
Prediction of coagulation properties, titratable acidity, and pH of bovine  
milk using mid-infrared spectroscopy

M. De Marchi,*1 C. C. Fagan,† C. P. O’Donnell,† A. Cecchinato,* R. Dal Zotto,* M. Cassandro,* M. Penasa,*  
and G. Bittante*
*Department of Animal Science, University of Padova, Viale dell’Università 16, 35020 Legnaro, Padova, Italy
†Biosystems Engineering, UCD School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland

ABSTRACT

This study investigated the potential application 
of mid-infrared spectroscopy (MIR 4,000–900 cm−1) 
for the determination of milk coagulation properties 
(MCP), titratable acidity (TA), and pH in Brown 
Swiss milk samples (n = 1,064). Because MCP directly 
influence the efficiency of the cheese-making process, 
there is strong industrial interest in developing a rapid 
method for their assessment. Currently, the determina-
tion of MCP involves time-consuming laboratory-based 
measurements, and it is not feasible to carry out these 
measurements on the large numbers of milk samples 
associated with milk recording programs. Mid-infrared 
spectroscopy is an objective and nondestructive tech-
nique providing rapid real-time analysis of food compo-
sitional and quality parameters. Analysis of milk rennet 
coagulation time (RCT, min), curd firmness (a30, mm), 
TA (SH°/50 mL; SH° = Soxhlet-Henkel degree), and 
pH was carried out, and MIR data were recorded over 
the spectral range of 4,000 to 900 cm−1. Models were 
developed by partial least squares regression using un-
treated and pretreated spectra. The MCP, TA, and pH 
prediction models were improved by using the combined 
spectral ranges of 1,600 to 900 cm−1, 3,040 to 1,700 
cm−1, and 4,000 to 3,470 cm−1. The root mean square 
errors of cross-validation for the developed models were 
2.36 min (RCT, range 24.9 min), 6.86 mm (a30, range 
58 mm), 0.25 SH°/50 mL (TA, range 3.58 SH°/50 mL), 
and 0.07 (pH, range 1.15). The most successfully pre-
dicted attributes were TA, RCT, and pH. The model 
for the prediction of TA provided approximate predic-
tion (R2 = 0.66), whereas the predictive models devel-
oped for RCT and pH could discriminate between high 
and low values (R2 = 0.59 to 0.62). It was concluded 
that, although the models require further development 
to improve their accuracy before their application in 

industry, MIR spectroscopy has potential application 
for the assessment of RCT, TA, and pH during routine 
milk analysis in the dairy industry. The implementation 
of such models could be a means of improving MCP 
through phenotypic-based selection programs and to 
amend milk payment systems to incorporate MCP into 
their payment criteria.
Key words:  Brown Swiss milk, coagulation proper-
ties, mid-infrared spectroscopy, chemometrics

INTRODUCTION

Cheese yield is influenced by coagulation properties of 
milk (MCP), which can vary greatly from cow to cow, 
with 30 to 40% of this variation explained by genetic 
differences (Ikonen et al., 2004; Cassandro et al., 2008). 
Improvement of MCP will facilitate the optimization 
of cheese moisture, yield, and quality (O’Callaghan et 
al., 2000). Selection of milk for cheesemaking on the 
basis of its MCP would greatly assist the cheese maker 
in obtaining greater and more consistent cheese yields. 
Several studies have demonstrated that genetic improve-
ment of MCP could be employed to improve cheese 
yield (Ikonen, 2000); in fact, a few MCP measurements 
per cow per lactation would be sufficient for a reliable 
genetic evaluation (Ikonen et al., 1999; Bittante et al., 
2002; Cassandro et al., 2008).

