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Population of mixed-symmetry states via α transfer reactions
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Within the neutron-proton interacting boson model we study the population of mixed-symmetry states via
α transfer processes. Closed expressions are deduced in the case of the limiting Uπ+ν(5) and SUπ+ν(3). We find
that the population of the lowest mixed-symmetry 2+ state, vanishing along the Nπ = Nν line, depends on the
number of active bosons and is normally smaller than that of the lowest full symmetric 2+ state. In particular, for
deformed nuclei where the number of bosons is normally large, the relative population of the mixed-symmetry
2+ state is of the order of a few percent. More favorable cases can be found near shell closures, as in the case of
α transfer leading to 140Ba.
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One of the most interesting features of the neutron-proton
version of the interacting boson model (IBM-2) [1] is the
occurrence, in addition to all the states already present in the
original IBM-1 version, of states that are not fully symmetric
in the proton-neutron degree of freedom [2]. In spherical
nuclei, the lowest of such mixed-symmetry states is expected
to be a 2+ state (normally indicated as 2+

M ) [3], while in the
well-deformed case one expects a mixed-symmetry K = 1+
band head [4], with a spin quantum number that is outside
the simple IBM-1. These mixed-symmetry states display
particular properties, such as an electromagnetic decay by
a strong M1 transition. They have been populated in many
nuclear reactions such as inelastic scattering of electrons [4],
photons [5], or hadrons [6]; β decay [3]; fusion evaporation
reaction [7]; and Coulomb excitation [8]. For a review article,
see Ref. [9]. The possibility of populating these states by
(12C,8Be) reactions, namely, via α transfer processes, has
recently been suggested [10].

The reaction mechanism associated with the α transfer
reaction is not fully understood [11]. Whether the four particles
are transferred sequentially due to the action of the one-body
field or, as the other extreme, are transferred as a unique
cluster in a single shot is a matter for discussion. In the former
case the particle correlations act via constructive interference
of the different paths in the intermediate states due to the
correlated features of the initial and final states. In the latter
case, one assumes that the correlations have preformed an α

particle in the initial and final states, with a probability given
by the so-called α spectroscopic factors, and the process is
then formally described as the transfer of a single object. In
addition, each approach relies on the choice of a number of
ingredients, such as the proper optical potentials, coupling
form factors, etc. Therefore, in the end, different descriptions
of the reaction mechanism yield estimates of the absolute
cross sections that, in addition to the dependence on the
bombarding energy, can vary even by orders of magnitude from
one approach to the other. As far as relative cross sections are
concerned, on the other hand, one can profitably assume that
the transfer intensities will in all cases scale as the square of the

matrix element of the four-particle creation (or annihilation,
in the case of pickup reactions) operator.

In this article we therefore calculate four-particle creation
matrix elements, comparing those involving fully symmetric
or mixed-symmetry final states.

In the framework of the interacting boson model the oper-
ator associated with the α-particle creation does not simply
acquire a two-boson creation form. A mapping procedure
from the underlying fermion space will in fact map the four
fermion creation operator into a sum of boson operators of
increasing order. At the lowest order, however, we assume
the simplest expressions for the L = 0 and L = 2 α-particle
creation operator,

A†
α(L = 0) = c1s

+
π s+

ν + c3(d+
π × d+

ν )(0) (1)

and

A†
α(L = 2) = c2[s+

π × d+
ν + d+

π × s+
ν )](2) + c4(d+

π × d+
ν )(2).

(2)

The parameters ci can in principle be derived microscopically
from the mapping procedure. In practice, and for the purpose of
this article, we can treat them as phenomenological parameters
to be determined from experimental data. Note also that one-
step transfer processes can only populate natural-parity states
[11]; so the transfer to 1+ states is not allowed. On the other
hand, the dipole L = 1− transfer operator has vanishing matrix
elements within the IBM-2 space, characterized by states with
positive parity only. These simple forms, Eqs. (1) and (2),
are close to the original operators introduced by Bennett and
Fulbright [12] and applied by the authors to different isotopic
and isotonic chains in the f -p shell.

