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  ABSTRACT 

  The aims of this study were to investigate variation 
of milk coagulation property (MCP) measures and 
their predictions obtained by mid-infrared spectroscopy 
(MIR), to investigate the genetic relationship between 
measures of MCP and MIR predictions, and to estimate 
the expected response from a breeding program focusing 
on the enhancement of MCP using MIR predictions as 
indicator traits. Individual milk samples were collected 
from 1,200 Brown Swiss cows (progeny of 50 artificial 
insemination sires) reared in 30 herds located in north-
ern Italy. Rennet coagulation time (RCT, min) and curd 
firmness (a30, mm) were measured using a computerized 
renneting meter. The MIR data were recorded over the 
spectral range of 4,000 to 900 cm−1. Prediction models 
for RCT and a30 based on MIR spectra were developed 
using partial least squares regression. A cross-validation 
procedure was carried out. The procedure involved the 
partition of available data into 2 subsets: a calibration 
subset and a test subset. The calibration subset was 
used to develop a calibration equation able to predict 
individual MCP phenotypes using MIR spectra. The 
test subset was used to validate the calibration equa-
tion and to estimate heritabilities and genetic correla-
tions for measured MCP and their predictions obtained 
from MIR spectra and the calibration equation. Point 
estimates of heritability ranged from 0.30 to 0.34 and 
from 0.22 to 0.24 for RCT and a30, respectively. Herita-
bility estimates for MCP predictions were larger than 
those obtained for measured MCP. Estimated genetic 
correlations between measures and predictions of RCT 
were very high and ranged from 0.91 to 0.96. Estimates 
of the genetic correlation between measures and predic-
tions of a30 were large and ranged from 0.71 to 0.87. 
Predictions of MCP provided by MIR techniques can 
be proposed as indicator traits for the genetic enhance-
ment of MCP. The expected response of RCT and 
a30 ensured by the selection using MIR predictions as 
indicator traits was equal to or slightly less than the 

response achievable through a single measurement of 
these traits. Breeding strategies for the enhancement 
of MCP based on MIR predictions as indicator traits 
could be easily and immediately implemented for dairy 
cattle populations where routine acquisition of spectra 
from individual milk samples is already performed. 
  Key words:    milk coagulation property ,  mid-infrared 
spectroscopy ,  heritability ,  genetic correlation 

  INTRODUCTION 

  The coagulation ability of milk plays an important 
role in cheese production mainly because of its relation-
ships with cheese yield (Martin et al., 1997; Ikonen et 
al., 1999; De Marchi et al., 2007) and cheese quality 
(Ng-Kwai-Hang et al., 1989; Johnson et al., 2001). Good 
reactivity to rennet, high curd-firming capacity, good 
syneresis ability, and whey drainage are crucial features 
of milk for cheese-making. All these characteristics are 
generally referred to as milk coagulation properties 
(MCP). Assessment of MCP can be performed through 
computerized renneting meters, providing measures of 
rennet coagulation time (RCT, min) and curd firm-
ness (a30, mm), or by using alternative systems based 
on optical, thermal, mechanical, and vibrational meth-
ods, which have been comprehensively reviewed by 
O’Callaghan et al. (2002). Several studies have reported 
that exploitable additive genetic variation exists for 
RCT and a30 (Ikonen et al., 1997, 1999; Cassandro et al., 
2008) and, thereby, enhancement of these traits through 
breeding is a viable option. Large-scale recording of 
individual phenotypes for MCP remains a critical issue 
because available techniques are time consuming, and 
high-throughput automated measuring devices are lack-
ing. Because opportunities for breeding based on direct 
measures of individual MCP phenotypes are limited, 
optimal selection approaches for enhancing MCP have 
long been under investigation (Ikonen, 2000; Ikonen et 
al., 2004; Tyrisevä et al., 2004; Ojala et al., 2005). 

  Alternative methodologies for testing bovine milk 
rely on the use of infrared spectroscopy (Laporte et al., 
1998; Barbano and Lynch, 2006; Dal Zotto et al., 2008) 
as in the case of the mid-infrared spectroscopy (MIR). 
This technology, exhibiting reduced costs of analysis, 
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high throughput, and possibilities of large-scale ap-
plication, is widely used in milk recording programs 
to predict milk quality traits (e.g., milk protein and 
fat contents). Calibration equations to predict MCP of 
bovine milk by MIR spectroscopy have recently been 
developed, but the accuracy of such predictions seems 
to be questionable (Dal Zotto et al., 2008; De Marchi et 
al., 2008). The relevance of MIR predictions as exploit-
able indicator traits in breeding programs focusing on 
the enhancement of MCP relies largely on the genetic 
variation of such predictions and on the magnitude of 
the genetic correlation between measured and MIR-
predicted MCP. No estimates of such parameters are 
currently available in the literature.

The aims of this study were to investigate, using 
individual milk samples, variation of MCP measures 
and their predictions obtained with MIR techniques, to 
investigate the genetic relationship between measures 
of MCP and predictions, and to estimate the expected 
response from a breeding program focusing on the en-
hancement of MCP using MIR predictions as indicator 
traits.

MATERIALS AND METHODS

Sample Collection and MIR Spectra Acquisition

A total of 1,200 Italian Brown Swiss cows were sam-
pled during the period June 2006 to July 2007. Cows 
were offspring of 50 AI sires and were reared in 30 herds 
located in northern Italy. Individual milk samples (1 
per animal) were collected during the morning milking 
of a test day. After collection and with no preservative 
addition, milk samples were stored in portable refrig-
erators (4°C) and transferred to the milk quality lab 
of Veneto Agricoltura Institute (Thiene, Italy) where 
RCT and a30 were measured within 3 h after sample 
collection.

Mid-infrared spectra were obtained by analyzing 0.25 
mL of milk over the spectral range of 4,000 to 900 cm−1 
using a Milko-Scan FT120 equipped with a Fourier 
transform infrared interferometer (Foss Electric A/S, 
Hillerød, Denmark). Duplicate spectra were captured 
for each sample and averaged before data analysis.

