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Abstract

Background: In diabetes chronic hyperinsulinemia contributes to the instability of the atherosclerotic plaque and stimulates
cellular proliferation through the activation of the MAP kinases, which in turn regulate cellular proliferation. However, it is
not known whether insulin itself could increase the transcription of specific genes for cellular proliferation in the
endothelium. Hence, the characterization of transcriptional modifications in endothelium is an important step for a better
understanding of the mechanism of insulin action and the relationship between endothelial cell dysfunction and insulin
resistance.

Methodology and principal findings: The transcriptional response of endothelial cells in the 440 minutes following insulin
stimulation was monitored using microarrays and compared to a control condition. About 1700 genes were selected as
differentially expressed based on their treated minus control profile, thus allowing the detection of even small but
systematic changes in gene expression. Genes were clustered in 7 groups according to their time expression profile and
classified into 15 functional categories that can support the biological effects of insulin, based on Gene Ontology
enrichment analysis. In terms of endothelial function, the most prominent processes affected were NADH dehydrogenase
activity, N-terminal myristoylation domain binding, nitric-oxide synthase regulator activity and growth factor binding.
Pathway-based enrichment analysis revealed ‘‘Electron Transport Chain’’ significantly enriched. Results were validated on
genes belonging to ‘‘Electron Transport Chain’’ pathway, using quantitative RT-PCR.

Conclusions: As far as we know, this is the first systematic study in the literature monitoring transcriptional response to
insulin in endothelial cells, in a time series microarray experiment. Since chronic hyperinsulinemia contributes to the
instability of the atherosclerotic plaque and stimulates cellular proliferation, some of the genes identified in the present
work are potential novel candidates in diabetes complications related to endothelial dysfunction.
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Introduction

Diabetic patients die because of the long term chronic

complications, namely cardiovascular macroangiopathy, nephrop-

athy, and neuropathy due to the harmful effects of prolonged

hyperglycemia in these tissues. From a pathophysiological

standpoint, insulin-resistance, a typical metabolic condition in

Type 2 diabetic patients initially induces a compensatory

hyperinsulinemia, which carries on a proliferative effect among

the cellular component of the vascular wall. Chronically elevated

insulin concentrations may promote vascular lesion formation; in

patients with insulin resistance, such as those with metabolic

syndrome, there is an increased risk of cardiovascular disease

[1,2]. Further, hyperinsulinemia contributes to for the instability of

the atherosclerotic plaque: it increases the active forms of

matrixmetalloproteinases (MMP)-2, MMP-9, and membrane type

1-MMP and the gelatinolytic activity of MMP-2 [3]. Furthermore,

insulin may exerts a vasodilator action mediated by phosphatidy-

linositol 3-kinase (PI3K)-dependent signaling pathways that

stimulates the production of nitric oxide from vascular endothe-

lium. In states of insulin resistance, shared glucotoxicity,

lipotoxicity, and inflammation selectively impair PI3K-dependent

insulin signaling pathways: this contributes to the reciprocal

relationships between insulin resistance and endothelial dysfunc-

tion [4]. In addition, insulin exerts a plethora of other effects such

as the suppression of nuclear factor (NF)-kB, intracellular adhesion
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molecule (ICAM)-1, monocyte chemoattractive protein (MCP)-1,

and of NADPH oxidase [5].

