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For dynamical systems defined by vector fields over a compact invariant set, we introduce a new class
of approximated first integrals based on finite time averages and satisfying an explicit first order partial
differential equation. These approximated first integrals can be used as finite time indicators of the dynamics.
On the one hand, they provide the same results on applications than other popular indicators; on the other
hand, their PDE based definition — that we show robust under suitable perturbations — allows one to
study them using the traditional tools of PDE environment. In particular, we formulate this approximating
device in the Lyapunov exponents framework and we compare the operative use of them to the common use
of the Fast Lyapunov Indicators to detect the phase space structure of quasi-integrable systems.
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1. Introduction

The existence of first integrals and their qualities, e.g. their number and smoothness, constrain the
topological properties in the large of the paths of a dynamical system, see for example [9, 12, 19].
Specifically, for the integrable systems, there exists a set of global first integrals which determines
completely the dynamics. Otherwise, for the ergodic ones, non-trivial global first integrals do not
exist. Both integrable and ergodic systems are very special extreme situations, which usually do not
exist in nature, and the most typical case is represented by systems which are neither integrable nor
ergodic, but approximating one or the other situation and sometimes both of them. In fact, after some
perturbation steps, the systems typically exhibit some variables with integrable or quasi-integrable
behavior and other variables with approximated ergodic behavior; examples of this kind arise in
Celestial Mechanics, Statistical Physics and Plasma Physics, see e.g. [5, 7, 23, 24]. The dynamics
of such (non-integrable and non-ergodic) systems can be characterized by transient behaviors (such
as temporary captures into resonances or stickiness phenomena) which are usually difficult to study
formally with mathematical tools defined over the complete orbits.

During the last decades, in the numerical investigations of these systems, a very important role
has been played by a practical use of approximated notion of first integrals, of time averages, and
other popular indicators of the quality of the motion, like the Lyapunov exponents ([6, 25, 26]).
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Since the eighties, important results have been achieved by finite time computations of dynamical
indicators on discrete sets of points of the phase space, hereafter called grids, see [24] for a review on
the subject. In particular, we recall the methods based on the Fourier analysis of the solutions, such
as the frequency analysis method ([20, 21]), or on the Lyapunov exponents theory, such as the Fast
Lyapunov Indicators (FLI), introduced in [13]. The finite time computation of a dynamical indicator
on grids of the phase space provides effective criteria for determining integrability, quasi-integrability
or stochasticity of motions (see [15] for the case of FLI).

In this paper, we introduce a new class of approximated global first integrals. Keeping in mind
the Birkhoff–Khinchin Theorem — the time average of any L1 integrable function f is a global
first integral — we specifically study an indicator based on finite time averages of functions, with
particular attention devoted to the FLI and their applications. We restrict ourselves to a general
dynamical system defined by the flow φt

X of a smooth vector field X over a compact invariant set
Ω ⊂ R

n. Whenever global differentiable first integrals F of such a system do exist, they are solutions
on Ω of the PDE:

∇F ·X(x) = 0. (1.1)

Clearly, this is not the case of the finite time averageGT of functions f on [0, T ], whose Lie derivative
∇GT ·X(x) = 1

T [f(φT
X(x)) − f(x)] depends both on x and φT

X(x).
Our first contribution is framed in considering unusual “finite time” approximations Fµ, where

substantially µ > 0 plays the role of 1/T :

Fµ(x) := µ

∫ +∞

0

e−µτf(φτ
X(x))dτ. (1.2)

The crucial advantage of Fµ with respect to the traditional finite time averages GT is represented
by the fact that it satisfies an explicit PDE, precisely:

∇Fµ ·X(x) = µ(Fµ − f)(x). (1.3)

In view of the right-hand side of the previous equation, we regard Fµ as an approximated first
integral. We remark that in this paper we are concerned with fixed finite µ > 0, while the classical
limit µ → 0+ of both Fµ and G1/µ already appeared in the general context of Tauberian integrals
[29] and — more recently — in stochastic applications, see [1, 8].