O’Callaghan et al. (2002) reviewed several systems 
(optical, thermal, mechanical, and vibrational) for moni-
toring milk coagulation during cheesemaking. However, 
all the methods reviewed have limitations for use in 
large-scale MCP determination. The measurements are 
time-consuming and hence, direct assessment of MCP 
for all cows involved in milk recording programs is not 
feasible. Skilled personnel are also required to carry 
out these techniques. One such technique for the as-
sessment of MCP is the computerized renneting meter 
(Polo Trade, Monselice, Italy), which is based on the 
drag force technique (Ikonen et al., 2004; Cassandro et 
al., 2008; De Marchi et al., 2008). It can determine the 
rennet coagulation time (RCT, min) and curd firmness 
(a30, mm) of up to 10 samples concurrently.
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Several factors influence milk coagulation kinetics in-
cluding the nature and concentration of the coagulation 
enzyme, temperature, acidity, and calcium and protein 
concentrations of the milk (O’Callaghan et al., 2001). 
Titratable acidity (TA) plays a fundamental role in all 
phases of milk coagulation. This includes the aggrega-
tion rate of para-casein micelles and the reactivity of 
rennet. Titratable acidity also influences the rate of sy-
neresis and determines the suitability of milk for cheese 
making. In the production of premium cheeses, milk 
with low acidity (hypoacid milk) is generally considered 
unsuitable for cheesemaking because of its negative ef-
fects on the rheology of the acid-rennet curd and on the 
textural properties of the cheese paste (Formaggioni et 
al., 2001). The pH of milk affects both the enzymatic 
and aggregations reactions; that is, lowering the pH 
decreases the colloidal stability of milk.

Mid-infrared (MIR) spectroscopy involves the mea-
surement of the intensity of the absorption by a sample 
at wavelengths in the spectral range of 4,000 to 200 
cm−1. The wavelength at which absorption occurs is 
characteristic of specific types of chemical bonds. Mid-
infrared spectroscopy is widely employed in routine 
quality control applications. It has been applied to the 
measurement of milk protein content (Etzion et al., 
2004) and composition (Lynch et al., 2006), and predic-
tion of cheese texture (Fagan et al., 2007).

Although MIR spectroscopy has been applied for 
the determination of several milk properties (e.g., milk 
composition), no studies are available in literature in-
vestigating its use for the combined prediction of MCP 
and milk acidity. Karoui et al. (2006) predicted the 

pH and other Emmental cheese properties using MIR 
spectroscopy, whereas Al-Qadiri et al. (2008) predicted 
the pH of pasteurized skim milk using short wavelength 
near-infrared spectroscopy.

The development of a technology for the rapid and 
simultaneous measurement of milk could facilitate the 
assessment of all milk properties (protein, lipid, casein, 
somatic cell score, bacterial count, MCP, pH, TA) that 
are critical for the genetic selection of dairy cattle. To 
date the lack of demonstrated technologies for rapid 
routine determination of MCP has restricted the use 
of MCP measurements in the dairy industry. The ob-
jective of this study was to investigate the potential 
application of MIR spectroscopy to predict MCP and 
acidity (TA and pH) of individual milk Brown Swiss 
samples.

MATERIALS AND METHODS

Sample Collection

A total of 1,200 Brown Swiss cows reared in 37 herds 
located in northern Italy were sampled from June 2006 
to July 2007. After initial data screening, which aimed 
to remove records with incomplete information, 1,064 
samples were available for the study. The average num-
ber of days in milk and milk yield of the cows selected 
for this study were (±SD) 201 d (±121 d) and 28 kg/d 
(±8 kg/d) respectively.

After collection, milk samples without any preser-
vative were stored in portable refrigerators (4°C) and 
transferred to the milk quality laboratory of the Veneto 
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Figure 1. Data output from the milk coagulation meter showing calculated parameters: rennet coagulation time and curd firmness 30 min 
after addition of the clotting enzyme.



Agricoltura Institute (Thiene, Italy). All analyses were 
done within 3 h of collection. Measurements of RCT, 
a30, TA, and pH were also carried out.

Coagulation Properties

Measurements of MCP were carried out using a com-
puterized renneting meter (Polo Trade). Samples (10 
mL) were heated to 35°C, and 200 μL of rennet (Han-
sen standard 190 with 63% chymosin and 37% pepsin, 
Pacovis Amrein AG, Bern, Switzerland) diluted to 1.6% 
(wt/wt) in distilled water was added to milk. Measure-
ment of MCP ended at 31 min after the addition of the 
enzyme. The principle of the computerized renneting 
meter is based on the control of the oscillation that is 
driven by an electromagnetic field created by a swing-
ing pendulum. A survey system measures differences in 
the electromagnetic field due to milk coagulation. Dur-
ing milk coagulation, a pendulum is immersed into the 
milk container. The greater the extent of coagulation, 
the smaller the pendulum swing.

