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Abstract

We show that risk-sensitive control problems and deterministic dynamic games can
be connected, under rather mild assumptions, by a small noise limit. In order to control
this limit, new techniques are developed to study propagation of large deviations through
conditional probabilities.

1 Introduction

Properties of risk-sensitive control problems and their connections with dynamic games have
been widely investigated in recent years [16, 18, 11, 8, 9, 12, 13, 14, 6, 4], in part inspired by
seminal results for linear quadratic models contained in [10, 17, 1]. In particular, it has been
shown [8, 9, 12, 13, 4] that under a suitable small parameter limit (small noise limit) a family
of risk-sensitive stochastic control problems becomes equivalent to a deterministic dynamic
game. In other words, this means that optimal risk sensitive control with small noise and
suitably rescaled risk parameter is almost equivalent to deterministic robust control (worst-
case approach).

Although this result is conceptually natural, its proof usually involves rather sophisticated
mathematical techniques, and fairly strong requirements on the model. For continuous-
time, totally observable systems a quite satisfactory theory has been developed in [8, 9] by
using viscosity solution techniques to analyze the Hamilton-Jacobi equation associated to the
optimal control problem. It has been shown, in particular, that the value function of the risk
sensitive control problem converges, as the noise parameter goes to zero, to the upper value
function of a related two players, zero-sum differential game.

The analysis of the small parameter limit for nonlinear, partially observed, risk sensitive
control problems has been initiated by P.Whittle ([18]), whose mostly non rigorous results
have inspired most of the further development. A considerable advancement in the under-
standing of these models is represented by the results in [12, 13], where the information state
approach is used. This approach consists in reformulating the partially observed control
problem as a completely observed one, in a way that, in a suitable sense, is “preserved” in
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the small parameter limit. One consequence of this method is that it provides a natural
notion of information state for the limiting dynamic game. In [12] the information state
approach is applied to discrete time systems. The result obtained is parallel to the one given
in [8], i.e. the connection with partially observed dynamic game is established in terms of
the convergence of the value function of the equivalent totally observed model. This value
function is the solution of a dynamic programming equation in an infinite dimensional space.
The small parameter limit of this equation is obtained by using large deviation techniques.

The corresponding result in continuous time has been obtained, at a non-rigorous level,
in [13]. In this context, one has to deal with the small parameter limit of an Hamilton-
Jacobi equation (Mortensen’s equation) with infinite dimensional state space; the current
mathematical understanding of this problem has not allowed a complete proof yet. A different
approach to the small parameter limit in continuous time is used in [3] where, rather than
the convergence of the value function, it is (rigorously) shown the convergence of the cost
functional for any control u in a suitably defined admissible class. This requires considerable
work for controlling the small parameter limit of the information state, but avoids the use of
Mortensen’s equation.

In this paper we consider discrete-time, finite time-horizon partially observed systems,
and we develop further some large deviation techniques that were introduced in [4] for totally
observed systems. The models for which we can analyze the small parameter limit include
those of type

xn+1 = fn(xn, un, wn)

yn = φn(xn, vn)
(1.1)

for n = 0, . . . , N − 1, with xn ∈ X , un ∈ U , wn ∈ W, yn, vn ∈ IRd, where X ,W are metric
spaces, and U is a compact metric space. Moreover, wn, vn are independent random variables,
wn ∼ µε

n, vn ∼ νε
n, where (µε

n)ε>0, (νε
n)ε>0 are families of probability measures satisfying a

Large Deviation Principle (see Section 2). Some further regularity assumptions will be needed
for φn and νε

n (see Section 4), while fn is only supposed to be continuous. We associate to
(1.1) a cost functional of the form

J ε(u) = ε log E
{

exp
[
ε−1

( N−1∑
n=0

gn(xn, un) + gN (xN )
)]}

(1.2)

defined for the control sequences u = (u0, . . . , uN−1) that are nonanticipative functions of
the output sequence (y0, . . . , yN ). Note that the parameter ε appears both in the noise
distribution and in (1.2), where it can be interpreted as a risk parameter, a measure of
controller’s aversion to risk. We show that, as ε → 0, the risk sensitive control problem (1.1)
(1.2) converges, in a suitable sense, to the deterministic game with dynamics (1.1) (where
wn, vn are thought of as deterministic but unknown disturbances) and cost

J(u) = sup
v,w

[ N−1∑
n=0

(
gn(xn, un)− hn(wn)− kn+1(vn+1)

)
+ gN (xN )

]
(1.3)

where hn, kn are rate functions (see Section 2) associated to µε
n, νε

n. This convergence is
expressed, similarly to [8] and [12], in terms of the convergence of the value function for an
equivalent totally observed problem, so that our result can be seen as a generalization of
[12]. In fact, models of type (1.1) (1.2) include the ones studied in [12], but we can deal with
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fairly more general noise distribution, state-space and dynamical equations. The results of
this paper have been, in part, announced in [5] where, however, much stronger conditions
were required.

This paper is organized as follows. In Sections 2 and 3 we develop some new large
deviation techniques that are suitable for the problem we deal with. Section 4, that contains
the main results of this paper, is devoted to the analysis of the small parameter limit for
risk-sensitive control problems.

2 Preliminary notions

In this section we recall some notions from large deviation theory that will be used throughout
the paper, and introduce some new ones. We let X be a metric space. All measures on X
are intended to be defined on its Borel σ-field.

Definition 2.1 A family of probability measures {P ε : ε > 0} on X is said to satisfy a Large
Deviation Principle (LDP) with rate function H : X → [0,+∞] if
i) H is lower semicontinuous and {x : H(x) ≤ l} is compact for every l ≥ 0.
ii) For every A ⊂ X measurable

− inf
x∈ ◦A

H(x) ≤ lim inf
ε→0

ε log P ε(A)

≤ lim sup
ε→0

ε log P ε(A) ≤ − inf
x∈Ā

H(x)

where
◦
A, Ā denote respectively the interior and the closure of A.

In [4] a modification of the above definition has been introduced for the case of a family of
probability measures depending on a further parameter.

Definition 2.2 Let Θ be a set. A family of probability measures {P ε(dx; θ) : ε > 0, θ ∈ Θ}
on X is said to satisfy a Uniform Large Deviation Principle (ULDP) with rate function
H : X ×Θ → [0,+∞] if
i) For every fixed θ ∈ Θ, H(·, θ) is lower semicontinuous and {x : H(x, θ) ≤ l} is compact for
every l ≥ 0.
ii) For every A ⊂ X measurable and M > 0

lim sup
ε→0

sup
θ∈Θ

[
ε log P ε(A; θ) + min

(
M, inf

x∈Ā
H(x; θ)

)]
≤ 0

and
lim inf

ε→0
inf
θ∈Θ

[
ε log P ε(A; θ) + inf

x∈ ◦A
H(x; θ)

]
≥ 0.

One of the main consequences of a LDP is the well known Varadhan’s Lemma ([15]). In [4]
the following version of Varadhan’s Lemma has been proved.

