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ABSTRACT

MAGIA (miRNA and genes integrated analysis) is a
novel web tool for the integrative analysis of target
predictions, miRNA and gene expression data.
MAGIA is divided into two parts: the query section
allows the user to retrieve and browse updated
miRNA target predictions computed with a number
of different algorithms (PITA, miRanda and Target
Scan) and Boolean combinations thereof. The
analysis section comprises a multistep procedure
for (i) direct integration through different functional
measures (parametric and non-parametric correl-
ation indexes, a variational Bayesian model, mutual
information and a meta-analysis approach based on
P-value combination) of mRNA and miRNA expres-
sion data, (ii) construction of bipartite regulatory
network of the best miRNA and mRNA putative
interactions and (iii) retrieval of information available
in several public databases of genes, miRNAs and
diseases and via scientific literature text-mining.
MAGIA is freely available for Academic users at
http://gencomp.bio.unipd.it/magia.

INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs
acting as post-transcriptional regulators of gene expres-
sion whose discovery added a novel layer of genetic regu-
lation in a wide range of biological processes, including
cell differentiation, organogenesis and development (1–3).
Deregulation of miRNAs expression plays a critical role in
the pathogenesis of genetic and multifactorial disorders, as
well as most human cancers (4). By imperfect base pairing
with the 30-untranslated region (30-UTR) of their target

mRNAs, mature miRNAs can cause translation inhibition
or mRNA cleavage, depending on the degree of comple-
mentarity between the miRNA and its target sequence
(5,6). Given that miRNAs can have multiple targets and
that each protein-coding gene can be targeted by multiple
miRNAs, it has been suggested that more than one third of
human genes could be regulated by miRNAs. In this per-
spective, the networks of post-transcriptional regulatory
relationships tend to have a highly complex nature (7).

Among the computational approaches applied to
predict miRNA targets could be found (i) algorithms
based on sequence search similarity, possibly considering
target site evolutionary conservation [miRanda (8),
TargetScan (9) and PicTar (10)] and (ii) algorithms
based on thermodynamic stability of the RNA–RNA
duplex, considering free energy minimization
[RNAhybrid (11) and PITA (12)]. However, all available
software is plagued by a significant fraction of false posi-
tives. This is caused not only by the limited comprehen-
sion of the molecular basis of miRNA–target pairing, but
also by the context-dependency of post-transcriptional
regulation. According to the increasing experimental
evidences supporting the miRNA mechanism of target
degradation rather than translational repression, the inte-
gration of target predictions with miRNA and gene
expression profiles has been proposed to improve the de-
tection of functional miRNA–mRNA relationships. Since
miRNAs tend to down-regulate target mRNAs (13–15),
the expression profiles of genuinely interacting pairs are
expected to be anti-correlated. Integrative analysis can be
performed adopting a variational Bayesian model (16,17),
or by using a non-heuristic methodology based on the
anti-correlation between miRNA and mRNA expression
profiles.

Unfortunately, the combination of large-scale target
prediction results obtained with different algorithms is
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not straightforward for most experimental researchers,
whereas the integrative analysis of miRNA and gene ex-
pression profiles is complicated by the many-to-many
nature of predicted relationships and target annotations
to be considered.

Recently, two web tools have been introduced to
enhance the functional insights of target predictions:
miRGator (18) and DIANA-microT web servers (19).
They may help the elucidation of biological processes,
functions and pathways targeted by miRNAs through
the integration of target predictions with information
from different gene, protein and functional annotation
databases.

Mirz (20) integrates the smiRNAdb miRNA expression
atlas, based on small mammalian RNA library
sequencing, and the ElMMo miRNA target prediction al-
gorithm, allowing the user to restrict the target prediction
to specific miRNAs, selected by expression characteristics.

Finally, the web tool MMIA [miRNA and mRNA
Integrated Analysis (21)], integrates miRNAs and
mRNA expression data using only significantly up- and
down-regulated features without taking into account their
whole expression profile, losing, in this way, a key
information for the calculation of the expression
anti-correlation degree. Available tools are definitely not
adequate to the rapidly increasing amount of matched
miRNA–gene profiles (miRNA and gene expression
profiles quantified on exactly the same set of biological
samples), the analysis of which could gain a remarkable
advantage from target predictions and miRNA–gene ex-
pression profiles integration.