Nonetheless, it is unknown whether insulin itself could

increase the transcription of specific genes in the endothelial

cells. This is biologically relevant since endothelium itself has a

powerful regulatory effect on the underlying vascular smooth

muscular cells [6,7]. Hence, the characterization of the global

pattern of transcriptional modifications in the endothelium is

important for better understanding the mechanism of action of

insulin. The development of microarray technology represents a

powerful tool for characterizing such large-scale changes in

transcript levels. For example, this methodology was applied to

investigate the effects of intensive insulin treatment for 10 days

on the mRNA profile in skeletal muscle of type 2 diabetic

patients [8]. With a similar methodology, it has been shown that

insulin directly modulates the mRNA levels of about 800 genes

induced by 3 hours of euglycemic hyperinsulinemic clamp in the

vastus lateralis muscle of healthy lean subjects [9]. More

recently, it has been shown that insulin is able to regulate

different processes within the placenta at different gestational

stages, using a global microarray analysis of primary trophoblasts

[10]. In pre/post stimulus studies in which the transcriptional

response is monitored at one specific time instant after a

prolonged insulin exposure, genes showing a transient response

followed by a return to the pre-stimulus expression or a

systematic, but small in magnitude, change in the expression,

are likely to be missed [11]. On the opposite, monitoring the

dynamic response using more than one time samples after the

stimulus allows detecting these genes as differentially expressed

and provides a description of the transcriptional expression

patterns of the response. Transient behavior might be charac-

teristic, and, if common to a number of genes associated to the

same functional group, might give insight into the function

performed by the gene circuitry. The aim of the present work is

to exploit the potential of a dynamic study to investigate the

dynamic transcriptional response of endothelial cells following

insulin stimulation. As far as we know, this has not been

previously addressed in the literature for endothelial cells

stimulated with insulin.

To distinguish between insulin effect and other processes that

take place in the cell simultaneously, but are not induced or

inhibited by insulin, treated cells were compared with control cells.

Experiments were carried out on human umbilical vein endothe-

lial cells (HUVECs). As far as we know, this is the first systematic

study in the literature monitoring transcriptional response to

insulin in endothelial cells, in a time series microarray experiment.

Materials and Methods

Cell Cultures
Human umbilical vein endothelial cells (HUVECs) were

obtained from Promocell (PromoCell, Heidelberg, Germany) from

a single donor. These cells were certified to be free from

mycoplasma contamination and tested negative for HIV, HBV

and HCV virus infections or contamination by PCR results. Cells

were cultured in Endothelial Cell Growth Medium (PromoCell)

which is a modified MCDB 131 medium, supplemented with 10%

fetal bovine serum (FBS) (Sigma Aldrich, Saint Louis, USA),

0.02% Supplement Mix/ Endothelial Cell Growth Medium

(PromoCell), 100 U/ml penicillin and 100 mg/ml streptomycin

(Sigma Aldrich). All cells were maintained in a humidified 5%

CO2 incubator at 37uC, and the medium was replaced every 2

days until confluence. All the experiments reported in this paper

were carried out on cells between 4th and 5th passage.

Experimental design
HUVECs were seeded onto six well plates at a density of 26105

per well and cultured as described above. At the second day, cells

were incubated overnight with 1% FBS medium, without growth

factors. The day of the experiment, 1 ml of quiescent medium, in

absence or presence of 1 mU/ml (7 nM) insulin (Calbiochem-

Inalco Spa), was added to each well. Cells of three wells were

pooled and used for each time point. Samples were collected at

times 0, 40, 100, 200, 340, 440 min. Time 0 was cultured and

harvested in duplicate so to have a complete experimental

replicate of time 0 sample. HUVECs were harvested at the

designated time points, and RNA was extracted and quantified for

Microarray analysis (Affymetrix measurement) The medium with

insulin was collected and stored at 220uC for the insulin detection

(Insulin Myria, Technogenetics), while the medium without insulin

was discharged. In order to validate the Affymetrix measurements,

a quantitative real-time polymerase chain reaction was performed.

The experimental design described above was repeated. Samples

were collected at time 0, 30, 60, 120, 180, 240, 300, 360, 420,

480 min. All the experiments were carried out in duplicate.

RNA extraction
Cells were washed with phosphate buffered saline (PBS). Total

RNA was extracted using a commercially available kit (TRIzol

Reagent, Invitrogen) and stored at 280uC. The samples were

further purified using RNeasy mini kit (Qiagen, Milan, Italy)

following manufacturer’s recommendations. The integrity of RNA

was systematically checked by use of the lab-on-chip technology in

an Agilent Bioanalyzer 2100 with the RNA6000 Nano Assay

(Agilent Technologies, Palo Alto, CA). Furthermore the purity was

determined by spectrophotometric readings at 260/280/230 nm.

Affymetrix Measurements
Total RNAs were purified using an RNeasy Protect Mini Kit

from Qiagen. The quality and quantity of total RNA was

measured using the Agilent test on a Bioanalyzer (Agilent

Technologies, Palo Alto, CA). Gene transcript profiles in both

control and treated cultures were studied by high-density

oligonucleotide microarrays Human Genome U133 Plus 2.0

GeneChip (Affymetrix, Santa Clara, CA). Sample labeling,

hybridization of test array, and hybridization of full-size arrays

were performed using protocols described in the Affymetrix

GeneChip expression analysis technical manual.