Analysis of MCP and Quality Traits of Milk

Measures of MCP were obtained using a computer-
ized renneting meter (Polo Trade, Monselice, Italy). 
This measuring device has been widely used to inves-
tigate milk coagulation properties (Ikonen et al., 1999, 
2004; Ikonen, 2000; De Marchi et al., 2007, 2008; Cas-
sandro et al., 2008). The principle of the computerized 
renneting meter is based on control of the oscillation, 

which is driven by an electromagnetic field created by a 
swinging pendulum immersed in the milk container. A 
survey system measures differences in the electromag-
netic field caused by milk coagulation: the greater the 
extent of coagulation, the smaller the pendulum swing. 
The analysis produces a diagram as reported by Dal 
Zotto et al. (2008).

Milk samples (10 mL) were heated to 35°C, and 200 
μL of rennet (Hansen standard 190 with 63% of chy-
mosin and 37% of pepsin, Pacovis Amrein AG, Bern, 
Switzerland) diluted to 1.6% in distilled water was add-
ed to milk. Measurement of MCP ended within 31 min 
after the addition of the clotting enzyme. This analysis 
provided measurements of RCT (the time interval in 
minutes from the addition of the clotting enzyme to 
the beginning of the coagulation process) and a30 (the 
width, in millimeters, of the diagram at 31 min after 
the addition of rennet, which is a measure of curd firm-
ness). Samples that did not coagulate within 31 min 
were classified as noncoagulating milk.

In the same laboratory, fat, protein, and casein 
contents (Combi Foss 6000 FC, Foss Electric A/S), 
pH, titratable acidity, expressed in Soxhlet-Henkel 
degrees (Crison Compact D, Crison Instruments SA, 
Alella, Spain), and SCC (Cell Fossomatic 250, Foss 
Electric A/S) were determined. Values of SCC were 
converted by logarithm transformation to SCS [SCS 
= 3 + log2(SCC/100,000)]. Information on cows and 
herds were provided by the Milk Recording Agencies 
of Veneto, Italy. Pedigree information was supplied by 
the Italian Brown Swiss Cattle Breeders Association 
(ANARB, Verona, Italy) and included all known ances-
tors of sampled cows.

Statistical Analysis

Validation Procedure. After the application of ed-
iting procedures, which aimed to discard records with 
errors (e.g., individual identification spectra not match-
ing reference samples) or inconsistent information, data 
of cows with unknown sire, and records of noncoagu-
lating samples (4% of total records), 1,033 individual 
records including measures of MCP and MIR spectra 
were available for the statistical analysis.

To evaluate the ability of MIR to predict individual 
MCP phenotypes and the magnitude of the genetic 
correlation between measures of MCP and their pre-
dictions obtained from calibration equations based on 
MIR spectra, a pseudo-cross-validation procedure was 
carried out. The procedure involved the partition of 
available data into 2 subsets: a calibration subset and a 
test subset. The calibration subset was used to develop 
a calibration equation able to predict individual MCP 
phenotypes by using MIR spectra, whereas the test 
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subset was used to validate the calibration equation 
and to estimate heritabilities and the genetic correla-
tion for measured MCP and their predictions obtained 
from MIR spectra and the calibration equation. Ob-
servations (a minimum of 170) to be included in the 
calibration subset were randomly sampled from the 
set of available observations with the restriction that 
at least 5 observations per herd were present in the 
subset. Records not included in the calibration subset 
were included in the test subset. The cross-validation 
procedure was replicated 4 times with the constraint 
that observations included in the calibration subset of 
a replicate were not included in the calibration subsets 
of the other replicates.

Multivariate Data Analysis and Predictive 
Ability of MIR. The prediction equations were ob-
tained using the Unscrambler software (v.9.6; Camo 
A/S, Oslo, Norway). Prediction models were developed 
using partial least squares regression, which is widely 
used to establish a calibration model and to estimate 
correlations between reference data and values predict-
ed using spectral data (Hubert and Vanden Branden, 
2003). All calibration residuals were then combined 
to compute the root mean square error of calibration 
(RMSEC). Models were developed using raw spectra 
that, for MCP, provided the best performance. For the 
description of the proficiency of calibration models, the 
RMSEC and the correlation coefficient of calibration 
(Downey et al., 2005) were considered. A more detailed 
description of multivariate data analysis has been re-
ported in De Marchi et al. (2009).

Estimates of (Co)variance Components. For 
each test subset, estimation of (co)variance components 
for measures of MCP and their predictions (pMCP) 
based on calibration equations and MIR spectra were 
obtained through bivariate Bayesian analyses and lin-
ear models. The general form of the linear model, in 
matrix notation, can be written as follows:
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where y1 and y2 are vectors of MCP observations and 
pMCP, respectively; β1 and β2 are unknown vectors of 
“fixed” effects; c1 and c2 are unknown vectors of herd 
effect considered to be normally distributed, 
c 0 P I∼ N , ,⊗( )  where P is the (co)variance matrix for 
herd effects; a1 and a2 are unknown vectors of additive 
genetic effects of animals assumed to follow a multi-
variate normal distribution a 0 G A0∼ N , ,⊗( )  where G0 
is the (co)variance matrix for animal effects and A is 
the numerator of Wright’s relationship matrix; e1 and 

e2 are vectors of random residuals assumed to follow a 
normal distribution e 0 R I0∼ N , ,⊗( )  where R0 is the 
residual (co)variance matrix; X1 and X2 are known in-
cidence matrices relating fixed effects in β1 and β2 to y1 
and y2, respectively; W1 and W2 are known incidence 
matrices relating herd effects in c1 and c2 to y1 and y2, 
respectively; and Z1 and Z2 are known incidence matri-
ces relating additive genetic effects in a1 and a2 to y1 
and y2, respectively.

