied to verify properties of digital circuits, communication pro-
tocols, and, in the last years, to abstract models of software programs. Model checking
is automatic and, if the model contains an error, it produces a counterexample that can
be used to find the error in the original system. Model checking is based on the fol-
lowing ingredients: a specification language to describe a model of the behavior of a
given system, a logic to describe the properties that the model is suppose to satisfy, and
a decision procedure to test the properties against a model. The behavior of a system is
described by means of a Kripke model, i.e., a finite graph in which nodes are labeled
by propositions and edges represent transitions between states (the transition relation).
Propositions represent local properties of a given state. Global properties are described
in temporal logic, a formalism that can be used to reason on the transitive closure of
the state transition relation. There exist several types of temporal logic specification
languages. In this paper we focus on Computation Tree Logic (CTL).

Computation Tree Logic. CTL can be used to reason about branching time properties
of a Kripke model. A CTL model is a tuple M = 〈States,→, �〉 such that States is
a set of states, →⊆ States× States is a (typically total) transition relation and � :
States → ℘(Atoms) is a labeling function that defines the set of atomic predicates,
taken from a finite set Atoms, that holds at each state. When a labeling function is
omitted, we assume that �(s) = {s} (i.e., states are used as predicates). CTL formulae
extend propositional logic with temporal formulae of the form QPQT , where QP is a
path quantifier and QT is a temporal quantifier. The path quantifier can be either A (for
all paths) or E (there exists a path). The temporal quantifier can be either X (next state),
F (eventually), G (always), or U (until). For instance, the formula EXϕ holds in the
current state if there exists a successor in which ϕ holds, EFϕ holds in the current state
if there exists a path in which ϕ eventually holds, and AGϕ holds in the current state
if in all paths ϕ always holds. To formally define the semantics of CTL formulae, we
define a path σ inM as an infinite sequence of states s0s1 . . . si . . . such that sk → sk+1

for k ≥ 0 and we use σ[i] to denote the i-th state in σ. Furthermore, we use PM (s) to
define the set of paths σ in M such that σ[0] = s. The satisfiability relation M, s |= ϕ
is defined then as follows:

– M, s |= p iff p ∈ �(s)
– M, s |= ¬φ iff s �|= φ
– M, s |= ϕ ∨ ψ iff s |= ϕ or s |= ψ
– M, s |= EXϕ iff ∃σ ∈ PM (s).σ[1] |= ϕ
– M, s |= E(ϕ U ψ) iff ∃σ ∈ PM (s) ∃j ≥ 0. σ[j] |= ψ ∧ (∀k ∈ [0, j). σ[k] |= ϕ)
– M, s |= EFϕ iff ∃σ ∈ PM (s) ∃j ≥ 0.σ[j] |= ϕ
– M, s |= EGϕ iff ∃σ ∈ PM (s) ∀j ≥ 0.σ[j] |= ϕ

The semantics of the other logical/temporal operators is derived by exploiting semantic
equivalences like ¬EFϕ ≡ AG¬ϕ.

146 G. Delzanno, R. Giacobazzi, and F. Ranzato

Model Checking Problem. Given a CTL model M , an initial state s0, and a CTL
formula ϕ, the CTL model checking problem consists in checking whether M, s0 |= ϕ
holds or not.

CTL formulas can be used to express functional properties of a concurrent system
like mutual exclusion, termination, absence of starvation, etc. For instance, assume that
proposition csi denotes states in which process i is in its critical section. Mutual exclu-
sion for processes 1, . . . , n is represented then by the CTL propertyAG(¬(

∧n
i=1 csi)),

i.e., for all paths and all states, it is never the case that the formula cs1∧cs2∧. . .∧csn is
satisfied. For finite-state Kripke models, the CTL model checking problem is decidable
in polynomial time as discussed in the next section.

2.2 Model Checking Algorithm

The model checking decision procedure is based on a fixpoint characterization of the
semantics of CTL formulae. Given a formula ϕ, we define its denotation as the set of
states that satisfies it, namely,

[[ϕ]] � {s ∈ States |M, s |= ϕ}.
The set of CTL formulae ordered with respect to the inclusion of their denotations
forms a complete lattice. The bottom element is false (any unsatisfiable formula), the
top element is true (any tautology), and ∧ and ∨ correspond to the greatest lower bound
and the least upper bound operations, respectively. Temporal connectives can be viewed
as transformers of sets of states (i.e., of denotations). To clarify this point, let us recall
that temporal connectives as e.g. EF satisfy expansion axioms like

EFϕ ≡ ϕ ∨ EX EFϕ.

Lifting this axiom to the denotation level we obtain the fixpoint equation

Z = h(Z)

where h : ℘(States) → ℘(States) is defined as

h � λZ.[[ϕ]] ∪ Pre(Z)

where Pre(Z) is the set of predecessor states of Z , i.e.,

Pre(Z) � {s ∈ States | ∃s′ ∈ Z.s→ s′}.
The denotation of the formula EFϕ is the least fixpoint of the operator h, which is
monotonic over the complete lattice 〈℘(States),⊆,∪,∩, States,∅〉. By applying
Knaster-Tarski fixpoint theorem, the least fixpoint of h is the union

⋃
i≥0 Ii of the sets

I0, . . . , Ii, . . . inductively defined as I0 = ∅ and Ii+1 = h(Ii) for i ≥ 0. This com-
putation corresponds to a backward visit of the graph that defines the state transition
relation starting from the set of states that satisfy ϕ. Since the model has finitely many
states this backward analysis is always guaranteed to terminate and requires a number
of steps that is linear in the size of the model (in the worst case one state is added in
each computation of Pre).

