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The Functional Measurement approach, proposed within the theoretical 

framework of Information Integration Theory (Anderson, 1981, 1982), can be 

a useful multi-attribute analysis tool. Compared to the majority of statistical 

models, the averaging model can account for interaction effects without 

adding complexity. The R-Average method (Vidotto & Vicentini, 2007) can 

be used to estimate the parameters of these models. By the use of multiple 

information criteria in the model selection procedure, R-Average allows for 

the identification of the best subset of parameters that account for the data. 

After a review of the general method, we present an implementation of the 

procedure in the framework of R-project, followed by some experiments 

using a Monte Carlo method.  

 

Multi-attribute models generally follow three steps: evaluation of the 

attributes, integration of the obtained subjective dimensions, and a 

conclusive stage. In the last stage, the results of the previous processes are 

transformed into a ranking order, a set of pairwise preferences or a rating 

over some real interval (Lynch, 1985; Oral & Kettani, 1989). A subset of 

these models, proposed by Anderson (1981, 1982), identifies the averaging 

process as one of the widely used cognitive integration rules. The averaging 

process uses a weight and scale value parameters representation. Ratio 

scales are involved in the measurement of weights and equal-interval scales 

are used to measure values (Zalinski & Anderson, 1989). 

Furthermore, the method of sub-designs, proposed by Norman (1976) 

and Anderson (1982), allows for complete identifiability of these parameters 

by adjoining selected sub-designs to the full factorial design. For instance, a 

full three-way design (A × B × C) can be supplemented with three two-way 
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sub-designs (A × B, A × C and B × C), and with three one-way sub-designs 

(A, B and C).  

In the current literature, this method is applied in different fields of 

Psychology, especially in Social (Falconi & Mullet, 2003; Girard, Mullet, & 

Callahan, 2002; Wang & Yang, 1998), Cognitive (Oliveira et al., 2006) and 

Developmental (Jäger & Wilkening, 2001) Psychology. A computer tool to 

cope with factorial design of Functional Measurement has recently been 

developed by Mairesse, Hofmans, and Theuns (2008). 

Despite the widespread use of the methodology, at present there are 

few tools for the estimation of averaging parameters. The first estimation 

procedure was developed by Zalinski (1984, 1986, 1987) and implemented 

in FORTRAN language. It had the capability to deal with the EAM (Equal 

Averaging Models) and the Complete DAM (Complete Differential 

Averaging Model) and to analyze the data from one subject and one session 

at a time. In addition, it did not account for information criteria (Wang & 

Yang, 1998). 

A second procedure has more recently been developed by Vidotto & 

Vicentini (2007) and focuses on the use of a different minimization 

algorithm for bounded parameters and on the introduction of an information 

criterion able to test several DAMs including the Complete DAM. The 

method has been implemented in the R-project environment: a modern, 

open-source and widely used framework for statistical analysis (R 

Development Core Team, 2009). 

AVERAGI�G MODELS 

Averaging models involve a two parameters representation: the scale 

value sjk, which represents the psychological scale value of the j-th level of 

an attribute k of some overt dimension, and the weight wjk, which represents 

its importance in the integrated response (Anderson, 1965).  

The averaging model represents the integrated response, R, as: 
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where the multi-index i = (j,k) accounts for the , overall number of 

attributes that are included in each stimuli set. Also, the condition i = 0 

accounts for prior memorial information (it is also named the prior belief or 

initial state). Note that j = 1, ... Jk indexes the number of levels of a factor 
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whereas k = 1, ... K  indexes the factors of an experimental design. The 

relative weights of each stimulus thus depend on the other stimuli in the set.  

A factor k is said to be equally-weighted if wjk = wk for every j. Hence, 

the denominator of equation (1) has the same value in each cell of the 

design and can be absorbed into an arbitrary scale unit. If all the factors are 

equally-weighted, then the model is called an Equal-weight Averaging 

Model. 

However, accounting for crossover effects needs the introduction of 

different weight parameters that make the model more complex. These 

families of Differential-weight Averaging Models allow each stimulus (or 

group of stimuli) to have its own weight as well as its own scale value. The 

sum of the absolute weights in the denominator of equation (1) varies 

therefore from cell to cell in the design and the model becomes inherently 

non-linear. Nevertheless, this non-linearity generally introduces some 

analytical and statistical problems with regards to uniqueness, bias, 

convergence, reliability, and goodness of fit (Zalinski & Anderson, 1991). 

