
A New Efficient Simulation Equivalence Algorithm

Francesco Ranzato Francesco Tapparo
Dipartimento di Matematica Pura ed Applicata

University of Padova, Padova, Italy
{ranzato, tapparo}@math.unipd.it

Abstract

It is well known that simulation equivalence is an ap-
propriate abstraction to be used in model checking be-
cause it strongly preserves ACTL∗ and provides a better
space reduction than bisimulation equivalence. However,
computing simulation equivalence is harder than comput-
ing bisimulation equivalence. A number of algorithms for
computing simulation equivalence exist. Let Σ denote the
state space, ! the transition relation and Psim the parti-
tion of Σ induced by simulation equivalence. The algo-
rithms by Henzinger, Henzinger, Kopke and by Bloom and
Paige run in O(|Σ||!|)-time and, as far as time-complexity
is concerned, they are the best available algorithms. How-
ever, these algorithms have the drawback of a quadratic
space complexity that is bounded from below by Ω(|Σ|2).
The algorithm by Gentilini, Piazza, Policriti appears to
be the best algorithm when both time and space com-
plexities are taken into account. Gentilini et al.’s algo-
rithm runs in O(|Psim|2|!|)-time while the space complex-
ity is in O(|Psim|2 + |Σ| log(|Psim|)). We present here a
new efficient simulation equivalence algorithm that is ob-
tained as a modification of Henzinger et al.’s algorithm
and whose correctness is based on some techniques used
in recent applications of abstract interpretation to model
checking. Our algorithm runs in O(|Psim||!|)-time and
O(|Psim||Σ|)-space. Thus, while retaining a space com-
plexity which is lower than quadratic, our algorithm im-
proves the best known time bound.

1. Introduction

Abstraction techniques are widely used in model check-
ing to hide some properties of the concrete model and then
to define a reduced abstract model where to run the veri-
fication algorithm. Abstraction provides an effective solu-
tion to deal with the state-explosion problem that arises in
model checking systems with parallel components. The re-
duced abstract structure is required at least to weakly pre-

serve a specification language L of interest: if a formula
ϕ ∈ L is satisfied by the reduced abstract model then ϕ
must be true on the original unabstracted model as well.
Ideally, the reduced structure should be strongly preserv-
ing w.r.t. L: ϕ ∈ L holds on the concrete model if and
only if ϕ is satisfied by the reduced abstract model. One
common approach for abstracting a model consists in defin-
ing a logical equivalence or preorder relation on system
states that weakly/strongly preserves a given temporal lan-
guage. Two well-known examples are bisimulation equiva-
lence that strongly preserves branching-time logics such as
CTL and CTL∗ [2] and the simulation preorder that ensures
weak preservation of ACTL and ACTL∗ [10]. Simulation
equivalence is weaker than bisimulation equivalence but
stronger than simulation preorder because it strongly pre-
serves ACTL, ACTL∗, ECTL and ECTL∗ as well as the
linear-time logic LTL [7, 10, 13]. This is particularly inter-
esting because simulation equivalence can provide a much
better state-space reduction w.r.t. bisimulation equivalence
while retaining the ability of strongly preserving expressive
temporal languages like ACTL∗. This explains why sim-
ulation equivalence is a common choice for reducing the
concrete model.

State of the Art. It is well known that computing sim-
ulation equivalence is harder than computing bisimulation
equivalence [12]. Let K = 〈Σ,!, "〉 denote a Kripke
structure on the state space Σ, with transition relation !
and labeling function " : Σ → ℘(AP), for some set AP
of atomic propositions. Bisimulation equivalence can be
computed by the well-known Paige and Tarjan’s [14] algo-
rithm that runs in O(|!| log(|Σ|))-time. A number of algo-
rithms for computing simulation equivalence exist, the most
well known are by Henzinger, Henzinger and Kopke [11],
Bloom and Paige [1], Bustan and Grumberg [3], Tan and
Cleaveland [16] and Gentilini, Piazza and Policriti [8]. The
algorithms by Henzinger, Henzinger and Kopke [11] and
Bloom and Paige [1] run in O(|Σ||!|)-time and, as far
as time-complexity is concerned, they are the best algo-
rithms. However, these algorithms have the drawback of
a quadratic space complexity that is bounded from below

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)
0-7695-2908-9/07 $25.00 © 2007

by Ω(|Σ|2). This quadratic lower bound on the size of
the state space is clearly a critical problem in the con-
text of model checking. There is therefore a strong mo-
tivation for designing simulation equivalence algorithms
that are less demanding on memory requirements. Bus-
tan and Grumberg’s [3] algorithm represents a first solu-
tion in this direction. Let Psim denote the partition corre-
sponding to simulation equivalence on K so that |Psim| is
the number of simulation equivalence classes. Then, Bus-
tan and Grumberg’s algorithm has a space complexity in
O(|Psim|2 + |Σ| log(|Psim|)), although the time complexity
in O(|Psim|4(|!| + |Psim|2) + |Psim|2|Σ|(|Σ| + |Psim|2|))
remains a drawback. The algorithm by Gentilini, Piazza and
Policriti [8] appears to be the best algorithm when both time
and space complexities are taken into account. Gentilini
et al.’s algorithm runs in O(|Psim|2|!|)-time, thus greatly
improving on Bustan and Grumberg’s algorithm, while the
space complexity O(|Psim|2 + |Σ| log(|Psim|)) remains the
same. Moreover, Gentilini et al. experimentally show that
their procedure also improves on Tan and Cleaveland’s [16]
algorithm both in time and space while the theoretical com-
plexities cannot be easily compared.

Main Results. This work presents a new efficient sim-
ulation equivalence algorithm that runs in O(|Psim||!|)-
time and O(|Psim||Σ|)-space. Thus, while retaining a space
complexity lower than quadratic, our algorithm improves
the best known time bound.

Our simulation equivalence algorithm is designed as a
modification of Henzinger, Henzinger and Kopke’s [11] al-
gorithm, here denoted by HHK. In HHK, the quadratic
lower bound Ω(|Σ|2) on the space complexity derives from
the fact that HHK maintains for any state s ∈ Σ a set of
states Sim(s) ⊆ Σ, called the simulator set of s, which
stores states that are currently candidates for simulating s.
Our algorithm maintains instead: (i) a partition P of the
state space Σ that is always coarser than the final partition
Psim, (ii) a relation Rel ⊆ P ×P on the current partition P
and (iii) for any block B ∈ P , a set of states Remove(B) ⊆
Σ. Thus, our space complexity is in O(|Psim||Σ|), so that
memory requirements may be much lower than quadratic in
the size of the state space Σ.