This analysis provided measurements of RCT, which 
is the time between the addition of the clotting enzyme 
and the beginning of the coagulation process, and a30, 
measured 31 min after addition of the clotting enzyme 
(Figure 1). This method, which is considered to be a 
reference method for RCT and a30 determination, has 
been widely used to monitor the milk coagulation prop-
erties (Ikonen et al., 1999; Ikonen, 2000; Ikonen et al., 
2004; Cassandro et al., 2008).

Titratable Acidity and pH

Titratable acidity was recorded as Soxhlet-Henkel 
degree (SH°) using a Crison Compact D meter (Crison 
Instruments SA, Alella, Spain) according to the method 
proposed by Anonymous (1963), and pH was measured 
with a pH meter (Crison Instruments SA).

MIR Acquisition

The MIR spectra were collected from 0.25-mL sam-
ples over the spectral range of 4,000 to 900 cm−1 using a 
Milko-Scan FT120 Fourier transform infrared (FTIR) 
interferometer (Foss Electric A/S, Hillerød, Denmark). 
Duplicate spectra were captured for each sample and 
averaged before data analysis.

Multivariate Data Analysis

Principal component analysis (PCA) and partial 
least square (PLS) regression were performed using 
the Unscrambler software (v.9.6; Camo A/S, Oslo, 
Norway). Spectral data subjected to PCA and PLS 

produce a new smaller set of variables called principal 
components (PC) or loadings, respectively. Principal 
components analysis provides graphical representations 
of similarities and differences between spectra, and was 
employed to identify possible outliers in the spectral 
data set and to investigate sample distribution (Mar-
tens and Naes, 1989). Partial least squares regression 
is widely used to establish a calibration model and to 
provide a correlation between reference data and values 
predicted using MIR spectral data (Hubert and Vanden 
Branden, 2003; Al-Qadiri et al., 2008).

Prediction models were developed using PLS re-
gression and confirmed using random cross-validation 
(number of segment = 20 and samples per segment 
= 53). All prediction residuals were then combined to 
compute the root mean square error of cross-validation 
(RMSECV; Hubert and Vanden Branden, 2003). 
Models were developed using raw, normalized (N), 
multiplicative scatter corrected (MSC), first deriva-
tive (Savitzky-Golay, 3 data points each side), and N 
plus first derivative spectra. Several criteria were used 
to determine the proficiency of the predictive models; 
RMSECV, optimum number of PLS loadings (#L), 
and the correlation coefficient (r; Hubert and Vanden 
Branden, 2003; Downey et al., 2005).

The practical utility of the calibrations were assessed 
using the range error ratio (RER). Values for this ratio 
are calculated by dividing the range of a given param-
eter by the RMSECV for that parameter (Williams, 
1987). Although susceptible to the presence of extreme 
values at both ends of the range, the RER is useful 
for assessing the practical utility of predictive models. 
Models with an RER of <3 have little practical utility; 
RER values of between 3 and 10 indicate limited to 
good practical utility and >10 the model has a high 
utility value (Williams, 1987). In this study the pre-
ferred model was that with the lowest RMSECV value, 
the greatest r value, and the lowest #L.

RESULTS AND DISCUSSION

Coagulation Properties, TA, and pH

A summary of the values obtained are shown in Table 
1. The table highlights the high degree of variability in 
RCT (CV = 26%) and a30 (CV = 21%) measurements, 
which should facilitate the development of robust mod-
els. The mean values of RCT (14.9 min) and a30 (41.7 
mm) are close to the optimal values recommended for 
cheese making as proposed by Zannoni and Annibaldi 
(1981). The values for RCT, a30, TA, and pH are simi-
lar to those reported by Mariani et al. (1997) in Brown 
Swiss milk samples. Rennet coagulation time and a30 
values reported in this study are indicative of faster 
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coagulation rates than those reported by Cassandro et 
al. (2008) for individual Holstein-Friesian milk samples 
(16.9 min and 32 mm). The high variability of TA val-
ues was also similar to those reported by De Marchi et 
al. (2007, 2008) and Cassandro et al. (2008).