Lemma 2.3 Suppose the family {P ε(dx; θ) : ε > 0, θ ∈ Θ} satisfies a ULDP. Then for every
F : X → IR bounded and continuous

lim
ε→0

ε log
∫

eε−1F (x)P ε(dx; θ) = sup
x∈X

[
F (x)−H(x, θ)

]
(2.1)

uniformly for θ ∈ Θ.
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Remark 2.4 Identity (2.1) is the crucial large deviation property in applications to risk
sensitive control. When Θ is a singleton (and therefore pointwise in θ) it is well known ([7],
Bryc’s Theorem) that, under rather mild assumptions (namely: exponential tightness, see
definition below), identity (2.1) is equivalent to the LDP. It is natural to ask whether, for
general Θ, (2.1) implies the ULDP. The answer is no. A simple counterexample is the fol-
lowing: X = IR, Θ = [0, 1], P ε(dx; θ) = 1

2εχ[θ−ε,θ+ε](x)dx, where χ denotes the characteristic
function of a set. As we will see later in Remark 2.8, the family P ε(dx; θ) satisfies (2.1) with
H(x; θ) = +∞ for x *= θ, and H(θ, θ) = 0. Now take A = (−∞, 0]. If P ε(dx; θ) satisfied
a ULDP, then limε→0 ε log P ε(A; ε/2) = −∞, since infx∈A H(x; ε/2) = +∞ for all ε > 0.
However it holds that P ε(A; ε/2) = 1/4.

We introduce now a notion which is weaker than the one of ULDF. For the rest of this section
we assume Θ to be a metric space.

Definition 2.5 A family {P ε(dx; θ) : ε > 0, θ ∈ Θ} of positive finite measures on X is
called a Weakly Uniform Large Deviation Family (WULDF) with rate function H : X ×Θ →
(−∞,+∞] if
i) For every fixed θ ∈ Θ, H(·, θ) is lower semicontinuous and {x : H(x, θ) ≤ l} is compact for
every l ∈ IR.
ii) The map θ → infx∈X H(x, θ) is real valued, and is bounded on the compact subsets of Θ.
iii) For every F : X → IR bounded and continuous

lim
ε→0

ε log
∫

eε−1F (x)P ε(dx; θ) = sup
x∈X

[
F (x)−H(x, θ)

]
(2.2)

uniformly for θ in the compact subsets of Θ.

Remark 2.6 For reasons that will become apparent later, we have chosen to allow P ε in
Definition 2.5 to be a positive finite measure, not necessarily a probability measure. For
technical reasons, we will need condition ii) in Definition 2.5, that roughly says that P ε(X ; θ)
does not either go to zero or grow too fast as ε → 0. Indeed, by using ii) and letting F ≡ 0 in
iii) the following statement is easy to prove: for each K ⊂ Θ compact, there exists M(K) > 0
such that, for ε sufficiently small,

e−ε−1M(K) ≤ P ε(X ; θ) ≤ eε−1M(K) (2.3)

for all θ ∈ K. Note that, if all P ε(dx; θ) are probability measures, then ii) is automatically
satisfied, since infx∈X H(x, θ) ≡ 0 (see [7]).

We now state a proposition that serves both as a technical lemma for later use and as a
preliminary justification of the notion of WULDF. Its proof will be given in Section 3.

Proposition 2.7 Let W be a metric space, f : Θ ×W → X a continuous map, and {µε :
ε > 0} a family of probability measures on W that satisfy a LDP with rate function h(w).
Define P ε(dx; θ), a probability measure on X, by

P ε(A; θ) = µε{w : f(θ, w) ∈ A}. (2.4)

Then {P ε(dx; θ) : ε > 0, θ ∈ Θ} is a WULDF with rate function

H(x; θ) = inf{h(w) : f(θ, w) = x}. (2.5)
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Remark 2.8 The family of probability measures in (2.4) does not necessarily satisfy a
ULDP, even if Θ is compact. For example, consider Θ = [0, 1], X = W = IR, µε(dw) =
1
2εχ[−ε,ε](w)dw, f(θ, w) = θ + w, and we end up with the counterexample in Remark 2.4.
Note that this shows that the family P ε(dx; θ) is a WULDF, since it is easy to prove that
{µε(dw) : ε > 0} satisfies a LDP with rate function H(w) = +∞ if w *= 0, and H(0) = 0.

We now introduce a further notion that will be useful later.

Definition 2.9 A family {P ε(dx; θ) : ε > 0, θ ∈ Θ} of positive finite measure on X is called
exponentially tight if, for every L > 0 and every K ⊂ Θ compact, there exists C ⊂ X compact
such that

P ε(Cc; θ) ≤ e−ε−1L (2.6)

for all θ ∈ K and ε sufficiently small, where Cc is the complement of C.

Note that when the measures are probability measures and Θ is a singleton, the above
definition reduces to the usual one of exponential tightness of Large Deviation Theory ([7]).

We conclude this section by stating three easy lemmas, that will be used in Section 3.

Lemma 2.10 Under the assumptions of Proposition 2.7, let P ε(dx; θ) be defined by (2.4).
If {µε} is exponentially tight then so is {P ε(dx; θ)}.

Proof. The proof is straightforward, since compactness is preserved by continuous mapping.

Lemma 2.11 Suppose that {P ε(dx; θ) : ε > 0, θ ∈ Θ} is a WULDF with rate function H,
and it is exponentially tight. Then the rate function is proper, i.e. for every L > 0 and every
K ⊂ Θ compact, there exists C ⊂ X compact such that H(x; θ) ≥ L for all (x, θ) ∈ Cc ×K.

Proof. Let L > 0 be given, M > L and C be a compact subset of X such that (2.6) holds for
all θ ∈ K. Also, let Cδ denote the δ-neighborhood of C. Consider the bounded continuous
function

F (x) = min
{M

δ
d(x,C)−M, 0

}
. (2.7)

It is easily seen that F (x) = −M for x ∈ C, F (x) = 0 on Cc
δ and F ≤ 0. By using the

definition of WULDF we have, for all θ ∈ K,

inf
x∈Cc

δ

H(x, θ) ≥ − sup
x∈X

[F (x)−H(x, θ)]

= − lim
ε→0

ε log
∫

eε−1F (x)P ε(dx; θ)

= − lim
ε→0

ε log
[ ∫

C
eε−1F (x)P ε(dx; θ) +

∫
Cc

eε−1F (x)P ε(dx; θ)
]

≥ − lim inf
ε→0

ε log
[
e−ε−1MP ε(X; θ) + e−ε−1L

]
= min

[
M − inf

x∈X H(x, θ), L
]
.

Thus, if we choose M large enough, using ii) of Definition 2.5, we have that, for all θ ∈ K
and δ > 0

inf
x∈Cc

δ

H(x, θ) ≥ L (2.8)

that clearly concludes the proof.
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Lemma 2.12 Under the assumptions of Lemma 2.11, let F ε : X → IR, ε ≥ 0 be such that
supε≥0 ‖F ε‖∞ < ∞, F ε → F 0 as ε → 0 uniformly on the compact subsets of X and F 0 is
continuous. Then

lim
ε→0

ε log
∫

eε−1F ε(x)P ε(dx; θ) = sup
x∈X

[
F 0(x)−H(x, θ)] (2.9)

uniformly on the compact subsets of Θ.

Proof. If F ε → F 0 uniformly in all X then the conclusion follows by (2.2) and by∣∣∣ε log
∫

eε−1F ε(x)P ε(dx; θ)− ε log
∫

eε−1F 0(x)P ε(dx; θ)
∣∣∣ ≤ ‖F ε − F 0‖∞. (2.10)

By using exponential tightness one easily reduces to this case.

3 Propagation of WULDF’s

In our analysis of the small parameter limit for risk-sensitive control problems the filtering
probabilities and the information states will play a key role. They are both families of positive
measures that satisfy recursive relations. To prove that they form WULDF’s we show that
the property of being a WULDF is preserved under four basic operations, namely: 1. state
augmentation; 2. composition; 3. contraction; 4. conditioning.