Affymetrix Data Analysis
Image quantification was performed using GeneChip (Affyme-

trix, SantaClara, CA) scanner and software. Preprocessing steps

such as background subtraction, probe cell normalization and

expression level calculations, were performed using quantile

normalization and Robust Microarray Analysis (RMA) software

[12]. High-level data analysis was carried out in a pipeline as

shown in Figure 1.

Selection. Differentially expressed genes were selected using

the method described in [11] that calculates the area of the region

bounded by the treated-minus-control expression profile and

assigns a p-value to each gene by evaluating the significance of this

area against the null hypothesis. The two replicates available at

time zero were used to derive the experimental error distribution

at different intensity expression values and, consequently, the null

hypothesis distribution of the area bounded by the treated-minus-

control expression profile. As already shown in [11], the method,

implemented for data poor conditions, is quite robust to random

oscillation, and help diminishing both false positive and false
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negative rates. In order to account for multiple testing, the

significance level was corrected according to a false discovery rate

(FDR), i.e. the number of false positives divided by the number of

selected genes, of 0.05.

GO and pathway enrichment. Genes were annotated

according to molecular functions of Gene Ontology (GO)

database [13], using NetAffx database (http://www.affymetrix.

com/analysis/index.affx). Enrichment analysis was performed

based on a strategy similar to the ‘‘elim’’ method described in

[14]. GO terms (related to different molecular functions) were

grouped into levels according to the percentages of selected genes:

namely, level 1 corresponds to GO terms with at least 98%–100%

of their annotations selected, level 2 to the range 96%–98%, etc.

Starting from level 1, the algorithm visited each level and for each

GO term performed Fisher’s Exact Test that assigns a p-value

representing the probability that the observed number of selected

genes annotated to the GO term could have resulted from random

sampling. If in the visited level a GO term has a p-value below a

significance level a, then the corresponding genes were removed

from the annotation of GO terms having lower percentages, in

order to penalize their p-value. In this way, the number of

enriched GO terms was kept low, still maintaining a high

significance level. Since this test was applied to a large number

of GO terms, the significance level a for the calculated p-values

was empirically set to 0.0025.

To identify the most enriched pathways, selected genes were

also annotated to WikiPathways (http://www.wikipathways.org)

using NetAffx database. Enrichment analysis of pathways was

performed using Fisher’s Exact Test.

GO grouping. To obtain a more synthetic annotation, the

enriched nodes directly connected by a path in the GO graph were

grouped together in the same functional cluster. Each GO group,

thus characterized by an isolated sub-graph of siblings or ancestors

terms, was labeled with the most general of these terms.

Clustering. To identify the main temporal expression

patterns in response to insulin stimulus, treated-minus-control

expression profiles of selected genes were clustered using K means

clustering based on Pearson correlation. The number K of clusters

was set to 7.

Cluster-specific GO group enrichment. For each cluster

and for each GO group defined above, GO enrichment based on

Fisher’s Exact Test was calculated separately, so that the resulting

p-value represents the probability that the observed numbers of

selected genes belonging to the cluster and annotated with the GO

group have resulted from random sampling. GO groups with p-

value,0.05 were considered as significantly enriched for the

cluster.

Validation via qRT-PCR
Affymetrix data validation was performed using qRT-PCR, by

monitoring a subset of 32 genes belonging to the electron transport

chain pathway, of which 21 selected and 11 not selected as

differentially expressed using Affymetrix data (see results section).

HUVECs for this experiment were obtained from a second donor

(Promocell). Real-Time PCR Analysis of Gene Expression. cDNAs

were reverse transcribed from total RNA samples (100 ng) using

the High Capacity cDNA Reverse Transcription Kit (Life-

Technologies-Applied Biosystems, Foster City, CA, USA). Taq-

Man PCRs were carried out onto custom TaqMan low-density

arrays by means of the ABI PRISM 7900 HT Sequence Detection

Systems (all from Life Technologies-AppliedBiosystems). Statistical

analyses were obtained using the 2-Delta-delta-Cycle Threshold

values (Delta-delta-CTs) method, with the Threshold determined

automatically by means of SDS software (Life Technologies-

Applied Biosystems). To normalize data, CT was calculated for

each detector by using the median of CTs in all samples as

calibrator. The relative quantity (RQ) of each mRNA was

calculated as 22DDCT. Differentially expressed genes were selected

by applying the method described in [11], using a significance

level alpha equal to 0.05 on the detected false discovery rate

p-values.