We consider as the initial state the ground state of an
even-even nucleus characterized by the boson number Ni =
Nπ + Nν and as the final states the lowest fully symmetric
states and the first mixed-symmetry 2+ states in a nucleus
with boson number Nf = Nπ + Nν + 2. In general, matrix
elements have to be determined after the diagonalization of
the IBM-2 Hamiltonian, from the explicit wave functions.
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Analytic expressions can, however, be obtained in the case of
limiting situations. We first consider the case of the Uν+π (5)
limit. The group chain in this case is

Uν(6) × Uπ (6) ⊃ Uν+π (6) ⊃ Uν+π (5)

⊃ Oν+π (5) ⊃ Oν+π (3) ⊃ Oν+π (2) (3)

and the U (5) wave functions are characterized by the 12
quantum numbers that classify uniquely the basis states,
namely,

|[Nν] × [Nπ ]; [N − f , f ]{n1, n2}(v1, v2) α LM〉, (4)

where α stands for the two missing labels necessary to
completely specify the O(5) ⊃ O(3) reduction, omitted when
the reduction is unique.

With this notation the initial state is

|0+
1 〉 = |[Nν] × [Nπ ]; [N, 0]{0, 0}(0, 0)0〉 = ∣∣sNν

ν sNπ

π ; 0
〉
, (5)

where N = Nν + Nπ . The final states that can be populated
via the operators (1) and (2) are the lowest fully symmetric
states [2] and the lowest mixed-symmetry state. Their labels
and full expressions are given in the first three columns of
Table I. The associated reduced matrix elements of the α

transfer operator are given in the last column. One can see from
these expressions that the α transfer intensities are expected to
scale approximately as NπNν to the ground state, as NπNν/N

to the one-phonon state, and as NπNν/N
2 to the two-phonon

states. Note that the population of the mixed-symmetry state,
which scales as (Nπ − Nν)2/N , will in general be much lower
than that of the corresponding symmetric one. The ratio of α

transfer cross sections to the 2+
M state and to the 2+

1 state does
not depend on the parameters of the transfer operators and
amounts to (Nπ − Nν)2/4(Nπ + 1)(Nν + 1). In particular, for
Nν = Nπ we obtain the selection rule that the population of
the mixed-symmetry state is completely forbidden.

We consider now the case of SU (3). In this limit the group
chain is

Uν(6) × Uπ (6) ⊃ Uν+π (6) ⊃ SUν+π (3)

⊃ Oν+π (3) ⊃ Oν+π (2) (6)

and the SU (3) wave functions are characterized by the 12
necessary quantum numbers, namely,

|[Nν] × [Nπ ]; [N − f , f ]ρ(λ,µ) κ LM〉, (7)

where ρ (set of three) and κ are missing labels necessary
to completely specify the U (6) ⊃ SU (3) and SU (3) ⊃ O(3)
reductions, omitted when these are unique. In the following
we omit the Oν+π (2) label, M . With this notation the initial
state is

|0+
1 〉 = |[Nν] × [Nπ ]; [N, 0](2N, 0)0〉, (8)

where N = Nν + Nπ . The final states that can be populated
via the operators (1) and (2) are the lowest fully symmetric
states and the lowest 2+ mixed-symmetry state (see Table II,
first and second columns).

The evaluation of the α transfer matrix elements is more
feasible in the intrinsic frame. The ground, β, γ , and mixed-
symmetry bands can be associated with intrinsic states of the
form [13]

|	(Nπ + 1, Nν + 1; gs)〉
= (

Bπ
g

)Nπ+1(
Bν

g

)Nν+1|	(Nπ + 1, Nν + 1; β )〉
= n

(
N̂π

(
Bπ

g

)Nπ
Bπ

β

(
Bν

g

)Nν+1 + N̂ν

(
Bπ

g

)Nπ+1(
Bν

g

)Nν
Bν

β

)
× |	(Nπ + 1, Nν + 1; γ )〉

= n
(
N̂π

(
Bπ

g

)Nπ
Bπ

γ

(
Bν

g

)Nν+1 + N̂ν

(
Bπ

g

)Nπ+1(
Bν

g

)Nν
Bν

γ

)
× |	(Nπ + 1, Nν + 1; M)〉

= n
(
N̂ν

(
Bπ

g

)Nπ
Bπ

M

(
Bν

g

)Nν+1 − N̂π

(
Bπ

g

)Nπ +1(
Bν

g

)Nν
Bν

M

)
,

(9)

where n = (N + 2)−1/2 and where we have used the general
notations N̂α = √

Nα + 1 and

(
Bα

i

)Nα,i = (b†α,i)
Nα,i√

Nα,i!
|0〉, (10)

TABLE I. Notation and explicit expressions of U (5) states (first three columns) and α transfer reduced matrix elements.