MIR Spectra

Previous research has recommended that before 
analysis a portion of the MIR spectra may be omitted 
because of its low signal-to-noise ratio (Pillonel et al., 
2003). In an examination of the spectra collected in 
this study, 2 regions (3,470 to 3,040 cm−1 and 1,700 
to 1,600 cm−1) of the spectra were found to have high 
noise levels and were therefore omitted from further 
analysis. The high level of noise at these wavelengths 
may have been because of the absorption of water in 
the spectral regions (Hewavitharana and Brakel, 1997; 
Jørgensen and Næs, 2004; Fagan et al., 2007).

An example of a truncated mid-infrared spectra is 
shown in Figure 2. Curley et al. (1998) assigned protein 
to specific bands in the MIR spectra of raw milk; that 
is, 1,570 to 1,550 cm−1. These results were confirmed by 

Etzion et al. (2004), Hewavitharana and Brakel (1997), 
and Luginbühl (2002). Lipids are known to contribute 
to the region 3,000 to 2,800 cm−1, which accounts for 
the observed peaks at 2,928 and 2,855 cm−1 (Lefèvre 
and Subirade, 2000) and between 1,736 and 1,805 cm–1, 
where 1,745 cm–1 is the frequency correlated with the 
vibration of the fatty acid carbonyl group (Coates, 
2000). The peaks in the fingerprint region 640 to 1500 
cm−1 are due to C-H bending (1493 cm−1) and C-O 
stretching (1157, 1080 cm−1).

Principal components analysis of the untreated spec-
tra allowed for an investigation of the influence plot and 
hence the identification of possible outliers. Samples 
were observed with high leverage and medium-to-high 
residual X variance values and vice versa. However, as 
no sample was observed with both extreme leverage 
and residual X variance values it was decided that no 
sample should be removed as an outlier because these 
samples are potentially part of the natural sample 
population and may provide valuable information. The 
score plot of PC1 and PC2, obtained from PCA, pro-
vided information regarding sample distribution (data 
not shown). Principal components 1 and 2 explained 
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Table 1. Statistical summary for rennet coagulation time (RCT), titratable acidity (TA), and pH 

Trait n Mean Range SD

RCT, min 1,049 14.96 4.40–29.30 3.84
TA, SH°/50 mL1 1,063 3.26 1.19–4.77 0.43
pH 1,064 6.69 5.88–7.03 0.12

1SH° = Soxhlet-Henkel degree.

Figure 2. Example of algorithm unprocessed mid-infrared spectra for milk.



49 and 23% of the observed variation in the data, re-
spectively. The fat content of the samples tended to 
increase along PC1. Samples with high protein content 
were located at the positive and negative extremes of 
PC2 and PC1, respectively, whereas the samples with 
low protein content were located at the negative and 
positive extremes of PC2 and PC1, respectively. When 
the loading for PC1 was examined, major peaks were 
observed at 1747, 2855, 2936, and 3495 cm−1, which can 
be attributed to lipids, whereas peaks were observed at 
1550, 3692, and 3036 cm−1 in the PC2 loading, which 
can be attributed to amides and lipids.

Prediction of Coagulation Properties

Prediction models were developed using the combined 
spectral ranges of 1,600 to 900 cm−1, 3,040 to 1,700 
cm−1, and 4,000 to 3,470 cm−1. They were developed 
using spectra in several forms: untreated, N, MSC, first 
and second derivatives, and N plus each derivative step, 
giving 7 models for each predicted parameter. A sec-
ond derivative pretreatment offered no improvement in 
model accuracy for any attribute; hence, those predic-
tion results are not shown.

Table 2 presents the results of the models developed 
for the prediction of analyzed traits using untreated, N, 
MSC, first derivative, and first derivative plus N spec-
tra. The RMSECV, r, and #L were used to compare 
models for accuracy. In the case where 2 or more mod-
els gave equal or similar results for a given parameter, 
the preferred model (shown in bold in Table 2) was the 
one that produced the lowest RMSECV value and the 
greatest r value. If more than one model was produced 
in which these criteria were equal, then the preferred 
model was the one incorporating the lowest number of 
loadings.