The overlap in the lists of differentially expressed genes selected

by Affymetrix and qRT-PCR was quantified by means of a

contingency table, while the dynamic patterns of expression were

compared in terms of up and down regulation.

Results

Affymetrix Data Analysis
Selection. 2326 probe-sets, associated to 1715 genes, were

selected as differentially expressed in the cells exposed to insulin.

GO and pathway enrichment. Functional annotations of

selected genes indicate that 26 molecular functions are significantly

affected by insulin (Table 1). In terms of endothelial function, the

most prominent processes affected were oxidoreductase activity,

acting on NADH or NADPH, quinone or similar compound as

acceptor, NADH dehydrogenase activity, NADH dehydrogenase

(ubiquinone) activity, NADH dehydrogenase (quinone) activity,

cell adhesion molecule binding, protein transporter activity, N-

terminal myristoylation domain binding, nitric-oxide synthase

regulator activity, and growth factor binding.

Enrichment analysis revealed one significantly enriched path-

ways: ‘‘Electron Transport Chain’’, containing 28 of the selected

genes on a total of 118 annotated genes.

Figure 1. Pre-processed Affymetrix data analysis pipeline. A
selection method was applied to identify differentially expressed genes.
Selected genes were clustered according to their time expression
profile; significantly associated pathways and GO terms were identified
through enrichment analysis. The enriched GO terms were grouped into
different functional categories. For each cluster and for each GO
category, GO enrichment based on Fisher’s Exact Test was calculated.
doi:10.1371/journal.pone.0014390.g001
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GO grouping. The GO sub-graph containing all the paths

from the 26 enriched GO terms to the root is depicted in Figure 2,

where enriched GO terms are grouped together into 15 main GO

groups, according to the rules explained in Methods; namely,

Protein binding, Actin binding, N-terminal myristoylation domain

binding, Nitric-oxide synthase regulator activity, RNA binding,

Structure-specific DNA binding, Translation initiation factor

activity, Transcription corepressor activity, NADH dehydrogenase

activity, 1-phosphatidylinositol-3-kinase activity, RNA polymerase

subunit kinase activity, Protein geranylgeranyltransferase activity,

Cis-trans isomerase activity, Hydrolase activity, Protein transporter

activity. Ten out of fifteen groups correspond to isolated nodes in

the GO database.

Clustering and cluster-specific GO group enrichment.

Seven main temporal patterns in response to insulin stimulus were

identified for treated-minus-control expression profiles as shown in

Figure 3 (left panels), together with the number of genes correlated

to each pattern. For each cluster the specific enrichments in the 15

different GO groups was expressed as (12p-value), as shown in

Figure 3 (right panels), so that a value close to 1 indicates an

elevated significance level.

Cluster 1, characterized by a peak of the expression level at time

200 min, is significantly associated with GO groups B (actin

binding) and C (N-terminal myristoylation domain binding), in

which three genes coding for calmodulin are annotated.

Cluster 2 shows initial down-regulation followed by a plateau;

even if genes belonging to GO groups G (translation initiation

factor activity) and M (cis-trans isomerase activity) are highly

represented in this cluster, it does not reach significance for any

GO group.

Cluster 3 shows an initial decrease in the expression level and a

return to a pre-stimulus expression, significant in GO groups E

(RNA binding) and I (NADH dehydrogenase activity).

Cluster 4 shows a transient rise of expression level, followed by a

decrease, significant in GO group D (nitric oxide synthase

regulator activity).

Cluster 5 shows up-regulation at time 100 min, followed by a

plateau; even if genes belonging to GO group A (protein binding),

B (actin binding) and F (structure-specific DNA binding) are highly

represented in this cluster, it does not reach significance for any

GO group.

Cluster 6 shows down regulation of expression at time 100 min

and 340 min, significantly associated with GO group M (cis-trans

isomerase activity).

Cluster 7 shows consistent down-regulation, significant in GO

group J (1-phosphatidylinositol-3-kinase activity).