In the rest of this section X ,Y and Θ are metric spaces.

Proposition 3.1 (State augmentation). Let {P ε(dx; θ) : ε > 0, θ ∈ Θ} be an exponentially
tight WULDF on X with rate function HP (x; θ). Define the measures on X ×Θ

Qε(dx, dζ; θ) = P ε(dx; θ)⊗ δθ(dζ),

with δ denoting the Dirac measure. Then {Qε(dx, dζ; θ) : ε > 0, θ ∈ Θ} is an exponentially
tight WULDF with rate function:

HQ(x, ζ; θ) =
{

HP (x; θ) if ζ = θ
+∞ if ζ *= θ

Proof. First we prove that the measures Qε(dx, dζ; θ) form a WULDF. It is easy to see that
the function HQ(x, ζ; θ) satisfies properties i), ii) in Definition 2.5, so we only prove that
property iii) holds.

Let K ⊆ Θ be a compact set, and F : X ×Θ → IR be a continuous and bounded function.
Let L > 0 be such that |F (x, ζ)| ≤ L, and M(K) = supθ∈K | infx HP (x; θ)|, which is finite by
ii) of Definition 2.5. Notice that, by the definition of HQ, we have:

sup
(x,ζ)∈X×Θ

[
F (x, ζ)−HQ(x, ζ; θ)

]
= sup

x∈X

[
F (x, θ)−HP (x; θ)

]
.

Since HP is proper (see Lemma 2.11), there exists a compact set C ⊆ X such that HP (x; θ) ≥
3L + M(K) for all x ∈ Cc and all θ ∈ K. Moreover, for all θ ∈ K, we have:

sup
x∈X

(F (x, θ)−HP (x; θ)) ≥ −L−M(K);
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F (x, θ)−HP (x; θ) ≤ −2L−M(K), ∀x ∈ Cc.

Thus
sup
x∈X

[
F (x, θ)−HP (x; θ)

]
= sup

x∈C

[
F (x, θ)−HP (x; θ)

]
. (3.1)

Let β > 2L + 2M(K). Since {P ε(dx; θ)} is exponentially tight, there exists a compact set
CM ⊆ X such that

P ε(Cc
M ; θ) ≤ exp{−ε−1β}; (3.2)

for all θ ∈ K. Without loss of generality, we may assume that C ⊆ CM and that for ε small
enough P ε(CM ; θ) ≥ e−2ε−1M(K) for all θ ∈ K (see (2.3)). We have:

ε log
∫

exp{ε−1F (x, θ)}P ε(dx; θ) =

= ε log
(∫

CM

exp{ε−1F (x, θ)}P ε(dx; θ) +
∫

Cc
M

exp{ε−1F (x, θ)}P ε(dx; θ)
)
≤

≤ ε log
∫

CM

exp{ε−1F (x, θ)}P ε(dx; θ) + ε log
(
1 + 2 exp{ε−1(2L + 2M(K)− β)}

)
.

Now choose an arbitrary δ > 0. Since 2L + 2M(K)− β < 0, there exists ε0 such that, for all
ε ≤ ε0 and for all θ ∈ K, we have:∣∣∣∣ε log

∫
exp{ε−1F (x, θ)}P ε(dx; θ) − ε log

∫
CM

exp{ε−1F (x, θ)}P ε(dx; θ)
∣∣∣∣ ≤ δ. (3.3)

Since F |CM×K is uniformly continuous, we have that for each θ ∈ K there exists an open
neighborhood Uθ of θ such that |F (x, θ1) − F (x, θ2)| < δ for all θ1, θ2 ∈ Uθ and all x ∈ CM .
K being compact, there exists θ1, . . . , θn such that K ⊆ ∪n

i=1Uθi .
Let θ ∈ K; then there exists ī such that θ ∈ Uθī

. Since |F (x, θ) − F (x, θī)| < δ for all
x ∈ CM , we have:∣∣∣∣ε log

∫
CM

exp{ε−1F (x, θ)}P ε(dx; θ)− ε log
∫

CM

exp{ε−1F (x, θī)}P ε(dx; θ)
∣∣∣∣ < δ, (3.4)

and: ∣∣∣∣∣ sup
x∈CM

[F (x, θī)−HP (x; θ)]− sup
x∈CM

[F (x, θ)−HP (x; θ)]

∣∣∣∣∣ < δ. (3.5)

Moreover, by definition of WULDF, we also have:∣∣∣∣∣ε log
∫

exp{ε−1F (x, θī)}P ε(dx; θ)− sup
x∈X

[F (x, θī)−HP (x; θ)]

∣∣∣∣∣ < λi(ε), (3.6)

where limε→0 λi(ε) = 0.
Now let λ(ε) = supi=1,...,n λi(ε), and note that limε→0 λ(ε) = 0. Using (3.1), (3.3), (3.4),

(3.5), and (3.6), for all ε ≤ ε0, we have:∣∣∣∣∣ε log
∫

exp{ε−1F (x, ζ)}Qε(dx, dζ; θ)− sup
(x,ζ)∈X×Θ

[F (x, ζ)−HQ(x, ζ; θ)]

∣∣∣∣∣ =

=

∣∣∣∣∣ε log
∫

exp{ε−1F (x, θ)}P ε(dx; θ)− sup
x∈X

[F (x, θ)−HP (x; θ)]

∣∣∣∣∣ ≤
7



δ +

∣∣∣∣∣ε log
∫

CM

exp{ε−1F (x, θ)}P ε(dx; θ)− sup
x∈CM

[F (x, θ)−HP (x; θ)]

∣∣∣∣∣ ≤
δ +

∣∣∣∣ε log
∫

CM

exp{ε−1F (x, θ)}P ε(dx; θ)− ε log
∫

CM

exp{ε−1F (x, θī)}P ε(dx; θ)
∣∣∣∣ +

+
∣∣∣∣ε log

∫
exp{ε−1F (x, θī)}P ε(dx; θ)− ε log

∫
CM

exp{ε−1F (x, θī)}P ε(dx; θ)
∣∣∣∣ +

+

∣∣∣∣∣ε log
∫

exp{ε−1F (x, θī)}P ε(dx; θ)− sup
x∈X

[F (x, θī)−HP (x; θ)]

∣∣∣∣∣ +
+

∣∣∣∣∣ sup
x∈CM

[F (x, θī)−HP (x; θ)]− sup
x∈CM

[F (x, θ)−HP (x; θ)]

∣∣∣∣∣ ≤ δ + δ + δ + λ(ε) + δ.

Note that to get the last inequality we used the fact that equation (3.3) still holds when we
replace F (x, θ) by F (x, θī). Thus

lim supε→0 supθ∈K

∣∣∣ε log
∫

exp{ε−1F (x, ζ)}Qε(dx, dζ; θ)−
sup(x,ζ)∈X×Θ [F (x, ζ)−HQ(x, ζ; θ)]

∣∣∣ ≤ 4δ.

Since δ is arbitrary the previous limit must be zero. Thus we have proved that the measures
Qε(dx, dζ; θ) form a WULDF. It remains to show that this family is also exponentially tight.
Let K ⊆ Θ be a compact set. Since P ε is exponentially tight, for every L > 0 there exists
C ⊆ X compact such that

P ε(Cc; θ) ≤ e−ε−1L

for every θ ∈ K. Let C̃ = C ×K. Clearly C̃ ⊆ X ×Θ is compact, and

Qε(C̃c; θ) = P ε(Cc; θ).