In Sec. 2 we formulate this approximating device to define finite time approximations of the
usual Lyapunov exponents, which can be considered as time averages of suitable functions defined
on the tangent space. This requires to rewrite the variational equation on a compact invariant
set of the tangent space R

2n. We will call exponentially damped Lyapunov indicators these finite
time approximations of the Lyapunov exponents. In Sec. 3, we compare the operative use of the
exponentially damped Lyapunov indicators for the numerical detection of resonances and invariant
tori of quasi-integrable Hamiltonian systems to the common use of the FLI.

Referring to the PDE framework for existence and uniqueness results for (1.3), we recognize the
viscosity robustness of the proposed approximated first integral Fµ. More precisely — see Sec. 4 —
this property consists in the fact that the solution of Dirichlet’s problem given by the following
elliptic perturbation of Eq. (1.3):

ν2

2
∆F ν

µ (x) +X · ∇F ν
µ (x) = µ(F ν

µ − f)(x)

F ν
µ (x)|∂Ω = ψ(x)

(1.4)

converges pointwise, for ν → 0, exactly to the above function Fµ. In particular, the proposed
representation (1.2) of the solution for (1.3) is stable under stochastic perturbations. In fact, denoting
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by (Xν
τ , Px) the Markov process solving the stochastic differential equation related to (1.4), we have

the representation:

F ν
µ (x) = Mx

[
µ

∫ +∞

0

e−µτf(Xν
τ )dτ

]
ν→0−→ Fµ(x), ∀x ∈ Ω, (1.5)

see [11] for some more detail. We note that as a consequence of the invariance of Ω under φt
X , any

boundary datum in (1.4) does not play any role, since all orbits with initial condition into Ω never
reach the boundary ∂Ω.

The discussion above shows that, among any possible perturbation of (1.1), Eq. (1.3) is solved
by approximated first integrals coming from a regularizing viscosity technique.

This stable behavior under viscous perturbations (and with arbitrary boundary data) suggests
analogies with other important situations in which vanishing artificial viscosity is introduced in order
to select a special solution: this occurs for example in the viscosity solutions theory to the Hamilton–
Jacobi equation, we refer to [3, 4, 22] for an exhaustive treatment of the matter. However, the
approximate first integral Fµ here introduced is better comparable to Fokker–Planck equation — see
for example [2, 27]. In fact, if we consider in particular divergence-free systems like the Hamiltonian
ones, searching first integrals is equivalent to searching (smooth) invariant measures. We remark
that by adding to (1.1) a µ-small relative friction (relative, to an assigned function f) and a ν-small
diffusion, we obtain the following stationary Fokker–Planck equation:

∇F ·X(x) + µ(f − F )(x) +
ν2

2
∆F (x) = 0.

In this order of ideas, we infer that the present Fµ is thus robust under the vanishing (i.e. for ν → 0)
diffusion action. A previous use of relative friction and vanishing viscosity has been numerically
implemented in [18].

2. PDE Definition of Approximated First Integrals

In this section, starting from the Birkhoff–Khinchin Theorem (see for example [10, Chap. 1]), we
propose a natural notion of approximated global first integral and we discuss it from a PDE point
of view.

Let X be a smooth (i.e. at least C1) vector field defined over a compact invariant set Ω ⊂ R
n and

φt
X its flow. By the Birkhoff–Khinchin Theorem, the time average of every real-valued continuous

function f :

F(x) := lim
t→+∞

1
t

∫ t

0

f(φτ
X(x))dτ (2.1)

exists a.e. and it is a first integral, that is F(φt
X(x)) = F(x) for all t ∈ R.