The fixed effects included in β1 and β2 were DIM 
classes (class 1: <50 d; class 2: from 50 to 90 d; class 3: 
from 91 to 120 d; class 4: from 121 to 150 d; class 5: 
from 151 to 180 d; class 6: from 181 to 220 d; class 7: 
from 221 to 260 d; class 8: 261 to 300 d; class 9: from 
301 to 350 d; and class 10: >350 d) and parity effects 
(class 1: first parity; class 2: second parity; class 3: third 
and later parities), respectively.

Flat priors were used for fixed effects and variance 
components. Marginal posterior distributions of un-
known parameters were estimated performing numeri-
cal integration by the Gibbs sampler, as implemented in 
the program TM (available on request from the author 
at andres.legarra@toulouse.inra.fr). A single chain of 
800,000 Gibbs samples was obtained for each bivariate 
analysis, with a burn-in of 10,000 samples. The effec-
tive length of the burn-in period and the chain size were 
calculated following the methods of Raftery and Lewis 
(1992) and Geyer (1992), respectively. Samples were 
saved every 200 iterations. The posterior median was 
used as a point estimate of (co)variance components 
and related parameters. Lower and upper bounds of 
the symmetric 95% probability density regions for heri-
tability (h2) and additive genetic correlation (rA) were 
obtained from the estimated marginal densities.

Heritabilities were computed as

 h2 A
2

A
2

H
2

E
2

=
+ +

σ

σ σ σ
, 

where σA
2 , σH

2 , and σE
2  are the additive genetic, herd, and 

residual variances, respectively.
Genetic correlations were computed as

 rA
MCP,pMCP

MCP pMCP

=
σ

σ σ
, 

where σMCP,pMCP is the additive genetic covariance be-
tween measures and MIR predictions of RCT (a30) and 
σMCP and σpMCP are the additive genetic standard devia-
tions for measures and MIR predictions of RCT (a30), 
respectively.
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Breeding Program

A closed nucleus dairy cattle population with over-
lapping generations was simulated using SelAction 
(Rutten et al., 2002) to compare predicted selection 
responses when direct measures or MIR predictions 
of coagulation properties were available as sources of 
information for a pseudo-BLUP selection index (Bi-
jma et al., 2001). With 2 sexes and a maximum age 
of 10 yr for both sexes, there were 20 age classes (10 
classes per each sex), and the time difference between 
2 consecutive classes was 1 yr. Culling was assumed to 
occur randomly at a rate equal to 10% of candidates for 
all age classes. Each year, 10 sires and 200 dams were 
selected to be parents of new animals. The number of 
breeding candidates selected from each age class was 
determined by truncation selection on pseudo-BLUP 
indices across age classes. Parents could not be selected 
from age class 1 because individuals of that class were 
not reproductive yet. Each selected male was mated at 
random to 20 dams and, because female fertility was 
80%, each dam produced 0.8 offspring (0.4 per each 
sex on average). The breeding scheme used a con-
ventional progeny-testing program and reproductive 
technologies different from AI (e.g., superovulation and 
embryo transfer) were not employed. Young bulls were 
progeny-tested by generating 100 daughters per bull 
through matings with cows randomly sampled outside 
the nucleus. The first lactation of all daughters of 
tested bulls was recorded and provided the phenotypic 
information used to estimate breeding values of young 
bulls. Genetic evaluation of females was mostly based 
on their own phenotypic information recorded during 
the first lactation. For individuals in age class 1 and 2, 
sources of information for the pseudo-BLUP selection 
index for animal i were the EBV of the sire and of 
the dam. When cows were 3 yr old, their phenotypic 
data became available and were an additional source of 
information for the index of those animals, but also for 
the index of their male and female half-sibs. Availability 
of progeny information occurred when bulls were 5 yr 
old. Selection indices for females were not updated with 
any progeny information or with additional phenotypic 
information recorded in the second and later lactations 
of cows.

Prediction of Selection Responses

The prediction of selection responses considered 2 al-
ternatives with the same breeding goal, which included 
MCP only. In alternative 1, it was assumed that the 
phenotypic information recorded in the first lactation 
of all cows was, for difficulties related to large-scale 
recording of individual MCP phenotypes, a single mea-

sure of RCT and a30. In alternative 2, MIR spectra were 
obtained for all cows and used to predict individual 
MCP phenotypes by analyzing up to 6 milk samples 
collected during the first lactation. Mid-infrared spec-
troscopy predictions of MCP were then used as sources 
of information in the construction of the index used 
to select breeding candidates in the simulated popula-
tion. Because no information on repeatability of MIR 
predictions was available, the expected responses were 
computed by assuming that the repeatability of MIR 
predictions ranged from 0.4 to 0.9. The number of MIR 
predictions of MCP available per cow ranged from 1 
to 6, and the values used for variances, heritabilities, 
and correlations were averages of estimates obtained 
in this study. Because heritability did not vary in our 
simulation, different values of repeatability of MIR pre-
dictions were simply the outcome of a changed ratio in 
permanent and temporary environmental variance.

RESULTS AND DISCUSSION

Descriptive Statistics

Descriptive statistics for MCP, milk yield, and milk 
quality traits are reported in Table 1. Milk yield aver-
aged 28.6 kg/d. Somatic cell score had the largest coef-
ficient of variation (CV), whereas pH had the smallest. 
Measures of MCP were very variable (RCT: CV = 
0.27; a30: CV = 0.21), facilitating the development of 
calibration equations based on MIR spectra. Average 
values for RCT and a30 were 15 min and 41.7 mm, 
respectively. These values are close to recommended 
values in practical cheese making by Zannoni and An-
nibaldi (1981) and similar to those reported by Mariani 
et al. (1997) for Brown Swiss cattle. The RCT and a30 
values observed in this study are indicative of faster 
coagulation rates and better results of the curd-firming 
process compared with those reported by Cassandro 
et al. (2008) for individual milk samples of Holstein-
Friesian cows and the difference was similar to those 
reported for bulk milk (De Marchi et al., 2008).