Here we present MAGIA (miRNA and genes integrated
analysis, freely available at http://gencomp.bio.unipd.
it/magia), a novel web tool that allows to integrate
target predictions and gene expression profiles using dif-
ferent relatedness measures either for matched or
un-matched expression profiles, using miRNA–mRNA
bipartite networks reconstruction, gene functional enrich-
ment and pathway annotations for results browsing.

DESCRIPTION OF THE TOOL

MAGIA outline

MAGIA is a novel web-based tool that allows (i) to
retrieve and browse updated miRNA target predictions
for human miRNAs, based on a number of different algo-
rithms (PITA, miRanda and TargetScan), with the possi-
bility of combining them with Boolean operators, (ii) the
direct integration through different functional measures
(parametric and non-parametric correlation indexes, a
variational Bayesian model, mutual information and a
meta-analysis approach based on P-value combination)
of mRNA and miRNA expression data (iii) the construc-
tion of bipartite regulatory networks of the best miRNAs
and mRNA putative interaction and finally and (iv) to
retrieve information available in several public databases
of genes, miRNAs and diseases and via scientific literature
text-mining. Step-by-step tutorial pages and sample data
sets are provided to the user to easily introduce him to the
use of the tool.

MAGIA is divided into two separate sections: the query
and the analyses frameworks whose aims are described in
the following paragraphs.

Query. The query section of MAGIA allows the user to
search for target predictions of specific miRNAs obtained
through PITA, miRanda or TargetScan or combinations
thereof, setting cutoffs on prediction scores. Target predic-
tion algorithms have been selected according to their dif-
ferent strategies: sequence similarity (miRanda), sequence
similarity with conservation (TargetScan) and sequence
similarity with free energy minimization (PITA). We run
each of these algorithms on our servers to update predic-
tions every 6 months. The query output is a table
including, for all considered miRNAs, the list of predicted
target genes or transcripts with the different prediction
scores according to the method(s) chosen by the user.
The same information may be downloaded as a text file
for processing and further elaboration.

Analysis. The analysis pipeline is composed by three dif-
ferent steps through which MAGIA refines target predic-
tions using miRNA and mRNA gene expression data
(Figure 1): (i) selection of the organism, the gene or tran-
script annotation (EntrezGene, RefSeq, ENSEMBL gene
or transcript) and of the integration method or the
relatedness measure; (ii) choice of target prediction algo-
rithms, their score cut-offs and Boolean combinations and
(iii) upload of two matrices representing mRNA and
miRNA normalized expression profiles. MAGIA takes
into account two different experimental designs: (i)
mRNA and miRNA data collected on different biological
samples, resulting in different sample sizes (hereafter called
non-matched case) and (ii) mRNA and miRNA expression
data obtained from the same biological samples (the
matched case). The tool employs a meta-analysis approach
based on a P-value combination in the first case, while one
of four different measures of relatedness can be adopted for
the analysis of matched profiles: Spearman and Pearson
correlation, mutual information, and a variational
Bayesian model. Computational intensive calculations of
MAGIA analyses are carried out by a multicore cluster.

Input files

The third step of the MAGIA analysis pipeline takes as
input two expression matrices (in the tab-delimited
format) with genes and miRNAs on the rows and
samples on the columns. When profiles are matched, the
names of the columns of mRNA and miRNA data sets
should correspond exactly, while in the non-matched-case
the columns labels should represent sample classes:
samples belonging to the same class should have the
same label. The first column of both matrices should rep-
resent miRNA and gene IDs. MAGIA allows EntrezGene
or Ensembl IDs for genes and RefSeq or Ensembl IDs
for transcripts, while miRNA IDs must represent
miRBase-compliant mature miRNA identifiers.
Expression matrices should be pre-processed and a filter-
ing procedure for the removal of invariable (‘flat’) expres-
sion profiles is highly recommended. A series of quality
checks are performed during the upload.
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Sample files for miRNA and gene expression, fully com-
pliant with the user choices of steps 1 and 2 are also
provided in this step, for tutorial purposes. These
sample files derive from expression data publicly available
at GEO database (GSE14834) (22).