Table 1. Enriched Gene Ontology molecular functions.

GOID TERM Annotated Selected p-value

GO:0005515 protein binding 8020 913 1.03E-13

GO:0003723 RNA binding 835 131 5.40E-10

GO:0016462 pyrophosphatase activity 785 102 7.81E-07

GO:0016818 hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides 788 102 9.51E-07

GO:0016817 hydrolase activity, acting on acid anhydrides 796 102 1.59E-06

GO:0016655 oxidoreductase activity, acting on NADH or NADPH, quinone or similar
compound as acceptor

57 18 1.62E-06

GO:0003954 NADH dehydrogenase activity 52 16 8.87E-06

GO:0008137 NADH dehydrogenase (ubiquinone) activity 52 16 8.87E-06

GO:0050136 NADH dehydrogenase (quinone) activity 52 16 8.87E-06

GO:0017111 nucleoside-triphosphatase activity 755 95 8.96E-06

GO:0003779 actin binding 341 60 5.87E-05

GO:0051015 actin filament binding 44 14 1.99E-04

GO:0050839 cell adhesion molecule binding 25 9 2.30E-04

GO:0008565 protein transporter activity 97 20 2.94E-04

GO:0008353 RNA polymerase subunit kinase activity 5 4 3.36E-04

GO:0003755 peptidyl-prolyl cis-trans isomerase activity 57 14 3.89E-04

GO:0016859 cis-trans isomerase activity 58 14 4.72E-04

GO:0003743 translation initiation factor activity 74 16 6.66E-04

GO:0031997 N-terminal myristoylation domain binding 3 3 7.92E-04

GO:0004661 protein geranylgeranyltransferase activity 6 4 9.25E-04

GO:0030235 nitric-oxide synthase regulator activity 6 4 9.25E-04

GO:0043566 structure-specific DNA binding 146 25 1.06E-03

GO:0003714 transcription corepressor activity 137 23 1.08E-03

GO:0016303 1-phosphatidylinositol-3-kinase activity 11 5 1.86E-03

GO:0019838 growth factor binding 98 18 1.95E-03

GO:0051082 unfolded protein binding 120 24 2.46E-03

For each enriched GO term the GOID and the corresponding name are shown, with the number of genes annotated in the GO database (Annotated), the number of
genes selected as differentially expressed annotated in the GO database (Selected) and the p-value evaluated as described in Methods.
doi:10.1371/journal.pone.0014390.t001
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Table S1 contains an Excel file with 15 worksheets showing the

selected genes belonging to each GO group. In the file, for each

group, the list of genes, their symbols, titles, chromosome

locations, expression clusters and FDR p-values obtained by

selection method are shown. To give a more complete and easy to

access information about the direction and magnitude of change,

for each time point significant changes in gene expression were

identified based on a model of the error obtained using the two

available replicates at time 0 [15]. Since the purpose here is to

indicate the sign and the magnitude of the change and not to select

genes, we fixed the threshold so to minimize the sum of false

positive and false negative rates as explained in [15]. The direction

and the magnitude of the changes are indicated only when they

result significant. Complete time-series expression data of each

gene are available in GEO database (GSE21989).

Validation via qRT-PCR
To validate Affymetrix measurements, 32 genes related to

‘‘Electron Transport Chain’’ pathway were monitored using qRT-

PCR, as explained in Methods. As shown in Table 2, 21 of these

genes were selected as differentially expressed from Affymetrix

measurements, while 28 were selected from qRT-PCR measure-

ments. The overall overlap (Figure 4) is 72%, indicating a good

agreement between the two techniques. In particular, 20 of the 21

genes selected as differentially expressed by using Affymetrix chip

are also selected by qRT-PCR, showing an overlap of 95%.

However, 8 genes selected using qRT-PCR are not selected using

Affymetrix chips, probably due to the better precision of qRT-

PCR technology to measure low RNA concentration with respect

to Affymetrix chips.