The basic idea of our approach is to investigate whether
the logical structure of the HHK algorithm may be pre-
served by replacing the family of sets S = {Sim(s)}s∈Σ,
indexed on the whole state space Σ, with the following state
partition PS induced by S: s1 ∼S s2 iff for all s ∈ Σ,
s1 ∈ Sim(s) ⇔ s2 ∈ Sim(s). Hence, if s1 ∼S s2 then
s1 ∈ Sim(s2) and s2 ∈ Sim(s1) so that any block B ∈ PS

stores states that are currently candidates to be simulation
equivalent. Additionally, we store and maintain a reflexive
relation Rel ⊆ PS × PS on the partition PS that gives rise
to a so-called partition/relation pair. The logical intuition in
this data structure is that if B1, B2 ∈ PS, (B1, B2) ∈ Rel

and si ∈ Bi then the simulator set Sim(s2) is a subset of
the simulator set Sim(s1), namely s2 is currently a candi-
date for simulating s1. In particular, being Rel reflexive,
states that belong to a same block B ∈ PS have the same
current simulator set. It turns out that the information en-
coded by a partition/relation pair is enough for preserving
the logical structure of HHK. In fact, this approach leads us
to design an algorithm that resembles the HHK procedure:
we follow Henzinger et al.’s approach both for proving the
correctness of our algorithm and for devising an efficient
implementation where, roughly, the number of states |Σ| in
HHK is replaced by the number of blocks of the simulation
partition |Psim|. It is worth remarking that the correctness of
our simulation equivalence algorithm is shown by resorting
to abstract interpretation [5, 6]. More specifically, we ex-
ploit some recent results [15] that show how standard strong
preservation of temporal languages in abstract Kripke struc-
tures can be generalized by abstract interpretation and cast
as a completeness property of generic abstract domains that
play the role of abstract models.

2. Background

2.1. Notation

Partitions. A partition P of a set Σ is a set of nonempty
subsets of Σ, called blocks, that are pairwise disjoint and
whose union gives Σ. Part(Σ) denotes the set of parti-
tions of Σ. Part(Σ) is endowed with the following stan-
dard partial order): P1) P2, i.e. P2 is coarser than P1

(or P1 refines P2) iff ∀B ∈ P1.∃B′ ∈ P2. B ⊆ B′. If
P1, P2 ∈ Part(Σ), P1) P2 and B ∈ P1 then parentP2

(B)
(when clear from the context the subscript P2 is omitted)
denotes the unique block in P2 that contains B. For a given
subset S ⊆ Σ called splitter, we denote by Split(P, S) the
partition obtained from P by replacing each block B ∈ P
with the blocks B ∩ S and B ! S, where we also allow no
splitting, namely Split(P, S) = P .

Transition Systems. A transition system T = (Σ,!)
consists of a set Σ of states and a transition relation ! ⊆
Σ×Σ. As usual in model checking, we assume that the re-
lation ! is total, i.e., for any s ∈ Σ there exists some t ∈ Σ
such that s!t. Hence, note that |Σ| ≤ |!|. The predeces-
sor/successor transformers pre!,post! : ℘(Σ) → ℘(Σ)
are defined as usual: pre!(Y) def= {a ∈ Σ | ∃b ∈ Y. a!b}
and post!(Y) def= {b ∈ Σ | ∃a ∈ Y. a!b}. If S1, S2 ⊆ Σ
then S1!∃∃S2 iff there exist s1 ∈ S1 and s2 ∈ S2 such that
s1!s2. Given a set AP of atomic propositions (of some
specification language), a Kripke structure K = (Σ,!, ")
over AP consists of a transition system (Σ, !) together
with a state labeling function " : Σ → ℘(AP). For
any s ∈ Σ, [s]!

def= {s′ ∈ Σ | "(s) = "(s′)} denotes the

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)
0-7695-2908-9/07 $25.00 © 2007

equivalence class of a state s w.r.t. the labeling ", while
Part(Σ) . P!

def= {[s]! | s ∈ Σ} is the partition induced
by ".

2.2. Simulation Equivalence

Recall that a relation R ⊆ Σ × Σ is a simulation on
a Kripke structure K = (Σ, !, ") over a set AP of atomic
propositions if for any s, s′ ∈ Σ such that (s, s′) ∈ R:
(a) "(s) = "(s′); (b) For any t ∈ Σ such that s!t, there
exists t′ ∈ Σ such that s′!t′ and (t, t′) ∈ R.

The empty relation is a simulation and simulation re-
lations are closed under union, so that the largest simu-
lation relation exists. It turns out that the largest simula-
tion is a preorder relation (namely, it is reflexive and tran-
sitive) called similarity preorder (on K) and denoted by
Rsim. Simulation equivalence ∼sim⊆ Σ × Σ is the sym-
metric reduction of Rsim, namely ∼sim= Rsim ∩ R−1

sim.
Psim ∈ Part(Σ) denotes the partition corresponding to
∼sim.

It is a well known result in model checking [7, 10, 13]
that the reduction of K w.r.t. simulation equivalence ∼sim

allows us to define an abstract Kripke structure that strongly
preserves the temporal language ACTL∗: Psim is the ab-
stract state space, !∃∃ is the abstract transition relation be-
tween simulation equivalence classes, while a block B ∈
Psim is labeled as "(s) for any representative s ∈ B.

2.3. Abstract Interpretation

Abstract Domains. In standard abstract interpretation,
abstract domains can be equivalently specified either by Ga-
lois connections/insertions or by (upper) closure operators
(uco’s) [6]. These two approaches are equivalent, modulo
isomorphic representations of domain’s objects. The clo-
sure operator approach has the advantage of being inde-
pendent from the representation of domain’s objects and is
therefore appropriate for reasoning on abstract domains in-
dependently from their representation. Given a state space
Σ, the complete lattice 〈℘(Σ),⊆〉, i.e. the powerset of Σ or-
dered by the subset relation, plays here the role of concrete
domain. Let us recall that an operator µ : ℘(Σ) → ℘(Σ) is
a uco on ℘(Σ), that is an abstract domain of ℘(Σ), when µ
is monotone, idempotent and extensive (viz. X ⊆ µ(X)).
It is well known that the set uco(℘(Σ)) of all uco’s on
℘(Σ), endowed with the pointwise ordering /, gives rise
to the complete lattice 〈uco(℘(Σ)),/〉 of abstract domains
of ℘(Σ). The pointwise ordering / on uco(℘(Σ)) is the
standard order for comparing abstract domains with regard
to their precision: µ1 / µ2 means that the domain µ1 is a
more precise abstraction of ℘(Σ) than µ2, or, equivalently,
that the abstract domain µ1 is a refinement of µ2. Each
closure µ ∈ uco(℘(Σ)) is uniquely determined by its im-
age img(µ) = {µ(X) ∈ ℘(Σ) | X ∈ ℘(Σ))}: for any