Target predictions

We have used the miRanda and PITA algorithms to
compute miRNA target predictions over up-to-date

versions 56 and 38 of ENSEMBL and RefSeq transcript
sequences, respectively. The miRNA sequences were
downloaded from mirBase version 14. Based on known
transcript to gene correspondences, gene-centered predic-
tions were then derived combining transcript-based results
into a single group for each gene. In this way a gene is
predicted target of a given miRNA if at least one of its
transcripts carries predicted target site(s). TargetScan
predictions (version 5.0) were downloaded from
http://www.targetscan.org.

Figure 1. Scheme of the three main steps of analysis pipeline performed by MAGIA web tool.
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Computation of interaction measures

Pearson and Spearman correlations. Correlation indicates
the strength and direction of a linear relationship between
two random variables. Parametric (Pearson) or non-
parametric (Spearman) correlation coefficients are
computed in the case of matched samples between gene/
transcript and miRNA data. In general, non-parametric
statistic has different expected values from the Pearson
correlation coefficient, even for large samples. Since they
estimate different population parameters, they cannot be
directly compared: they generally should be viewed as al-
ternative measures of association. The non-parametric co-
efficient should be chosen in case of outliers or with small
number of measures; otherwise a parametric approach
may be more appropriate. Moreover, Pearson coefficient
testing requires that both variables derive from a bivariate
normal distribution, an assumption not necessary for the
Spearman coefficient testing.

The tool computes correlation coefficients for all
the predicted miRNA–target interactions and also
provides a false discovery rate (FDR, following
Benjamini and Hochberg estimation method) for each
one.

Mutual information. Mutual information is a measure of
the mutual dependence of two variables. Intuitively, it
captures the information that a variable X (a gene expres-
sion profile) and a variable Y (a miRNA expression
profile) share: how much the knowledge of one of these
variables reduces our uncertainty about the other. Thus,
the mutual information can be interpreted as a generalized
measure of correlation, analogous to the Pearson correl-
ation, but sensitive to any functional relationship, not just
to linear dependencies. There are several possible
strategies for the reliable estimation of the mutual infor-
mation in case of finite data, each of them characterized
by a systematic error due to the finite size sample [see (23)
for a review]. In particular, following the Kraskov and
colleagues (2003) approach (24), MAGIA calculates
mutual information based on nearest neighbor distances
with k=5. Mutual information, identifying any function-
al relationship between miRNA and gene expression
profiles, does not allow the identification of the sign of
such relationship.

GenMir++. The variational Bayesian model, called
GenMiR++ (16,17) uses as prior information target pre-
dictions derived from one of the previous mentioned al-
gorithms (e.g. PITA) and updates such information using
expression matrices. It combines predictions with miRNA
and mRNA expression profiles, under the assumption of
anti-correlation. Under a complex model, the posterior
probability of miRNA–gene interactions (S) is calculated,
known the target predictions (C), expression matrices (X
and Z), by integrating over nuisance variables gamma (�,
tissue scaling) and lambda (�, regulatory weights) and
other parameters in the equation,

p X,S,�,�jC,Z,�ð Þ¼p SjC,�ð Þp �j�ð Þp �j�ð Þ�
g
p xgjZ,S,�,�,�
� �

An estimate of such posterior probability is calculated
through an EM algorithm. Thus GenMir++ could have
convergence problems, particularly in case of non-sparse
incidence matrices.

