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Abstract: The availability of continuous glucose monitoring (CGM) sensors allows 

development of new strategies for the treatment of diabetes. In particular, from an on-line 

perspective, CGM sensors can become ―smart‖ by providing them with algorithms able to 

generate alerts when glucose concentration is predicted to exceed the normal range 

thresholds. To do so, at least four important aspects have to be considered and dealt with 

on-line. First, the CGM data must be accurately calibrated. Then, CGM data need to be 

filtered in order to enhance their signal-to-noise ratio (SNR). Thirdly, predictions of future 

glucose concentration should be generated with suitable modeling methodologies. Finally, 

generation of alerts should be done by minimizing the risk of detecting false and missing 

true events. For these four challenges, several techniques, with various degrees of 

sophistication, have been proposed in the literature and are critically reviewed in this 

paper. 
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1. Introduction  

The knowledge of glucose concentration in blood is a key aspect in the quantitative understanding 

of the glucose-insulin system and in the diagnosis and treatment of diabetes. The use of signal 

processing techniques on glucose data started some decades ago, when glucose time-series in a given 

individual could be obtained in laboratories from samples drawn in the blood at a sufficiently high 
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rate. In particular, an important body of literature of the 80s and 90s employed not only linear (e.g., 

correlation and spectrum analysis, peak detection), but also nonlinear (e.g., approximate entropy) 

methods to investigate oscillations present in glucose (and insulin) time-series obtained, during 

hospital monitoring, by drawing blood samples every 10–15 min for up to 48 h [1-3]. At that time, 

long term (e.g., days or months) studies resorted to self-monitoring blood glucose (SMBG) data, i.e.,  

three-to-four samples per day obtained by the patient himself by using fingerstick glucose meters. The 

retrospective analysis of SMBG time-series was used by physicians, together with the information 

taken from the ―patient’s diary‖ (e.g., insulin dosage, meals intake, physical exercise) and some 

glycaemic indexes (typically HbA1c), to assess glucose control and the effectiveness of a  

particular therapy [4-7].  

New scenarios in diabetes treatment were presented in the last ten years, when minimally invasive 

continuous glucose monitoring (CGM) sensors, able to monitor glucose concentration continuously for 

several days, entered clinical research [8-15]. This calls for more advanced techniques for studying 

glucose time-series. For instance, new insights can be obtained by analyzing the dynamics of the 

glucose signal, see e.g., Rahaghi and Gough [16] for a review. From a more practical point of view, 

retrospective analysis of CGM in place of SMBG data can facilitate diabetes management in a given 

individual (see Clarke and Kovatchev [17] for a review of the available statistical tools). In addition, 

since CGM devices can provide glucose readings in real-time, new on-line applications, with a 

potentially great impact in the patient’s daily life, have become of great interest. For instance, CGM 

signals are a key component of the so-called artificial pancreas, a device conceived for Type 1 diabetic 

patients aimed at maintaining glucose concentration within safe ranges by infusing insulin 

subcutaneously via a pump under the control of a closed-loop algorithm (see Hovorka and  

Cobelli et al. for two recent reviews [18,19]). Another important on-line application of CGM sensors is 

the generation of alerts when glucose concentration is predicted to exceed the normal range  

thresholds [20]. These applications require that CGM sensors become ―smart‖ by means of algorithms 

able to interpret glucose levels in real-time. Indeed, several CGM sensors already in the market have 

some kind of alert system on board, even if their performance is still not satisfactory. In order to 

properly generate hypo/hyperglycemic alerts, in fact, at least four important aspects have to be 

considered. First, CGM data need to be accurately calibrated. Then, CGM data need to be filtered in 

order to enhance their signal-to-noise ratio (SNR). Thirdly, prediction of future glucose concentrations 

should be generated with suitable modeling methodologies. Finally, generation of alerts should 

minimize the risk of detecting false/missing true events. For these four challenges, several techniques, 

with various degrees of sophistication, have been proposed in the literature. The main achievements in 

this area are critically reviewed in this paper. Notably, being exhaustiveness difficult to achieve and, in 

any case, beyond the scope of the present special issue, we encourage the reader to also make 

reference to other reviews, with content in great part complementary to ours, which have been 

published very recently [21]. Finally, we note that we will review only general aspects, i.e., signal 

processing, while possible sensor-dependant sources of error, e.g., related to specific sensor physics, 

chemistry and electronics, are not addressed here. 
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2. Calibration  

Most of the commercial minimally invasive CGM systems, e.g., and the CGMS
®

 (Medtronic 

Minimed Inc, Northridge, CA, USA) [22], the GlucoDay
®

 (Menarini Diagnostics, Florence,  

Italy) [23], the FreeStyle Navigator
®

 (Abbott Diabetes Care, Alameda, CA, USA) [24] and the Seven
®

 