R-AVERAGE – THE METHOD 

The R-Average method chooses the optimal model according to the 

“Ockham’s razor”: i.e. the one that fits empirical data by using the smallest 

set of weight parameters. Three goodness-of-fit indexes, based on Residual 

Sum of Squares (RSS) can be used to identify such a model: the adjusted R-

square, the Akaike Information Criterion (AIC; Akaike, 1974, 1976), and 

the Bayesian Information Criterion (BIC; Schwarz, 1978; Raftery, 1995). 

Starting from the EAM as a baseline, one single weight parameter (or 

a set of them in the following steps) is changed and accepted (or rejected) 

for successive iteration on the result of a comparison between the baseline 

and the new model goodness of fit indexes (whenever ∆BIC < 2, difference 

in the AIC index is considered). The procedure iterates until no further 

improvements appear and represents a compromise between efficiency and 

performance. It has the capability of providing reliable estimation for each 

trial and for all the repeated measurements on a subject and can account for 

many repetitions to achieve reliable parameter estimation. 

The weight and scale value parameters are estimated by minimizing 

the RSS of the model. This is performed with the L-BFGS-B algorithm 

implemented by Byrd et al. (1995), which is an extension of the limited 

memory algorithm L-BFGS. Unlike the latter, the L-BFGS-B method is 

useful for solving large non-linear optimization problems with simple 

bounds on the variables. This algorithm does not require computation of 

second derivatives and the knowledge of the objective function structure. 
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The search direction employs a two-stage approach: the first stage identifies 

a set of active variables using the gradient projection method; in the second 

stage, a quadratic model is approximately minimized with respect to these 

free variables. Once a search direction is established, a line search is 

performed using a method described by Moré and Thuente (1990). If 

bounds are active, the algorithm stops when the norm of the projected 

gradient is sufficiently small. 

The choice of a method for solving constrained optimization problems 

stems on the Zalinski's (1987) recommendation that reliable estimations of 

weights can be provided when the minimization function is bounded, but 

other solutions, like Simulated Annealing methods, are also possible. 

R-AVERAGE - THE IMPLEME�TATIO� 

The R-Average procedure has been implemented as a computer-

library within the R-project (R Development Core Team, 2009). The R-

Average library is well integrated in the R framework and it is specifically 

designed to easily manage data with several subjects and repeated 

experiments. The package, which includes R help pages and sample inputs, 

is available from the authors of this paper. 

For command-line beginners a practical graphical interface has been 

developed.  

The algorithm selects the combination of weights that shows the best 

fit indexes by considering each possible DAMs. It can be used for 

estimating weight and scale value parameters of a factorial design both for 

single subject, with repetitions, and for an entire sample; and summarize 

them into tables. It works on any number of factors and levels, and provides 

several ways to analyze data by handling the principal attributes of the 

functions that are listed below: 

 

• Data: a matrix object containing the experimental data. The first 

column is filled with the initial state values whereas the others 

contain the sub-design response values (in order: one-way sub-

designs, two-way sub-designs, etc.) and the full factorial design. If 

any sub-design is not available, the corresponding matrix columns 

must be loaded with ,A. 

• Lev: a vector containing the number of the levels for each factor. 

• Range: a vector containing the range of the scale responses R.   

• Start: a vector containing the scale and the weight values indicating 

the starting point of the computational algorithm. 
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• Lower: a vector containing the lower bound of the scale and weight 

values. 

• Upper: a vector containing the upper bound of the scale and weight 

values. 

• All: a logical attribute that allows the procedure to test all the 

possible subset of DAMs with different weight parameters, or to 

restrict the analysis to a selected subset. 

• Equal.weights: a numeric attribute that allows to fix the number of 

possible equal weights. 

• Delta.weights: a numeric attribute that allows to choose a cut-off 

value at which different weights are considered equal. 

• IC.diff: a vector containing the cut-off values for BIC and AIC at 

which different models with similar BIC/AIC are considered 

equivalent. 

• Verbose: a logical attribute that allows to print general information 

on every step of the information criterion procedure. 

• Maxit: the maximum number of minimization algorithm iterations, 

55 for default. 

• Method: the method followed by the algorithm for estimating the 

parameters. L-BFGS-B is the default option. However, due to the 

fact that results of R-Average implementation sometimes appear to 

be stuck in local minima (since they vary from the ideal values) a 

simulated annealing algorithm (option SANN) can be chosen. 