X ⊆ Σ, µ(X) = ∩{Y ∈ img(µ) | X ⊆ Y }. On the
other hand, a set of subsets X ⊆ ℘(Σ) is the image of
some closure on ℘(Σ) iff X is closed under arbitrary in-
tersections, i.e. X = Cl∩(X) def= {∩S | S ⊆ X} (in particu-
lar, note that Cl∩(X) always contains Σ = ∩∅). Also, if
µ, ρ ∈ uco(℘(Σ)) then µ / ρ iff img(ρ) ⊆ img(µ). Often,
we will identify closures with their sets of fixpoints since
this does not give rise to ambiguity.

Partitions and Abstract Domains. Let us recall from
[15] that any abstract domain µ ∈ uco(℘(Σ)) induces a
partition par(µ) ∈ Part(Σ) that corresponds to the follow-
ing equivalence relation ≡µ on Σ: x ≡µ y ⇔ µ({x}) =
µ({y}).

Example 2.1. Let Σ = {1, 2, 3, 4} and let us con-
sider the following abstract domains in uco(℘(Σ)) that
are given as subsets of ℘(Σ) closed under intersec-
tions: µ = {∅, {1, 2}, {3}, {4}, {3, 4}, {1, 2, 3, 4}}, µ′ =
{∅, {1, 2}, {3}, {4}, {1, 2, 3, 4}}, µ′′ = {{1, 2}, {1, 2, 3},
{1, 2, 4}, {1, 2, 3, 4}}. These abstract domains all induce
the same partition P = {{1, 2}, {3}, {4}} ∈ Part(Σ).
For example, µ′′({1}) = µ′′({2}) = {1, 2}, µ′′({3}) =
{1, 2, 3}, µ′′({4}) = {1, 2, 3, 4} so that par(µ′′) = P .

Forward Completeness. Consider an abstract domain A
specified by an abstraction map α : ℘(Σ) → A and a con-
cretization map γ : A → ℘(Σ) that define a Galois insertion
of A into ℘(Σ). Let f : ℘(Σ) → ℘(Σ) be some concrete
semantic function and f " : A → A be a corresponding ab-
stract function on A. It is well known that 〈A, f "〉 is a sound
abstract interpretation when f ◦ γ / γ ◦ f " holds. Forward
completeness corresponds to require the following strength-
ening of soundness: 〈A, f "〉 is a forward complete when
f ◦ γ = γ ◦ f ". The intuition is that f " is able to mim-
ick f on the abstract domain A without loss of precision.
This is called forward completeness because a dual notion
of backward completeness involving the abstraction map α
may also be considered (see e.g. [9]).

It turns out that the possibility of defining a forward com-
plete abstract interpretation on a given abstract domain A
does not depend on the choice of the abstract function f "

but depends only on the abstract domain A, namely forward
completeness is an abstract domain property. This allows to
formulate forward completeness independently of abstract
functions as follows: an abstract domain µ ∈ uco(℘(Σ)) is
forward complete for f iff f ◦ µ = µ ◦ f ◦ µ. Hence, let us
note that µ is forward complete for f iff the image img(µ)
is closed under applications of the concrete function f . If F
is a set of concrete functions then µ is forward complete for
F when µ is forward complete for any f ∈ F .

It turns out [9, 15] that any abstract domain µ ∈
uco(℘(Σ)) can be refined to its F -forward complete shell,

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)
0-7695-2908-9/07 $25.00 © 2007

namely to the most abstract domain that is forward com-
plete for F and refines µ. This F -forward complete shell of
µ is denoted by SF (µ). Moreover, forward complete shells
can be constructively characterized as greatest fixpoints of
a suitable operator on the lattice uco(℘(Σ)).

Disjunctive Abstract Domains. An abstract domain µ ∈
uco(℘(Σ)) is disjunctive (or additive) when µ preserves
arbitrary unions and this happens exactly when its image
img(µ) is closed under arbitrary unions. The intuition is
that a disjunctive abstract domain does not loose preci-
sion in approximating concrete set unions. We denote by
ucod(℘(Σ)) the set of disjunctive abstract domains.

Given any abstract domain µ ∈ uco(℘(Σ)), it turns
out [6] that µ can be refined to its disjunctive completion
µd, namely the most abstract disjunctive domain µd ∈
ucod(℘(Σ)) that refines µ exists. Even more, the dis-
junctive completion µd can be obtained by closing the im-
age img(µ) under arbitrary unions, namely img(µd) =
Cl∪(img(µ)) def= {∪S | S ⊆ img(µ)}.

It also turns out that an abstract domain µ is disjunctive
iff µ is forward complete for the concrete set union, namely,
µ is disjunctive iff for any {Xi}i∈I ⊆ ℘(Σ), ∪i∈Iµ(Xi) =
µ(∪i∈Iµ(Xi)). Thus, the disjunctive completion µd of µ
coincides with the ∪-forward complete shell S∪(µ) of µ.

Finally, let us recall that an abstract domain µ and its
disjunctive completion µd induce the same partition, i.e.
par(µ) = par(µd).

3. Simulation Equivalence as a Forward Com-
plete Shell

Ranzato and Tapparo [15] showed how strong preserva-
tion of temporal languages in standard abstract models like
abstract Kripke structures can be generalized by abstract in-
terpretation and cast as a forward completeness property of
generic abstract domains that play the role of abstract mod-
els. In this framework, we show that the similarity pre-
order can be characterized as a forward complete shell as
follows. Let K = (Σ, !, ") be a Kripke structure and let
µ!

def= Cl∩({[s]! | s ∈ Σ}) ∈ uco(℘(Σ)) denote the abstract
domain induced by the labeling ".

Theorem 3.1. Let µK = S∪,pre!(µ!) be the {∪,pre!}-
forward complete shell of µ!. Then, Rsim = {(s, s′) ∈
Σ2 | µK({s′}) ⊆ µK({s})}. Moreover, Psim = par(µK).