(DexCom Inc, San Diego, CA, USA) [25], exploit the glucose-oxidase principle, which requires that 

the measured current (e.g., in nA) be transformed into glucose levels (e.g., in mg/dL) by using one, or 

more, SMBG samples. This step is commonly referred to as a calibration [26]. Several studies have 

been performed in order to assess the influence of the number, accuracy, and temporal position of the 

reference SMBG samples, as well as by the trend of glucose concentration at their pick up  

times [27,28]. An important point related to calibration is that CGM sensors are placed in the 

subcutaneous tissue and thus they measure interstitial glucose (IG) rather than blood glucose (BG) 

concentration. In dynamic conditions, e.g., after a meal, IG and BG can be markedly different because 

of the existence of a BG-to-IG kinetics which, in the literature, has been described by a  

two-compartment model [29], i.e., 

BG(t)
τ

g
IG(t)

τ

1
(t)GI 

 
(1)  

where g represents the static gain of the BG-to-IG system (which we can consider equal to 1, i.e., in 

steady state, the concentration of glucose in the blood and in the interstitium are equal) and τ is a time 

constant (which can vary between individuals). Equation (1) acts as a first order, linear, low-pass filter, 

and introduces a distortion, i.e., attenuation in amplitude and phase delay, which is readily observable 

in Figure 1 (top panel). This figure shows a comparison, performed in a clinical study [30], on a type 1 

diabetic subject, between and a FreeStyle Navigator® CGM profile and BG references collected  

every 15 min and measured in laboratory by YSI (Yellow Springs, OH, USA). Note that, in this and all 

the figures throughout the paper, time 0 is when data recording begins. 

The existence of a BG-to-IG kinetics, however, is not able to explain some of the discrepancies 

which are evident along the y-axis, e.g., in the interval between 18–25 h. This difference is likely due 

to a change of behavior of the CGM sensor performance after its initial calibration. 

The fact that CGM profiles can be affected by calibration problems can be critical in several 

applications, e.g., alert generation systems and artificial pancreas. For this reason, real-time 

―recalibration‖ of CGM data is desirable, where, for recalibration, we intend a step where the sensor 

output (in mg/dl) is processed by an algorithm (e.g., external to the device) in order to improve its 

accuracy. After recalibration, the difference between BG and CGM samples should be due to  

BG-to-IG kinetics only. 

Several studies in the literature tried to cope with the recalibration problem, mostly retrospectively. 

A detailed study has been presented by the DirecNet Study Group [31], which analyzed the 

improvement in CGMS sensor accuracy by retrospectively modifying the number and timing of the 

calibration points. Results evidenced the fact that the timing of the calibration points is even more 

important than the number. In particular, performing calibrations during periods of relative glucose 

stability, i.e., where the point-to-point difference due to the BG-to-IG kinetics is minimized, 

significantly improves the accuracy. 
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Figure 1. Representative type 1 diabetic subject. Top: BG references (stars) vs. original 

FreeStyle Navigator® CGM profile (continuous line). Bottom: BG references (stars) vs. 

CGM profile (blue line) profile recalibrated by the method of King et al. [32].  
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A more recent recalibration procedure, thought for an off-line application, is that presented by  

King et al. [32], which is based on the linear regression model: 

y = ax + b  (2)  

where a and b are recalibration parameters which are determined by fitting them against a couple of 

BG and CGM pairs, i.e., y and x in Equation (2), respectively, collected at the same time. For instance, 

once applied to the data of Figure 1 (top), where frequently collected references are available and used 

to fit Equation (2), this method produces the improved CGM profile shown in Figure 1 (continuous line, 

bottom panel). A more sophisticated recalibration approach was presented by Kuure-Kinsey et al. [33], 

where a dual-rate Kalman filter is used. The latter method exploits sparse SMBG measurements and 

can estimate a correction factor for the sensor gain in real-time.  

None of the above recalibration algorithms consider explicitly the distortion introduced by  

BG-to-IG kinetics and the possibly time-varying behavior of sensor performance (the sensor gain is 

estimated only once for the entire monitoring). A first comprehensive description of the CGM 

measurement process is due to Knobbe and Buckingham [34]: BG-to-IG kinetics model was explicitly 
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taken into account in order to reconstruct BG levels at continuous time from CGM measurements and 

an Extended Kalman Filter (EKF) approach was used to estimate the unknown variables. In a recent 

work of Facchinetti et al. [35], this idea was further developed in order to deal with recalibration. 