Nevertheless, its native implementation in the R framework (when 

called by the R-Average routine) has revealed to be time-consuming 

and require further analyses and adaptation. At present we highly 

discourage this option to be run. 

MO�TE CARLO SIMULATIO�S 

EFFECTS OF PARAMETERS ORDER 

Starting from a strictly increasing monotonic factor A (with levels s1 < 

s2 < s3), five simulations were run using different permutations of A for the 

levels of factor B. The schema of the random synthetic data for each of the 

1000 iterations is reported in Table 1. 
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Table 1. Schema of the random synthetic data for each iteration. 

Trend Factor A Factor B 

1 s1 s2 s3 s1 s2 s3 

2 s1 s2 s3 s3 s2 s1 

3 s1 s2 s3 s2 s1 s3 

4 s2 s1 s3 s2 s1 s3 

5 s2 s1 s3 s1 s2 s3 

  

 In every iteration a 5-row data matrix of random values was 

generated, followed by the addition of a normal N(0,1.5) distributed error, in 

order to calculate the responses Rjk. Results show that there are no effects in 

parameters estimation due to the factor's position in the algorithmic 

procedure or due to the monotonicity of the factors (R
2
 = 0.9778 for all 

trends). The scatter plot is reported in the left panel of Figure 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  On the left: Estimated parameters versus theoretical 

parameters for Trend 1 to 5. On the right: Effects of the bounding on 

extreme value parameters (white: s1, light gray: s2, dark gray: s3). 

RELIABILITY OF THE PROCEDURE 

 Synthetic responses Rjk for factorial design were calculated for a 3 × 

3 experimental design. In the setting of Monte Carlo simulation were 

included different rows number (5,10,15) and different normal error 

(N(0,.5), N(0,1), N(0,1.5)) of the data matrix. These two attributes have 
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been manipulated in order to simulate both different sets of measure 

repetitions and the influence of response variability on the data. 

In Table 3 the results of these Monte Carlo simulations are shown. 

The higher the number of rows, or the lower the standard deviation of the 

error, the better the estimation of the parameters is.  

In particular the procedure has good performance in recognizing the 

appropriate order of the parameters, as can be seen in Table 2. This fact is 

particularly important; in spite of the high variability that sometime affects 

the parameters estimation, at least the necessary condition of ordering is 

often fulfilled, ensuring a solid base for further improvement of the 

estimated values by means of iterative methods, R-Average attributes 

handling or other statistical methods.     

 

Table 2. �umber of correctly estimated parameter order in the MC-

simulations. 

Rows Error 
wA1 < 

wA2 

wA2 < 

wA3 

wB1 > 

wB2 

wB2 < 

wB3 

Scale 

A 

Scale 

B 

 0.5 1000 1000 1000 1000 1000 1000 

5 1.0 985 993 954 909 979 863 

 1.5 873 942 835 793 820 637 

 0.5 1000 1000 1000 1000 1000 1000 

10 1.0 1000 999 994 983 999 977 

 1.5 980 986 955 890 966 845 

 0.5 1000 1000 1000 1000 1000 1000 

15 1.0 1000 1000 999 996 1000 995 

 1.5 995 996 982 937 991 919 

 

Results, however, deserve different considerations depending on the 

type of estimated parameters: s-type parameters follow a normal distribution 

centered on the true value of the parameter and with a standard deviation 

that increases with the error standard deviation, but decreases with the larger 

sets of available data. Also, s-parameters that are closer to the bounding 

value (0-20) are generally estimated with an asymmetric distribution as can 

be inferred by the right panel of Figure 1. 

In contrast, w-type parameters do not follow a normal distribution. In 

Table 3 the ratios of the w-parameters are reported, since their proportions 

are more important then their values. 
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It can be seen that exact estimation of the real value of the w-ratios are less 

precise than those of s-parameters; in particular, a higher error standard 

deviation increases the difficulty in estimating the exact value. Nevertheless, 

as we noticed before, more reliable values of the ratios can always be 

searched if the fundamental requirement of ordering is fulfilled. 

EFFECTS OF ATTRIBUTES HA�DLI�G 

Monte Carlo simulations have been run to test the procedure 

improvement in parameters estimation with different settings of the 

algorithmic attributes. Five different attributes have been handled in the 

simulation for the conditions of “5 rows, 1.5 variance” and “10 rows, 1.0 

variance”; the first condition was chosen to reproduce an experiment with a 

low number of trials and an high variance in data, the second condition to 

reproduce an experimental situation with a good control in data variance and 

an adequate number of trials. Results are described below and summarized 

in Tables 4, 5 and 6. 