|f 〉 |[Nν + 1] × [Nπ + 1]; [N −
f, f ]{n1, n2}(v1, v2)αLM〉

Explicit expression 〈f ||A†
α(L)||0+

1 (Nν, Nπ )〉

|0+
1 〉 | · · · ; [N + 2, 0]{0, 0}(0, 0)0〉 |sNν+1

ν sNπ +1
π ; 0〉 c1

√
(Nν + 1)(Nπ + 1)

|0+
2 〉 | · · · ; [N + 2, 0]{2, 0}(0, 0)0〉

√
1

(N+2)(N+1) (
√

Nν(Nν + 1)|sNν−1
ν d2

ν s
Nπ +1
π ; 0〉. +√

2(Nν + 1)(Nπ + 1)|sNν
ν dνs

Nπ
π dπ ; 0〉. + √

Nπ (Nπ + 1)|sNν+1
ν sNπ −1

π d2
π ; 0〉)

c3

√
2(Nν + 1)(Nπ + 1)

(N + 2)(N + 1)

|2+
1 〉 | · · · ; [N + 2, 0]{1, 0}(1, 0)2〉

√
1

N+2 (
√

Nν + 1|sNν
ν dνs

Nπ +1
π ; 2〉 + √

Nπ + 1|sNν+1
ν sNπ

π dπ ; 2〉) 2c2

√
5(Nν + 1)(Nπ + 1)

N + 2

|2+
2 〉 | · · · ; [N + 2, 0]{2, 0}(2, 0)2〉

√
1

(N+2)(N+1)

(√
Nν(Nν + 1)|sNν−1

ν d2
ν s

Nπ +1
π ; 2〉 +√

2(Nν + 1)(Nπ + 1)|sNν
ν dνs

Nπ
π dπ ; 2〉 +√

Nπ (Nπ + 1)|sNν+1
ν sNπ −1

π d2
π ; 2〉)

c4

√
10(Nν + 1)(Nπ + 1)

(N + 2)(N + 1)

|2+
M〉 | · · · ; [N + 1, 1]{1, 0}(1, 0)2〉

√
1

N+2

(√
Nπ + 1|sNν

ν dνs
Nπ +1
π ; 2〉 −√

Nν + 1|sNν+1
ν sNπ

π dπ ; 2〉) c2

√
5(Nπ − Nν)√

N + 2
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TABLE II. Explicit expressions of SU (3) states (first and second columns) and α transfer reduced matrix elements.

|f 〉 |[Nν] × [Nπ ]; [N − f, f ]ρ(λ,µ) κ LM〉 〈f ||A†
α(L)||0+

1 (Nν,Nπ )〉

|0+
1 〉 |[Nν + 1] × [Nπ + 1]; [N + 2, 0](2N + 4, 0)0〉 1

3

√
(Nπ + 1)(Nν + 1)

[
c1 + 2c3√

5

]

|2+
1 〉 |[Nν + 1] × [Nπ + 1]; [N + 2, 0](2N + 4, 0)2〉 2

3

√
2(Nπ + 1)(Nν + 1)

[
c2 − c4√

7

]

|0+
β 〉 |[Nν + 1] × [Nπ + 1]; [N + 2, 0](2N, 2)0〉 2

3

√
2(Nπ + 1)(Nν + 1)

(N + 2)

[
c1 − c3√

5

]

|2+
β 〉 |[Nν + 1] × [Nπ + 1]; [N + 2, 0](2N, 2)κ = 02〉 2

3

√
(Nπ + 1)(Nν + 1)

(N + 2)

[
c2 + 2c4√

7

]

|2+
γ 〉 |[Nν + 1] × [Nπ + 1]; [N + 2, 0](2N, 2)κ = 22〉 2

√
2(Nπ + 1)(Nν + 1)

3(N + 2)

[
c2 + 2c4√

7

]

|2+
M〉 |[Nν + 1] × [Nπ + 1]; [N + 1, 1](2N + 2, 1)2〉

√
2

3(N + 2)
(Nν − Nπ )

[
c2 − c4√

7

]

with α = ν, π and i = {g, β, γ,M}. The basis (proton or
neutron) bosons bg, bβ, bγ , and bM are given by

b†g = 1√
3

(s† +
√

2d
†
0), b

†
β = 1√

3
(−

√
2s† + d

†
0),

(11)
b†γ = 1√

2
(d†

2 + d
†
−2), b

†
M = 1√

2
(d†

1 + d
†
−1).