Reference SMBG samples were considered to be available on a sparse grid (e.g., four samples per day) 

and corrupted by additive measurement error, as: 

SMBG(k) = φ(k)BG(k) + e(k)  (3)  

where φ(k) is a flag which is equal to 1 only at the times k when the SMBG sample is collected (the 

sampling interval is that of the CGM sensor). The measured CGM profile was modelled as:  

CGM(k) = (1 + α(k))IG(k) + v(k) (4)  

where IG(k) represents the ―true‖, perfectly calibrated, interstitial glucose level, v(k) is the random 

additive measurement error, and α(k) is a random multiplicative value which simulates the (possibly 

time-varying) deviation of the sensor gain from the ideal unit value [36]. IG(k) and BG(k) can be 

easily related by discretizing the continuous-time differential equation of Equation (1) (using a 

―population‖ value for τ). In order to estimate IG(k) and α(k) from the measured CGM(k) and 

SMBG(k) data, an a priori model is postulated in order to express the expected regularity of α(k) and 

BG(k), i.e., their temporal profile is expected to be ―smooth‖. In particular, α(k) and BG(k) are 

modeled as the multiple integration of a white noise process (see Section 3 for more details on the 

formulation of a priori models of signal smoothness).  

Under these assumptions, a nonlinear state-space nonlinear dynamic model can be obtained, where 

the unknown IG(k) and α(k) represent two of the unknown states, which can be estimated by EKF. An 

example on real data (collected in a type 1 diabetic subject) is shown in Figure 2, where only the two 

BG samples denoted by open bullets (top panel) are used to obtain, starting from the original CGM 

profile (blue line), the recalibrated CGM profile (green line). BG samples denoted by asterisks are not 

used for recalibration and are only left on the plot as a reference in order to graphically demonstrate 

the improvement of accuracy obtained by recalibration. In particular, after recalibration, the RMSE 

calculated between the CGM and the BG time-series decreases from 41 mg/dL to 32 mg/dL (–22%). 

The method is causal (thus potentially usable on line) and also provides the time course of the 

estimated gain deviation (k) (bottom panel). 

Realistic in silico simulations, obtained by using a simulator of the glucose-insulin system [37], 

showed that the recalibration method of Facchinetti et al. [35] improves the accuracy of CGM signals 

more than both the methods of King et al. [32] and Knobbe and Buckingham [34]. However, in 

Facchinetti et al. [35] it is also stated that the nonlinearity of EKF can render some steps, e.g., 

initialization of covariance matrices, critical and can also require rather long ―burn-in‖ intervals. These 

difficulties can be circumvented by simpler recalibration strategies like those of Guerra et al. [38] and 

Facchinetti et al. [39] which, by embedding a deconvolution procedure, are able to account for  

BG-to-IG kinetics equally well. 
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Figure 2. Representative type 1 diabetic subject (data taken from Kovatchev et al. [30]). 

Top: measured CGM (blue line), SMBG samples used for recalibration (copper circles), 

recalibrated CGM (green line), and other available SMBG samples plotted as reference 

(asterisks). Bottom: estimated deviation of the sensor gain from the unit value.  
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3. Denoising  

In addition to calibration errors, the CGM signal is also corrupted by a random noise component. 

The noise typically dominates the true signal at high frequency and is usually considered to be 

additive: 

kkk vuy   (5)  

where uk is the actual, but unknown, glucose level at time tk and vk is the random measurement error. 

The amount of noise corrupting the true glucose level is dependent on the sensor technology. For 

instance, some CGM profiles are more ―stable‖ than others, as shown in Figure 3, where the  

time-series, measured for 24 h in two diabetic volunteers through the FreeStyle Navigator® (top panel) 

and the GlucoDay® (bottom panel), are displayed: in terms of Equation (5), the variance of the 

random process {vk} is lower in the first case (top panel). Moreover, a given sensor technology may 

behave differently in different subjects, e.g., the variance of {vk} may vary among subjects (compare 
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the noise affecting the FreeStyle Navigator® time-series of Figure 3 and Figure 1). Another, less 

appreciated, ingredient of the noise affecting CGM data is that the SNR may even vary during a given 

recording. For instance, in the top panel of Figure 3, the noise variance in the time interval (18,24) is 

larger than in (8,18). 