Thus, simulation equivalence can be obtained as the par-
tition induced by the forward complete shell of the ini-
tial abstract domain µ! induced by the labeling " w.r.t. set
union ∪ and the predecessor transformer pre!. This re-
sult comes as a consequence of the fact that set union and
pre! provide the semantics of, respectively, logical dis-
junction and existential next operator EX and correspond-

ingly simulation equivalence can be viewed as the most ab-
stract domain that strongly preserves the language ϕ ::=
atom | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | EXϕ (see [15]). Theorem 3.1
is one key result for proving the correctness of our simula-
tion equivalence algorithm SimEq while it is not needed for
understanding how SimEq works and for implementing it.

Example 3.2. Let us consider the Kripke structure K de-
picted below where the atoms p and q determine the label-
ing function ". !"#$%&'(1

!! p ""!"#$%&'(3
p q ""!"#$%&'(4

##

!"#$%&'(2
p

$$!!!!!!!

Let us denote blocks in a partition and sets in a closure in
a compact form without curly brackets and commas. It is
simple to observe that Psim = {1, 2, 3, 4} because: (i) while
3!4 we have that 1, 2 5∈ pre!(4) so that 1 and 2 are not
simulation equivalent to 3; (ii) while 1!1 we have that 2 5∈
pre!(12) so that 1 is not simulation equivalent to 2.

The abstract domain induced by the labeling is µ! =
{∅, 123, 4, 1234} ∈ uco(℘(Σ)). Since the predecessor
transformer pre! clearly preserves set unions, it turns out
that the forward complete shell S∪,pre!(µ!) can be obtained
by iteratively closing the image of µ! under pre! and then
by taking the disjunctive completion.

– µ0 = µ!;
– µ1 = Cl∩(µ0 ∪ pre!(µ0)) = Cl∩(µ0 ∪ {pre!(∅) =

∅, pre!(123) = 12, pre!(4) = 34, pre!(1234) =
1234}) = {∅, 12, 3, 123, 4, 34, 1234};

– µ2 = Cl∩(µ1 ∪ pre!(µ1)) = Cl∩(µ1 ∪ {pre!(12) =
1, pre!(3) = 12, pre!(34) = 1234}) =
{∅, 1, 12, 3, 123, 4, 34, 1234};

– µ3 = Cl∩(µ2 ∪ pre!(µ2)) = µ2 (fixpoint).

S∪,pre!(µ!) is thus given by the disjunctive comple-
tion of µ2, i.e., S∪,pre!(µ!) = {∅, 1, 3, 4, 12, 13, 14, 34,
123, 124, 134, 1234} = µK. Note that µK(1) = 1,
µK(2) = 12, µK(3) = 3 and µK(4) = 4. Hence,
by Theorem 3.1, the similarity preorder is Rsim =
{(1, 1), (2, 2), (2, 1), (3, 3), (4, 4)}, while, as expected,
Psim = par(S∪,pre!(µ!)) = {1, 2, 3, 4}.

4. Partition/Relation Pairs

Let P ∈ Part(Σ) be a partition and let R ⊆ P × P
be any relation on P . A pair 〈P,R〉 is called a parti-
tion/relation pair. We use the following notation: if B ∈ P
then R(B) def= {C ∈ P | (B,C) ∈ R}.

A partition/relation pair 〈P,R〉 induces a disjunctive clo-
sure µ〈P,R〉 ∈ ucod(℘(Σ)) as follows: for any X ∈ ℘(Σ),

µ〈P,R〉(X) def= ∪{C∈P | ∃B∈P.B∩X 5=∅, (B,C) ∈ R∗}

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)
0-7695-2908-9/07 $25.00 © 2007

where R∗ ⊆ P × P is the reflexive-transitive closure of
R. It is easily shown that µ〈P,R〉 is indeed a disjunctive
uco. Note that, for any B ∈ P and x ∈ B, µ〈P,R〉({x}) =
µ〈P,R〉(B) = ∪R∗(B) = ∪{C ∈ P | (B,C) ∈ R∗}. This
correspondence is a key logical point for proving the cor-
rectness of our simulation equivalence algorithm: in fact,
our algorithm maintains a partition/relation pair (with a re-
flexive relation) and its correctness depends on the fact that
this partition/relation pair logically represents a correspond-
ing disjunctive abstract domain. It is not hard to observe that
P) par(µ〈P,R〉) and that if 〈P,R〉 is a partition/preorder
pair then P = par(µ〈P,R〉).

Example 4.1. Let Σ = {1, 2, 3, 4}, P =
{12, 3, 4} ∈ Part(Σ) (where blocks are de-
noted without curly brackets and commas) and
R = {(12, 12), (12, 3), (3, 3), (3, 4), (4, 4)}. The
disjunctive abstract domain µ〈P,R〉 is such that
µ〈P,R〉({1}) = µ〈P,R〉({2}) = {1, 2, 3, 4},
µ〈P,R〉({3}) = {3, 4} and µ〈P,R〉({4}) = {4}, so that the
image of µ〈P,R〉 is {∅, {4}, {3, 4}, {1, 2, 3, 4}}.

On the other hand, any abstract domain µ ∈ uco(℘(Σ))
induces a partition/relation pair 〈Pµ, Rµ〉 as follows:

– Pµ
def= par(µ);

– Rµ
def= {(B,C) ∈ Pµ × Pµ | µ(C) ⊆ µ(B)}.

It is not hard to observe that both µ and its disjunctive
completion µd induce the same partition/relation pair, i.e.
〈Pµ, Rµ〉 = 〈Pµd , Rµd〉.

Our simulation equivalence algorithm relies on the fol-
lowing key condition on a partition/relation pair 〈P,R〉
w.r.t. a transition system 〈Σ,!〉 which guarantees that the
corresponding disjunctive abstract domain µ〈P,R〉 is for-
ward complete for the predecessor transformer pre!.

Lemma 4.2. Let (Σ, !) be a transition system. Let 〈P,R〉
be a partition/relation pair with R reflexive. Assume that
for any B,C ∈ P , if C ∩ pre!(B) 5= ∅ then ∪R(C) ⊆
pre!(∪R(B)). Then, µ〈P,R〉 is forward complete for pre!.

5. Henzinger, Henzinger and Kopke’s Algo-
rithm

Our simulation equivalence algorithm SimEquiv is de-
signed as a modification of Henzinger, Henzinger and
Kopke’s [11] simulation equivalence algorithm HHK.
While HHK maintains for any state a corresponding set of
states, SimEquiv maintains instead a set of states for all the
blocks of a state partition. The HHK algorithm is designed
in three incremental steps. The second and third steps are
the procedures RefinedSimilarity and EfficientSimilarity
that are recalled in Figure 1.