There is also a good agreement in the time expression profiles

of the ‘‘Electron Transport Chain’’ obtained with the two

techniques. In fact, the expression profiles of the 21 Affymetrix

selected genes are all associated to clusters 2 and 3 (apart from

gene NARG1, associated to cluster 7), indicating a prevalent

down-regulation of genes belonging to ‘‘Electron Transport

Chain’’ pathway. The 28 time series of qRT-PCR selected genes

share a similar temporal pattern, characterized by an early rise of

expression level at time 30 min, followed by an increasing down-

regulation (Figure 5). Since the early response was not monitored

by Affymetrix, we can conclude that the two techniques reveal

similar response to insulin for genes related to ‘‘Electron

Transport Chain’’.

Discussion

The objective of this study was to utilize DNA microarray

technology to assess the transcriptional response to insulin in

endothelial cells, in a time series microarray experiment. These

experiments were performed by exposing endothelial cells derived

from human umbilical veins to pharmacologic insulin concentra-

tions.

To identify significant transcriptional temporal patterns in

endothelial cells treated with insulin and to characterize them from

a functional point of view, an ad hoc analysis pipeline was applied

to experimental data. In particular: 1) Differentially expressed

Figure 2. GO graph of enriched molecular function terms. The paths of GO enriched terms are displayed; nodes directly connected by a path
in the GO graph were grouped together into 15 GO main annotation groups (denoted by capital letters).
doi:10.1371/journal.pone.0014390.g002
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genes, selected by using a method tailored for gene expression time

series in data-poor conditions, were annotated according to Gene

Ontology molecular functions; 2) The enriched GO terms were

grouped together according to their position in the GO graph in

order to obtain a more synthetic annotation and these groups were

used to annotate the main temporal expression patterns identified

by cluster analysis. This approach selects genes based on their

dynamic gene expression profiles, thus detecting even small but

systematic changes in gene expression. Then, by integrating cluster

analysis and functional annotations, it gives a limited number of

non-redundant functional groups.

Application of the analysis pipeline to Affymetrix data

demonstrates the followings:

1. Endothelial genomic response is significantly affected by

elevated insulin concentrations;

2. These effects are characterized by remarkably different

temporal profiles.

Figure 3. Cluster-specific GO group enrichment. Left panels show temporal expression profiles (treated minus control) of genes belonging to
each cluster, identified by K-means algorithm; middle panels represent the corresponding average temporal patterns; right panels show significance
of the enrichment for each GO category (identified by capital letters) in each cluster, as 1 minus p-value. A star indicates significant GO groups (with
p-value , 0.05).
doi:10.1371/journal.pone.0014390.g003

Table 2. Genes monitored by qRT-PCR.