Meta-analysis. The meta-analysis approach is suggested
only in the case of non-matched biological samples.
Given the diverse nature and number of samples
between miRNA and gene profiles, neither correlation co-
efficients nor mutual information or posterior
probabilities can be computed. MAGIA adopts in their
place a meta-analyses approach based on P-value combin-
ation allowing, unlike other web tools, the presence of
more than two groups. Empirical Bayes test (25) (as im-
plemented in limma package in R) is separately performed
on miRNA and mRNA expression levels and lists of dif-
ferentially miRNAs and genes are stored. Then, only for
predicted miRNA–mRNA interactions (based on the
target prediction algorithms the user has chosen) the
inverse Chi-squared approach (26) is used to combine
miRNAs and genes P-values. In particular, in the case
of a two classes experimental design, P-values of
over-expressed miRNAs (e.g. under-expressed in Class 1
versus Class 2) are combined with those of
under-expressed genes (Class 1 versus Class 2) and vice
versa. In the case of more than two classes the tool
combines P-values derived from miRNAs, genes and
from the test on Spearman correlation coefficient
computed between vectors representing the average ex-
pression values of miRNAs and genes within each class.
Only the interactions with small P-values (<0.1) will be
considered as functional.

Output and links to other database resources

MAGIA reports results in a web page containing different
sections. For the top 250 most probable functional
miRNA–mRNA interactions according to the association
measure selected by the user, the interactive bipartite regu-
latory network obtained through the analysis is reported
along with the corresponding browsable table of
relationships. It gives a hyperlink allowing the functional
enrichment analysis by the DAVID web tool (27) on the
desired number of target genes. The tool also provides the
complete list of the predicted interactions, ranked by
statistical significance computed from the integrated
expression data analysis. Such information is given
as HTML tables and as two (Cytoscape-compliant)
flat files for network reconstruction. Each mRNA,
miRNA or miRNA–mRNA interaction can be further
investigated by the user and used for different queries.
In particular, each gene is linked to EntrezGene (28),
and ArrayExpress Atlas (29) databases, each miRNA is
linked to miRNA2disease (30) and miRecords (31).
Furthermore, to allow efficient and systematic retrieval
of statements from Medline, MAGIA directly
links results to PubFocus (32) and EbiMEd (33) for
a text-mining search using genes and miRNAs as
keywords.
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Bi-partite networks visualizations

The miRNA and gene bipartite network is rendered using
Graphviz (http://www.graphviz.org/) open source graph
visualization software. Each node of the network can be
selected and the user is directly linked to the correspond-
ing miRNA/gene full interactions results. Thus the user is
allowed to ‘walk through the network’ following miRNA
and gene interactions. The complete list of significant
interactions can be downloaded as a tab-delimited text
file that can be imported into Excel or Cytoscape, to
allow further processing.

Case study

As a benchmark case study we used the mRNA and
miRNA expression profiles published by Fulci et al. (22)
and publicly available in the GEO database (GSE14834).
In this study, the Authors investigated miRNA and
gene expression profiles in a series of adult Acute
Lymphoblastic Leukemia (ALL) cases. ALL is a
heterogeneous disease comprising several subentities that
differ for both immunophenotypic and molecular charac-
teristics. In particular, T-lineage and B-lineage harboring
specific molecular lesions have been considered by
expression analyses.
In this example, we choose EntrezGene IDs, Pearson

correlation measure and the intersection of TargetScan
and PITA target prediction algorithms. A total number
of 468 miRNA–mRNA interactions with absolute correl-
ations >0.25 have been identified, 249 of these show
negative while 219 show positive correlation coefficients.
Among the 468 putative interactions 23 have an FDR
value <0.1. Figure 2 shows, for the top 250 miRNA–
target relationships most supported by expression data,
the bipartite network and the corresponding list with
hyperlinks to mirBase, EntrezGene, PubFocus, EbiMed
and mir2disease, whereas for all predicted interactions, a
link to an html table and to a tab delimited flat file
Cytoscape compliant are given, as well as the link to the
DAVID annotation tool for a number of interactions that
can be defined by the user (default is set to 250).
In this example, the top 250 interactions include a total