The idea of the basic HHK algorithm (that is not recalled
in Figure 1) is as follows. For each state v ∈ Σ, the set
Sim(v) ⊆ Σ contains states that are candidates for sim-
ulating v. Hence, Sim(v) is initialized with all the states
having the same labeling as v. The algorithm then proceeds
iteratively as follows: if u!v, w ∈ Sim(u) but there is no
w′ ∈ Sim(v) such that w!w′ then w cannot simulate u and
therefore Sim(u) is sharpened to Sim(u) ! {w}.

This simple algorithm is refined by the procedure
RefinedSimilarity in Figure 1. The key point here is to
store for each state v ∈ Σ a further set prevSim(v) that
is a superset of Sim(v) (invariant Inv1) and contains the
states that were in Sim(v) in some past iteration. If u!v
then the invariant Inv2 allows to sharpen Sim(u) by scru-
tinizing only the states in pre!(prevSim(v)) instead of all
the possible states in Σ. Let us remark that the original
RefinedSimilarity algorithm appeared in [11] contains the
following bug: the statement prevSim(v) := Sim(v) is
placed just after the inner for-loop instead of immediately
preceding the inner for-loop. It turns out that this version of
RefinedSimilarity appeared in [11] is not correct as shown
by the following example.

Example 5.1. Let us consider the Kripke structure in
Example 3.2. We already observed that Psim =
{{1}, {2}, {3}, {4}}. However, one can check that the orig-
inal version in [11] of the RefinedSimilarity algorithm —
where the assignment prevSim(v) := Sim(v) follows the
inner for-loop — provides as output Sim(1) = {1, 2},
Sim(2) = {1, 2}, Sim(3) = {3}, Sim(4) = {4}, namely
the states 1 and 2 appear to be simulation equivalent while
they are not. The problem with the original version in
[11] of the RefinedSimilarity algorithm lies in the fact
that when v ∈ pre!({v}) — like in this example — it
may happen that during the inner for-loop the set Sim(v)
is modified to Sim(v) ! Remove so that if the assignment
prevSim(v) := Sim(v) follows the inner for-loop then
prevSim(v) might be computed as an incorrect subset of
the right set.

RefinedSimilarity is further refined to the
EfficientSimilarity algorithm recalled in Figure 1 (the
original version of EfficientSimilarity in [11] also suffers
of a bug that is a direct consequence of the problem in
RefinedSimilarity explained above). The idea here is that
instead of recomputing at each iteration of the while-loop
the set Remove := pre!(prevSim(v)) ! pre!(Sim(v))
for the selected state v, a set Remove(v) is maintained
and incrementally updated for each state v ∈ Σ in such a
way that it satisfies the invariant Inv3. The implementation
exploits a matrix Count(u, v), indexed on states u, v ∈ Σ,
such that Count(u, v) = |post!(u) ∩ Sim(v)| so that the
test w′′ 5∈ pre!(Rel(u)) in the innermost for-loop can be
done in O(1). This allows an efficient implementation of

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)
0-7695-2908-9/07 $25.00 © 2007

RefinedSimilarity() {
for all v in Σ do {prevSim(v) := Σ; Sim(v) := [v]!; }
while ∃v ∈ Σ such that (Sim(v) 5= prevSim(v)) do {

/* Inv1: ∀v ∈ Σ. Sim(v) ⊆ prevSim(v) */
/* Inv2: ∀u, v ∈ Σ. u!v ⇒ Sim(u) ⊆ pre!(prevSim(v)) */
Remove := pre!(prevSim(v)) ! pre!(Sim(v));
prevSim(v) := Sim(v);
for all u ∈ pre!(v) do Sim(u) := Sim(u) ! Remove;

}
}

EfficientSimilarity() {
/* for all v in Σ do prevSim(v) := Σ; */
for all v in Σ do {Sim(v) := [v]!; Remove(v) := Σ ! pre!(Sim(v)); }
while ∃v ∈ Σ such that (Remove(v) 5= ∅) do {

/* Inv3: ∀v ∈ Σ. Remove(v) = pre!(prevSim(v)) ! pre!(Sim(v)) */
/* prevSim(v) := Sim(v) */
Remove := Remove(v);
Remove(v) := ∅;
for all u ∈ pre!(v) do

for all w ∈ Remove do
if (w ∈ Sim(u)) then {

Sim(u) := Sim(u) ! {w};
for all w′′ ∈ pre!(w) such that (w′′ 5∈ pre!(Sim(u))) do

Remove(u) := Remove(u) ∪ {w′′};
}

}
}

Figure 1. Henzinger, Henzinger, Kopke’s Algorithm.

EfficientSimilarity that runs in O(|Σ||!|) time, while the
space complexity is clearly quadratic in the size of the state
space Σ. Let us remark that the key property for showing
the O(|Σ||!|) time bound is as follows: if a state v is
selected at some iterations i and j of the while-loop with
i < j then Removei(v) ∩ Removej(v) = ∅, so that the
sets in {Removei(v) | v is selected at some iteration i} are
pairwise disjoints.

6. A New Simulation Equivalence Algorithm

As recalled above, the HHK procedure maintains for
each state s ∈ Σ a simulator set Sim(s) ⊆ Σ and a re-
move set Remove(s) ⊆ Σ. The similarity preorder Rsim is
obtained from the output {Sim(s)}s∈Σ as follows: (s, s′) ∈
Rsim iff s′ ∈ Sim(s). In turn, the simulation equivalence
partition Psim is obtained as follows: s and s′ are simulation
equivalent iff s ∈ Sim(s′) and s′ ∈ Sim(s). Our algorithm
relies on the idea of modifying the HHK procedure in or-
der to maintain a partition/relation pair 〈P,Rel〉 instead of

{Sim(s)}s∈Σ, together with a remove set Remove(B) ⊆ Σ
for each block B ∈ P . The basic idea is to replace the
family of sets S = {Sim(s)}s∈Σ with the following state
partition P induced by S: s1 ∼S s2 iff for all s ∈ Σ,
s1 ∈ Sim(s) ⇔ s2 ∈ Sim(s). A reflexive relation
Rel ⊆ P×P gives rise to a partition/relation pair where the
intuition is that if B1, B2 ∈ P , (B1, B2) ∈ Rel and si ∈ Bi

then the simulator set Sim(s2) is a subset of the simulator
set Sim(s1). Since each Sim(s) always contains s, in this
case we have that s2 ∈ Sim(s1), namely s2 is a current
candidate for simulating s1. In particular, if B ∈ P and
s, s′ ∈ B then s and s′ are currently candidates to be simu-
lation equivalent. Thus, the partition/relation pair 〈P,Rel〉
represents the current approximation of the similarity pre-
order and in particular P represents the current approxima-
tion of simulation equivalence.