On the one hand, the function F can be highly irregular and its operative use is limited. On the
other hand, with reference to some possible applications to perturbation theory and allied topics,
the finite time approximation of (2.1):

GT (x) :=
1
T

∫ T

0

f(φτ
X(x))dτ (2.2)

is an approximated first integral, in the sense that its Lie derivative is given by:

X · ∇GT (x) =
d

dt
GT (φt

X(x))|t=0 =
1
T

[f(φT
X(x)) − f(x)]. (2.3)

Let us denote µ := 1
T . Starting from this format, we consider below a different finite time approxi-

mation of (2.1), which offers a better notion of approximated global first integral.
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Definition 1. Let µ > 0 and f ∈ C0(Ω; R). The function

Fµ(x) := µ

∫ +∞

0

e−µτf(φτ
X(x))dτ (2.4)

is an approximated first integral in the sense that its Lie derivative equals:

X · ∇Fµ(x) = µ(Fµ − f)(x). (2.5)

The function Fµ, which is defined pointwise in (2.4), can be equivalently introduced as the
solution of the PDE (2.5), which has Fµ as its unique solution. This fact shows the plain advantage
of Fµ with respect to other popular approximated first integrals like G1/µ (see (2.2)), whose Lie
derivative depends both on x and on the flow φ

1/µ
X . We stress that in this paper we are concerned

with fixed µ > 0, while the classical limit µ → 0+ of both Fµ and G1/µ already appeared in the
general context of Tauberian integrals [29] and — more recently — in stochastic applications, see
[1, 8]. Specifically, from [28], the above limit reads:

lim
µ→0+

µ

∫ +∞

0

e−µτf(φτ
X(x))dτ = lim

T→+∞
1
T

∫ T

0

f(φτ
X(x))dτ.

Remarks. (1) Let us consider the following change of the integral parameter:

[0,+∞] � τ �→ t(τ) = (1 − e−µτ )T ∈ [0, T ].

We note that the function (2.4) can be obtained from a modification of the equivalent representation:

G1/µ(x) = µ

∫ +∞

0

e−µτf(φt(τ)
X (x))dτ.

(2) The function Fµ, viewed as a linear operator on C0(Ω; R), provides a precise characterization
for exact global first integrals, in the sense stated by the following

Proposition 1. Let µ > 0 be fixed. A function f ∈ C0(Ω; R) is a global first integral for the vector
field X if and only if, ∀x ∈ Ω, Fµ(x) = f(x), where Fµ is defined in (2.4).

Proof. Let us first suppose that f is a global first integral for X , that is: f(φt
X(x)) = f(x) ∀t ∈ R.

Therefore we have

Fµ(x) = µ

∫ +∞

0

e−µτf(φτ
X(x))dτ = µ

∫ +∞

0

e−µτf(x)dτ = f(x).

Conversely, let Fµ(x) = f(x), ∀x ∈ Ω. Then, according to (2.5), the Lie derivative of f is equal to
zero:

LXf(x) = X · ∇Fµ(x) = µ(Fµ − f)(x) = 0.

Equivalently, f is a global first integral for the vector field X .

We finally underline that, in the previous proposition, the choice of the parameter µ > 0 is
arbitrary.

In the Introduction, we have motivated finite time approximations of Lyapunov exponents, such
as the FLI. Here below, we make use of the previous notion of approximated first integral in the
framework of Lyapunov exponents theory. To provide the PDE formulation of the finite time Lya-
punov exponents, which we will call exponentially damped Lyapunov indicators, we define a PDE
on a suitable domain of the tangent space. We start with the usual definition of Lyapunov exponent.
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Definition 2. Given a pair (x, v) ∈ Ω × (Rn\{0}), the Lyapunov exponent associated to (x, v) is
defined as

χ(x, v) := lim
t→+∞

1
t

log
(‖vt‖

‖v‖
)
, (2.6)

where vt := Dφt
X(x)v ∈ Tφt

X(x)Ω is the tangent vector at the time t > 0 and ‖ · ‖ denotes a norm.

For convenience, in the sequel we use the Euclidean norm. We remark that, by an easy compu-
tation, the Lyapunov exponent χ admits also an integral representation as a time average:

χ(x, v) = lim
t→+∞

1
t

∫ t

0

fχ(φτ
X(x, v))dτ, (2.7)

where the function fχ corresponds to:

fχ(x, v) =
v ·DX(x)v

‖v‖2
(2.8)

and φτ
X denotes the tangent flow of φτ

X . More precisely, denoting by DX the Jacobian matrix
related to X , the variational vector field X(x, v) := (X(x), DX(x)v) is defined on Ω × R

n and the
corresponding flow φt

X is given by:

φt
X(x, v) = (φt

X(x), Dφt
X (x)v).