Static Analysis, Abstract Interpretation and Verification 147

A similar reasoning can be applied to the other CTL connectives. The denotation
of formulae that quantify over all states along a path, like AG and EG, can be com-
puted as greatest fixpoints of their corresponding transformers, whereas the denotation
of temporal formulae like AF and EF can be computed as least fixpoints. The model
checking algorithm is defined then by induction on the structure of the input formula ϕ
and computes its denotations bottom-up starting from the denotations of its subformu-
lae. For instance, given the formula AG((EF p)∧ q) we first compute the denotation of
the subformula EFp, by means of a least fixpoint computation, and that of q. We then
compute their intersection I . Finally, we compute the denotation of the transformer AG
applied to I by using a greatest fixpoint computation.

The time complexity of this model checking algorithm is polynomial in the size of
the input formula ϕ and of the model M . It is important to notice that the number of
states in the transition graph is in general exponential in the description of the model
which is usually given in some high level language (e.g. a collection of formulae), and
this is commonly referred to as state explosion problem. Heuristics like symbolic model
checking [6] attack this problem by using compact representations of sets of states, e.g.,
by using binary decision diagrams as a representation of sets of states.

3 Abstract Model Checking and Refinement

Approximate automated verification by abstract model checking [9] provides one im-
portant solution to the state explosion problem [8] that arises in model checking systems
with parallel components. In abstract model checking, approximation is encoded by an
abstract model A that hides some details of the concrete model M so that verifica-
tion becomes more efficient on A rather than on M . The design of an abstract model
checking framework always includes a preservation result, roughly stating that for any
formula ϕ expressed in some language L, if A |= ϕ then M |= ϕ. Clearly, abstract
verification of ϕ on A may yield false negatives due to the approximation of M to A.
On the other hand, strong preservation means that a formula ϕ in L holds on A if and
only if ϕ holds on M . Strong preservation is thus highly desirable since it allows to
draw consequences from negative answers on the abstract side.

The relationship between abstract model checking and abstract interpretation has
been the subject of a number of works (e.g. [9,19,22,37,43]). We recall here how the
above notion of strong preservation in abstract model checking can be generalized from
an abstract interpretation perspective. This abstract interpretation-based view of strong
preservation allows to understand some common principles in well-known algorithms
that refine abstract Kripke structures in order to make them strongly preserving for some
temporal language.

3.1 Abstract Semantics of Languages

We deal with generic (temporal) languages L whose state formulae ϕ are inductively
defined by:

L � ϕ ::= p | f(ϕ1, ..., ϕn)

where p ranges over a (typically finite) set of atomic propositions Atoms, while f
ranges over a finite set Op of operators, for example standard temporal operators like

148 G. Delzanno, R. Giacobazzi, and F. Ranzato

existential/universal next EX/AX, until EU/AU, globally EG/AG, etc. The seman-
tics of a language is determined by a suitable semantic structure S, e.g. a Kripke
structure, on a concrete state space States, that provides an interpretation of atoms
and operators in L as, respectively, elements and operators on the powerset ℘(States).
Thus, S determines for any formula ϕ ∈ L a concrete semantics [[ϕ]]S ∈ ℘(States),
namely the set of states making ϕ true w.r.t. S. In turn, this also defines a state partition
PL ∈ Part(States), i.e. state equivalence, induced by the language L as follows:

PL(s) � {s′ ∈ States | ∀ϕ ∈ L. s ∈ [[ϕ]]S ⇔ s′ ∈ [[ϕ]]S}.
As shown in Section 1, abstract interpretation provides a systematic technique for ap-
proximating a concrete semantics by an abstract semantics defined on some abstract
domain. We consider abstract domains of the powerset 〈℘(States),⊆〉 that plays here
the role of concrete semantic domain. An abstract domain A ∈ Abs(℘(States)), de-
fined by abstraction/concretization maps α/γ, induces an abstract semantic structure
SA where the interpretation of an atom p ∈ ℘(States) is abstracted to α(p) while a
concrete semantic operator f : ℘(States)n → ℘(States) is abstracted by its best cor-
rect approximation fA on A, that is fA(a1, ..., an) � α(f (γ(a1), ..., γ(an))). Thus,
any abstract domain A systematically induces an abstract semantics [[ϕ]]AS ∈ A that
evaluates formulae ϕ ∈ L in the abstract domain A.

It turns out that this approach based on abstract semantics generalizes standard ab-
stract model checking [10]. Given a Kripke structure K = (States,→), a standard
abstract model is specified as an abstract Kripke structure A = (AStates,→�) where
the set AStates of abstract states is defined by a surjective map h : States → AStates
that groups together indistinguishable concrete states whereas →� is the transition re-
lation between abstract states. Thus, AStates determines a partition of States and vice
versa any partition of States can be viewed as a set of abstract states.

It turns out that state partitions can be viewed as a particular class of abstract do-
mains. On the one hand, a partition P ∈ Part(States) can be considered an abstract
domain by means of the following Galois insertion (℘(States)⊆, αP , ℘(P)⊆, γP):

αP (S) def= {B ∈ P | B ∩ S �= ∅}; γP (B) def= ∪B∈B B.