The partition P is initialized to the partition P! induced
by the labeling " and is always maintained coarser than
the final partition Psim. The idea of maintaining a parti-
tion/relation pair is also used by Gentilini et al. [8] in their

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)
0-7695-2908-9/07 $25.00 © 2007

SimEquiv1(PartitionRelation 〈P,Rel〉) {
while ∃B,C ∈ P such that (C ∩ pre!(B) 5= ∅ & ∪Rel(C) 5⊆ pre!(∪Rel(B))) do {

S := pre!(∪Rel(B));
Pprev := P ; Bprev := B;
P := Split(P, S);
for all C in P ! Pprev do Rel(C) := {D ∈ P | D ⊆ ∪Rel(parentPprev

(C))};
for all C in P such that (C ∩ pre!(Bprev) 5= ∅) do Rel(C) := {D ∈ Rel(C) | D ⊆ S};

}
}

Figure 2. Basic Simulation Equivalence Algorithm.

simulation equivalence algorithm. However, the main dif-
ferences are that (i) by exploiting the results in Section 4,
we logically view a partition/relation pair as an abstract do-
main and (ii) we follow the idea of the HHK procedure of
maintaining a remove set to be used for refining the current
partition/relation pair.

Following Henzinger et al. [11], we design our simula-
tion equivalence algorithm in three incremental steps. The
basic algorithm, called SimEquiv1, is described in Figure 2.
By Theorem 3.1, the goal of our algorithm is to compute the
{∪,pre!}-forward complete shell of an initial abstract do-
main through incremental refinements. By Section 4, we
know that partition/relation pairs can be viewed as repre-
senting disjunctive abstract domains while Lemma 4.2 gives
us a condition on a partition/relation pair which guarantees
that the corresponding abstract domain is forward complete
for pre!. Moreover, this abstract domain is disjunctive as
well, being induced by a partition/relation pair. Hence, the
idea consists in iteratively and minimally refining an initial
partition/relation pair 〈P,Rel〉 induced by the labeling of a
Kripke structure until the condition of Lemma 4.2 is satis-
fied: for all B,C ∈ P ,

C ∩ pre!(B) 5= ∅ ⇒ ∪Rel(C) ⊆ pre!(∪Rel(B)).

Note that C ∩ pre!(B) 5= ∅ holds iff C!∃∃B. The cur-
rent partition/relation pair 〈P,Rel〉 is refined by the three
following basic steps in SimEquiv1. If B is the block of
the current partition selected by the while-loop then:

(i) the current partition P is split with respect to the set
S = pre!(∪Rel(B));

(ii) if C is a newly generated block after splitting
P and parentPprev

(C) is its parent block in the
previous partition Pprev before the splitting opera-
tion then Rel(C) is modified so that ∪Rel(C) =
∪Rel(parentPprev

(C));
(iii) the current relation Rel is refined for the (new and old)

blocks C such that C!∃∃B by removing from Rel(C)
those blocks that are not contained in S.

For any abstract domain µ ∈ uco(℘(Σ)), we write
µ′ = SimEquiv1(µ) when the algorithm SimEquiv1 on
input the partition/relation 〈Pµ, Rµ〉 terminates and outputs
a partition/relation pair 〈P ′, R′〉 such that µ′ = µ〈P ′,R′〉.
Then, the correctness of SimEquiv1 is as follows.

Theorem 6.1. Let Σ be finite. Then, SimEquiv1 terminates
on any input domain µ ∈ uco(℘(Σ)) and SimEquiv1(µ) =
S∪,pre!(µ).

Thus, SimEquiv1 correctly computes the {∪,pre!}-
forward complete shell of any input abstract domain. As
a particular case, SimEquiv1 allows us to compute simula-
tion equivalence.

Corollary 6.2. Let K = (Σ,!, ") be a finite Kripke struc-
ture and µ! ∈ uco(℘(Σ)) be the abstract domain induced
by ". Then, SimEquiv1(µ!) = 〈P ′, R′〉 where P ′ = Psim.

The SimEquiv1 algorithm is refined to SimEquiv2 as
described in Figure 3. This is obtained by adapting the ideas
of the Henzinger et al.’s RefinedSimilarity procedure in
Figure 1 to our SimEquiv1 algorithm. The following points
explain why this refined algorithm SimEquiv2 remains cor-
rect.

– For any block B of the current partition P , we also
maintain the “previous” relation prevRel(B). This
means that initially prevRel(B) is set to contain all
the blocks. Then, when a block B is selected by the
while-loop at some iteration i, prevRel(B) is updated
to store the current relation Rel(B) of B at this itera-
tion i.

– If C is a newly generated block after splitting P and
parentPprev

(C) is its corresponding parent block in the
partition before splitting then prevRel(C) is set such
that ∪prevRel(C) = ∪prevRel(parentPprev

(C)).
– Therefore, since the current relation decreases only —

i.e., if i and j are iterations such that j follows i and
B′ ⊆ B then ∪Rel j(B′) ⊆ ∪Rel i(B) — at each iter-
ation, the following invariant Inv1 holds: for any block
B ∈ P , ∪Rel(B) ⊆ ∪prevRel(B).

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)
0-7695-2908-9/07 $25.00 © 2007

SimEquiv2(PartitionRelation 〈P,Rel〉) {
for all B in P do prevRel(B) := P ;
while ∃B ∈ P such that (pre!(∪Rel(B)) 5= pre!(∪prevRel(B))) do {

/* Inv1: ∀B ∈ P. ∪Rel(B) ⊆ ∪prevRel(B) */
/* Inv2: ∀B,C ∈ P. C ∩ pre!(B) 5= ∅ ⇒ ∪Rel(C) ⊆ pre!(∪prevRel(B)) */
S := pre!(∪Rel(B)); Remove := pre!(∪prevRel(B)) ! S;
prevRel(B) := Rel(B);
Pprev := P ; Bprev := B;
P := Split(P, S);
for all C in P ! Pprev do {

Rel(C) := {D ∈ P | D ⊆ ∪Rel(parentPprev
(C))};

prevRel(C) := {D ∈ P | D ⊆ ∪prevRel(parentPprev
(C))};

}
for all C in P such that (C ∩ pre!(Bprev) 5= ∅) do Rel(C) := {D ∈ Rel(C) | D ∩ Remove = ∅};

}
}

Figure 3. Refined Simulation Equivalence Algorithm.