Figure 3. Two representative type 1 diabetic CGM time series. Top: FreeStyle Navigator® 

time series (1 min sampling), taken from Kovatchev et al. [30]. Bottom: GlucoDay® time 

series (3 min sampling) (taken from Maran et al. [44]). 
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Given the expected spectral characteristics of noise, (causal) low-pass filtering [40] represents the 

most natural candidate to denoise CGM signals. One major problem in low-pass filtering is that, since 

signal and noise spectra normally overlap, it is not possible to remove noise vk from the measured 

signal yk without also distorting the true signal uk. In particular, distortion results in a delay affecting 

the estimate ûk with respect to the true uk: the more the filtering, the larger the delay. It is easily 

appreciated that having a consistently delayed, even if less noisy, CGM signal could severely limit its 

use in practice, e.g., for the generation of timely hypo-alerts. A clinically relevant issue is thus the 

establishment of a suitable compromise between the regularity of ûk and its delay with respect to the 

true uk. Understanding how denoising is done inside commercial CGM devices is often difficult, but 
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evidence inferred from the patent literature indicate that nonlinear pre-filtering and moving-average 

(MA) filters are very often used [23-25].  

Nonlinear pre-filtering like signal clipping, median filtering, and hard-bounding, are used in order 

to deal with e.g., spurious spikes which may occasionally occur during the monitoring (see e.g., the 

artifacts in the bottom panel of Figure 3, likely due to perturbations in the functioning of the 

microdialysis fiber of the GlucoDay® sensor induced by patient movements). For instance,  

hard-bounding considers, at any sampling time, the absolute difference between the present and the 

previous sample: if this value, relative to the sampling period, is higher than the maximum 

physiologically allowed, e.g., 4 mg/dL min, the last sample is corrected accordingly.  

As far as MA filtering is concerned, having fixed the so-called order M of the filter, the estimate of 

the signal at the k-th sampling time is a weighted sum of the last M measured samples: 

 1MkM1k2k1M

1i

i

k yc...ycyc

c

1
û 






 

(6)  

where c1, c2,… cM are positive real numbers. The order M and the weights {ck} are crucial parameters 

to be tuned in the filter design. For instance, one choice is to make all the {ck} equal. Another frequent 

choice is to let ci = μ
i
 , where  is a positive real (between 0 and 1) which, de facto, acts as a forgetting 

factor (the higher , the more slowly past data are forgotten). As far as M is concerned, increasing M 

in general produces a higher low-pass filtering. This can improve noise reduction, but can also result in 

a significant, and possibly unacceptable, signal distortion, e.g., the filtered sequence ûk cannot track 

fast changes present in the true sequence uk and/or a significant delay is introduced. On the other hand, 

undersmoothing may leave the filtered profile hardly usable for making decisions such as whether or 

not an alert should be generated. Figure 4 displays these issues by applying the same MA filter (M = 5, 

with all the ci’s equal to 1) to the signals of Figure 3.  

Figure 4. Same data as in Figure 3: original profile (blue) and outcome (green) of a MA 

filter with M = 5 and = 1. 
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Figure 4. Cont. 
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It is clear that any optimization made on order and weights of MA filtering cannot be directly 

transferred from one sensor to another. For instance, CGM time series observed with different 

sampling rates must be processed by filters with different parameters (even when they exhibit the same 

SNR, as it happens in some portions of the recordings of Figure 4). Moreover, filter parameters should 

be tuned according to the SNR of the time series, e.g., the higher SNR, the flatter the filtering (and the 

smaller the resulting distortion/delay). How to precisely tune filter parameters in an automatic manner 

is, however, a difficult problem, especially for MA filters. 

Some methods which can be used for denoising CGM signals with approaches more sophisticated 

than MA can be found in several works [33,34,41,42] More recently, the CGM denoising problem has 

been more comprehensively tackled by Facchinetti et al. [43], who have proposed an approach 

developed within a Bayesian estimation embedding and implemented by Kalman filtering (KF). The 

approach resorts to the idea that an ―optimal‖ filter, i.e., the filter which exhibits the best trade-off 

between noise reduction and signal distortion, can be designed by bringing the filter design problem 

within a Bayesian context [40]. Such an embedding requires the ―a priori‖ second order statistical 

description of signal and noise (―a priori‖ here stands for ―without having seen the measured data‖). In 

detail, vk is described as a white noise with zero mean and unknown variance 
2
 (depending on the 

individual time series and, in general, time-varying). The unknown signal uk is modeled as the 

realization of a stochastic process obtained by the cascade of a certain number of integrators driven by 

a zero-mean white noise process with (unknown) variance 
2
 (these models were already mentioned in 

Section 2). This is a commonly-used, simple, but versatile way to give an a priori second order 

probabilistic description of a smooth time-series. For instance, when a single integrator is considered, 

the random-walk model is used:  

k1kk wuu    (7)  

where {wk} is a sequence of white noise samples. Assuming a Gaussian setting, the ―a priori‖ model 

of Equation (7) simply tells us that, given uk-1, then uk will be with probability 99.7% in the range  

uk-1 ± 3, i.e., the lower the  value, the smoother the process {uk}. Here, 
2
 is unknown and can be 
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estimated, individually for each time-series, from the data {yk} together with 
2
. This is possible using 