Predictions of Coagulation Properties

Descriptive statistics for calibration and test subsets 
of data are presented in Table 2. Means and CV of 
RCT and a30 of calibration sets were comparable among 
the 4 subsets and with total data. The RMSEC ranged 
between 2.15 and 2.63 min and between 5.72 and 6.58 
mm for RCT and a30, respectively. As suggested by 
Williams (2003), the coefficient of determination (R2) 
of each model allows the evaluation of the accuracy of 
the predictions; the RCT models (R2 from 0.61 to 0.69) 
allowed for the discrimination between large and small 
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RCT values, whereas the a30 models (R2 from 0.46 to 
0.52) did not allow this discrimination. The molecu-
lar basis for the prediction of MCP was investigated 
and highlights the importance of the protein and lipid 
regions of the MIR spectra in predicting MCP of indi-
vidual milk samples (De Marchi et al., 2009). Means 
and CV of the 4 calibration sets were consistent with 
those of the test subsets.

Results on the reliability of models based on MIR 
spectra for the prediction of RCT and a30 reported in 
this study are consistent with those reported by Dal 
Zotto et al. (2008) and De Marchi et al. (2009) in a 
preliminary investigation on the potential of MIR as a 
predictive tool for MCP.

Variance Components and Heritability

Point estimates (median of the marginal posterior 
density of the parameter) for the additive genetic, herd, 
and residual variances and heritabilities of MCP mea-

sured by a computerized renneting meter and predicted 
by MIR (pMCP) for each subset of the data are reported 
in Table 3. The additive genetic variance for measured 
MCP ranged from 4.40 to 5.48 min2 for RCT and from 
18.11 to 22.2 mm2 for a30. The additive genetic variances 
for pMCP were slightly lower than those estimated for 
measured MCP and varied across subsets of data from 
3.18 to 4.12 min2 for RCT and from 12.19 to 22.24 mm2 
for a30. Estimates of genetic variances for measures of 
RCT and a30 are comparable with those reported by 
Cassandro et al. (2008) for Italian Holstein-Friesian 
cows. The large additive genetic variance estimated 
for MCP and pMCP suggests possible exploitation of 
such variation in breeding programs for dairy cattle 
aiming for genetic improvement of milk coagulation 
ability. Direct selection for MCP might be the most 
effective selection strategy, but population-wide record-
ing of individual phenotypes for MCP is not applicable 
because of limitations imposed by features of computer-
ized renneting meters. Although EBV for MCP have 
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Table 1. Descriptive statistics (n = 1,033) of milk coagulation properties, milk yield, and milk quality traits 

Trait1 Mean CV, % Minimum Maximum

Milk yield, kg/d 28.6 28 7.4 68.0
DIM, d 202 62 6 597
Milk fat, % 3.98 19 0.88 6.99
Milk protein, % 3.72 10 2.68 5.41
Casein, % 2.88 10 1.98 4.16
Casein index, % 78 3 58 90
SCS 2.41 90 −4.55 8.73
pH 6.69 2 3.59 7.20
Titratable acidity, SH°/50 mL 3.25 13 0.85 4.77
RCT, min 15.0 27 2.0 29.3
a30, mm 41.7 21 6.0 64.0

1SH° = Soxhlet-Henkel degrees; SCS = log2 (SCC/100,000) + 3; RCT = rennet coagulation time for milk that 
coagulated; a30 = curd firmness for milk that coagulated. 

Table 2. Descriptive statistics for rennet coagulation time (RCT) and curd firmness (a30) for each subset of data1 

Item

Calibration set Test set

n Mean CV, % Minimum Maximum R2 RMSEC2 n Mean CV, % Minimum Maximum

RCT, min
 Subset 1 171 15.1 27 8.3 29.5 0.61 2.3 862 14.9 26 3.2 29.3
 Subset 2 170 15.2 27 7.5 27.0 0.61 2.6 863 14.9 26 3.2 29.3
 Subset 3 175 14.8 26 8.2 29.0 0.69 2.2 858 14.9 25 3.2 29.3
 Subset 4 171 15.3 28 3.2 29.6 0.64 2.5 862 14.9 25 7.5 29.2
a30, mm
 Subset 1 171 42.0 21 18 60 0.49 6.2 862 41.7 20 6 64
 Subset 2 170 40.8 20 12 59 0.52 5.7 863 41.9 21 6 64
 Subset 3 175 41.8 20 21 64 0.46 6.1 858 41.7 21 6 64
 Subset 4 171 41.5 22 6 59 0.49 6.6 862 41.7 20 8 64

1Calibration set = samples used to develop a calibration equation to predict individual RCT and a30 phenotypes using mid-infrared (MIR) 
spectra; test set = samples used to validate the calibration equation and to estimate heritabilities and the genetic correlation for measured RCT 
and a30 and their predictions obtained from MIR spectra and calibration equation. Subsets 1, 2, 3, and 4 are subsets of data used to validate 
the calibration equations and to estimate genetic parameters for measures of coagulation properties and their predictions obtained from MIR 
spectra and calibration equations.
2Root mean square error of calibration.



been obtained from direct measures of phenotypes in 
experimental studies (Ikonen, 2000; Cassandro et al., 
2008), selection strategies based on direct measures of 
MCP would be very hard to implement. High through-
put (potentially, hundreds of samples per hour), ease of 
use, and reduced cost of analysis make MIR technology 
a promising alternative for the assessment of MCP at 
the population level.

Estimates of variance due to herd effects on MCP 
measures ranged from 1.43 to 1.99 min2 for RCT and 
from 8.30 to 9.90 mm2 for a30. Compared with mea-
sures, MIR predictions of these traits exhibited a slight 
and a marked decrease in the estimated variances for 
RCT and a30, respectively. For a30, the estimated herd 
variance of MIR predictions was lower than 50% of the 
estimated herd variance obtained for a30 measures in 
all subsets of data with the exception of subset 4. No 
estimates of variance due to herd effects on MCP or 
of proportion of herd variance to total variance are 
currently available in the literature for comparison. 
However, Ikonen et al. (1999) observed a considerable 
variation for MCP across herds in bulk milk samples. 
In addition, results from studies dealing with factors 
that vary across herds exist. Some studies emphasized 
the importance of dietary energy levels on variation of 
MCP (Macheboeuf et al., 1993; Kreuzer et al., 1996) 
and of cheese yield and quality (Kefford et al., 1995).