Table 2 presents the results of the models developed 
for the prediction of coagulation properties. Although 
models for the prediction of a30 were developed, none 
were considered satisfactory (R2 = 0.37) and therefore 
are not presented. The results show that the most ac-
curate prediction model (lowest RMSECV value, the 
greatest r value, and the lowest #L) for RCT was 
obtained using untreated spectral data. The preferred 
model for predicting the RCT (shown in bold in Table 
2) had RMSECV values of 2.36 min, and the corre-
sponding RER value was 10.6. These results demon-
strate that mid-infrared spectroscopy and multivariate 
data analysis have potential to predict RCT.

Figure 3 shows the preferred regression models for 
RCT (highlighted in bold in Table 2). The accuracy 
of each model can be evaluated using the coefficients 
of determination (R2) between the predicted and mea-
sured values, as stated by Williams (2003). A value for 
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R2 between 0.50 and 0.65 indicates that discrimination 
between high and low values can be made. A value for 
R2 between 0.66 and 0.81 indicates approximate predic-
tions, whereas a value for R2 between 0.82 and 0.90 
reveals good predictions. Models having a value for R2 
above 0.91 are considered excellent (Williams, 2003). 
The RCT model (R2 = 0.62) allowed for discrimination 
between high and low RCT values. Although there is 

a high degree of scatter observed in Figure 3, which 
indicates that the current model is not sufficiently ac-
curate to be employed in the dairy industry, the model 
demonstrates the potential of MIR spectroscopy for the 
rapid and nondestructive measurement of the RCT of 
milk, indicating that this technique warrants further 
investigation. The potential of MIR spectroscopy in 
predicting MCP has not been previously demonstrated. 
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Figure 3. Linear regression plots of measured versus predicted rennet coagulation time (RCT, min) using untreated mid-infrared spectra. 
RER = range error ratio.

Figure 4. Plot of loadings 1 (—) and 2 (....) for rennet coagulation time (RCT, min) using untreated mid-infrared spectra.



It should also be noted that the #L incorporated into 
the RCT model was 16 (Table 2). This is a relatively 
high number of loadings and ideally, if a model were to 
be applied in such an application in the future, a lower 
number of loadings would be preferable.

To investigate a molecular basis for the prediction 
of MCP, the model loadings were examined. The first 
2 loadings of the RCT model accounted for 55% of the 
variation in the spectral data and 13% of the variation 
in the RCT data. A plot of the first 2 loadings for the 
RCT model is shown in Figure 4. There was consider-
able structure present in the loading plots.

For the RCT model, several peaks were observed in 
the fingerprint region (1,500–900 cm−1) of the spectra. 

The peaks occurring at 968, 1,115, 1,146, and 1,180 
cm−1 may be attributed to C-O and C-C stretching, re-
spectively, whereas O-C-H, C-C-H, and C-O-H bending 
account for peaks at 1,466 and 1,331 cm−1, respectively. 
A peak was also observed at 1,240 cm−1 which may be 
due to amide III or phosphate bands (Hewavitharana 
and Brakel, 1997). Dominant peaks are also observed at 
1,589 and 1,500 cm−1, which can be attributed to amide 
II. Peaks associated with lipids (2,935, 2,839, 1,763, 
1,751 cm−1) were also apparent in loadings 1 and 2 of 
the RCT model (Figure 4a).

These results can be explained by the effect of milk 
protein and fat content on milk coagulation. Bastian et 
al. (1991) found the protein level had a small effect on 
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Figure 5. Linear regression plots of measured versus predicted a) titratable acidity (TA, SH°/50 mL) and b) pH using pretreated (first de-
rivative) mid-infrared spectra. RER = range error ratio; SH° = Soxhlet-Henkel degree.



RCT but significantly influenced curd firming. Indeed, 
Castillo et al. (2003) stated that increasing the pro-
tein content of milk decreased the curd firming time, 
whereas Dalgleish (1980) found that increasing the ca-
sein concentration by ultrafiltration resulted in a firmer 
final curd. These results highlight the importance of 
the protein and lipid regions of the mid-infrared spectra 
in predicting RCT of milk samples.

Prediction of TA and pH

Table 2 shows that the application of a first-derivative 
pretreatment resulted in an improvement in model ac-
curacy for TA and pH. In general, N and MSC pretreat-
ments offered no improvement in model accuracy for 
the analyzed traits, because they resulted in increased 
RMSECV or #L values (Table 2).