CGM data of a burn-in interval, by using a statistically-based smoothing criterion having a maximum 

likelihood interpretation. Once 
2
 and 

2
 have been estimated, the problem of extracting uk from yk 

(after the burn-in interval) can be numerically solved, in a computationally efficient manner, by 

resorting to the equations of the causal Kalman filter (KF). Therefore, a key feature of this method is 

that it can individualize the filter parameters 
2
 and 

2
, and hence the smoothing amount, according to 

the SNR of the specific CGM signal. Figure 5 shows an application of this method to the two 

FreeStyle Navigator® time-series of Figures 1 and 3.  

Figure 5. Application of the Kalman filtering method of Facchinetti et al. [43] to two 

FreeStyle Navigator® time-series exhibiting a different SNR (the green line is the filter 

output). Top panel: same time-series as in the top panel of Figures 3 and 4. Bottom panel: 

same time-series as in the top panel of Figure 1. 
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The variance of the noise component in these two time-series is clearly different. The application of 

the denoising procedure provides estimates of 
2
 equal, respectively from top to bottom, to 21.4  
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and 1.8 mg
2
/dL

2
, in line with the intuition that the first time-series is more noisy than the second one, 

and suggesting that a suitable amount of smoothing is introduced by the filtering method (for sake of 

completeness, the correspondent estimates of 
2
 are 0.14 and 0.06 mg

2
/dL

2
, respectively). 

Interestingly, considering the top panel time-series, the time-lag introduced by Kalman filtering in 

Figure 5 is much smaller (1 vs. 2 min) than that obtained, for the same time-series, in Figure 4 (top 

panel) by using MA filtering. 

In Facchinetti et al. [43] the performance of the new KF approach was quantitatively assessed on 

CGM GlucoDay® traces obtained from 24 subjects taken from Maran et al. [44]. Average results 

showed that, for comparable signal denoising, the delay introduced by KF is about 35% less than that 

obtained by MA. In addition, a comprehensive Monte Carlo study on synthetic data showed that the 

method is able to reliably estimate the SNR of the CGM time-series. In Facchinetti et al. [43], it was 

concluded that method is able to deal, automatically, with SNR inter-sensor and inter-individual 

variability. An additional refinement is the possibility of dealing with SNR intra-sensor variability. For 

instance, 
2
(and 

2
) could be determined continuously on a sliding window [45] in order to track 

possible variations in SNR, e.g., due to possible deterioration of the sensor performance after several 

hours/days. 

4. Prediction 

A natural on-line application of CGM sensors is the prevention of hypo/hyperglycemic events. Only 

a few years after the appearance of CGM sensors in the market, some methods were proposed to 

generate alerts when the actual trend of the glucose concentration profile suggested that hypoglycemia 

was likely to occur within a short time. Such techniques are often termed projection methods. For 

instance, in Choleau et al. [46] an hypo-alert is generated when, on the basis of first-order linear 

extrapolation of glucose obtained from the last two/three samples, there is the risk that glucose 

concentration will cross the 70 mg/dL threshold within 20 min. Similar methodologies are conceivably 

implemented in commercial devices in order to timely detect dangerous trends [24]. 

An improvement can be obtained by generating hypo-/hyper-alerts on the basis of ahead-of-time 

prediction of glucose concentration, which can be computed from past CGM data and suitable  

time-series models. The possibility of making a short term prediction of glucose concentration 

exploiting its past history was originally suggested in Bremer and Gough [47], on the basis of 

preliminary results obtained from modeling blood glucose concentration data (not CGM), measured 

every 10 min in blood for up to 40 h, and using a prediction horizon (PH) of 10 min. Since then, 

several approaches have been proposed using CGM sensor data and a larger, and more clinically 

significant, PH. For instance, in Sparacino et al. [48], two simple low-order (time-varying) time-series 

models were tested in order to assess the possibility to predict glucose concentration, at a PH equal  

to 30 or 45 min, from CGM time-series. In particular, the glucose time-series was described, locally, 

by a first-order polynomial:  

ui = ti +   (8)  

or by an auto-regressive (AR) model of first-order, corresponding to the following time-domain 

difference equation:  
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ui=a ui-1+wi  (9)  