Point estimates of heritability for MCP traits were 
larger for RCT (from 0.30 to 0.34) than for a30 (from 
0.22 to 0.24) and were consistent with estimates report-
ed by other studies for Ayrshire and Holstein-Friesian 
cattle populations (Ikonen et al., 1999; Tyrisevä et al., 
2004; Cassandro et al., 2008), but lower than estimates 
reported for Ayrshire cattle by Lindström et al. (1984) 
and Ikonen et al. (2004) or by von Oloffs et al. (1992) 
for Angler cows. Differences in breeds and statistical 

models might explain some of these inconsistencies. The 
estimated heritability for a30 measures obtained in this 
study were similar to those obtained by Tyrisevä et al. 
(2004) from a sample of Finnish Ayrshire and Holstein-
Friesian cows but lower than estimates reported by other 
authors. von Oloffs et al. (1992) reported estimates of 
heritability for a30 ranging from 0.30 (Holstein-Friesian) 
to 0.39 (Angler). Ikonen et al. (1999) estimated a heri-
tability value of 0.40 for a30 from a sample of Finnish 
Ayrshire and Holstein-Friesian, whereas in a study on 
Ayrshire cows, Ikonen et al. (2004) obtained estimates 
of heritability for a30 ranging from 0.22 to 0.39. The 
estimates of heritability for measures of MCP traits 
were larger than those obtained for some traits that are 
already included in the current breeding goal for the 
Italian Brown cattle population and offer an opportu-
nity of being exploited in selection programs aiming at 
MCP enhancement.

Heritability estimates for pMCP were larger than 
those obtained for measured MCP. For MIR-predicted 
RCT, the estimated heritability ranged from 0.34 to 
0.40 and, for predictions of a30, from 0.27 to 0.49. 
Heritability differences between MCP predictions and 
measures are largely attributable to changes in the 
magnitude of the estimated residual variance. Although 
all estimated variances for MIR-predicted data were 
smaller than those for measured MCP, the relative 
decreases were smaller for additive genetic variance 
than for the residual variance. The decrease in the 
herd variance estimate obtained for MIR predictions 
compared with measures was large for a30 only. For a30, 
the difference between heritability estimates obtained 
for MIR predictions and for measures was larger than 
for RCT because of smaller and larger differences in 
the estimated variance for genetic and nongenetic ef-
fects, respectively.
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Table 3. Posterior median (SD) for additive genetic (σA
2 ), herd (σH

2 ) and residual variance (σE
2 ) and heritabilities (h2) for measures and 

predictions by mid-infrared spectroscopy (MIR) of rennet coagulation time (RCT) and curd firmness (a30) 

Item1

MIR measures MIR predictions

σA
2 σH

2 σE
2 h2 σA

2 σH
2 σE

2 h2

RCT
 Subset 1 5.48 (1.57) 1.62 (0.78) 9.74 (1.25) 0.32 (0.08) 4.12 (1.15) 1.48 (0.62) 4.49 (0.85) 0.40 (0.10)
 Subset 2 5.00 (1.35) 1.99 (0.87) 8.02 (1.06) 0.33 (0.08) 3.18 (0.86) 1.64 (0.64) 3.66 (0.64) 0.37 (0.09)
 Subset 3 4.40 (1.39) 1.67 (0.77) 8.63 (1.11) 0.30 (0.08) 3.42 (0.96) 1.43 (0.60) 4.23 (0.73) 0.37 (0.09)
 Subset 4 4.94 (1.41) 1.43 (0.66) 7.73 (1.09) 0.34 (0.08) 3.97 (1.20) 1.36 (0.60) 6.02 (0.94) 0.34 (0.09)
a30
 Subset 1 18.11 (6.55) 9.67 (4.03) 52.11 (5.67) 0.22 (0.07) 17.09 (5.07) 4.67 (2.02) 19.80 (3.83) 0.41 (0.10)
 Subset 2 18.11 (6.55) 9.67 (4.03) 52.11 (5.68) 0.22 (0.07) 17.09 (5.09) 4.67 (2.03) 19.80 (3.84) 0.41 (0.10)
 Subset 3 22.20 (6.51) 9.90 (4.08) 50.21 (5.69) 0.27 (0.07) 22.24 (6.14) 4.57 (2.18) 15.81 (3.48) 0.49 (0.09)
 Subset 4 19.01 (7.18) 8.30 (3.73) 48.18 (5.91) 0.24 (0.08) 12.19 (4.48) 7.28 (2.92) 24.53 (3.56) 0.27 (0.09)

1Subsets 1, 2, 3, and 4 are subsets of data used to validate the calibration equations and to estimate genetic parameters for measures of coagula-
tion properties and their predictions obtained from MIR spectra and calibration equations.



Correlations Between Measures  
and MIR Predictions of MCP

Point estimates (posterior medians), standard devia-
tions, and symmetric 95% posterior density intervals 
for additive genetic (rA) and phenotypic (rP) correla-
tions between measures of MCP and their predictions 
by MIR are reported in Table 4. The estimated genetic 
correlations between measures and predictions of RCT 
were very large and ranged from 0.91 to 0.96, whereas 
the phenotypic correlations were smaller (0.67 to 0.72). 
Estimates of the genetic correlation between measures 
and predictions of a30 were also large (0.71 to 0.87), 
and greater than the phenotypic correlations (0.48 to 
0.54).