The time average representation formula (2.7) pushes to consider, in the light of the previous con-
siderations, the following

Definition 3. (Exponentially damped Lyapunov indicator) Let µ > 0. Given a pair (x, v) ∈ Ω ×
(Rn\{0}), the exponentially damped Lyapunov indicator associated to (x, v) is defined as

Kµ(x, v) := µ

∫ +∞

0

e−µτfχ(φτ
X(x, v))dτ. (2.9)

This definition of Kµ, though formally correct, is not completely equivalent to the case discussed
before, because the flow of X is not restricted to a compact connected invariant set (the norm of
tangent vectors can diverge to infinity). In order to solve this technical problem, we give alternative
representations of χ and Kµ through a reformulation of the variational dynamics as the flow of
a vector field defined on a compact connected invariant domain of the tangent space Ω × R

n.
This formulation turns out to be crucial also for establishing the robustness of Kµ under viscous
perturbations of the related PDE (see Sec. 4).

We proceed in two steps. We start by defining the following vector field Y on Ω × (Rn\{0}),
which is substantially the v-orthogonal projection of X:

Y(x, v) :=
(
X(x), DX(x)

v

‖v‖ − v

‖v‖
[
v

‖v‖ ·DX(x)
v

‖v‖
])

. (2.10)

We prove now the next technical results.

Lemma 1. For all (x, v) ∈ Ω × (Rn\{0}), it holds:

χ(x, v) = lim
t→+∞

1
t

∫ t

0

fχ

(
φτ

Y

(
x,

v

‖v‖
))

dτ,

where the function fχ is given by formula (2.8). Moreover, every subset Ω × ∂Bn(0, r), r > 0, is
invariant under the flow φt

Y.
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Proof. We start by introducing the retraction Π:

Π : R
n × (Rn\{0}) → R

n × S
n−1

(x, v) �→ Π(x, v) =
(
x,

v

‖v‖
)
.

In view of the homogeneity of degree zero of the function fχ, that is fχ(x, λv) = fχ(x, v) ∀λ 
= 0,
we have that

fχ(φt
X(x, v)) = fχ(Π ◦ φt

X(x, v)).

Therefore, we study the retraction of the dynamics φt
X(x, v), proving that it corresponds to the flow

of the vector field Y, that is:

Π ◦ φt
X(x, v) = φt

Y ◦ Π(x, v). (2.11)

In order to do this, we denote (x(t), v(t)) := φt
X(x, v) and compute:

d

dt
Π ◦ φt

X(x, v) =
d

dt

(
x(t),

v(t)
‖v(t)‖

)

=
(
ẋ(t),

v̇(t)
‖v(t)‖ − v(t)

‖v(t)‖2

v(t) · v̇(t)
‖v(t)‖

)

=
(
ẋ(t),

DX(x(t))v(t)
‖v(t)‖ − v(t)

‖v(t)‖2

v(t) ·DX(x(t))v(t)
‖v(t)‖

)

=
(
X(x(t)), DX(x(t))

v(t)
‖v(t)‖ − v(t)

‖v(t)‖
[
v(t)
‖v(t)‖ ·DX(x(t))

v(t)
‖v(t)‖

])

= Y(x(t), v(t)) = Y
(
x(t),

v(t)
‖v(t)‖

)
.

The use of the previous relation together with the initial condition Π◦φ0
X(x, v) = φ0

Y ◦Π(x, v) imply
the relation (2.11). As a straightforward consequence fχ(Π ◦ φt

X(x, v)) = fχ(φt
Y ◦ Π(x, v)), and the

statement of the lemma follows. Finally, from the relation:

v ·Y(v)(x, v) = v ·
(
DX(x)

v

‖v‖ − v

‖v‖
[
v

‖v‖ ·DX(x)
v

‖v‖
])

= 0,

we immediately obtain an invariance of every subset Ω × ∂Bn(0, r), r > 0, under the flow φt
Y.