In Equation (9), i = 1, 2, …n denotes the order of glucose samples collected till the n-th sampling 

time tn and {wi} is a random white noise process with zero mean and variance equal to 
2
. Both 

models, Equations (8) and (9), are simple, but their parameters are adaptive, and are re-identified at 

each sampling time in order to track changes in the signal dynamics. Formally, letting  to denote the 

vector of the parameters of the model employed to describe the glucose time-series, at each sampling 

time tn, a new value of  is determined by fitting past glucose data un, un-1, un-2, ... by weighted linear 

least squares. Once  is determined, the model is used to calculate the prediction of glucose level Q 

steps ahead (where Q is such that Q·Ts = PH, where Ts is the sensor sampling period). For instance, in 

the case of Equation (9): 

ûn+Q = a
Q
 un (10)  

The necessity of having a time-varying  is obvious in the model of Equation (8). For other 

models, e.g., AR models, the use of a time-invariant , e.g., identified in a burn-in interval, could 

produce inaccurate predictions because of the nonstationarity of CGM time-series. This is particularly 

true in the case of a low-order model (which can capture signal dynamics only in a limited time-

interval), so a time-varying modeling strategy is in order. In determining the model parameters  at a 

given time, all the past data can participate, possibly with different relative weights. A typical choice is 

to employ exponential weighting, i.e., 
k
 is the weight of the sample taken k instants before the actual 

sampling time, with , taken in the range (0,1), acting as forgetting factor. If a forgetting factor is not 

used (which is equivalent to letting = 1), glucose samples collected tens of hours, if not days, before 

the actual sampling time would influence prediction, with a possible deterioration of the algorithm 

capability to promptly track changes in the signal, in particular those due to perturbations, e.g., meals. 

From an algorithmic point of view, recursive least squares (RLS) implementations are possible in 

order to estimate the unknown model parameters  in a computationally efficient manner. 

Figure 6 shows the original (solid) vs. the predicted (thin line) time-series for a representative  

type 1 diabetic subject. The predicted time-series were obtained using the AR model of order 1 with  

PH = 30 and, respectively from top to bottom, = 0.85 and 0.99. As apparent from the figure, the 

predicted profile is unavoidably affected by error: in particular, it is delayed and much more noisy than 

the original one. 

Assessing how much such a kind of predicted profiles can be useful for the prevention hypo-/hyper-

glycemia events is critical, but crucial. A straightforward index which could be considered, especially 

for comparing the relative performance of different models (e.g., polynomial vs. AR for different 

values of or PH) is the mean square prediction error (MSPE), which can be used to measure how 

close the predicted profile is to the original one. However, in a prediction context, MSPE is of limited 

use, e.g., a very unstable prediction profile may exhibit a smaller MSPE than a more regular prediction 

profile which could be safer for alert generation. Therefore, more specific indexes must be  

considered [48]. 
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Figure 6. FreeStyle Navigator® time-series in a type 1 diabetic subject taken from 

Kovatchev et al. [30]. Original (blue line) vs. predicted (green line) CGM time-series by 

using an AR model of order 1 with PH = 30 and = 0.85 (too small) and  = 0.99 (too large). 
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A useful index is the energy of the second order differences of the predicted profile (ESOD), which 

reflects the presence of spurious oscillations in the predicted profile (oscillations are obviously 

undesirable, since they can facilitate the generation of false hypo-/hyper-alerts). Another index is the 

delay of the predicted profile with respect to the original curve. In fact, the difference between PH and 

this delay represents a measure of the ―gain in time‖ for alert generation obtained thanks to the use of 

predicted, instead of measured, CGM time-series. Notably, a delay of the prediction profile 

comparable to PH (or larger) would make the prediction profile useless in practice. All the above 

indexes are useful in assessing CGM time-series prediction algorithms. Of note is that, they are all 

dependent on the chosen PH and forgetting factor . For instance, as well visible in Figure 6, a larger  

(bottom panel) provides a more stable prediction profile (smaller ESOD), at the cost of loosing the 

ability to promptly track changes in the glucose trend (larger delay and MSPE). 
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Figure 7 (top panel) displays the predicted profile for the same time-series of Figure 6 obtained with  

PH = 30 but with = 0.95, a value which, retrospectively, realized a suitable compromise among the 

above described merit criteria. The role of  is clear, but PH also plays a crucial role in any prediction 

algorithm. Obviously, one would like to have a PH as large as possible. However, an increase of PH 

causes a larger delay, and thus a larger prediction error, and wider oscillations in the predicted profiles 

(larger MSPE and ESOD) which may affect specificity in alert generation due to larger prediction 

errors. For instance, Figure 7 (bottom panel) illustrates the performance of the same algorithm used in 

Figure 7 (top panel), with the same = 0.95, when the PH is set to 60 min. Therefore, also the 

maximum allowable PH should be a matter of investigation. In general, the maximum allowable PH 

has to reflect both SNR and sampling rate (e.g., the higher SNR and/or the sampling rate, the higher 

the maximum allowable PH). We strongly encourage that the optimization of  and PH be addressed 

simultaneously and within the same framework. 