The exponential tightness is therefore easily proved.

Next corollary restates in a different but equivalent way the result of the previous propo-
sition. We give it explicitly, for further references.

Corollary 3.2 Let {P ε(dx; y, θ) : ε > 0, (y, θ) ∈ Y × Θ} be an exponentially tight WULDF
on X with rate function HP (x; y, θ). Define the measures on X × Y, Qε(dx, dz; y, θ) =
P ε(dx; y, θ) ⊗ δy(dz), with δ denoting the Dirac measure. Then {Qε(dx, dz; y, θ) : ε >
0, (y, θ) ∈ Y ×Θ} is an exponentially tight WULDF with rate function:

HQ(x, z; y, θ) =
{

HP (x; y, θ) if z = y
+∞ if z *= y

As a simple application of Proposition 3.1, we give the proof of Proposition 2.7.
Proof of Proposition 2.7. By Proposition 3.1 the following identities are easily obtained:

lim
ε→0

ε log
∫

eε−1F (x)P ε(dx; θ) = lim
ε→0

ε log
∫

eε−1F (f(θ,w))µε(dw)

= lim
ε→0

ε log
∫

eε−1F (f(γ,w))µε ⊗ δθ(dw, dγ) = sup
w∈W

[
F (f(θ, w))− h(w)

]
= sup

x∈X

[
F (x)−H(x; θ)

]
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where the limit is uniform in the compact subsets of Θ. Moreover, property i) of Definition
2.5 is easily shown for H(x; θ), while property ii) comes automatically from the fact that the
P ε are probability measures.

Next lemma presents an easy technical fact that we will need in the proof of Proposition
3.4.

Lemma 3.3 Let F : X ×Θ → IR be a continuous and bounded map, and H : X ×Θ → IR+ be
the rate function of an exponentially tight WULDF whose elements are probability measures.
Moreover, suppose H satisfies the following properties:

(i) Let A = {(x, θ) : H(x; θ) < +∞}. Then for every (x, θ) ∈ A and every sequence
θn → θ there exists a sequence xn → x such that H(xn; θn) → H(x; θ),

(ii) H is lower semicontinuous as a function of (x, θ).

Then
G(θ) = sup

x∈X
[F (x, θ)−H(x; θ)] (3.7)

is a bounded and continuous function.

Proof. Assume that |F (x, θ)| ≤ L for all (x, θ). Since H is the rate function for a family of
probability measures we have (see Remark 2.6) infx H(x, θ) = 0 for all θ ∈ T . This easily
implies |G(θ)| ≤ L for all t ∈ Θ.

We now show that G is upper semicontinuous. First of all we note that, for any θ ∈ Θ,
there exists x ∈ X such that G(θ) = F (x, θ)−H(x, θ), i.e. the supremum in (3.7) is attained.
In fact, that supremum can be equivalently taken for x ∈ C, where C = {x : H(x, θ) ≤ 3L}.
Since C is compact and F −H is upper semicontinuous, then it follows that F (·, θ)−H(·, θ)
has maximum in C. Now let θn → θ, and xn be such that G(θn) = F (xn, θn) − H(xn, θn).
We have to prove that

lim supG(θn) ≤ G(θ). (3.8)

Since the limsup is the limit along a subsequence, we can assume, without loss of generality,
that the sequence G(θn) has limit. Due to the fact that {θn : n ≥ 0}∪{θ} is compact and the
properness of H, it follows that the sequence xn is relatively compact, so it has a convergent
subsequence xnk → x. Thus

lim G(θn) = lim G(θnk) = lim
[
F (xnk , θnk)−H(xnk , θnk)

]
≤ F (x, θ)−H(x, θ) ≤ G(θ)

where we have used the (joint) upper semicontinuity of F −H.
Now we prove lower semicontinuity, i.e. that lim inf G(θn) ≥ G(θ). Let x be such that

G(θ) = F (x, θ)−H(x; θ). By property (i), there exists a sequence xn → x, with H(xn; θn) →
H(x, θ). So we get:

lim inf G(θn) ≥ lim inf [F (xn, θn)−H(xn; θn)] = G(θ).

9



Proposition 3.4 (Composition) Let {P ε(dx; y, θ) : ε > 0, (y, θ) ∈ Y × Θ} and {Qε(dy; θ) :
ε > 0, θ ∈ Θ} be two exponentially tight WULDF in X and Y respectively with rate functions
HP (x; y, θ) and HQ(y; θ). Assume that the measures P ε are all probability measures. More-
over, assume that the rate function HP (x; y, θ) satisfies assumptions (i)-(ii) of Lemma 3.3
(with Y ×Θ in place of Θ). Then {Rε(dx, dy; θ) : ε > 0, θ ∈ Θ} defined by:∫

f(x, y)Rε(dx, dy; θ) =
∫ [∫

f(x, y)P ε(dx; y, θ)
]
Qε(dy; θ),

is an exponentially tight WULDF with rate function:

HR(x, y; θ) = HP (x; y, θ) + HQ(y; θ).

Proof. First we prove that Rε is a WULDF. Since HP (·; y, θ) is positive and has minimum
zero, property ii) of Definition 2.5 for HR is easily derived from the corresponding property
for HQ. We now show that i) of Definition 2.5 holds. Since lower semicontinuity is obvious,
we only need to prove that for all L ∈ IR, and for each θ, the set Z = {(x, y) |HR(x, y; θ) ≤ L}
is compact. Notice that if (x, y) ∈ Z then y ∈ W = {y |HQ(y; θ) ≤ L}, and W is compact.
Since HP is proper there exists a compact set V ⊆ X such that HP (x; y, θ) ≥ L + 1 for all
x ∈ V c and all y ∈ W (note that W × {θ} is compact). Thus we have that

Z ⊆ V ×W,

and so Z is compact, as desired.
Now we must show that also iii) of Definition 2.5 holds for Rε. Let F (x, y) be a continuous

and bounded function, and let K ⊆ Θ be compact. We need to prove that:

limε→0 supθ∈K

[
ε log

∫
exp{ε−1F (x, y)}Rε(dx, dy; θ)−

sup(x,y)∈X×Y [F (x, y)−HR(x, y; θ)]
]

= 0.
(3.9)

Notice that: ∫
exp{ε−1F (x, y)}Rε(dx, dy; θ) =

∫
exp{ε−1Gε(y, θ)}Qε(dy, θ),

where:
Gε(y, θ) = ε log

∫
exp{ε−1F (x, y)}P ε(dx; y, θ).

Clearly, the functions Gε are uniformly bounded. By Corollary 3.2

Gε(y, θ) → G(y, θ) ≡ sup
x∈X

[F (x, y)−HP (x; y, θ)]

uniformly on the compact subsets of Y × Θ. Moreover, by Lemma 3.3, G is a bounded
continuous function. Thus (3.9) follows as an application of Lemma 2.12 and Proposition
3.1.

It remains to show that the family Rε is exponentially tight. Let K ⊆ Θ be a compact
set, and M > 0. Since Qε is exponentially tight, there exists a compact set C1 ⊆ Y such that
for all θ ∈ K and for all ε small enough:

Qε(Cc
1; θ) ≤

e−ε−1M

2

10



Moreover, since P ε(dx; y, θ) is also exponentially tight, there exists a compact set C2 ⊆ X
such that

P ε(Cc
2; y, θ) ≤ e−ε−1M

2
,

for all (y, θ) ∈ C1 ×K and for all ε small enough. Let C = C1 × C2. Then:

Rε(Cc; θ) ≤ Rε(Cc
2 × C1; θ) + Rε(C2 × Cc

1; θ) ≤ sup
y∈C1

P ε(Cc
2; y, θ) + Qε(Cc

1; θ).