Hence,αP (S) encodes the minimal over-approximation ofS through blocks of the state
partition P . On the other hand, any abstract domain A ∈ Abs(℘(States)) induces the
following partition part(A) ∈ Part(States):

part(A)(x) def= {y ∈ States | αA({y}) = αA({x})}.
An abstract domain A ∈ Abs(℘(States)) is called partitioning when it represents pre-
cisely a state partition, namely when γA ◦ αA = γpart(A) ◦ αpart(A).

3.2 Generalized Strong Preservation

In standard abstract model checking, given a language L and a corresponding inter-
pretation on a Kripke structure K, an abstract Kripke structure A strongly preserves L
when for any ϕ ∈ L and s ∈ States, we have that

A, h(s) |= ϕ ⇔ K, s |= ϕ

Static Analysis, Abstract Interpretation and Verification 149

�������	R
stop �� �������	RY

stop �� �������	G
go �� �������	Y

go
��

Fig. 2. A U.K. traffic light

where h : States → AStates is the abstraction map.
It turns out that strong preservation can be generalized from standard abstract Kripke

structures to abstract interpretation-based models. A generalized abstract model is given
as an abstract domain A ∈ Abs(℘(States)) that systematically induces an abstract se-
mantics [[·]]AS . We therefore define the abstract semantics [[·]]AS to be strongly preserving
(s.p. for short) for L when for any ϕ ∈ L and S ∈ ℘(States),

α(S) ≤A [[ϕ]]AS ⇔ S ⊆ [[ϕ]]S .

Observe that strong preservation is an abstract domain property, meaning that it does
not depend on the abstract interpretation of atoms and logical/temporal operators on
the abstract domain A but only depends on A itself. Thus, an abstract domain A ∈
Abs(℘(States)) is strongly preserving for L when [[·]]AS is strongly preserving for L.

Standard strong preservation becomes a particular instance, because it turns out that
an abstract Kripke structure strongly preserves L if and only if the corresponding parti-
tioning abstract domain strongly preserves L according to the above generalized mean-
ing. Generalized strong preservation may work where standard strong preservation may
fail. In fact, it may happen that although a strongly preserving abstract semantics on a
partition P always exists this abstract semantics cannot be derived from a strongly pre-
serving abstract Kripke structure on P . The following example shows this phenomenon.

Example 2. Consider the following simple language L:

L � ϕ ::= stop | go | AXXϕ

and the Kripke structure K depicted in Figure 2, where superscripts determine the la-
beling function. K models a four-state traffic light controller (like in the U.K.): Red
→ RedYellow → Green → Yellow. According to the standard semantics of AXX, we
have that K, s|=AXXϕ iff for any path s0s1s2 . . . starting from s0 = s, it happens
that K, s2|=ϕ. It turns out that [[AXXstop]]K = {G, Y } and [[AXXgo]]K = {R,RY }.
We thus consider the state partition P = {{R,RY }, {G, Y }}. However, it turns out
that there exists no abstract transition relation �

� on the abstract state space P such
that the abstract Kripke structure A = (P ,��) strongly preserves L. Assume by con-
tradiction that such an abstract Kripke structure A exists. Let B1 = {R,RY } ∈ P
and B2 = {G, Y } ∈ P . Since K, R |= AXXgo and K, G |= AXXstop, by strong
preservation, it must be that A, B1 |= AXXgo and A, B2 |= AXXstop. Hence, neces-
sarily, B1�

�B2 (otherwise B1 can never reach the state B2 where the atom go holds)
and B2�

�B1 (otherwise B2 can never reach the state B1 where the atom stop holds).
This leads to the contradiction A, B1 �|=AXXgo. In fact, if �

� = {(B1, B2), (B2, B1)}
then we would have that A, B1 �|=AXXgo. On the other hand, if, instead, B1�

�B1 (the
caseB2�

�B2 is analogous), then we would still have that A, B1 �|=AXXgo. Even more,

150 G. Delzanno, R. Giacobazzi, and F. Ranzato

along the same lines it is not hard to check that no proper abstract Kripke structure
that strongly preserves L can be defined, because even if either B1 or B2 is split (i.e.,
refined) we still cannot define an abstract transition relation that is strongly preserving
for L.
On the other hand, let us consider the partitioning abstract domain

A � {∅, {R,RY }, {G, Y }, {R,RY,G, Y }}
that is induced by the above partition P . This abstract domain A induces a correspond-
ing abstract semantics [[·]]AK : L → A, where the best correct approximation of the
operator AXX : ℘(States) → ℘(States) on A is as follows:

αA ◦ AXX ◦ γA = {∅ �→ ∅, {R,RY } �→ {G, Y }, {G, Y } �→ {R,RY },
{R,RY,G, Y } �→ {R,RY,G, Y }}.