Figure 7. Same data of Figure 6: Original (blue) vs. predicted (green) profiles. Top panel: 

= 0.95 and PH = 30. Bottom panel: same  as in top panel, but PH = 60. 
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The problem of assessing the performance of a prediction algorithm has been presented by making 

reference to a specific prediction model, but it is completely general. As a matter of fact, how to 
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optimally design a prediction algorithm for CGM data, e.g., model structure, order, prediction horizon, 

forgetting factor, is still an open issue. The work by Zanderigo et al. [49] considered the possibility of 

using Continuous Glucose Error-Grid Analysis (CG-EGA) [30] to compare the relative performance of 

different prediction algorithms and parameters from a clinical point of view. Another possibility is to 

develop new indexes able to simultaneously take into account all the above cited ingredients. 

Another work using a low-order linear time-series modeling to predict CGM is that of Eren-

Oruklu et al. [50]. In this study, AR of order 3 and AR moving average (ARMA) of order (3,1) 

prediction algorithms were developed and the identification of model parameters was performed by 

using a RLS implementation applying a forgetting factor μ. In addition, the RLS has been integrated 

with a change detection method, which decreases μ to a smaller value when a persistent change in 

model parameters is detected. This modification allows to rapidly capture glycaemic disturbances. The 

assessment of prediction performance has been performed by using as indexes the relative absolute 

difference between predicted and original time-series, the sum of squares of glucose prediction error 

and CG–EGA. Results were satisfactory in terms of accuracy, but no estimates of the prediction delays 

were reported. 

In the approaches above, CGM time-series are described by a model with fixed structure, minimum 

complexity, but with time-varying parameters which, at each sampling time, are re-adjusted on the 

basis of the newly collected glucose sample. Since the model has to describe the time-series only 

―locally‖, its complexity can be kept modest, a crucial aspect for using prediction algorithms in  

real-time. Reifman et al. [51] employed a different approach, which was usable only in nine iSense 

CGM time-series (1 min sampling), out of 15 measured. This approach exploited a high-order AR 

model (order 10):  

n

10

1k

knkn wuau 


  (11)  

where un is the glucose samples collected at time tn and wn is a random white noise process. The model 

was first fitted, in each subject, in a burn-in interval and then used within the prediction algorithm for 

the rest of the time-series. A price to be paid for this choice lies in the increased model complexity 

which, in turn, requires the use of a rather long burn-in interval (about 2,000 samples, nearly 36 h). 

Moreover, given the high number of AR parameters to be estimated, the time-series model is overly 

sensitive to noise. Indeed, a ―regularization constraint‖ was placed on the AR coefficients in order to 

decrease their sensitivity to the data. In Reifman et al. [51], the possibility of using a time-invariant 

AR ―population‖ model was also suggested, and further developed in a successive study [52], even if 

the effect of the likely prediction distortion due to the suboptimality introduced by the use of a 

―population‖ model is critical (e.g., greater risk of generating false positives and negatives). The same 

team recently published also a paper where the same prediction modeling machinery is used to assess 

the relative importance and predictive power of different frequency bands of glucose signals [53]. 

Results suggest that, for short term prediction, no benefits are expected from the inclusion in AR 

models of information concerning meals and insulin intakes. 

In Palerm and Bequette [54] a stochastic nonparametric approach was proposed. The approach was 

applied to 13 data sets of CGMS® data (5 min sampling) during a hypoglycemic clamp (4 h data 

observation). The idea of the method is to exploit the available a priori information on the smoothness 
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of CGM signal, formalized through a stochastic model including the multiple integration of a white 

noise process. After having placed the problem in a state-space setting, e.g.: 









kkk

kk1k

vCxy

wΦxx
 (12)  

where xk is the state space vector at time k, yk is the measurement vector, Φ and C are transition 

matrices, and vk and wk are state and measurement noise vectors, the Kalman methodology is used to 

predict glucose level after a given PH. Three different PH values were tested, i.e., PH = 10, 20,  

and 30 min. The parameters of the Kalman filter were empirically determined, retrospectively, in order 

to ―maximize‖ sensitivity and specificity. The authors reported that the prediction performance, in this 

well-controlled hypoglycaemic clamp situation, was satisfactory in terms of sensitivity and specificity, 

but, again, no estimates of the delays were reported. 