Thus, for all ε small enough, and for all θ ∈ K, we get

Rε(Cc; θ) ≤ e−ε−1M ,

that completes the proof.

Lemma 3.5 Let {P ε(dx; θ) : ε > 0, θ ∈ Θ} be a WULDF, with rate function H(x; θ), and
f : X → Y be a continuous function. Then {P ε

f (dy; θ) : ε > 0, θ ∈ Θ} defined by

P ε
f (B; θ) = P ε(f−1(B); θ), B ⊆ Y,

is again a WULDF with rate function:

Hf (y; θ) = inf{H(x; θ) : f(x) = y}

Moreover if the family P ε(dx; θ) is exponentially tight then also the family P ε
f (dy; θ) is expo-

nentially tight.

The proof of Lemma 3.5 is easy, and is omitted. From Lemma 3.5 the following Proposition
follows.

Proposition 3.6 (Contraction). Let {Rε(dx, dy; θ) : ε > 0, θ ∈ Θ} be a WULDF on X × Y
with rate function HR(x, y; θ). Then {P ε(dx; θ) : ε > 0, θ ∈ Θ}, defined by:

P ε(A; θ) := Rε(A× Y; θ),

is a WULDF with rate function

HP (x; θ) = inf
y∈Y HR(x, y; θ).

Moreover if the family Rε(dx, dy; θ) is exponentially tight then also the family P ε(dx; θ) is
exponentially tight.

Proposition 3.7 (Conditioning) Let {P ε(dx; θ) : ε > 0, θ ∈ Θ} and {Qε(dy;x) : ε > 0, x ∈
X} be two exponentially tight WULDF’s on X and Y respectively, with rate functions HP (x; θ)
and HQ(y;x). Assume that the measures Qε(dy;x) are all probability measures, and that both
families of kernels are exponentially tight. Moreover assume that the rate function HQ(y;x)
is always finite and continuous, and that the following properties hold.
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1. the measure Qε(dy;x) is of the form:

Qε(dy;x) = qε(y;x)α(dy).

where qε(y;x) > 0 and the measure α(dy) satisfies

inf
y∈K

α (B(y, γ)) > 0;

for every K ⊂ Y compact and γ > 0, where B(y, γ) is the ball centered at y with radius
γ.

2. for any compact sets K ⊆ Y, C ⊆ X , and any δ > 0 there exists δ1 > 0 and ε(δ) such
that:

|ε log qε(y1;x) − ε log qε(y2;x)| < δ,

for all y1, y2 ∈ K such that d(y1, y2) < δ1, for all ε ≤ ε(δ), and for all x ∈ C;

3. for any compact sets K ⊆ Y, C ⊆ X there exists nK,C > 0 such that:

ε log qε(y;x) ≥ −nK,C ;

for all y ∈ K, x ∈ C, and ε > 0

4. for any compact set K ⊆ Y, there exists NK > 0 such that:

ε log qε(y;x) ≤ NK ;

for all y ∈ K, for all x ∈ X , and for all ε > 0.

Then the measures on X
Rε(dx; y, θ) = qε(y;x)P ε(dx; θ)

form an exponentially tight WULDF with rate function

HR(x; y, θ) = HQ(y;x) + HP (x; θ).

Proof. First we prove that the family Rε is exponentially tight. Let K̃ ⊆ Y×Θ be a compact
set, and denote by K1 and K2 its projection on Y and Θ respectively. By property 4 there
exists a constant NK1 such that qε(y;x) ≤ eε−1NK1 , for all y ∈ K1, all x ∈ X , and all ε > 0.
Given any M > 0, since P ε is exponentially tight, there exists a compact set C ⊆ X such
that:

sup
θ∈K2

P ε(Cc; θ) ≤ e−ε−1(M+NK1 ).

We have:

sup
(y,θ)∈K̃

Rε(Cc; y, θ) = sup
(y,θ)∈K̃

∫
Cc

qε(y;x)P ε(dx; θ) ≤ eε−1NK1 sup
θ∈K2

P ε(Cc; θ) ≤ e−ε−1M ,

which proves exponential tightness. To show that the family {Rε(dx; y, θ)} is a WULDF with
rate function HR, we define

MP
θ = inf

x∈X
HP (x; θ).

12



Notice that, since the measures Qε(dy;x) are all probability measure, it holds that HQ(y;x) ≥
0. Then it is clear that HR(x; y, θ) ≥ MP

θ , so the map HR satisfies property ii) of Definition
2.5. Moreover, since:

{x | HR(x; y, θ) ≤ L } ⊆ {x | HP (x, θ) ≤ L },
also property i) of Definition 2.5 holds.

Now we need to establish property iii) of Definition 2.5. First we prove an intermediate
step, that consists in approximating the density qε(y;x) with an average on the form

1
α(B(y, δ1))

∫
Y

eε−1h(η)qε(η;x)α(dη),

h(η) being a function suitably concentrate about η = y.
For any y ∈ Y, δ > 0, 0 < δ̃ < δ, and M > 0, let gy,δ,δ̃,M (η) be a continuous and bounded

function such that:

1. gy,δ,δ̃,M (η) ≤ 0 for all η ∈ Y, and gy,δ,δ̃,M (η) = 0 for all η ∈ B(y, δ̃);

2. gy,δ,δ̃,M (η) = −M if η *∈ B(y, δ).

For each given y ∈ Y, 0 < δ̃ < δ, and M > 0, the existence of a function gy,δ,δ̃,M (·) satisfying
the previous requirements is easily proved. For example one may take

gy,δ,δ̃,M (η) = − M

δ − δ̃

(
min{ dist (η, B(y, δ̃)), δ − δ̃}

)
.

Claim 1 For any K ⊆ Y, and C ⊆ X compact sets, and any δ > 0, M > 0 let δ1 > 0, and
ε(δ) > 0 be such that:

qε(y;x)e−ε−1δ ≤ qε(η;x) ≤ qε(y;x)eε−1δ, (3.10)

for all x ∈ C, y, η ∈ K such that η ∈ B(y, δ1), and for all ε ≤ ε(δ) (use property 2). Fix any
δ̃ < δ1, and let h(η) = gy,δ1,δ̃,M (η). Then there exists a constant C(δ1) > 0 such that:

e−ε−1δ
(
1 + C(δ1)−1e−ε−1(M−NK+δ)

)−1
1

α(B(y,δ1))

∫
Y eε−1h(η)qε(η;x)α(dη) ≤ qε(y;x) ≤

≤ eε−1δ 1
α(B(y,δ̃))

∫
Y eε−1h(η)qε(η;x)α(dη)

(3.11)
for all y ∈ K, for all x ∈ C, ∀ δ̃ < δ1, and ∀ ε ≤ ε(δ), where NK is defined in Property 4 in
the assumptions.

Proof of the Claim
Let C(δ1) = infy∈K α (B(y, δ1)). It is easy to see that the following inequalities hold:∫

Y
eε−1h(η)qε(η;x)α(dη) ≥

∫
B(y,δ̃)

e−ε−1δqε(y;x)α(dη) = e−ε−1δqε(y;x)α
(
B(y, δ̃)

)
,

∫
Y eε−1h(η)qε(η;x)α(dη) ≤ ∫

B(y,δ1) eε−1δqε(y;x)α(dη) +
∫
B(y,δ1)c e−ε−1Mqε(η;x)α(dη)

≤ eε−1δqε(y;x)α (B(y, δ1))
[
1 + C(δ1)−1e−ε−1(M−NK+δ)

]
13



from which (3.11) follows easily. So Claim 1 is proved.