Once the matrix elements are obtained in the intrinsic frame
a projection to the laboratory system is performed. After that
projection, we obtain, for the reduced matrix elements to the
fully symmetric states and to the mixed-symmetry 2+

M state, the
expressions in the third column of Table II. It is worth noting
that more involved expressions than Eq. (10) for the structure
of the intrinsic ground, β, γ , and mixed-symmetry bands can
be found in the literature [14] but they give the same results
for the α transfer intensities in leading order of an expansion
in N .

In the SU (3) case, therefore, one expects that the α transfer
intensities scale approximately as NπNν to the ground-state
band, as NπNν/N to the one-phonon (either β or γ ) state, and
as (Nπ − Nν)2/N to the mixed-symmetry states. This is much
lower than the values for the corresponding symmetric states.
The ratio of α transfer cross sections to the 2+

M state and to
the 2+

1 state does not depend on the parameters of the transfer
operators and amounts to 3(Nπ − Nν)2/(4(N + 2)(Nπ + 1)
(Nν + 1)). Again, the population of the mixed-symmetry state
is forbidden for Nν = Nπ . For the sake of clarity, in Fig. 1

the L = 2 α transfer transitions studied in this work are
schematically presented.

We finally mention the case of the O(6) dynamical symme-
try. In this case the straightforward procedure is to express the
IBM-2 O(6) states in terms of products of proton and neutron
O(6) states (see Ref. [2]) and then expand each IBM-1 O(6)
state in the IBM-1 U (5) basis using the transformation brackets
given, for example, in Ref. [15]. The evaluation of the matrix
elements of the α transfer operator is reduced to a summation
of U (5) matrix elements. A trivial simplification occurs, due
to the selection rules of the boson creation operators, but
the remaining sum does not seem to be easily reducible to
a compact expression.

As an example of the spherical limit, we discuss the case of
140Ba, considered in Ref. [10]. In this case the considered
reaction is 136Xe(12C,8Be)140Ba. As already discussed in
Ref. [3] one can assume a proper description of the low-lying
spectrum of 140Ba within the simple U (5) limit. Assuming as
cores the Z = 50 and N = 82 shell closure, one has in the
initial system Nπ = 2 and Nν = 0. This leads to the relative
α transfer intensities, with respect to the cross section to

the ground state, equal to c2
2

c2
1

for the first 2+
1 state, to c2

2

3c2
1

for the

mixed-symmetry 2+
M state, to c2

3

6c2
1

for the 0+
2 state, and finally

to c2
4

6c2
1

for the 2+
2 state. In this rather fortunate and promising

case, due to the small values of the boson numbers Nπ and
Nν , the population of the first 2+

1 state is expected to be of
the same order of magnitude as that of the ground state, but

FIG. 1. Schematic representation of the L =
2 α transfer intensities studied in this work in the
SU (3) (left) and U (5) (right) states.
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more importantly the transition to the mixed-symmetry 2+
M

state is expected to be only a factor of three smaller than the
population of the first 2+

1 state.
As an example of the deformed limit, we consider 156Gd, a

typical SU (3) case in the rare earth region where 1+ states
corresponding to the scissors mode with mixed symmetry
have been observed. The corresponding α-transfer reaction
is 152Sm(12C,8Be)156Gd. In this case the initial nucleus has
Nπ = 6 and Nν = 4. These higher boson numbers, typical
of the SU (3) limit, imply that the population of the mixed-
symmetry 2+

M state relative to the population of the first 2+
1

state is less than 1%.
In summary, we have evaluated the matrix elements of

α transfer as two-boson operators in the U (5) and the
SU (3) dynamical symmetries of the F -spin limit of the
IBM-2 from the initial ground state with boson numbers
Ni = Nπ + Nν to selected final states with boson numbers
Nf = (Nπ + 1) + (Nν + 1) and spin quantum numbers 0 or
2. Lowest order expressions for α transfer cross sections to

full-symmetry states and to the lowest mixed-symmetry 2+
state have been derived this way. Corresponding experiments
have been proposed. We stress the importance of these
experiments with respect to two points. First, α transfer
reactions might turn out to be an efficient way to populate
mixed-symmetry states, in particular in spherical nuclei.
Second, the unique boson number dependence of relative
α transfer cross sections might be a new and useful test
either for the assignment of mixed-symmetry character to
particular excited nuclear states or, even more importantly,
for the predictive power of the interacting boson model with
proton-neutron degree of freedom.
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