Recently, an artificial neural network model (NNM) has also been applied in the prediction of 

glucose concentrations using CGM data. The use of NNM for glucose prediction is appealing because it 

could facilitate the exploitation of information on meals and insulin administrations. In  

Pappada et al. [55] a NNM was developed and trained both with data from the CGMS® and other 

information manually recorded by the patient in an electronic diary (i.e., SMBG values, insulin 

dosages, carbohydrate intakes, hypo-/hyper-glycemic symptoms, lifestyle activities). Even if the trend 

prediction is acceptable, the NNM underestimates extreme hyperglycemic values and overestimates 

hypoglycemic values, making the method likely of limited use in real-time applications. Finally, in a 

recent work of Pérez-Gandía et al. [56], a real-time prediction algorithm based on NNM, where the 

model was trained by using only CGM data as inputs, was developed. A preliminary assessment of the 

method on six Freestyle Navigator® and on nine CGMS® time-series provided encouraging results.  

5. Alert generation 

A critical problem is the generation of alerts, see Heise et al. [57] for requirements and concepts. 

Real-time alert systems were available e.g., on the Glucowatch® G2 BiograPHer (Cygnus, Redwood 

City, CA, USA), (no longer available in the market) [58] and on the Guardian® (Medtronic Minimed, 

Northridge, CA, USA) [59]. Both systems generate alerts on the basis of the comparison of the actual 

glucose level and a pre-selected threshold. However, the efficacy of these systems is  

controversial [60]. In particular, some studies evidenced the unacceptably high percentage of false 

alerts, which, for allowing sufficient sensitivity, often results higher than 50% [20,61]. In addition, 

these systems cannot avoid the event, because they generate the alert when the event occurs. In order 

to overcome this limitation, some devices now perform a trend analysis, indicating direction and rate 

of change of glucose, in order to provide the patient with an early warning. However, to the best of our 

knowledge, no large scale studies have quantitatively documented in peer-reviewed articles the benefit 

of this procedure.  
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Figure 8. Risk of generating a false hypo-alert from the original CGM profile (blue line) at 

time 19.2 mitigated by employing an on-line filtered profile (green line) together with its 

confidence interval (shaded area). 
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Generating alerts accurately is difficult, because CGM data are often inaccurate (i.e., biased) due to 

calibration problems and always uncertain (i.e., noisy). The statistical basis behind the generation of 

alerts should thus be put on more solid grounds by considering, in addition to a trivial threshold 

comparison, the uncertainty of the data, which should be estimated in real-time in a statistical setting 

to determine, in real-time, the actual, possibly time-varying, SNR. To better illustrate this issue, in 

Figure 8 we illustrate a CGM profile (blue line) and its filtered version (green line) obtained in real 

time by the method of Facchinetti et al. [43]. Thanks to its Bayesian setting, this method also provides 

the confidence interval (shaded area) of the filtered CGM profile. Remarkably, the higher the noise 

affecting a given portion of data, the larger the confidence interval of the denoised profile. Notably, if 

the original CGM profile (blue line) is used to generate alerts by comparing the actual glucose level 

with a threshold (dashed black horizontal line), there is a significant risk of generating false alerts (see 

e.g., the event at time 19.2). The risk can be mitigated if the filtered profile is considered in the 

decision criterion, together with the portion of the confidence interval which exceeds the  

threshold [45]. Other possibilities can resort to prediction methods, but, at the present time, no results 

are available. However, generating alerts from the prediction is even more difficult than from the 

actual CGM data, given the fact that the ahead-of-time predicted profile is less stable than the original 

one (see Figures 6 and 7). This exacerbates the problem of avoiding false alerts. Rendering the 

predicted profile less sensitive to noise, e.g., by reducing the PH or by increasing the forgetting factor, 

obviously affects sensitivity and reduces the ―temporal gain‖ of prediction and, thus, the practical 

advantage of using the predicted in place of the original CGM profile. Needless to say, strategies to 

generate alerts should take into account not only the nominal predicted glucose level, but also its 

uncertainty. Of note is that the higher the PH, the larger the confidence interval of the predicted 

glucose level.  

 



Sensors 2010, 10                            

 

 

6768 

6. Conclusions 

CGM sensors allow the development of new strategies for the treatment of diabetes. In this 

contribution, we have considered four specific issues which are crucial for a ―smart‖ real-time 

application of CGM sensors, in both open-loop (alert generators) and closed-loop (artificial pancreas) 

systems: (re)calibration for enhancing the accuracy of CGM signals, filtering for the enhancement of 

the SNR, ahead-of-time prediction, and generation of hypo/hyper-alerts. The main achievements of the 

literature, and also some open issues, have been discussed.  
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