Fix any K ⊆ Y, and C ⊆ X compact sets, and any δ > 0, M > 0. Combining equations
(3.11) and (3.10) we get that for all x ∈ C, and all ỹ ∈ K such that |ỹ − y| < δ1:

e−ε−12δ γ(δ1)−1

α(B(y,δ1))

∫
Y eε−1h(η)qε(η;x)α(dη) ≤ qε(ỹ;x) ≤

≤ eε−12δ 1
α(B(y,δ̃))

∫
Y eε−1h(η)qε(η;x)α(dη)

(3.12)

where h(η) = gy,δ1,δ̃,M (η) and γ(δ1) = 1+ 1
C(δ1)e

−ε−1(M−NK+δ), Since K ⊂ ∪y∈KB(y, δ1), and
K is compact, there exist h1(η), . . . , hl(η) all of the type gyi,δ1,δ̃,M (η) for some yi ∈ K, such
that for all y ∈ K and for all x ∈ C there exists an index i ∈ {1, . . . , l} such that

e−ε−12δ γ(δ1)−1

α(B(yi,δ1))

∫
Y eε−1hi(η)qε(η;x)α(dη) ≤ qε(ỹ;x)

≤ eε−12δ 1
α(B(yi,δ̃))

∫
Y eε−1hi(η)qε(η;x)α(dη)

(3.13)

where (3.13) holds for all δ̃ < δ1, ε ≤ ε(δ).
Now we prove that also iii) of Definition 2.5 holds. Fix a compact set K̃ ⊆ Y × Θ. Let

K1 ⊆ Y be its first projection (i.e. K1 = Π1(K̃)), and K2 ⊆ Θ be its second projection.
Moreover, let NK1 be the positive constant given by property 4. For any continuous and
bounded function F (x), we need to show that:

lim
ε→0

sup
(y,θ)∈K̃

[
ε log

∫
X

eε−1F (x)Rε(dx; y, θ)− sup
x∈X

(F (x)−HR(x; y, θ))
]

= 0.

We let:

• |F (x)| ≤ L1,

• xθ ∈ X be such that HP (xθ; θ) = MP
θ = infx HP (x; θ),

• MP (K2) be such that |MP
θ | ≤ MP (K2) for all θ ∈ K2,

• C1 ⊆ X be a compact set such that xθ ∈ C1 for all θ ∈ K2 (such compact set exists by
properness of the rate function),

• L2 be such that |HQ(y;x)| ≤ L2 for all y ∈ K1 and all x ∈ C1 (notice that this constant
exists since HQ is continuous),

Now consider a compact set C2 ⊂ X and a constant Λ > 0 such that, for ε sufficiently small,

P ε(C2; θ) ≥ e−ε−1Λ (3.14)

for every θ ∈ K2. Note that this can be done by (2.3) and exponential tightness of P ε.
Moreover, by property 3, there is a constant n such that

−n ≤ ε log qε(y;x) (3.15)

for all x ∈ C2, y ∈ K1.
Fix any positive constants M , T and M̃ such that:

M > 2L1+L2+2MP (K2)+NK1 T > 2L1+Λ+n, M̃ > 2L1+L2+MP (K2)+M+Λ (3.16)
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Since HP is proper, and P ε, Rε are exponentially tight, we have that there is a compact sets
C3 ⊆ X , which satisfies the following inequality for ε small enough:

HP (x; θ) > M̃ for all x ∈ Cc
3 and all θ ∈ K2, (3.17)

P ε(Cc
3; θ) ≤ e−ε−1M̃ for all θ ∈ K2, (3.18)

Rε(Cc
3; y, θ) ≤ e−ε−1T for all (y, θ) ∈ K̃. (3.19)

Notice that without loss of generality, we may assume that C1, C2 ⊆ C3 Fix any δ > 0. Let
δ2 > 0 be such that

|HQ(y;x)−HQ(y′;x′)| ≤ δ, (3.20)

for all x, x′ ∈ C3, and y, y′ ∈ K1, such that dist (x, x′) < δ2, and dist (y, y′) < δ2.
Now, fix (y, θ) ∈ K̃, x ∈ C3. We have seen that there exist δ1 ≤ δ, ε(δ) > 0, y1, . . . , yl ∈ K1

and i ∈ {1, . . . , l} such that (3.13) holds for all x ∈ C3, y ∈ K1, δ̃ ≤ δ1 and ε ≤ ε(δ).
Upper bound.

ε log
∫

eε−1F (x)Rε(dx; y, θ)

= ε log
∫

C3

eε−1F (x)Rε(dx; y, θ) + ε log

1 +

∫
Cc

3
eε−1F (x)Rε(dx; y, θ)∫

C3
eε−1F (x)Rε(dx; y, θ)


≤ ε log

∫
C3

eε−1F (x)Rε(dx; y, θ) + ε log
(
1 + eε−1(2L1+Λ+n−T )

)
where we have used the inequalities∫

Cc
3

eε−1F (x)Rε(dx; y, θ) ≤ eε−1(L1−T )

∫
C3

eε−1F (x)Rε(dx; y, θ) ≥
∫

C2

eε−1F (x)Rε(dx; y, θ) ≥ e−ε−1(L1+Λ+n)

for every (y, θ) ∈ K̃. Therefore, using (3.13)

ε log
∫

eε−1F (x)Rε(dx; y, θ) ≤ ε log
(
1 + eε−1(2L1+Λ+n−T )

)
+ 2δ

−ε log α(B(yi, δ̃)) + ε log
∫

C3×Y
eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)

≤ ε log
(
1 + eε−1(2L1+Λ+n−T )

)
+ 2δ− ε log C(δ̃) + ε log

∫
X×Y

eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)

≤ ε log
(
1 + eε−1(2L1+Λ+n−T )

)
+ 2δ − ε log C(δ̃)+

sup
x∈X ,η∈Y

[F (x) + hi(η)−HQ(η;x)−HP (x; θ)] + λi(ε)

with λi(ε) → 0 as ε → 0. Note that for the last inequality Proposition 3.4 has been used.
Now observe that

sup
x∈X ,η∈Y

[
F (x) + hi(η)−HQ(η;x)−HP (x; θ)

]
≥
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F (xθ) + hi(yi)−HQ(yi;xθ)−HP (xθ; θ) ≥ −L1 − L2 −MP (K2). (3.21)

On the other hand, for x *∈ C3

F (x) + hi(η)−HQ(η;x)−HP (x; θ) ≤ L1 − M̃, (3.22)

and, for dist (η, yi) > δ1,

F (x) + hi(η)−HQ(η;x)−HP (x; θ) ≤ L1 −M + MP (K2). (3.23)

By (3.16), it follows that the r.h.s. of (3.22) and (3.23) are smaller that the r.h.s. of (3.21).
Therefore

sup
x∈X ,η∈Y

[
F (x) + hi(η)−HQ(η;x)−HP (x; θ)

]
=

= sup
x∈C3,η∈B(yi,δ1)

[
F (x) + hi(η)−HQ(η;x)−HP (x; θ)

]
≤ sup

x∈C3

[
F (x)−HQ(y;x)−HP (x; θ)