– The crucial point is the invariant Inv2: if C!∃∃B and
D ∈ Rel(C) then D ⊆ pre!(∪ prevRel(B)). This
property is initially true because at the beginning, for
each block B, prevRel(B) is set to P . Morever, Inv2

is maintained at each iteration because Remove is set
to pre!(∪prevRel(B))!pre!(∪Rel(B)) and for any
block C such that C!∃∃Bprev if some block D is con-
tained in Remove then D is removed from Rel(C).

– Finally, let us remark that the exit condition of the
while-loop, namely ∀B ∈ P. pre!(∪Rel(B)) =
pre!(∪prevRel(B)), is weaker than the exit condi-
tion that we would obtain as counterpart of the exit
condition of the while-loop of RefinedSimilarity , i.e.
∀B ∈ P. Rel(B) = prevRel(B).

If the exit condition of the while-loop of SimEquiv2 is
satisfied then, by Inv2, the exit condition of SimEquiv1 is
satisfied as well.

6.1. The Final Algorithm

Following the underyling idea of the refinement
of RefinedSimilarity to EfficientSimilarity , the algo-
rithm SimEquiv2 is further refined to its final ver-
sion SimEquiv3 in Figure 4. The idea is that instead
of recomputing at each iteration of the while-loop the
set Remove := pre!(∪prevRel(B)) ! pre!(∪Rel(B))
for the selected block B, we maintain a set of states
Remove(B) ⊆ Σ for each block B of the cur-
rent partition. For any block C, Remove(C) is up-
dated in order to satisfy the invariant condition Inv3:
Remove(C) contains exactly the set of states that belong

to pre!(∪prevRel(C)) but are not in pre!(∪Rel(C)),
where the previous relation prevRel(C) is logically de-
fined as in SimEquiv2, but is not really stored, Moreover,
the invariant condition Inv4 ensures that, for any block C,
pre!(∪ prevRel(C)) is a union of blocks of the current
partition. This property allows us to replace the split op-
eration Split(P,pre!(∪Rel(B))) in SimEquiv2 with the
equivalent split operation Split(P,pre!(∪ prevRel(B)) !
pre!(∪Rel(B))). The correctness of such replacement is
obtained from invariant Inv4 by exploiting the following re-
sult.

Lemma 6.3. Let P be a partition, T be a union of blocks
in P and S ⊆ T . Then, Split(P, S) = Split(P, T ! S).

The correctness of SimEquiv3 is a consequence of the
following observations.

– When a block Bprev of the current partition is se-
lected by the while-loop the corresponding remove set
Remove(Bprev) is set to empty. The invariant Inv3

is maintained at each iteration because for any block
C such that C!∃∃Bprev the for-loop at line 20 incre-
mentally adds to Remove(C) all the states s that are
in pre!(∪ prevRel(C)) but not in pre!(∪Rel(C)).

– If C is a newly generated block after splitting P and
parentPprev

(C) is its corresponding parent block in
the partition before splitting then Remove(C) is set
to Remove(parentPprev

(C)).

– As in SimEquiv2, for any block C such that
C!∃∃Bprev, all the blocks that are contained in
Remove(C) are removed from Rel(C).

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)
0-7695-2908-9/07 $25.00 © 2007

1 SimEquiv3(PartitionRelation 〈P,Rel〉) {
2 /* for all B in P do prevRel(B) := P ; */
3 for all B in P do Remove(B) := Σ ! pre!(∪Rel(B));
4 while ∃B ∈ P such that (Remove(B) 5= ∅) do {
5 /* Inv3: ∀C ∈ P. Remove(C) = pre!(∪prevRel(C)) ! pre!(∪Rel(C)) */
6 /* Inv4: ∀C ∈ P. Split(P,pre!(∪prevRel(C))) = P */
7 /* prevRel(B) := Rel(B); */
8 Remove := Remove(B);
9 Remove(B) := ∅;

10 Pprev := P ; Bprev := B;
11 P := Split(P,Remove);
12 for all C in P ! Pprev do {
13 Rel(C) := {D ∈ P | D ⊆ ∪Rel(parentPprev

(C))};
14 Remove(C) := ∪{D ∈ P | D ⊆ Remove(parentPprev

(C))};
15 }
16 for all C in P such that (C ∩ pre!(Bprev) 5= ∅) do
17 for all D in P such that (D ⊆ Remove) do
18 if (D ∈ Rel(C)) then {
19 Rel(C) := Rel(C) ! {D};
20 for all s ∈ pre!(D) such that (s 5∈ pre!(∪Rel(C))) do Remove(C) := Remove(C) ∪ {s};
21 }
22 }
23 }

Figure 4. Efficient Simulation Equivalence Algorithm.

If the exit condition of the while-loop of SimEquiv3

is satisfied then, by Inv1 and Inv3, the exit condition of
SimEquiv2 is satisfied as well.

6.2. Time Complexity

As far as time complexity is concerned, we exploit the
following key property of SimEquiv3. Let B ∈ Pin be
some block of the initial partition and let 〈Bi〉i∈It be a se-
quence of blocks selected by the while-loop in a sequence
of iterations It such that (a) for any i ∈ It , Bi ⊆ B and
(b) if an iteration j ∈ It follows an iteration i ∈ It , i.e.
i < j, then Bj is contained in Bi. Observe that B is
the parent block in Pin of all the Bi’s. Then, it turns out
that the corresponding remove sets in {Remove(Bi)}i∈It

are pairwise disjoint so that
∑

i∈It |Remove(Bi)| ≤ |Σ|.
This property guarantees that if the test D ⊆ Remove(Bi)
at line 17 is positive at some iteration i ∈ It then for all
the blocks D′ ⊆ D and for any successive iteration j > i,
with j ∈ It , the test D′ ⊆ Remove(Bj) will be negative.
Moreover, if the test D ∈ Rel(C) at line 18 is positive at
some iteration i ∈ It , so that D is removed from Rel(C),
then for all the blocks D′ and C ′ such that D′ ⊆ D and
C ′ ⊆ C the test D′ ∈ Rel(C ′) will be negative for all the
iterations j > i. Let us also observe that the overall num-
ber of newly generated blocks by the splitting operation at

line 11 is exactly given by 2(|Psim| − |Pin|). From these
observations, it is not hard to obtain that the overall time
complexity of the code of the for-loops at lines 16-17 is∑

B

∑
D

∑
b∈B |pre!({b})| ≤ 2|Psim||!|. Also, the over-

all time complexity of the code of the if-then statement at
lines 18-21 is

∑
C

∑
D

∑
d∈D |pre!({d})| ≤ 2|Psim||!|.