Gene Symbol Gene Name
Selected
qRT-PCR Selected Affy GOgroup Cluster

ATP5A1 ATP synthase, F1 complex, alpha subunit 1 Yes No A ---

ATP5C1 ATP synthase, F1 complex, gamma polypeptide 1 Yes Yes N 3

ATPIF1 ATP synthase, F0 complex, subunit B1 Yes No A ---

ATP5F1 ATP synthase, F0 complex, subunit B1 Yes Yes A,N 2

ATP5G1 ATP synthase, F0 complex, subunit C1 No No --- ---

ATP5I ATP synthase, F0 complex, subunit E Yes Yes N 2

ATP5L ATP synthase, F0 complex, subunit G No No A ---

ATP5O ATP synthase, F1 complex, O subunit Yes No --- ---

BTF3 basic transcription factor 3 Yes Yes A 2

CYCS cytochrome c, somatic Yes Yes A 2

COX17 cytochrome c oxidase assembly homolog Yes Yes --- 3

COX6B1 cytochrome c oxidase subunit Vib Yes Yes --- 3

COX5B cytochrome c oxidase subunit Vb Yes Yes --- 3

COX7B cytochrome c oxidase subunit VIIb Yes No --- ---

COX7C cytochrome c oxidase subunit VIIc Yes Yes --- 3

NARG1 NMDA receptor regulated 1 Yes Yes A 7

NDUFA2 NADH dehydrogenase, alpha, subunit 2 Yes Yes I 2

NDUFA3 NADH dehydrogenase, alpha, subunit 3 Yes Yes I 2

NDUFA6 NADH dehydrogenase, alpha, subunit 6 Yes Yes I 2

NDUFA7 NADH dehydrogenase, alpha, subunit 7 Yes Yes I 2

NDUFA12 NADH dehydrogenase, alpha, subunit 12 Yes Yes I 2

NDUFB2 NADH dehydrogenase, beta, subunit 2 Yes Yes I 2

NDUFB3 NADH dehydrogenase, beta, subunit 3 No Yes I 2

NDUFS1 NADH dehydrogenase, Fe-S protein 1 Yes Yes A,I 2

NDUFS4 NADH ubiquinone oxidoreductase IP subunit mRNA Yes Yes I 2

NDUFV2 NADH dehydrogenase flavoprotein 2 Yes No I ---

SDHA succinate dehydrogenase, subunit A Yes No --- ---

SDHB succinate dehydrogenase, subunit B Yes Yes A 2

SLC25A6 solute carrier family 25 Yes No A ---

UCP2 uncoupling protein 2 No No A ---

UQCRB ubiquinol-cytochrome c reductase binding protein Yes Yes --- 3

UQCRC2 ubiquinol-cytochrome c reductase core protein II Yes No A ---

For each of the 32 measured genes, the corresponding symbol and name are shown, with the information on selection results for qRT-PCR (Selected qRT-PCR) and for
Affymetrix (Selected Affy). The association with the GO groups and the clusters defined in Figure 3 are also shown.
doi:10.1371/journal.pone.0014390.t002
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Differently from previous works in the literature that monitor

gene expression in endothelial cells in static conditions before and

after insulin stimuli, we focus here on the dynamic response of

endothelial cells to insulin stimulation. This approach allowed us

to detect as differentially expressed also genes that respond to

insulin with a transient response followed by a return to the

baseline condition or with a small, even thought systematic, i.e.

sustained in time, change in gene expression. These genes would

not have been detected with a pre/post stimulus study of

transcriptional response in which only one specific time instant is

considered after insulin exposure,. For example, most of the genes

in cluster 3 and 4, enriched of genes belonging to RNA binding,

NADH dehydrogenase activity and nitric-oxide synthase regulator

activity GO groups (Figure 3), would have not been detected by a

pre/post stimulus study.

Insulin responsive genes were characterized in terms of dynamic

pattern and functional annotation. This is of importance due to

the specific contribution of insulin not only to glucose metabolism

but also to the vascular homeostasis. It is known that insulin

mediates the metabolic-hemodynamic coupling by increasing the

microvascular exchange surface perfused within skeletal muscle

[16]: this may be relevant in conditions of insulin resistance where,

at least in muscle, insulin not only is unable to induce a proper

vasodilatation but also the up regulation of genes such hexokinase

II, p85aPI3K, and SREBP-1c which are critical for intracellular

insulin signaling and glucose transporter recruitment [17]. Consoli

and colleagues [18] have also shown that, at endothelial levels,

genetic insulin resistance may be postulated, leading to a possible

imbalance of prothrombotic and fibrinolytic genes.

Notwithstanding that arterial and venous derived endothelial

cells differ from HUVECs for anatomical, functional, and

transcriptional identities, we select the latter in our experimental

setting [19,20] since they are commonly employed in experimental

protocols which investigate the effects of insulin on endothelial

functions [21] and on gene expression [16].

Our data show that insulin exposure is associated in HUVECs

with different patterns of differential expression. Cluster 1

(Figure 3) relates to N-terminal myristoylation domain binding a

molecular function which indicates the selective interaction with

the N-terminus of a protein; binding affinity is altered by

myristoylation. On this specific effect only few reports are

available. Interestingly, in an experimental model of diabetic

rodents, the N-myristoyltransferase in the liver is increased as

compared to control whereas in obese rodents is decreased. In the

endothelial cells this process may be of importance since it was

shown that the eNOS is post-translationally modified by

myristoylation of Gly2 [22,23] and it is important in the interplay

between phosphorylation and subcellular localization of eNOS

[24].

In cluster 4, we have shown a rise, albeit transitory, of the GO

group D which refers to nitric oxide synthase regular activity. As

expected, insulin exposure is able to increase NO production by

endothelial cells [25]. Nitric oxide synthase gene expression may

be regulated at multiple levels: epigenetic, transcriptional, and

posttranscriptional processes [26]. As shown by Kuboki and

colleagues in cultured bovine aortic endothelial cells, insulin can

regulate the expression of eNOS gene, mediated by the activation

of PI-3 kinase [27]. This observation has been further replicated

[28]. Very little information is available in the literature about the

temporal stimulation of nitric oxide gene activation at least in

arterial derived endothelial cells. Yet, at least endothelial nitric

oxide synthase protein may be characterized by a remarkable

temporal expression in rat femoral artery [29]. Our differential

expression pattern shows that the GO group ‘‘nitric oxide synthase

regulator activity’’ is temporally regulated by insulin stimulation.