It is easy to check that this abstract semantics [[·]]AK is strongly preserving. As observed
above, in the abstract Kripke structure A, the formulae AXXgo and AXXstop are
not strongly preserved. Here, instead, we have that αP (S) ≤A [[AXXgo]]AK ⇔ S ⊆
[[AXXgo]]K and αP (S) ≤A [[AXXstop]]AK ⇔ S ⊆ [[AXXstop]]K. ��

3.3 Strong Preservation as Completeness

Given a language L and a Kripke structure K = (States,→), a well-known key prob-
lem is to compute the smallest abstract state space AStatesL, when this exists, such that
one can define an abstract Kripke structure AL = (AStatesL,→�) that strongly pre-
serves L. This problem admits solution for a number of well-known temporal languages
like CTL (or, equivalently, the μ-calculus), ACTL and CTL-X (i.e. CTL without the
next-time operator X). A number of algorithms for solving this problem exist, like those
by Paige and Tarjan [62] for CTL, by Henzinger et al. [50], Tan and Cleaveland [75],
Ranzato and Tapparo [66] and Gentilini et al. [32,47] for ACTL, and Groote and Vaan-
drager [48] for CTL-X. These are coarsest partition refinement algorithms. Given a
language L and a state partition P ∈ Part(States) which is determined by a state la-
beling � : States → ℘(Atoms) — namely, P � {�−1(X) | X ⊆ Atoms} — these
algorithms can be viewed as computing the coarsest partition PL that refines P and al-
lows to define an abstract Kripke structure (P,→�) that strongly preserves L. It is worth
remarking that most of these algorithms have been designed for computing well-known
behavioural equivalences used in process algebra like bisimulation (for CTL), simula-
tion (for ACTL) and divergence-blind stuttering (for CTL-X) equivalence. Our abstract
interpretation-based framework allows us to provide a generalized view of these parti-
tion refinement algorithms. It turns out that the most abstract (i.e., least informative)
domain, denoted by ADL, that strongly preserves a given language L always exists,
namely the domain

�{A ∈ Abs(℘(Σ)) | A is s.p. for L}
results to be s.p. for L. It turns out that ADL is a partitioning abstract domain if and only
if L includes propositional logic, that is when L is closed under logical conjunction and
negation. Otherwise, a proper loss of information occurs when abstracting ADL to the

Static Analysis, Abstract Interpretation and Verification 151

corresponding partition PL. Moreover, for some languages L, it may happen that one
cannot define an abstract Kripke structure on the abstract state space PL that strongly
preservesL whereas the most abstract strongly preserving domain instead exists. In fact,
in Example 2, the domain A actually is the most abstract s.p. domain for the language
L whilst no s.p. abstract Kripke structure can be defined.

As discussed in Section 1, completeness in abstract interpretation encodes an ideal
situation where the abstract semantics coincides with the abstraction of the concrete se-
mantics. A precise correspondence between generalized strong preservation and com-
pleteness in abstract interpretation can be established. This is based on the notion of
forward complete abstract domain. As recalled in Section 1, it turns out that forward
complete abstract domains can be systematically and constructively derived from non-
complete abstract domains by minimal refinements. Given any domainA ∈ Abs(C), re-
call that we denote byF -Shellf (A) the forward complete shell ofA for f . F -Shellf (A)
can be obtained by iteratively closing γ(A) under direct images of f until a fixpoint is
reached, i.e.,

F - Shellf (A) � lfp
(
λX ⊆ C.γ(A) ∪X ∪ f (X)

)
.

It turns out that strong preservation is related to forward completeness as follows. As
described above, the most abstract domain ADL that strongly preservesL always exists.
It turns out that ADL coincides with the forward complete shell for the logical/temporal
operators of L of a basic abstract domain A� � M({�−1(X) | X ⊆ Atoms}) deter-
mined by the state labeling �, i.e.,

ADL = F - ShellOpL(A�).

This characterization provides a generalization of partition refinement algorithms used
in standard abstract model checking that can be therefore logically viewed as refine-
ments w.r.t. forward completeness.

Example 3. Conside the above Example 2 where the labeling determines the abstract
domain A� = {∅, {R,RY }, {G, Y }, {R,RY,G, Y }}. Let AXX be the semantic in-
terpretation of AXX. It turns out thatA� is already forward complete for AXX because
AXX({R,RY }) = {G, Y } and AXX({G, Y }) = {R,RY }. Thus, here

ADL = F - ShellAXX(A�) = A�

namely A� is the most abstract strongly preserving domain for the language L. ��

Bisimulation Equivalence. As an example, let us describe how this approach allows
us to derive a novel characterization of bisimulation equivalence in terms of forward
completeness of abstract domains.

Bisimulation equivalence Pbis on some Kripke structure K can be computed by the
well-known Paige-Tarjan partition refinement algorithm PT. More precisely, if P� de-
notes the state partition determined by the labeling function � then PT(P�) = Pbis. It
is well known [5] that when K is finitely branching, bisimulation equivalence coincides
with the state equivalence induced by Hennessy-Milner logic

HML � ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ

152 G. Delzanno, R. Giacobazzi, and F. Ranzato

that is, PHML = Pbis. As usual, the semantic interpretation of EX is the predeces-
sor Pre : ℘(States) → ℘(States), while conjunction and negation are, respectively,
interpreted as intersection ∩ and complementation � on ℘(States).

The following characterization can then be derived in our abstract interpretation-
based framework:

PT(P�) = part(F - Shell{Pre,�}(A�)).

Note that the forward complete shell does not need to take into account the intersec-
tion on ℘(States) since abstract domains, being closed under intersections, are always
forward complete for intersections. This characterization in turn leads to design a gen-
eralized Paige-Tarjan-like procedure for computing most abstract strongly preserving
domains [67].

4 Model Checking and (Constraint) Logic Programming

In the last decade there has been a growing interest in the application of logic program-
ming techniques to the specification, analysis, and verification of concurrent systems
and software programs. For instance, in Italy the research groups in Genova and Roma
have applied different types of evaluation and transformation strategies for constraint
logic programming to the verification of parameterized formulations of communication
protocols.