Furthermore, as described below, we use suitable resiz-
able data structures that allow us to execute the tests D ∈
Rel(C) at line 18 and s 5∈ pre!(∪Rel(C)) at line 20 in
O(1) time. A splitting operation Split(P,Remove) can be
executed in O(|Remove |)-time so that, by the above obser-
vation on the remove sets, the overall cost of all the splitting
operations is in O(|Psim||Σ|)-time. These properties allow
us to show that the total running time is in O(|Psim||!|).

Theorem 6.4. The simulation equivalence algorithm
SimEquiv3 runs in O(|Psim||!|)-time and O(|Psim||Σ|)-
space.

6.3. Data Structures

Our implementation uses the following data structures.

– Each state s ∈ Σ (represented as an integer) stores the
list of its predecessors in pre!({s}). This provides a
representation of the input transition system.

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)
0-7695-2908-9/07 $25.00 © 2007

– A block B of the current partition is represented by a
record that contains a list of of pointers to the states
in B. Moreover, any block B stores its corresponding
remove set B.Remove .

– Any block B also stores two integer arrays indexed
over Σ: for any x ∈ Σ, B.BlockCount(x) =
|{(x, y) | x!y, y ∈ B}| while B.RelCount(x) =∑

C∈Rel(B) C.BlockCount(x). The array RelCount
allows to implement the test s 5∈ pre!(∪Rel(C)) at
line 20 as C.RelCount(s) = 0 so that it takes constant
time. The array BlockCount is needed to maintain ef-
ficiently the array RelCount .

– The current partition is stored as a doubly linked list
P of blocks. Newly generated blocks are appended to
this list. Blocks are scanned from the beginning of this
list by performing the test whether the corresponding
remove set is empty or not. If an empty remove set of
some block B becomes nonempty then B is moved to
the end of P .

– The current relation Rel on the current partition P is
stored as a resizable |P | × |P | boolean matrix. The
algorithm adds new entries to this matrix as long as
a new block is generated from a splitting operation.
Hence, the total number of insert operations in the ma-
trix Rel is |Psim|− |Pin|. Since an insert operation in a
resizable array (whose capacity is doubled as needed)
takes an amortized constant time, the overall cost of
inserting new entries to this matrix is in O(|Psim|2)-
time.

7. Conclusion

We presented a new efficient algorithm for com-
puting simulation equivalence in O(|Psim||!|)-time and
O(|Psim||Σ|)-space, where Psim is the partition induced by
simulation equivalence on some Kripke structure (Σ,!).
This improves the best available time bound O(|Σ||!|)
given by Henzinger, Henzinger and Kopke’s [11] and by
Bloom and Paige’s [1] algorithms that however suffer from
a quadratic space complexity that is bounded from below
by Ω(|Σ|2). A better space bound is given by Gentilini et
al.’s [8] algorithm whose space complexity is in O(|Psim|2+
|Σ| log(|Psim|)), but that runs in O(|Psim|2|!|)-time. Our
algorithm is designed as an adaptation of Henzinger et al.’s
procedure and abstract interpretation techniques are used
for proving its correctness.

As future work, we plan to conduct an experimental eval-
uation of our algorithm and to compare its performance with
the existing implementations of Gentilini et al.’s [8] and Tan
and Cleaveland’s [16] algorithms. It is also definitely in-
teresting to investigate whether this new efficient algorithm
may admit a symbolic version based on BDDs.

References

[1] B. Bloom and R. Paige. Transformational design and imple-
mentation of a new efficient solution to the ready simulation
problem. Sci. Comp. Program., 24(3):189-220, 1995.

[2] M.C. Browne, E.M. Clarke and O. Grumberg. Characteriz-
ing finite Kripke structures in propositional temporal logic.
Theor. Comp. Sci., 59:115-131, 1988.

[3] D. Bustan and O. Grumberg. Simulation-based minimiza-
tion. ACM Trans. Comput. Log., 4(2):181-204, 2003.

[4] E.M. Clarke, O. Grumberg and D. Long. Model check-
ing and abstraction. ACM Trans. Program. Lang. Syst.,
16(5):1512–1542, 1994.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Proc. 4th ACM POPL,
pp. 238–252, 1977.

[6] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Proc. 6th ACM POPL, pp. 269–
282, 1979.

[7] D. Dams, O. Grumberg and R. Gerth. Generation of reduced
models for checking fragments of CTL. In Proc. 5th CAV,
LNCS 697:479–490, 1993.

[8] R. Gentilini, C. Piazza and A. Policriti. From bisimulation to
simulation: coarsest partition problems. J. Automated Rea-
soning, 31(1):73-103, 2003.

[9] R. Giacobazzi and E. Quintarelli. Incompleteness, coun-
terexamples and refinements in abstract model checking. In
Proc. 8th SAS, LNCS 2126:356-373, 2001.

[10] O. Grumberg and D.E. Long. Model checking and modular
verification. ACM Trans. Program. Lang. Syst., 16(3):843–
871, 1994.

[11] M.R. Henzinger, T.A. Henzinger and P.W. Kopke. Comput-
ing simulations on finite and infinite graphs. In Proc. 36th

FOCS, 453-462, 1995.

[12] A. Kucera and R. Mayr. Why is simulation harder than
bisimulation? In Proc. 13th CONCUR, LNCS 2421:594-
610, 2002.

[13] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani and S. Ben-
salem. Property preserving abstractions for the verification
of concurrent systems. Formal Methods in System Design,
6:1–36, 1995.

[14] R. Paige and R.E. Tarjan. Three partition refinement algo-
rithms. SIAM J. Comput., 16(6):973-989, 1987

[15] F. Ranzato and F. Tapparo. Generalized strong preserva-
tion by abstract interpretation. J. Logic and Computation,
17(1):157-197, 2007.

[16] L. Tan and R. Cleaveland. Simulation revisited. In Proc. 7th

TACAS, LNCS 2031:480-495, 2001.

22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007)
0-7695-2908-9/07 $25.00 © 2007