This observation might be taken with caution since eNOS

expression itself is not changed. Furthermore, this temporal

expression is detected by incubating the endothelial cells at

Figure 4. Comparison between Affymetrix and qRT-PCR.
Contingency table that compares the lists of selected/not selected
genes belonging to Electron Transport Chain pathway for both
Affymetrix and qRT-PCR experiments. 21 of the 32 genes monitored
by qRT-PCR were selected as differentially expressed from Affymetrix
measurements, while 28 were selected from qRT-PCR measurements. In
particular, 20 of the 21 genes selected as differentially expressed by
using Affymetrix chips are also selected by qRT-PCR. However, 8 genes
selected using qRT-PCR are not selected using Affymetrix chips,
probably due to the better precision of qRT-PCR technology to
measure low RNA concentration with respect to Affymetrix chips.
doi:10.1371/journal.pone.0014390.g004

Figure 5. Average profile of the qRT-PCR selected genes. The 28
time series selected with qRT-PCR experiment are represented by the
average profile, characterized by an early rise of expression level at time
30 min, followed by an increasing down-regulation.
doi:10.1371/journal.pone.0014390.g005
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pharmacologic insulin concentration. It is thus impossible to make

any inference about the possible temporal effect in the presence of

physiological concentrations of the hormone.

We have also shown that in cluster 7 the 1-phoshatydilinositol-

3-kinase activity is negatively expressed. PI3K/Akt is involved in

both cytosolic and nuclear signaling in endothelial cell where it

regulates vascular homeostasis and angiogenesis [30,31]. PI3K

signaling mediates Akt/PKB phosphorylates eNOS at serine-1177

residue [32–34]. Insulin stimulates NO release by activating PI3/

Akt signaling [25]. Therefore, it is clear that insulin affects NO

production mainly through protein phosphorylation rather than

regulating protein gene expression [35]. It is therefore unclear why

we observed a negatively differentially expressed PI3K activity and

a divergent effect of gene expression of these two pathways, NOS

synthase activity and PI3K activity, apparently linked to each

other. This effect may be determined obviously by different

regulation of their gene expressions by insulin. Therefore, the

significance of these findings merits further consideration.

Our data show that insulin exposure significantly reduces the

average expression of genes in the electron transport chain

(Figure 5), with significant enrichment in GO group I: NADH

dehydrogenase activity (cluster 3, Figure 3). These findings

emphasize that electron transport chain is significantly regulated

by insulin and, probably, negatively regulated by the chronic

exposure to elevated concentrations of the hormone. Indeed, it has

been shown that insulin not only regulates this pathway [36] but

also that, in the presence of insulin resistance, electron transport

chain can be deeply altered [37,38].

In conclusion, the present data demonstrate that insulin affects

mRNA levels of about 1700 genes in HUVECs. These genes can

be clustered in groups with characteristic time expression profile

and classified into functional categories that can support the

biological effects of insulin. Microarray data were confirmed by

measuring the mRNA levels of a subset of genes using quantitative

real-time PCR. An important issue now is to understand how

insulin coordinates the expression of all these genes. The

identification of common elements in the promoter sequences of

group of genes will help the discovery of the transcription factors

linking the effect of insulin on multiple genes simultaneously. In

addition, since chronic hyperinsulinemia contributes to the

instability of the atherosclerotic plaque and stimulates cellular

proliferation, some of the genes identified in the present work are

potential novel candidates in diabetes complications related to

endothelial dysfunction. More focused studies on subsets of genes

and on several donors will be objective of future studies.

Supporting Information

Table S1. Selected genes. Table S1 contains an Excel file with

15 worksheets showing the selected genes belonging to each GO

group. In the file, for each group, the list of genes, their symbols,

titles, chromosome locations, expression clusters and FDR p-

values obtained by selection method are shown.

Found at: doi:10.1371/journal.pone.0014390.s001 (0.40 MB

XLS)
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