By using the same arguments of the previous proof, we gain the analogous result for the expo-
nentially damped Lyapunov indicators.

Lemma 2. Let µ > 0. For all (x, v) ∈ Ω × (Rn\{0}), it holds:

Kµ(x, v) = µ

∫ +∞

0

e−µτfχ

(
φτ

Y

(
x,

v

‖v‖
))

dτ,

where the function fχ is given by formula (2.8).

We remark now that, although the flow φt
Y leaves invariant Ω × ∂Bn(0, r), r > 0, we cannot

consider a PDE on the compact domain Ω×Bn(0, 1), essentially because Y cannot be extended by
continuity in v = 0. To solve this problem, the second step consists in modifying the vector field Y in
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a small neighborhood of 0 ∈ Bn(0, 1). More precisely, given h ∈ C∞(Bn(0, 1),R), such that h(v) = 1
for ‖v‖ ≥ ε and h(v) = 0 for ‖v‖ < ε

2 , we introduce the following vector field Ŷ on Ω ×Bn(0, 1):

Ŷ(x, v) =

{
Y(x, v) if ‖v‖ ≥ ε

h(v)Y(x, v) if ‖v‖ < ε.
(2.12)

As a consequence, the function Kµ can now be obtained as the solution of the following PDE:

Ŷ(x)∇xKµ(x, v) + Ŷ(v)∇vKµ(x, v) = µ(Kµ − fχ)(x, v) (2.13)

defined on the domain Ω ×Bn(0, 1).

3. Fast and Exponentially Damped Lyapunov Indicators

In the last years, the so called Fast Lyapunov Indicators [13] have been extensively used to numer-
ically detect the phase space structure, i.e. the distribution of KAM tori and resonances, of quasi-
integrable systems, see [14, 15]. For the equation ẋ = X(x), the simplest definition of Fast Lyapunov
Indicator of a point x and of a tangent vector v, at time T , is:

FLIT (x, v) = log
(‖vT ‖

‖v‖
)
, (3.1)

where vT = DφT
X(x)v. In [15] it is proved that, for Hamiltonian vector fields, if T is suitably long

(respect to some inverse power of the perturbing parameter, see [15] for precise statements) and v

is generic, the value of FLIT (x, v) is different, at order 0 in ε, in the case x belongs to an invariant
KAM torus from the case x belongs to a resonant elliptic torus. Therefore, the computation of the
FLI on grids of initial conditions in the phase space allows one to detect the distribution of invariant
tori and resonances in relatively short CPU times. Let us remark that if at a first glance the function
FLIT seems a crude way of estimating Lyapunov exponents from finite time computations, in [15]
it is proved that it provides information on the dynamics of x that cannot be obtained with the
largest Lyapunov exponent, which in fact is equal to zero for all KAM tori and resonant elliptic tori.
Moreover, resonances and KAM tori are detected by the FLI on times T which are much smaller than
the times required to compute finite time approximations of the largest Lyapunov exponent. These
computational advantages allows one to use the FLI for extensive dynamical analysis of dynamical
systems representing accurate models of real systems, such as the dynamical model for the outer
solar system ([16, 17]).

In this section we propose a practical use of the exponentially damped Lyapunov indicators,
which we have defined in Sec. 2, as a global definition of Fast Lyapunov Indicators, in the sense
specified in the introduction. In fact, on the one hand the definition (3.1) of Fast Lyapunov Indicators
is a pointwise definition, on the other hand the definition (2.9) with µ = 1/T provides substantially
the same information as the FLI. In fact, the FLI can be obtained by the integration of a function
defined on the tangent space (see (2.7)) on a finite time interval [0, T ], while the exponentially
damped indicator is obtained by the integration on [0,+∞[ of the same function multiplied by the
damping factor e−µt, which plays the role of limiting the integration to a finite interval of some few
multiples of 1/µ.