A nice example of the connections between verification and logic programming is
given in [24]. In the rest of the section we briefly recall the main ideas from this paper.

4.1 Model Checking and Fixpoint Semantics in LP

As discussed in Section 2, the semantics of CTL properties is defined as a least or
greatest fixpoint of a monotonic operator defined over sets of configurations, i.e., states.
This property can be exploited in order to provide a link between model checking and
logic programming. As an example, let us interpret an atomic formula p(s1, s2, val) as
a configuration of a system with two processes whose current states are, resp., s1 and s2
and with a shared variable whose current value is val. Now let P be the logic program
defined as

p(idle,X, free) : −p(use,X, lock).
p(use,X, Y) : −p(idle,X, free).
p(X, idle, free) : −p(X,use, lock).
p(X,use, Y) : −p(X, idle, free).

According to the above mentioned interpretation of the predicate p, the Horn clauses
in P represent one-step transitions (possible moves of one of the two processes) of
a concurrent system in which the access to the critical section use is controlled via
modifications to the global variable with states lock and free.

Let us now consider the set of ground atomic predicates

Bad � {p(use, use, lock), p(use, use, free)}.
They represent violations to the mutual exclusion property for the system represented
by the program P . To draw a link between the semantics of P and CTL properties like

Static Analysis, Abstract Interpretation and Verification 153

EF, we need to resort to the fixpoint semantics of logic programs. We first recall that
the immediate consequence operator of the logic programQ � P ∪ Bad is defined as

TQ(I) � {Aθ | A : −B ∈ Q, Bθ ∈ I, θ grounding for A,B} ∪ Bad

where I is a set of ground atoms with predicate p and constants taken from the set
{idle, busy, free, lock}. It is immediate to see that when TQ is applied to a set of atoms
I , it computes (a representation of) the set of one-step predecessors of the configurations
in I . The fixpoint semantics FQ of the programQ is defined as the least fixpoint of the
TQ operator, i.e., as the set of ground atoms

FQ � lfp(TQ) =
⋃

i≥0

T i
Q(∅).

Based on the link between TQ and the operator Pre used in the semantics of CTL, we
have that FQ is a representation of the set of all predecessors of violations to mutual
exclusion contained in Bad . In other words, FQ is equivalent to the denotation of the
CTL formula EF(use1 ∧ use2), where usei is the predicate that is true if and only if
the process i is in the critical section. In a similar way, we can use the greatest fixpoint
semantics of logic programs to characterize CTL properties like EG.

4.2 From Finite-State to Infinite-State Models

The interpretation of logic programs as a symbolic representation of transition systems
paves the way to several different logic-based methods for the verification of finite-
state and infinite-state systems. In [24], the s-semantics of constraint logic programs
is applied to symbolically reason on infinite-state transition systems. The s-semantics
of logic programs is obtained by lifting the fixpoint semantics to a domain in which
interpretations are sets of nonground atoms. Going back to the previous example, we
first observe that the set Bad can be represented with the single nonground atom.

b � p(use, use,X)

where X is a free variable. Furthermore, the bottom-up evaluation of the program
R � P ∪ {b} can be computed symbolically by replacing the operator TR with the
corresponding nonground version SR. The nonground immediate consequence opera-
tor SR is obtained by replacing in the definition of TR the grounding substitution θ with
the most general unifier between B and an atom in I . More formally, given a set of
nonground atoms I , the operator SR is defined as

SR(I) � {Aθ | A : −B ∈ R, C ∈ I, θ = m.g.u.(B,C)} ∪ Bad .

The nonground fixpoint semantics is defined as the least fixpoint of the SR operator,
i.e., as the result of a (non ground) bottom-up evaluation of the logic program R. It is
important to notice that the subsumption test between nonground atoms can be used
as termination test for this type of symbolic fixpoint computation. Optimizations like
magic set templates can be used to specialize the bottom-up evaluation procedure with
respect to a given query (e.g., a set of initial states).

154 G. Delzanno, R. Giacobazzi, and F. Ranzato

As shown in [24], the s-semantics for CLP can be used to extend the link between
bottom-up evaluation of logic programs and model checking to the case of infinite-state
transition systems. CLP clauses can be used to symbolically represent a possibly infinite
set of transition rules, and constrained atoms, i.e., atoms like p(X,Y) : −X > Y can
be used to symbolically represent infinite sets of configurations, i.e., all the instances of
the atom p(X,Y) obtained by solving the constraint X > Y .

4.3 Verification and Evaluation Strategies in LP

Several other types of evaluation of logic programs have been proposed for the verifi-
cation of temporal properties of transition systems.

In [30,31] the transition system of counter automata (automata with guards and
assignments over a finite set of counters) are symbolically represented as logic pro-
grams with linear arithmetic constraints. The bottom-up evaluation of logic programs
with gap-order constraints (obtained by relaxing the linear constraints in the automata)
is used to over-approximate the set of successors, i.e., the set Post∗, of the original
automata.

In [49,76] forward and backward evaluation of CLP programs is used to verify prop-
erties of real time and hybrid systems, respectively. Constraints are used here to infer
preconditions on parameters of system specifications.