 

• Changes of bounds or lower and upper attributes: results show that 

changing the range of the weights parameters does not affect the 

reliability of the procedure since the algorithm is based on the 

conservation of the ratios between w-parameters. The scale for w-

parameters can thus be chosen according to the experimental setting. 

• Attribute equal.weights set equal to 2: results show that equating a 

priori a couple of parameters could improve estimation reliability 

(see in Tables 4, 5 and 6). 

• Attribute delta.weights set equal to 0.5: results show that setting the 

criterion value to 0.5 at which two weights are considered equal 

makes order recognition more stable (as can be seen in Table 4) but 

worsen the mean estimated parameters value in presence of high 

data variability (5-1.5 simulation, Table 5); instead, in the presence 

of contained variability the results are improved (10-1.0 simulation, 

Table 6).  

• Attributes IC.diff set to 1: using a restrictive acceptance criterion for 

BIC selection slightly worsens the reliability of the procedure in the 

presence of larger variance. Reliability of the order of the parameters 

of factor B is improved, yet the reliability of the scale order of the 

other parameters is reduced. Notice that the change in IC.diff does 

not affect mean estimated parameters as can be seen in Tables 5 and 

6. 
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• Attributes All set to True: allowing the algorithm to span all the 

possible DAMs can increase the reliability of the procedure. Results 

show that there is a strong improvement both in the exact estimation 

of parameters (Tables 5 and 6) and in the recognition of the correct 

parameters order, as can be seen in Table 4. 

• Combination of All equal to True and delta.weights equal to 0.5: 

performance can than be strongly improved by combining the best 

previous attribute manipulations as in Table 4, 5 and 6. 

 

 

Table 4: Results of Monte Carlo simulations for different attributes 

manipulation conditions. 

5 Rows 1.5 Error 
wA1 < 

wA2 

wA2 < 

wA3 

wB1 > 

wB2 

wB2 < 

wB3 
Scale A Scale B 

Default 873 942 835 793 820 637 

Equal.weights=2 870 943 823 790 819 626 

Delta.weights=0.5 963 956 928 834 919 765 

IC.diff=1 825 943 790 793 774 597 

All=True 949 952 908 877 901 785 

All=TRUE and 

delta.weights=0.5 
958 950 924 872 910 796 

10 rows 1.0 error 
wA1 < 

wA2 

wA2 < 

wA3 

wB1 > 

wB2 

wB2 < 

wB3 
Scale A Scale B 

Default 1000 999 994 983 999 977 

Equal.weights=2 1000 999 993 985 999 978 

Delta.weights=0.5 1000 999 997 988 999 985 

IC.diff=1 998 999 984 979 997 963 

All=True 1000 999 994 983 999 977 

All=TRUE and 

delta.weights=0.5 
1000 999 995 988 999 983 
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GE�ERAL DISCUSSIO� 

R-Average consists of a general procedure and an R-library for 

parameter estimation and model selection of the averaging model. It is well 

integrated in the R framework (R Development Core Team, 2009). 

The procedure, based on the “Ockham’s Razor” and on the bounded 

minimization algorithm L-BFGS-B, provides good estimates of the 

parameters of the averaging models and several goodness-of-fit indexes 

useful for model comparison. It also allows the management of several 

repetitions both for single subject and for group data and to estimate 

parameters for incomplete factorial designs. 

In addition, it provides several attributes useful to improve analysis: 

for instance, the number of equal weights can be established a priori and 

several criteria can be set to adapt the procedure flow to the experimental 

needs. These attributes are listed previously in this text. 

Results of Monte Carlo simulations show good reliability of the 

procedure in parameters estimation and excellent reliability in recognition of 

the parameters importance order. This latter result ensures good behavior of 

the procedure and implies that more accurate estimations of the parameters 

could be obtained. For this purpose, further developments of the procedure 

will allow the selection and fixing of the parameter values. Then a Monte 

Carlo simulation study can be conducted based on experimental data, in 

order to obtain more reliable parameters estimation. 

Finally, since reliability reduces with the increase of data variability, 

one remaining issue concerns the theoretical validity of group analyses: this 

issue was previously raised by Zalinski and Anderson (1991) because these 

analyses can cause bias in the estimated weights and scale values; 

nevertheless, if the variability of the responses is not extreme, the R-

Average procedure can be carefully used even for group data. 
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