Journal of Dairy Science Vol. 92 No. 1, 2009
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Figure 6. Plot of loadings 1 (—) and 2 (....) for a) titratable acidity (SH°/50 mL) and b) pH using first derivative mid-infrared spectra. SH° 
= Soxhlet-Henkel degree.



The preferred models for predicting TA and pH 
(shown in bold in Table 2) had RMSECV values of 
0.25 SH°/50 mL and 0.07 pH units, respectively. The 
corresponding RER values for these models of 14.3 for 
TA and 16.4 for pH indicated that the models had high 
practical utility. Therefore, these parameters had the 
potential to be predicted by MIR spectroscopy and 
multivariate data analysis. Figures 5a and 5b show the 
preferred models for prediction of TA and pH (high-
lighted in bold in Table 2). Figure 5a shows that there 
is less scatter in the TA plot (r = 0.81) than may be 
observed in the MCP plots (Figure 4). The TA model 
provided approximate predictions (R2 = 0.66), whereas 
the pH model allowed for the discrimination between 
high and low pH values (R2 = 0.59). The #L ranged 
from 9 to 10 for TA and pH models, respectively.

The first 2 loadings from the TA model accounted for 
55% of the variation in the spectral data and 36% of 
the variation in the TA data. Comparatively, the first 
2 loadings from the pH model accounted for 53% of the 
variation in the spectral data and 26% of the variation 
in the pH data. Plots of the first 2 loadings from the 
TA and pH models are shown in Figures 6a and 6b, 
respectively. Considerable structure may be observed 
in both loading plots. However, it is difficult to as-
sign functional groups to individual peaks. Although 
the pH of Emmental cheese has been predicted using 
MIR spectroscopy (R2 = 0.84; Karoui et al., 2006), no 
references are available in the literature concerning the 
utilization of MIR spectroscopy for the prediction of 
milk TA or pH.

CONCLUSIONS

The potential of MIR spectroscopy in conjunction 
with PLS regression to predict milk coagulation prop-
erties and milk acidity was demonstrated using 1,064 
individual Brown Swiss milk samples. The predictive 
models developed for RCT and pH could discriminate 
between high and low values (R2 = 0.59 to 0.62), 
whereas the model for the prediction of TA provided an 
approximate prediction (R2 = 0.66). The RER value for 
the RCT, TA, and pH predictive models indicated they 
had high utility values (10.6 to 14.3), whereas the pre-
diction model for a30 did not yield useful results. These 
results suggest that, with further development, MIR 
spectroscopy has the potential to provide nondestruc-
tive and instantaneous measurements of selected milk 
coagulation and milk acidity properties. As these prop-
erties are directly linked to cheese making efficiency, 
this technique may assist milk processors in optimizing 
cheese yield. Furthermore, the results obtained suggest 
the possibility of employing MIR spectroscopy in large-
scale milk sampling programs focusing on the genetic 

selection of dairy cattle to improve MCP, where direct 
analysis is not feasible because of the cost and time-
consuming laboratory measurements required.

ACKNOWLEDGMENT

The authors acknowledge financial support from 
PRIN2005-prot. 2005074889_002, of the Italian Min-
istry of University and Research (MIUR) and Veneto 
Agricoltura laboratory of Thiene (Italy) for milk analy-
ses.

REFERENCES

Al-Qadiri, H. M., M. Lin, M. Al-Holy, A. G. Cavinato, and B. A. 
Rasco. 2008. Monitoring quality loss of pasteurized skim milk using 
visible and short wavelength near infrared (SW-NIR) spectroscopy 
(600–1100 nm) and multivariate analysis.  J. Dairy Sci.  91:950–
958.

Anonymous. 1963. Säuregradbestimmung nach Soxhlet-Henkel (SH). 
Titratable acidity evaluation with the Soxhlet-Henkel (SH) 
method. Milchwissenschaft 18:520.

Bastian, E. D., R. J. Brown, and C. A. Ernstrom. 1991. Plasmin 
activity and milk coagulation.  J. Dairy Sci.  74:3677–3685.

Bittante, G., M. Marusi, F. Cesarini, M. Povinelli, and M. Cassandro. 
2002. Genetic analysis on milk rennet-coagulation ability in Italian 
Holstein cows. Proceedings of the 7th World Congress on Genetics 
Applied to Livestock Production, Montpellier, France. Commun. 
No. 09–03.