Program specialization methods (e.g. partial evaluation) is another example of tech-
niques that can be used to automatically control the abstraction required for infinite-
state model checking [55,53,54]. In [29,63] program transformation techniques
combined with specialized decision procedures are used to verify temporal properties
of infinite-state systems.

The application of tabling to the evaluation of logic programs represents a further
important research line in-between logic programming and verification. The model
checker XMC based on the XSB system has been applied to several families of verifica-
tion problems and concurrent models including pi-calculus and mobile process algebra
[25,65,69,70,72]. For this kind of systems, tabling can be used to efficiently evaluate
logic programs that encode the semantics of CTL operators. Since tabling exploits dif-
ferent types of subsumption mechanisms, the resulting engine can be applied both to
finite-state and infinite-state systems.

Other promising approaches for logic-based verification techniques are based on
logic programming frameworks based on non standard logics like linear and intuitionis-
tic logic. For instance, in [4,23], bottom-up evaluation methods for logic programming
languages like LO [1] and MSR [7] extend the use of symbolic techniques based on
unification (e.g. SP -like operators) to languages that naturally model concurrency via
multiset rewriting. Other examples come from logic programming languages like Bed-
wyr [2] and LolliMon [59] that incorporate connectives to express least and greatest
fixpoint computations. The study of evaluation strategies and abstract interpretation
techniques for these powerful logic programming languages represent an interesting
research direction aimed at finding new verification methods for general classes of con-
current systems.

Static Analysis, Abstract Interpretation and Verification 155

References

1. Andreoli, J.-M., Pareschi, R.: Linear Ojects. Logical Processes with Built-in Inheritance.
New Generation Comput. 9(3/4), 445–474 (1991)

2. Baelde, D., Gacek, A., Miller, D., Nadathur, G., Tiu, A.: The Bedwyr system for model
checking over syntactic expressions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 391–397. Springer, Heidelberg (2007)

3. Bagnara, R., Hill, P., Zaffanella, E.: Set-sharing is redundant for pair-sharing. Theor. Comput.
Sci. 277(1-2), 3–46 (2002)

4. Bozzano, M., Delzanno, G., Martelli, M.: Model Checking Linear Logic Specifications.
TPLP 4(5-6), 573–619 (2004)

5. Browne, M.C., Clarke, E.M., Grumberg, O.: Characterizing finite Kripke structures in propo-
sitional temporal logic. Theoret. Comp. Sci. 59, 115–131 (1988)

6. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic Model Check-
ing: 1020 States and Beyond. In: Proc. IEEE LICS 1990, pp. 428–439 (1990)

7. Cervesato, I.: Typed Multiset Rewriting Specifications of Security Protocols. ENTCS 40
(2000)

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Progress on the state explosion prob-
lem in model checking. In: Wilhelm, R. (ed.) Informatics: 10 Years Back, 10 Years Ahead.
LNCS, vol. 2000, pp. 176–194. Springer, Heidelberg (2001)

9. Clarke, E.M., Grumberg, O., Long, D.: Model checking and abstraction. ACM Trans. Pro-
gram. Lang. Syst. 16(5), 1512–1542 (1994)

10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(1999)

11. Cortesi, A., Filé, G., Giacobazzi, R., Palamidessi, C., Ranzato, F.: Complementation in ab-
stract interpretation. ACM Trans. Program. Lang. Syst. 19(1), 7–47 (1997)

12. Cortesi, A., Le Charlier, B., Van Hentenryck, P.: Combinations of abstract domains for
logic programming: open product and generic pattern construction. Sci. Comput. Program.
38(1-3), 27–71 (2000)

13. Cousot, P.: Types as abstract interpretations (invited paper). In: Proc. ACM POPL 1997,
pp. 316–331 (1997)

14. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theor. Comput. Sci. 277(1-2), 47–103 (2002)

15. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proc. of Conf. Record of the 4th
ACM Symp. on Principles of Programming Languages (POPL 1977), pp. 238–252. ACM
Press, New York (1977)

16. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. of Conf.
Record of the 6th ACM Symp. on Principles of Programming Languages (POPL 1979),
pp. 269–282. ACM Press, New York (1979)

17. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs. J. Logic
Program. 13(2-3), 103–179 (1992)

18. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to comportment
analysis generalizing strictness, termination, projection and PER analysis of functional lan-
guages) (invited paper). In: Proc. of the 1994 IEEE Internat. Conf. on Computer Languages
(ICCL 1994), pp. 95–112 (1994)

19. Cousot, P., Cousot, R.: Temporal abstract interpretation. In: Proc. 27th ACM POPL,
pp. 12–25 (2000)

20. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: The
ASTREÉ analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 21–30. Springer,
Heidelberg (2005)

156 G. Delzanno, R. Giacobazzi, and F. Ranzato

21. Cousot, P., Cousot, R., Giacobazzi, R.: Abstract interpretation of resolution-based semantics.
Theor. Comput. Sci. 410(46), 4724–4746 (2009)

22. Dams, D., Grumberg, O., Gerth, R.: Abstract interpretation of reactive systems. ACM Trans.
Program. Lang. Syst. 16(5), 1512–1542 (1997)

23. Delzanno, G.: An Overview of MSR(C): A CLP-based Framework for the Symbolic Verifi-
cation of Parameterized Concurrent Systems. ENTCS 76 (2002)

24. Delzanno, G., Podelski, A.: Model Checking in CLP. In: Cleaveland, W.R. (ed.) TACAS
1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)