The estimated posterior densities of the genetic cor-
relations between measures and MIR predictions of 
MCP are depicted in Figure 1. The posterior densities 
were skewed and their shape was similar across subsets 
of data with the exception of densities estimated using 
subset 4. These densities exhibited a smaller degree of 
dispersion than those obtained from the analysis of sub-
sets 1, 2, and 3. The posterior densities of the genetic 
correlations between measures and MIR predictions 
for a30 were more dispersed than for RCT, indicating 
more uncertainty in the estimation of these parameters 
for a30 than for RCT. For RCT, the estimated sym-
metric 95% posterior density region indicated that, in 
the most unfavorable situation (subset 1), the genetic 
correlation between measures and MIR predictions had 
a 97.5% posterior probability of being greater than 0.7. 
The inferior bound of the estimated symmetric 95% 
posterior density interval of the genetic correlation be-
tween measures and predictions of a30 was much smaller 
than for RCT, but, also for this trait, the interval did 
not include zero. These results support the role of MIR 
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Table 4. Posterior median, SD, and symmetric 95% posterior density region (PDR95%) for additive genetic (rA) and phenotypic (rP) correlations 
between measures of rennet coagulation time and curd firmness and their predictions by mid-infrared spectroscopy (MIR) 

Correlation1

rA rP

Median SD PDR95% Median SD PDR95%

RCT with pRCT
 Subset 1 0.91 0.07 0.70 to 0.99 0.67 0.02 0.61 to 0.71
 Subset 2 0.93 0.06 0.75 to 0.99 0.61 0.03 0.55 to 0.67
 Subset 3 0.91 0.06 0.72 to 0.98 0.72 0.02 0.67 to 0.77
 Subset 4 0.96 0.03 0.85 to 0.99 0.69 0.02 0.64 to 0.74
a30 with pa30
 Subset 1 0.71 0.15 0.35 to 0.94 0.51 0.03 0.43 to 0.57
 Subset 2 0.74 0.15 0.35 to 0.94 0.51 0.03 0.44 to 0.57
 Subset 3 0.77 0.16 0.34 to 0.95 0.48 0.04 0.39 to 0.55
 Subset 4 0.87 0.11 0.58 to 0.97 0.54 0.03 0.37 to 0.58

1RCT = rennet coagulation time measured by a computerized renneting meter; pRCT = rennet coagulation time predicted by calibration equa-
tions using MIR spectra; a30 = curd firmness measured by a computerized renneting meter; pa30 = curd firmness predicted by calibration equa-
tions using MIR spectra. Subsets 1, 2, 3, and 4 are subsets of data used to validate the calibration equations and to estimate genetic parameters 
for measures of coagulation properties and their predictions obtained from MIR spectra and calibration equations.

Figure 1. Marginal posterior distributions of the additive genetic 
correlation (rA) between measures obtained with a computerized ren-
neting meter and their predictions provided by mid-infrared (MIR) 
spectroscopy for a) rennet coagulation time or b) curd firmness. 
Subsets 1, 2, 3, and 4 are subsets of data used to validate the calibra-
tion equations and to estimate genetic parameters for measures of co-
agulation properties and their predictions obtained from MIR spectra 
and calibration equations.
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Figure 2. Relationships between sire rankings based on EBV for measures and predictions by mid-infrared (MIR) spectroscopy for a) rennet 
coagulation time or b) curd firmness for each subset of the data. RCT = rennet coagulation time measured by a computerized renneting meter; 
pRCT = rennet coagulation time predicted by calibration equations using MIR spectra; a30 = curd firmness measured by a computerized rennet-
ing meter; pa30 = curd firmness predicted by calibration equations using MIR spectra. Subsets 1, 2, 3, and 4 are subsets of data used to validate 
the calibration equations and to estimate genetic parameters for measures of coagulation properties and their predictions obtained from MIR 
spectra and calibration equations. Subset 1 = sires (n = 48) with at least 3 daughters (mean = 16; minimum = 3; maximum = 65); subset 2 = 
sires (n = 50) with at least 3 daughters (mean = 16; minimum = 3; maximum = 62); subset 3 = sires (n = 49) with at least 3 daughters (mean 
= 16; minimum = 3; maximum = 65); subset 4 = sires (n = 49) with at least 3 daughters (mean = 16; minimum = 3; maximum = 64).



predictions as indicator traits for MCP in breeding 
programs aiming to enhance coagulation properties of 
milk.

The relationships between sire rankings based on 
EBV for measures and for MIR predictions of MCP 
are depicted in Figure 2. The correlations between sire 
EBV based on measures and prediction of RCT ranged 
from 0.96 to 0.99, whereas the range of the same cor-
relations for a30 was from 0.85 to 0.93. As detectable 
from inspection of Figure 2, changes in sire rankings 
due to the use, as ranking criterion, of EBV for MIR 
predictions instead of those for MCP measures were 
limited and occurred most often at intermediate rank 
positions.

Response to Selection for Enhanced  
Coagulation Properties

Expected responses to selection for enhanced coagu-
lation properties of milk based on MIR predictions as 
indicator traits are presented in Table 5. The deter-
ministic simulation considered a single-trait breeding 
goal and selection aimed to enhance only RCT or only 
a30. Direct selection for enhanced MCP was based on a 

single phenotypic measure collected during the first lac-
tation of cows. This was because of difficulties related 
to large-scale recording of these traits with comput-
erized renneting meters, which make the recording of 
repeated measures per cow unfeasible or too expensive. 
The response to direct selection for these traits was 
−0.420 min/yr and 0.804 mm/yr (data not reported in 
table) for RCT and a30, respectively. When selection for 
enhanced MCP was based on a single MIR prediction 
of those traits, the predicted response was 94.05 and 
80.72% for RCT and a30, respectively, of the response 
to selection based on a single measure of these traits. 
In current milk recording programs, availability of re-
peated MIR predictions of MCP would be easily attain-
able because, in many countries, MIR techniques have 
already been implemented to predict protein and fat 
contents of individual milk samples, and collection of 
individual milk samples during lactation is carried out 
more than once. When predicting selection responses, 
we assumed a large range of variation of the repeat-
ability (rp) of MIR predictions. Because heritability 
of MIR predictions was held constant, variation of rp 
was obtained by varying the ratio of permanent en-
vironmental to temporary environmental variance. As 
a result, situations with a single measurement gave a 
constant response, even though a decrease of response 
with decreased repeatability might be expected. This 
is because heritability decreases when absolute total 
environmental variance increases at constant genetic 
variance. In the most favorable situation (i.e., rp = 0.4 
and availability of 6 MIR predictions), the expected 
response obtained using MIR predictions was, for RCT, 
slightly greater than the response ensured by selection 
using a single measures of RCT. For a30, using MIR pre-
dictions instead of a single measure of the trait caused 
a limited decrease (−13.6%) in the selection response. 
As expected, the increase of the response due to the use 
of multiple MIR predictions of MCP was small when 
the repeatability of MIR prediction increased.