number of 81 different miRNAs and of 197 different
genes. Pathways enrichment analysis, conducted on
target genes and aiming at clarifying the role of
miRNAs in terms of cell activities under post-
transcriptional regulation, leads to highly relevant and
interesting results: chronic myeloid leukemia is the
KEGG most enriched pathway according to DAVID,
followed by Wnt-signaling pathway, pancreatic cancer
and ubiquitin mediated proteolysis. Chronic myelogenous
leukemia is a biphasic disease, initiated by expression of
the BCR/ABL fusion gene product in self-renewing, hem-
atopoietic stem cells; among the 43 B-ALL patients used
in the expression analysis 17 had a BCR/ABL rearrange-
ment. On the other hand, the Wnt family of secreted
glycoproteins regulate early B cell growth and survival
(34) and aberrant activation of the Wnt-signaling
pathway has major oncogenic effects (35). Finally, the ubi-
quitin pathway plays a central role in the regulation of cell
growth and cell proliferation controlling the abundance of

key cell-cycle proteins. Increasing evidence indicates that
unscheduled proteolysis of many cell-cycle regulators con-
tributes significantly to tumorigenesis and is indeed found
in many types of human cancers (36).

Among the top miRNA–gene anti-correlated inter-
actions we found RALB (v-ral simian leukemia viral
oncogene homolog B), a gene encoding a GTP-binding
protein that belongs to the small GTPase superfamily
and Ras family of proteins, highly associated to either
let-7d (r=�0.82) and let-7c (r=�0.71). Recently
RALA and RALB have shown to collaborate to
maintain tumorigenicity through regulation of both pro-
liferation and survival (37) while both let-7d and let-7c
have been shown to be involved in the human acute
promyelocytic leukemia (38).

hsa-miR-222 and let-7e have been recently found to be
two of the most discriminant miRNAs markers between
ALL and AML (39) and in our analysis have been found
highly anti-correlated with respectively ETS1 (v-ets
erythroblastosis virus E26 oncogene homolog 1)
(r=�0.58) recently found to be involved in tumor devel-
opment and progression (40) and with p53 (r=–0.51)
whose oncogenic role has been extensively studied in the
last years (41).

Several other interactions have been reported by
MAGIA, most of them including miRNAs and/or genes
involved in tumor development and progression. Indeed,
repeating the sample analysis with the same expression
data and settings indicated above, but only for the 12
miRNAs reportedly differentially expressed across
samples (22) an interaction biologically relevant and
validated (according to Diana Tarbase and miRecords),
regarding hsa-let-7e and HMGA2 (high mobility group
AT-hook 2 gene) is indicated by MAGIA at the first
ranked position. While a complete investigation of bio-
logical relevance of all interactions reported by MAGIA
is beyond the scope of this work, they validate the
MAGIA integrative approach, the usefulness of the
display of results and the discovery power of data
analysis with this tool.

CONCLUSIONS

The integrative analysis of target prediction, miRNA and
gene expression profiles is not straightforward for most
experimental researchers, not only for problems regarding
miRNA and targets annotations, but also for the
many-to-many nature of predicted relationships to be con-
sidered and the extensive time requirements of computa-
tions. However, there is an increasing amount of
experimental studies aiming at gaining molecular under-
standing of biological processes or diseases from the com-
putation and the visualization of high-throughput systems
biology analyses results. Available tools are not adequate
to the rapidly increasing amount of matched miRNA–
gene profiles, the analysis of which could gain a remark-
able advantage from target predictions and miRNA–gene
expression profiles integration. MAGIA (MiRNA And
Genes Integrated Analysis) tries to fill these gaps
allowing the combination of target predictions for either

W356 Nucleic Acids Research, 2010, Vol. 38, Web Server issue

 at U
niversita D

egli Studi D
i Padova on A

pril 13, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


Figure 2. Screenshot of the MAGIA analysis results summary page, obtained with the ALL data case study analysis. The summary page reports the
regulatory network corresponding to the 250 relations most supported by expression data and the corresponding details, as genes and miRNAs
involved, with links to databases and text-mining tools. This is also the entry point to reach gene- or miRNA-centered pages, to carry out functional
enrichment analysis and to download complete results.
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matched or un-matched expression miRNA–gene profiles.
Using different relatedness measures and integration
methods, MAGIA refines target predictions and recon-
structs miRNA–gene bipartite networks. In this context,
MAGIA is a useful, timely and easy-to-use web tool that
will facilitate users in the investigation of the post-
transcriptional regulatory networks and in the discovery
of biologically relevant regulatory circuits.
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