We compare the results provided by the two indicators on the quasi-integrable Hamiltonian
system defined in [14]:

H =
I2
1

2
+
I2
1

2
+ I3 + εf(ϕ1, ϕ2, ϕ3), (3.2)



July 6, 2009 17:57 WSPC/INSTRUCTION FILE 00018

202 O. Bernardi et al.

where I1, I2, I3 ∈ R, ϕ1, ϕ2, ϕ3 ∈ T
1, the underlying symplectic structure is dI ∧ dϕ, ε > 0 is the

perturbing parameter and the perturbation f is given by:

f(ϕ1, ϕ2, ϕ3) =
1

cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + 4
. (3.3)

Hamiltonian system (3.2) is particularly suited for the detection of the KAM tori and web of reso-
nances (see [14]), in fact: for ε > 0 suitable small, the KAM Theorem applies to (3.2); each KAM
torus of the system intersects transversely in only one point the section of phase space:

S := {(I1, I2, I3, ϕ1, ϕ2, ϕ3) with (ϕ1, ϕ2, ϕ3) = (0, 0, 0)},

which we call action space; the perturbation (3.3) is non-generic in the sense of the Poincaré Theorem
about the non-integrability of quasi-integrable systems.

We now compute the exponentially damped Lyapunov indicators defined by µ = ε for a grid
of equally spaced initial conditions on the section S. The practical computation of the integral in
(2.9) is done by restricting the integration interval up to a total time T1 such that the exponen-
tial damp exp(−µT1) is smaller than the numerical precision adopted for the computation. For
example, we set T1 such that: exp(−µT1) < 10−16. The initial vector for any initial condition was
chosen as: (vI1 , vI2 , vI3 , vϕ1 , vϕ2 , vϕ3) = (1/

√
5,

√
2/5, 0, 1/

√
5, 1/

√
5, 0). The result of the computa-

tion is reported in Fig. 1, where we report for any initial actions (I1, I2) the value of the computed

Fig. 1. Computation of the exponentially damped Lyapunov indicators for initial conditions (I1, I2, I3, ϕ1, ϕ2, ϕ3) on
the section S, ε = 0.004 and µ =

√
ε/10. The x-axis corresponds to the value of I1, the y-axis corresponds to the

value of I2; for each initial condition the value of the exponentially damped Lyapunov indicator is reported using the
color scale reported below the picture. The well known structure of resonances of this system is clearly detected by
the highest and lowest values of the exponentially damped Lyapunov indicator, see [14, 15].
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exponentially damped Lyapunov indicator using a color scalea such that dark gray corresponds to
the lowest values of the indicator and light gray corresponds to the highest values of the indicator.
Following [15], the KAM tori are characterized by intermediate gray, hyperbolic motions by light
gray and resonant elliptic tori by dark gray. It is clear that the distribution of the values of the expo-
nentially damped Lyapunov indicator shown in Fig. 1 corresponds to the distribution of resonances
and KAM tori as it is described in [14].

4. Robustness Under Viscous Perturbations

The aim of this section is to show the relevance of the previous notion of approximated first integral
(see Definition 1) inside the PDE framework and related viscosity techniques, see [2, 11].

Considering the classical theory for equations of elliptic type, we take into account the following
regularization of (2.5), with vanishing viscosity ν > 0 and a sort of friction µ > 0:

ν2

2
∆F ν(x) +X · ∇F ν(x) = µ(F ν − f)(x). (4.1)

The existence and the asymptotic behavior of the solutions for (4.1), namely the convergence of the
functions F ν for ν → 0, has been largely investigated: for the convenience to the reader, we briefly
summarize below the main results (see [11] for some more details).

Referring to the elliptic differential operator:

Lν :=
ν2

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

we are interested on the related Dirichlet’s problem:{
LνF ν(x) + c(x)F ν(x) = g(x)

F ν(x)|∂Ω = ψ(x)

that is, 
ν2

2

n∑
i,j=1

aij(x)
∂2F ν

∂xi∂xj
(x) +

n∑
i=1

bi(x)
∂F ν

∂xi
(x) + c(x)F ν(x) = g(x)

F ν(x)|∂Ω = ψ(x)

(4.2)

Here Ω ⊂ R
n is a bounded domain with smooth connected boundary ∂Ω and ψ is supposed to be

continuous.
We recall below the existence and uniqueness result.