]
+ δ

= sup
x∈X

[
F (x)−HQ(y;x)−HP (x; θ)

]
+ δ

where the last equality comes from an argument analogous to (3.21)-(3.23). Summing up

ε log
∫

eε−1F (x)Rε(dx; y, θ) ≤

≤ ε log
(
1 + eε−1(2L1+Λ+n−T )

)
+ 2δ − ε log C(δ̃) + sup

x∈X

[
F (x)−HQ(y;x)−HP (x; θ)

]
+ λ(ε)

with λ(ε) = maxi=1,...,l λi(ε). By using again (3.16), the last inequality implies

lim sup
ε→0

sup
(y,θ)∈K̃

ε log
∫

eε−1F (x)Rε(dx; y, θ)− sup
x∈X

[
F (x)−HQ(y;x)−HP (x; θ)

]
≤ 0. (3.24)

Lower bound. By (3.13):

ε log
∫

eε−1F (x)Rε(dx; y, θ) ≥ ε log
∫

C3

eε−1F (x)Rε(dx; y, θ)

≥ −2δ−ε log γ(δ1)−ε log α(B(yi, δ1))+ε log
∫

C3×Y
eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ). (3.25)

Note that ∫
Cc

3×Y
eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ) ≤ eε−1(L1−M̃)

and ∫
X×Y

eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ) ≥ e−ε−1(L1+M+Λ),

which implies
ε log

∫
C3×Y

eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ) =
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= ε log
∫
X×Y

eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)+

+ ε log

1−
∫
Cc

3×Y eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)∫
X×Y eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ)


≥ ε log

∫
X×Y

eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ) + ε log
[
1− eε−1(2L1+M+Λ−M̃)

]
.

Thus
ε log

∫
eε−1F (x)Rε(dx; y, θ) ≥ −2δ − ε log γ(δ1)− ε log α(B(yi, δ1))

+ε log
∫
X×Y

eε−1(F (x)+hi(η))Qε(dη;x)P ε(dx; θ) + ε log
[
1− eε−1(2L1+M+Λ−M̃)

]
.

After having noticed that, by (3.16), 2L1 + M + Λ − M̃ < 0, the proof of the lower bound
proceeds by repeating the arguments in the proof of the upper bound, yielding

lim inf
ε→0

inf
(y,θ)∈K̃

ε log
∫

eε−1F (x)Rε(dx; y, θ)− sup
x∈X

[
F (x)−HQ(y;x)−HP (x; θ)

]
≥ 0 (3.26)

that, together with (3.24), completes the proof.

Note that, if in the statement of Proposition 3.7 we interpret qε(y;x)α(dy)P ε(dx; θ) as a
measure in X ×Y, the measure Rε has the meaning of unnormalized conditional measure. An
analogous statement for the normalized version, whose proof follows easily from Proposition
3.7, is given below.

Corollary 3.8 Under the assumptions of Proposition 3.7, define

Rε(dx; y, θ) =
qε(y;x)P ε(dx; θ)∫
X qε(y;x)P ε(dx; θ)

.

Then {Rε(dx; y, θ) : ε > 0, (y, θ) ∈ Y×Θ} is an exponentially tight WULDF with rate function

HR(x; y, θ) = HQ(y;x) + HP (x; θ)− inf
x∈X [HQ(y;x) + HP (x; θ)] .

4 The small parameter limit for partially observed, risk sen-
sitive control problems

4.1 The model

Let (Ω,F , P ) be a probability space, X ,Y metric spaces, and U a compact metric space.
Moreover, let (Fn)N

n=0, (Gn)N
n=0 be given filtrations on (Ω,F , P ). We construct a controlled,

partially observed stochastic system with state space X , observation space Y and control
space U . The (discrete) time will vary in {0, 1, . . . , N}.

Now, let M1(X ) (M1(Y)) denote the set of probability measures on X (Y), provided with
the weak topology and the corresponding Borel σ-field. Suppose that, for n = 0, . . . , N − 1
and ε > 0, we are given measurable functions (probability kernels)

X × U → M1(X )
(x, u) → P ε

n(·;x, u) (4.1)
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X → M1(Y)
x → Qε

n+1(·;x). (4.2)

We assume there exists a σ-finite measure α on Y such that for all x ∈ X , Qε
n+1(·;x) has a

density w.r.t. α:
Qε

n+1(dy;x) = qε
n+1(y;x)α(dy), (4.3)

and we assume qε
n+1(y;x) to be strictly positive everywhere.

For n = 0, . . . , N − 1 we let un : Yn+1 → U be a measurable function. The sequence
(u0, . . . , uN−1) will be denoted by u, and the set of such sequences (admissible controls) will
be denoted by ad(U).

For every given u ∈ ad(U) we now define (Xε,u
n )N

n=0, (Y ε,u
n )N

n=0 to be respectively X and
Y-valued stochastic process, defined on (Ω,F , P ), having the following properties:
i) Xε,u

n is Fn-measurable; Y ε,u
n is Gn-measurable;

ii) for n = 0, . . . , N − 1

P{Xε,u
n+1 ∈ · |Fn ∨ Gn} = P ε

n(· ;Xε,u
n , un(Y ε,u

0 , . . . , Y ε,u
n )); (4.4)

iii) for n = 1, . . . , N
P{Y ε,u

n ∈ · |Fn ∨ Gn−1} = Qε
n(· ;Xε,u

n ). (4.5)

Note that i), ii) and iii) completely determine the law of the processes Xε,u
n and Y ε,u

n , up to
the initial condition Xε,u

0 , Y ε,u
0 . For simplicity, we assume Xε,u

0 = ξ, Y ε,u
0 = η, deterministic

and (ε,u)-independent. It is clear that for given probability kernels as in (4.1)(4.2), one
can construct on a suitable probability space a stochastic process satisfying i), ii) and iii).
The dependence on ε of the probability kernels in (4.1)(4.2) will be specified later. From
now on, the index (ε,u) in X(ε,u)

n and Y (ε,u)
n will be omitted, and we shortly write un for

un(Y ε,u
0 , . . . , Y ε,u

n ).
Now we define the cost functional for the optimal control problem. Suppose we are given

bounded measurable functions

gn : X × U → IR, n = 0, . . . , N − 1 gN : X → IR. (4.6)

For u ∈ ad(U) define

J ε(u) = ε log E
{

exp
[
ε−1

( N−1∑
n=0

gn(Xn, un) + gN (XN )
)]}

. (4.7)

The optimal control problem associated to J ε consists in computing J ε∗ = inf{J ε(u) : u ∈
ad(U)} and determining a u∗ ∈ ad(U) such that J ε(u∗) = J ε∗.

4.2 Information vector, information measure and dynamic programming

In this section the dependence on ε of the objects defined in Section 2.1 is not relevant. So
the index ε will be dropped.