CONCLUSIONS

Predictions of MCP provided by MIR techniques 
can be proposed as indicator traits when breeding for 
enhanced coagulation properties of milk is of interest. 
The genetic response in RCT and a30 ensured by the 
selection using MIR predictions as indicator traits is 
expected to be equal to or slightly lower than the re-
sponse achievable through direct measurement of the 
traits. Breeding strategies for the enhancement of MCP 
could be easily and immediately implemented for dairy 
cattle populations in which routine acquisition of spec-
tra from individual milk samples is already performed. 
Studies on the genetic relationships between MCP 
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Table 5. Predicted response (Δ) of milk coagulation properties to 
selection based on mid-infrared spectroscopy (MIR) predictions as 
indicator traits for rennet coagulation time (RCT) and curd firmness 
(a30)

1 

Repeatability of 
MIR predictions n2 Δ RCT, % Δ a30, %

0.4 1 94.05 80.72
2 97.14 83.33
4 99.76 85.57
6 100.71 86.57

0.5 1 94.05 80.72
2 96.67 82.83
4 98.33 84.33
6 99.05 84.95

0.6 1 94.05 80.72
2 95.95 82.21
4 97.14 83.33
6 97.62 83.71

0.7 1 94.05 80.72
2 95.48 81.84
4 96.43 82.46
6 96.70 82.83

0.8 1 94.05 80.72
2 95.00 81.34
4 95.48 81.84
6 95.71 81.96

0.9 1 94.05 80.72
2 94.52 80.97
4 94.76 81.22
6 94.76 81.22

1Predicted responses are expressed as fractions of the expected re-
sponse to direct selection for enhanced milk coagulation properties 
based on a single measurement of RCT (Δ RCT = −0.420 min/yr) or 
a30 (Δ a30 = 0.804 mm/yr).
2Number of MIR predictions available in the first lactation of cows.



predictions and traits included in the current breeding 
goal of dairy cattle populations will be the matter of 
future studies.

ACKNOWLEDGMENTS

The authors acknowledge the Italian Ministry of Uni-
versity and Research for financial support (PRIN2005-
prot. 2005074889_002). The authors gratefully acknowl-
edge the Provincial Breeders Associations of Treviso, 
Venezia, Vicenza, and Padova, and the Italian Brown 
Swiss Cattle Breeders Association (ANARB) for having 
provided milk recording and pedigree data, and the lab 
of Veneto Agricoltura (Thiene, Italy) for milk analyses. 
The support by Trento province and Superbrown Con-
sortium of Bolzano and Trento is also acknowledged. 
The authors also acknowledge E. López de Maturana 
for the use of the TM program.

REFERENCES

Barbano, D. M., and J. M. Lynch. 2006. Major advances in testing 
of dairy products: Milk component and dairy product attribute 
testing.  J. Dairy Sci.  89:1189–1194.

Bijma, P., J. A. M. Van Arendonk, and J. A. Woolliams. 2001. 
Predicting rates of inbreeding for livestock improvement schemes.  
J. Anim. Sci.  79:840–853.

Cassandro, M., A. Comin, M. Ojala, R. Dal Zotto, M. De Marchi, 
L. Gallo, P. Carnier, and G. Bittante. 2008. Genetic parameters 
for milk coagulation properties and their relationships with milk 
yield and quality traits in Italian Holstein cows.  J. Dairy Sci.  
91:371–376.

Dal Zotto, R., M. De Marchi, A. Cecchinato, M. Penasa, M. Cassandro, 
P. Carnier, L. Gallo, and G. Bittante. 2008. Reproducibility and 
repeatability of measures of milk coagulation properties and 
predictive ability of mid-infrared reflectance spectroscopy.  J. 
Dairy Sci.  91:4103–4112.

De Marchi, M., G. Bittante, R. Dal Zotto, C. Dalvit, and M. Cassandro. 
2008. Effect of Holstein Friesian and Brown Swiss breeds on quality 
of milk and cheese.  J. Dairy Sci.  91:4092–4102.

De Marchi, M., R. Dal Zotto, M. Cassandro, and G. Bittante. 2007. 
Milk coagulation ability of five dairy cattle breeds.  J. Dairy Sci.  
90:3986–3992.

De Marchi, M., C. C. Fagan, C. P. O’Donnell, A. Cecchinato, R. Dal 
Zotto, M. Cassandro, M. Penasa, and G. Bittante. 2009. Prediction 
of coagulation properties, titrable acidity, and pH of bovine milk 
using mid-infrared spectroscopy.  J. Dairy Sci.  92:423–432.

Downey, G., E. Sheehan, C. Delahunty, D. O’Callaghan, T. Guinee, 
and V. Howard. 2005. Prediction of maturity and sensory attributes 
of Cheddar cheese using near infrared spectroscopy.  Int. Dairy J.  
15:701–709.

Geyer, C. J. 1992. Practical Markov chain Monte Carlo.  Stat. Sci.  
7:473–511.

Hubert, M., and K. Vanden Branden. 2003. Robust methods for partial 
least squares regression.  J. Chemometr.  17:537–549.

Ikonen, T. 2000. Possibilities of genetic improvement of milk 
coagulation properties of dairy cows. PhD Diss. Univ. Helsinki, 
Finland. http://ethesis.helsinki.fi/julkaisut/maa/kotie/vk/ikonen.