Cassandro, M., A. Comin, M. Ojala, R. Dal Zotto, M. De Marchi, 
L. Gallo, P. Carnier, and G. Bittante. 2008. Genetic parameters 
of milk coagulation properties and their relationships with milk 
yield and quality traits in Italian Holstein cows.  J. Dairy Sci.  
91:371–376.

Castillo, M., F. A. Payne, C. L. Hicks, J. Laencina, and M. B. Lopez. 
2003. Effect of protein and temperature on cutting time prediction 
in goats’ milk using an optical reflectance sensor.  J. Dairy Res.  
70:205–215.

Coates, J. 2000. Interpretation of infrared spectra, a practical approach. 
Pages 10815–10837 in Encyclopedia of Analytical Chemistry. R. A. 
Meyers, ed. John Wiley & Sons, New York, NY.

Curley, D. M., T. F. Kumosinski, J. J. Unruh, and H. M. Farrell 
Jr. 1998. Changes in the secondary structure of bovine casein by 
Fourier transform infrared spectroscopy: Effects of calcium and 
temperature.  J. Dairy Sci.  81:3154–3162.

Dalgleish, D. G. 1980. Effect of milk concentration on the rennet 
coagulation time.  J. Dairy Res.  47:231–235.

De Marchi, M., G. Bittante, R. Dal Zotto, C. Dalvit, and M. Cassandro. 
2008. Effect of Holstein-Friesian and Brown Swiss breeds on quality 
of milk and cheese.  J. Dairy Sci.  91:4092–4102.

De Marchi, M., R. Dal Zotto, M. Cassandro, and G. Bittante. 2007. 
Milk coagulation ability of five dairy cattle breeds.  J. Dairy Sci.  
90:3986–3992.

Downey, G., E. Sheehan, C. Delahunty, D. O’Callaghan, T. Guinee, 
and V. Howard. 2005. Prediction of maturity and sensory attributes 
of Cheddar cheese using near infrared spectroscopy.  Int. Dairy J.  
15:701–709.

Etzion, Y., R. Linker, U. Cogan, and I. Shmulevich. 2004. Determination 
of protein concentration in raw milk by mid-infrared Fourier 
transform infrared/attenuated total reflectance spectroscopy.  J. 
Dairy Sci.  87:2779–2788.

Fagan, C. C., C. Everard, C. P. O’Donnell, G. Downey, E. M. Sheehan, 
C. M. Delahunty, and D. J. O’Callaghan. 2007. Evaluating mid-
infrared spectroscopy as a new technique for predicting sensory 
texture attributes of processed cheese.  J. Dairy Sci.  90:1122–
1132.

431OUR INDUSTRY TODAY

Journal of Dairy Science Vol. 92 No. 1, 2009



Formaggioni, P., M. Malacarne, A. Summer, E. Fossa, and P. Mariani. 
2001. Milk with abnormal acidity. The role of phosphorus content 
and the rennet-coagulation properties of Italian Friesian herd 
milks. http://www.unipr.it/arpa/facvet/annali/2001/formaggioni.
pdf. Accessed January 2008.

Hewavitharana, A. K., and B. V. Brakel. 1997. Fourier transform 
infrared spectrometric method for rapid determination of casein in 
raw milk.  Analyst (Lond.)  122:701–704.

Hubert, M., and K. Vanden Branden. 2003. Robust methods for partial 
least squares regression.  J. Chemometr.  17:537–549.

Ikonen, T. 2000. Possibilities of genetic improvement of milk coagulation 
properties of dairy cows. PhD Diss. Univ. Helsinki, Finland. http://
ethesis.helsinki.fi/julkaisut/ maa/kotie/vk/ikonen.

Ikonen, T., K. Ahlfors, R. Kempe, M. Ojala, and O. Ruottinen. 
1999. Genetic parameters for the milk coagulation properties and 
prevalence of noncoagulating milk in Finnish dairy cows.  J. Dairy 
Sci.  82:205–214.