25. Dong, Y., Du, X., Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka,
S.A., Sokolsky, O., Stark, E.W., Scott Warren, D.: Fighting Livelock in the i-Protocol: A
Comparative Study of Verification Tools. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS,
vol. 1579, pp. 74–88. Springer, Heidelberg (1999)

26. Falaschi, M., Levi, G., Palamidessi, C., Martelli, M.: Declarative modeling of the operational
behavior of logic languages. Theor. Comput. Sci. 69(3), 289–318 (1989)

27. Filé, G., Giacobazzi, R., Ranzato, F.: A unifying view of abstract domain design. ACM Com-
put. Surv. 28(2), 333–336 (1996)

28. Filé, G., Ranzato, F.: Complementation of abstract domains made easy. In: Proc. of the 1996
Joint Internat. Conf. and Symp. on Logic Programming (JICSLP 1996), pp. 348–362 (1996)

29. Fioravanti, F., Pettorossi, A., Proietti, M.: Verification of Sets of Infinite State Processes
Using Program Transformation. In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS, vol. 2372,
pp. 111–128. Springer, Heidelberg (2002)

30. Fribourg, L., Richardson, J.: Symbolic Verification with Gap-Order Constraints. In:
Gallagher, J.P. (ed.) LOPSTR 1996. LNCS, vol. 1207, pp. 20–37. Springer, Heidelberg
(1997)

31. Fribourg, L., Olsén, H.: A Decompositional Approach for Computing Least Fixed-Points of
Datalog Programs with Z-Counters. Constraints 2(3/4), 305–335 (1997)

32. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation: coarsest partition
problems. J. Automated Reasoning 31(1), 73–103 (2003)

33. Giacobazzi, R., Mastroeni, I.: Compositionality in the puzzle of semantics. In: Proc. of
the ACM Symp. on Partial Evaluation and Semantics-Based Program Manipulation (PEPM
2002), pp. 87–97 (2002)

34. Giacobazzi, R., Mastroeni, I.: Transforming semantics by abstract interpretation. Theor.
Comput. Sci. 337(1-3), 1–50 (2005)

35. Giacobazzi, R., Mastroeni, I.: Transforming abstract interpretations by abstract interpreta-
tion. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 1–17. Springer,
Heidelberg (2008)

36. Giacobazzi, R., Palamidessi, C., Ranzato, F.: Weak relative pseudo-complements of closure
operators. Algebra Universalis 36(3), 405–412 (1996)

37. Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements in ab-
stract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373.
Springer, Heidelberg (2001)

38. Giacobazzi, R., Ranzato, F.: Complementing logic program semantics. In: Hanus, M.,
Rodrı́guez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 238–253. Springer,
Heidelberg (1996)

39. Giacobazzi, R., Ranzato, F.: Refining and compressing abstract domains. In: Degano, P.,
Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 771–781.
Springer, Heidelberg (1997)

40. Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract interpretation. Sci.
Comput. Program 32(1-3), 177–210 (1998)

Static Analysis, Abstract Interpretation and Verification 157

41. Giacobazzi, R., Ranzato, F.: Uniform closures: order-theoretically reconstructing logic pro-
gram semantics and abstract domain refinements. Information and Computation 145(2),
153–190 (1998)

42. Giacobazzi, R., Ranzato, F.: The reduced relative power operation on abstract domains.
Theor. Comput. Sci 216, 159–211 (1999)

43. Giacobazzi, R., Ranzato, F.: Incompleteness of states w.r.t. traces in model checking. Infor-
mation and Computation 204(3), 376–407 (2006)

44. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete. J.
ACM 47(2), 361–416 (2000)

45. Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract domains condensing. ACM Trans-
actions on Computational Logic 6(1), 33–60 (2005)

46. Giacobazzi, R., Scozzari, F.: A logical model for relational abstract domains. ACM Trans.
Program. Lang. Syst. 20(5), 1067–1109 (1998)

47. van Glabbeek, R.J., Ploeger, B.: Correcting a space-efficient simulation algorithm. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 517–529. Springer, Heidelberg
(2008)

48. Groote, J.F., Vaandrager, F.: An efficient algorithm for branching bisimulation and stuttering
equivalence. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 626–638. Springer,
Heidelberg (1990)

49. Gupta, G., Pontelli, E.: A constraint-based approach for specification and verification of real-
time systems. In: Proc. IEEE Real-Time Systems Symposium 1997, pp. 230–239 (1997)

50. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite
graphs. In: Proc. 36th FOCS, pp. 453–462 (1995)

51. Henzinger, T.A., Maujumdar, R., Raskin, J.-F.: A classification of symbolic transition sys-
tems. ACM Trans. Comput. Log. 6(1), 1–31 (2005)

52. Jensen, T.P.: Disjunctive program analysis for algebraic data types. ACM Trans. Program.
Lang. Syst. 19(5), 751–803 (1997)

53. Leuschel, M., Lehmann, H.: Coverability of reset petri nets and other well-structured transi-
tion systems by partial deduction. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl,
V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS
(LNAI), vol. 1861, pp. 101–115. Springer, Heidelberg (2000)

54. Leuschel, M., Lehmann, H.: Solving coverability problems of petri nets by partial deduction.
In: Proc. PPDP 2000, pp. 268–279 (2000)