Theorem 1 (Existence and uniqueness, [11]). We assume that the following conditions are
satisfied.

1. The function c is uniformly continuous, bounded and c(x) ≤ 0 for all x ∈ R
n.

2. The coefficients of Lν satisfy a Lipschitz condition.
3.

k−1
n∑

i=1

λ2
i ≤

n∑
i,j=1

aij(x)λiλj ≤ k
n∑

i=1

λ2
i

for every real λ1, λ2, . . . , λn and x ∈ R
n, where k is a positive constant.

Under these assumptions, for every ν > 0 there exists a unique solution F ν to the problem (4.2).

aThe color version of the figure can be found on the electronic version of the paper so that light gray corresponds
there to yellow and darker gray corresponds there to darker orange.



July 6, 2009 17:57 WSPC/INSTRUCTION FILE 00018

204 O. Bernardi et al.

In order to investigate the asymptotic behavior of such a solution, we remind the following

Theorem 2 (Pointwise limit, [11]). Suppose conditions 1, 2 and 3 are satisfied and c(x) < 0 for
all x ∈ Ω. If, for a given x ∈ Ω, the trajectory φt

b(x), t ≥ 0, does not leave Ω, then

lim
ν→0

F ν(x) = F (x) = −
∫ +∞

0

g(φτ
b (x)) exp

[∫ τ

0

c(φv
b (x))dv

]
dτ. (4.3)

It is now interesting to underline the following fact: the representation of the function F depends
decisively on the behavior of the flow φt

b. In particular, since the vector field b admits the invariant
bounded domain Ω, the pointwise limit limν→0 F

ν(x) = F (x), ∀x ∈ Ω, does not depend on the
boundary datum in (4.2).

Now we are ready to come back to our original elliptic equation (2.5): with respect to the
previous general setting, it corresponds to the coefficients aij(x) = δij , bi(x) = X i(x), c(x) = −µ
and g(x) = −µf(x) and it trivially satisfies the three conditions of Theorems 1 and 2. In such a
case, the pointwise limit for ν → 0 is just given by the above introduced function (2.4):

F (x) = µ

∫ +∞

0

e−µτf(φτ
X(x))dτ, ∀x ∈ Ω. (4.4)

This fact shows that, among any possible perturbation of X ·∇F (x) = 0, the one proposed in Sec. 2,
that is X · ∇F (x) = µ(F − f)(x), is solved exactly by the approximated first integral descending
from a regularizing viscosity procedure. This argument points out a viscosity motivation of (4.4)
and seems to mark a step towards the recognition of a robust notion of approximated global first
integral.

We remark that these considerations hold also in the Lyapunov exponents case, in view of the
reformulation done in Sec. 2. In such a case, Dirichlet’s problem reads:

ν2

2
∆Kν

µ(x, v) + Ŷ(x)∇xKν
µ(x, v) + Ŷ(v)∇vKν

µ(x, v) = µ(Kν
µ − fχ)(x, v)

Kν
µ(x, v)|∂D = ψ(x, v)

(4.5)

where D := Ω ×Bn(0, 1), and the following convergence result holds.

Proposition 2. Let ν, µ > 0. The solution Kν
µ of Dirichlet’s problem (4.5), when restricted to

Ω × (Bn(0, 1)\
◦
Bn(0, ε)), is independent on the regularizing function in (2.12) and the following

pointwise limit holds:

lim
ν→0

Kν
µ(x, v) = Kµ(x, v).

5. Conclusions

For a large class of nonlinear dynamical systems, we have introduced a new notion of approxi-
mated first integrals, inspired by finite time averages, and we have discussed their properties. These
approximated first integrals satisfy an explicit first order partial differential equation and they are
stable under viscosity perturbations of such equation. Moreover, their numerical implementation
provides results on applications comparable to the ones given by other popular indicators. We have
formulated specifically this approximating device to define finite time approximations of Lyapunov
exponents and we have considered their use to detect the phase space structure of quasi-integrable
systems.
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