Ikonen, T., A. Morri, A. M. Tyrisevä, O. Ruottinen, and M. 
Ojala. 2004. Genetic and phenotypic correlations between milk 
coagulation properties, milk production traits, somatic cell count, 
casein content and pH of milk.  J. Dairy Sci.  87:458–467.

Jørgensen, K., and T. Næs. 2004. A design and analysis strategy for 
situations with uncontrolled raw material variation.  J. Chem. 
(Kyoto)  18:45–52.

Karoui, R., A. M. Mouazen, É. Dufour, L. Pillonel, E. Schaller, D. 
Picque, J. de Baerdemaeker, and J. O. Bosset. 2006. A comparison 
and joint use of NIR and MIR spectroscopic methods for the 
determination of some parameters in European Emmental cheese.  
Eur. Food Res. Technol.  223:44–50.

Lefèvre, T., and M. Subirade. 2000. Interaction of β-lactoglobulin with 
phospholipids bilayers: A molecular level elucidation as revealed 
by infrared spectroscopy.  Int. J. Biol. Macromol.  28:59–67.

Luginbühl, W. 2002. Evaluation of designed calibration samples for 
casein calibration in Fourier transform infrared analysis of milk.  
Lebensm. Wiss. Technol.  35:554–558.

Lynch, J. M., D. M. Barbano, M. Schweisthal, and J. R. Fleming. 
2006. 368 Precalibration evaluation procedures for mid-infrared 
milk analyzers.  J. Dairy Sci.  89:2761–2774.

Mariani, P., P. Serventi, and E. Fossa. 1997. Contenuto di caseina, 
varianti genetiche ed attitudine tecnologico casearia del latte 
delle vacche di razza Bruna nella produzione del formaggio grana.  
Allegato a La Razza Bruna Italiana.  2:8–14.

Martens, H., and T. Naes. 1989. Models for calibration. Chapter 3 in 
Multivariate Calibration. H. Martens and T. Naes, ed. John Wiley 
& Sons Ltd., London, UK.

O’Callaghan, D. J., E. P. Mulholland, A. P. Duffy, C. P. O’Donnell, 
and F. A. Payne. 2001. Evaluation of hot wire and optical sensors 
for on-line monitoring of curd firmness during milk coagulation.  
Ir. J. Agric. Food Res.  40:227–238.

O’Callaghan, D. J., C. P. O’Donnell, and F. A. Payne. 2000. On-line 
sensing techniques for coagulum setting in renneted milks.  J. Food 
Eng.  43:155–165.

O’Callaghan, D. J., C. P. O’Donnell, and F. A. Payne. 2002. Review 
of systems for monitoring curd setting during cheesemaking.  Int. 
J. Dairy Technol.  55:65–74.

Pillonel, L., W. Luginbühl, D. Picque, E. Schaller, R. Tabacchi, and 
J. O. Bosset. 2003. Analytical methods for the determination of 
the geographic origin of Emmental cheese: Mid- and near-infrared 
spectroscopy.  Eur. Food Res. Technol.  216:174–178.

Williams, P. 2003. Near-infrared technology getting the best out of 
light. Page 109 in A Short Course in the Practical Implementation 
of Near Infrared Spectroscopy for the User. 1.1 ed. PDKProjects 
Inc., Nanaimo, Canada.

Williams, P. C. 1987. Implementation of near-infrared technology. 
Pages 143–167 in Near-Infrared Technology in the Agricultural 
and Food Industries. 2nd ed. P. C. Williams and K. Norris, ed. 
American Association of Cereal Chemists, St. Paul, MN.

Zannoni, M., and S. Annibaldi. 1981. Standardization of the renneting 
ability of milk by formagraph.  Sci. Tecn. Latt. Cas.  32:79–94.

Journal of Dairy Science Vol. 92 No. 1, 2009

DE MARCHI ET AL.432


	Prediction of coagulation properties, titratable acidity, and pH of bovine milk using mid-infrared spectroscopy
	Introduction
	Materials and Methods
	Sample Collection
	Coagulation Properties
	Titratable Acidity and pH
	MIR Acquisition
	Multivariate Data Analysis

	Results and Discussion
	Coagulation Properties, TA, and pH
	MIR Spectra
	Prediction of Coagulation Properties
	Prediction of TA and pH

	Conclusions
	Acknowledgment
	Supplementary data
	References