55. Leuschel, M., Massart, T.: Infinite State Model Checking by Abstract Interpretation and
Program Specialisation. In: Bossi, A. (ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 62–81.
Springer, Heidelberg (2000)

56. Levi, G., Spoto, F.: An experiment in domain refinement: Type domains and type represen-
tations for logic programs. In: Palamidessi, C., Meinke, K., Glaser, H. (eds.) ALP 1998 and
PLILP 1998. LNCS, vol. 1490, pp. 152–169. Springer, Heidelberg (1998)

57. Levi, G., Spoto, F.: Non pair-sharing and freeness analysis through linear refinement. In:
Proc. ACM PEPM, pp. 52–61 (2000)

58. Levi, G., Spoto, F.: Pair-independence and freeness analysis through linear refinement. In-
formation and Computation 182(1), 14–52 (2003)

59. López, P., Pfenning, F., Polakow, J., Watkins, K.: Monadic concurrent linear logic program-
ming. In: Proc. PPDP 2005, pp. 35–46 (2005)

60. Mycroft, A.: Completeness and predicate-based abstract interpretation. In: Proc. of the ACM
Symp. on Partial Evaluation and Program Manipulation (PEPM 1993), pp. 179–185 (1993)

61. Nielson, F.: Expected forms of data flow analyses. In: Ganzinger, H., Jones, N.D. (eds.)
Programs as Data Objects. LNCS, vol. 217, pp. 172–191. Springer, Heidelberg (1986)

62. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on Comput-
ing 16(6), 977–982 (1987)

158 G. Delzanno, R. Giacobazzi, and F. Ranzato

63. Pettorossi, A., Proietti, M., Senni, V.: Transformational Verification of Parameterized Proto-
cols Using Array Formulas. In: Hill, P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 23–43.
Springer, Heidelberg (2006)

64. Ramakrishnan, C.R.: A Model Checker for Value-Passing Mu-Calculus Using Logic Pro-
gramming. In: Ramakrishnan, I.V. (ed.) PADL 2001. LNCS, vol. 1990, pp. 1–13. Springer,
Heidelberg (2001)

65. Ramakrishna, Y.S., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka, S.A., Swift, T.,
Warren, D.S.: Efficient Model Checking Using Tabled Resolution. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 143–154. Springer, Heidelberg (1997)

66. Ranzato, F., Tapparo, F.: A new efficient simulation equivalence algorithm. In: Proc. 22nd
IEEE Symp. on Logic in Computer Science (LICS 2007), pp. 171–180 (2007)

67. Ranzato, F., Tapparo, F.: Generalizing the Paige-Tarjan algorithm by abstract interpretation.
Information and Computation 206(5), 620–651 (2008)

68. Rosenthal, K.I.: Quantales and their applications. In: Pitman Research Notes in Mathematics.
Longman Scientific & Technical, London (1990)

69. Roychoudhury, A., Narayan Kumar, K., Ramakrishnan, C.R., Ramakrishnan, I.V., Smolka,
S.A.: Verification of Parameterized Systems Using Logic Program Transformations. In:
Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 172–187. Springer,
Heidelberg (2000)

70. Roychoudhury, A., Ramakrishnan, C.R.: Unfold/Fold Transformations for Automated Verifi-
cation of Parameterized Concurrent Systems. In: Bruynooghe, M., Lau, K.-K. (eds.) Program
Development in Computational Logic. LNCS, vol. 3049, pp. 261–290. Springer, Heidelberg
(2004)

71. Scozzari, F.: Logical optimality of groundness analysis. Theor. Comput. Sci. 277(1-2),
149–184 (2002)

72. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: Query-Based Model Checking of Ad Hoc
Network Protocols. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710,
pp. 603–619. Springer, Heidelberg (2009)

73. Spoto, F.: Optimality and condensing of information flow through linear refinement. Theor.
Comput. Sci. 388(1-3), 53–82 (2007)

74. Strachey, C.: The varieties of programming language. In: Proc. of the International Comput-
ing Symposium, Cini Foundation, Venice, pp. 222–233. Springer, Heidelberg (1972)

75. Tan, L., Cleaveland, W.R.: Simulation revisited. In: Margaria, T., Yi, W. (eds.) TACAS 2001.
LNCS, vol. 2031, pp. 480–495. Springer, Heidelberg (2001)

76. Urbina, L.: Analysis of Hybrid Systems in CLP(R). In: Freuder, E.C. (ed.) CP 1996. LNCS,
vol. 1118, pp. 451–467. Springer, Heidelberg (1996)

77. Yang, P., Basu, S., Ramakrishnan, C.R.: Parameterized Verification of π-Calculus Systems.
In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 42–57. Springer,
Heidelberg (2006)

	Static Analysis, Abstract Interpretation and Verificationin (Constraint Logic) Programming
	Semantics, Static Analysis and Abstract Interpretation
	Abstract Interpretation Basics
	Backward and Forward Completeness
	Abstract Domain Refinement and Simplification
	How to Cook an Abstract Domain or Semantics
	Applications in Logic Programming

	Temporal Logic and Model Checking
	Basics of Model Checking
	Model Checking Algorithm

	Abstract Model Checking and Refinement
	Abstract Semantics of Languages
	Generalized Strong Preservation
	Strong Preservation as Completeness

	Model Checking and (Constraint) Logic Programming
	Model Checking and Fixpoint Semantics in LP
	From Finite-State to Infinite-State Models
	Verification and Evaluation Strategies in LP

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