Ikonen, T., K. Ahlfors, R. Kempe, M. Ojala, and O. Ruottinen. 
1999. Genetic parameters for the milk coagulation properties and 
prevalence of noncoagulating milk in Finnish dairy cows.  J. Dairy 
Sci.  82:205–214.

Ikonen, T., A. Morri, A.-M. Tyrisevä, O. Ruottinen, and M. 
Ojala. 2004. Genetic and phenotypic correlations between milk 

coagulation properties, milk production traits, somatic cell count, 
casein content and pH of milk.  J. Dairy Sci.  87:458–467.

Ikonen, T., M. Ojala, and E.-L. Syväoja. 1997. Effects of composite 
casein and β-lactoglobulin genotypes on renneting properties and 
composition of bovine milk by assuming an animal model.  Agric. 
Food Sci. Finl.  6:283–294.

Johnson, M. E., C. M. Cen, and J. J. Jaeggi. 2001. Effect of rennet 
coagulation time on composition, yield, and quality of reduced-fat 
Cheddar cheese.  J. Dairy Res.  84:1027–1033.

Kefford, B., M. P. Christian, B. J. Sutherland, J. J. Mayes, and C. 
Grainger. 1995. Seasonal influences on Cheddar cheese manufacture: 
Influence of diet quality and stage of lactation.  J. Dairy Res.  
62:529–537.

Kreuzer, M., A. M. von Siebenthal, A. Kaufmann, H. Rätzer, E. Jakob, 
and F. Sutter. 1996. Determination of the relative efficacy to 
enhance milk renneting properties of alterations in dietary energy, 
breed and stage of lactation.  Milchwissenschaft  51:633–637.

Laporte, M.-F., R. Martel, and P. Paquin. 1998. The near-infrared 
optic probe for monitoring rennet coagulation in cow’s milk.  Int. 
Dairy J.  8:659–666.

Lindström, U. B., V. Antila, and J. Syväjärvi. 1984. A note on some 
genetic and nongenetic factors affecting clotting time of Ayrshire 
milk.  Acta Agric. Scand.  34:349–355.

Macheboeuf, D., J.-B. Coulon, and P. D’Hour. 1993. Effect of breed, 
protein genetic variants and feeding on cows’ milk coagulation 
properties.  J. Dairy Res.  60:43–54.

Mariani, P., P. Serventi, and E. Fossa. 1997. Contenuto di caseina, 
varianti genetiche ed attitudine tecnologico casearia del latte 
delle vacche di razza Bruna nella produzione del formaggio grana.  
Allegato a La Razza Bruna Italiana  2:8–14.

Martin, B., J.-F. Chamba, J.-B. Coulon, and E. Perreard. 1997. Effect 
of milk chemical composition and clotting characteristics on 
chemical and sensory properties of Reblochon de Savoie cheese.  J. 
Dairy Res.  64:157–162.

Ng-Kwai-Hang, K. F., I. Politis, R. I. Cue, and A. S. Marziali. 1989. 
Correlations between coagulation properties of milk and cheese 
yielding capacity and cheese composition.  Can. Inst. Food Sci. 
Technol.  22:291–294.

O’Callaghan, D. J., C. P. O’Donnell, and F. A. Payne. 2002. Review 
of systems for monitoring curd setting during cheesemaking.  Int. 
J. Dairy Technol.  55:65–74.

Ojala, M., A. M. Tyrisevä, and T. Ikonen. 2005. Genetic improvement 
of milk quality traits for cheese production. Pages 307–311 
in Indicators of Milk and Beef Quality. J. F. Hocquette and S. 
Gigli, ed. Wageningen Academic Publishers, Wageningen, the 
Netherlands.

Raftery, A. E., and S. M. Lewis. 1992. How many iterations in the 
Gibbs Sampler? Pages 763–774 in Bayesian Statistics IV. J. M. 
Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, ed. 
Oxford Univ. Press, New York, NY.

Rutten, M. J., P. Bijma, J. A. Woolliams, and J. A. M. Van Arendonk. 
2002. SelAction: Software to predict selection response and rate of 
inbreeding in livestock breeding programs.  J. Hered.  93:456–458.

Tyrisevä, A. M., T. Vahlsten, O. Ruottinen, and M. Ojala. 2004. 
Noncoagulation of milk in Finnish Ayrshire and Holstein-Friesian 
cows and effect of herds on milk coagulation ability.  J. Dairy Sci.  
87:3958–3966.

von Oloffs, K., H. Schulte-Coerne, K. Pabst, and H. O. Gravert. 1992. 
Die Bedeutung der Proteinvarianten für genetische Unterschiede 
in der Käsereitauglichkeit der Milch.  (The relevance of protein 
variants to genetic differences in cheese making properties in milk). 
Zuchtungskunde  64:20–26.

Williams, P. 2003. Near-infrared technology getting the best out of 
light. Page 109 in A Short Course in the Practical Implementation 
of Near Infrared Spectroscopy for the User. 1.1 ed. PDKProjects 
Inc., Nanaimo, Canada.

Zannoni, M., and S. Annibaldi. 1981. Standardization of the renneting 
ability of milk by Formagraph.  Sci. Tecn. Latt. Cas.  32:79–94.

5313BREEDING FOR MILK COAGULATION PROPERTIES

Journal of Dairy Science Vol. 92 No. 10, 2009


	Mid-infrared spectroscopy predictions as indicator traits in breeding programs for enhanced coagulation properties of milk
	Introduction
	Materials and Methods
	Sample Collection and MIR Spectra Acquisition
	Analysis of MCP and Quality Traits of Milk
	Statistical Analysis
	Validation Procedure
	Multivariate Data Analysis and Predictive Ability of MIR
	Estimates of (Co)variance Components

	Breeding Program
	Prediction of Selection Responses

	Results and Discussion
	Descriptive Statistics
	Predictions of Coagulation Properties
	Variance Components and Heritability
	Correlations Between Measures and MIR Predictions of MCP
	Response to Selection for Enhanced Coagulation Properties

	Conclusions
	Acknowledgments
	References