It is a standard procedure in stochastic control to analyze optimal control problems with
partial observation through a redefinition of the model as a completely observed one. Let
n = 0, . . . , N . The information vector at time n is defined by

Zn = (Y0, . . . , Yn, u0, . . . , un−1) ∈ Yn+1 × Un ≡ Zn. (4.8)
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In the sequel we often identify Zn+1 with the triple (Zn, un, Yn+1).
Note that an admissible control at time n can be thought of as a function of Zn. The

stochastic dynamics of (Xn, Yn) described in i)-iii) induces the following stochastic dynamics
for the information vector

P{Zn+1 ∈ · |Gn} = δY0 ⊗ · · ·⊗ δYn ⊗ PO
n (dyn+1;Zn, un)⊗ δu0 ⊗ · · ·⊗ δun . (4.9)

The probability kernels
PO

n : Zn × U →M1(Y) (4.10)

can be recursively constructed following the procedure below. We also construct an auxiliary
sequence of kernels

P f
n : Zn →M1(X ) (filtering probabilities). (4.11)

a) Initialize P f
0 = δξ.

b) Define PO
n by

PO
n (A; zn, un) =

∫ ( ∫
Qn+1(A;xn+1)Pn(dxn+1;xn, un)

)
P f

n (dxn; zn) (4.12)

for A ⊂ Y measurable.
c) Define P f

n+1 by

P f
n+1(B; zn+1) =

∫
X

( ∫
B qn+1(yn+1, xn+1)Pn(dxn+1;xn, un)

)
P f

n (dxn; zn)∫
X

( ∫
X qn+1(yn+1, xn+1)Pn(dxn+1;xn, un)

)
P f

n (dxn; zn)
. (4.13)

for B ⊂ X measurable.

Remark 4.1 Equation (4.13) is the well known discrete Zakai equation for the filtering
probability. Indeed, P f

n is a version of the conditional probability of Xn given Zn, and PO
n

is a version of the conditional probability of Yn+1 given Zn. We assume implicitly that
all integrals in (4.13) are finite; this will be guaranteed by later assumptions on the model
(Assumption A, Section 4.3), where the function qn(yn; ·) is assumed to be bounded.

Note that PO
n+1 has a density with respect to α given by

ρn(yn+1; zn, un) = ρn(zn+1) =
∫ ( ∫

qn+1(yn+1, xn+1)Pn(dxn+1;xn, un)
)
P f

n (dxn; zn).

(4.14)
Next step consists in writing the cost function J(u) in terms of the information vector Zn.
The main tool is provided by what we define to be the information measure. The information
measure at time n is a map

P I
n : Zn →M(X ) (4.15)

where M(X ) is the space of positive finite measures on X . The maps P I
n are recursively

defined as follows.

P I
0 (dx0) = δξ

P I
n+1(A; zn+1) =

∫
X

(∫
A

egn(xn,un)qn+1(yn+1,xn+1)Pn(dxn+1;xn,un)

)
P I

n(dxn;zn)

ρn(zn+1) .

(4.16)

An important property of the information measure is given in next lemma.
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Lemma 4.2 The following identity holds for n = 0, . . . , N , for any f : X ×Zn → IR bounded
and measurable and every u ∈ U

E
{ ∫

f(xn, Zn)P I
n(dxn;Zn)

}
= E

{
f(Xn, Zn) exp

[ n−1∑
k=0

gk(Xk, uk)
]}

. (4.17)

Proof. For n = 0 there is nothing to prove. The inductive step is proved as follows;

E
{ ∫

f(xn+1, Zn+1)P I
n+1(dxn+1;Zn+1)

}
=

= E
{
E

{ ∫
f(xn+1, Zn+1)P I

n+1(dxn+1;Zn+1)
∣∣∣Zn, un

}}
= E

{
E

{ ∫
f(xn+1, Zn, un, Yn+1)P I

n+1(dxn+1;Zn, un, Yn+1)
∣∣∣Zn, un

}}
= E

{ ∫ [ ∫
f(xn+1, Zn, un, yn+1)P I

n+1(dxn+1;Zn, un, yn+1)
]

ρn(yn+1, Zn, un)α(dyn+1)
}

(by (4.16))
= E

{ ∫ [ ∫ ( ∫
f(xn+1, Zn, un, yn+1)qn+1(yn+1;xn+1)Pn(dxn+1;xn, un)

)
α(dyn+1)

]
egn(xn,un)P I

n(dxn;Zn)
}

(by inductive assumption)
= E

{ ∫ [ ∫
f(xn+1, Zn, un, yn+1)qn+1(yn+1;xn+1)Pn(dxn+1;Xn, un)

]
α(dyn+1)

exp[
∑n

k=0 gk(Xk, uk)]
}

= E
{
E

{
f(Xn+1, Zn+1)

∣∣∣Fn ∨ Gn

}
exp[

∑n
k=0 gk(Xk, uk)]

}
= E

{
f(Xn+1, Zn+1) exp[

∑n
k=0 gk(Xk, uk)]

}
(4.18)

where we have used elementary properties of conditional expectation.

By using the recursive definition (4.16) it is easily checked that the information measures
are indeed finite measures. A bound on P I

n(X; zn) which is uniform in zn will be useful later,
and is given in the following Lemma.

Lemma 4.3 For every n = 0, . . . , N and every zn ∈ ZZn we have

| log P I
n(X; zn)| ≤

n−1∑
k=0

‖gk‖∞. (4.19)

Proof. Since the filtering measures are probability measure, it is enough to show that for any
n = 0, . . . , N and every positive measurable function f∫

f(xn)P f
n (dxn; zn)e−

∑n−1

k=0
‖gk‖∞ ≤

∫
f(xn)P I

n(dxn; zn) ≤
∫

f(xn)P f
n (dxn; zn)e

∑n−1

k=0
‖gk‖∞ .

(4.20)
The proof of (4.20) comes from an easy induction, and is omitted.
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By using Lemma 4.2, we can rewrite the cost functional J(u) as follows:

J(u) = log E
{

exp
[
GN (ZN )

]}
(4.21)

where
GN (ZN ) = log

∫
egN (xN )P I

N (dxN ;ZN ). (4.22)

The partially observed stochastic control problem described in Section 4.1 has now been
transformed into a totally observed one, with state variable Zn and cost functional (4.21).
For this system the variables Yn should be thought of as noise variables.

The value function associated to (4.22) is defined by

Vn(zn) = inf
u∈ad(U)

log E
{

exp
[
GN (ZN )

]∣∣∣Zn = zn

}
. (4.23)

It can be shown (see e.g. [2]) that Vn satisfies the following recursion

VN (zN ) = GN (zN )

Vn(zn) = infu∈U log
∫

exp[Vn+1(yn+1, zn, u)]PO
n (dyn+1; zn, u).

(4.24)

Remark 4.4 By using (4.24) and Lemma 4.3 it is easily seen that the functions Vn are
bounded.

Remark 4.5 The stochastic control problem (4.21)-(4.22) is somewhat implicitly stated,
since the cost function is given in terms of the solution of the recursion (4.16). Indeed, the
cost functional J(u) can be written only in terms of the measures (P f

n , P I
n). To see this,

consider the stochastic dynamics on M1(X)×M(X ) given by

P f
n+1(B) =

∫
X

( ∫
B qn+1(Yn+1, xn+1)Pn(dxn+1;xn, un)

)
P f

n (dxn)∫
X

( ∫
X qn+1(Yn+1, xn+1)Pn(dxn+1;xn, un)

)
P f

n (dxn)
(4.25)

P I
n+1(A) =

∫
X

( ∫
A egn(xn,un)qn+1(Yn+1, xn+1)Pn(dxn+1;xn, un)

)
P I

n(dxn)∫
X

( ∫
X qn+1(Yn+1, xn+1)Pn(dxn+1;xn, un)

)
P f

n (dxn)
(4.26)

or, in short,
(P f

n+1, P
I
n+1) = F (P f

n , P I
n , un, Yn+1). (4.27)

In (4.27) the Yn’s play the role of disturbances, whose distribution is determined by

P (Yn+1 ∈ A|u0, . . . , un, Y0, . . . , Yn) =
∫ ( ∫

Qn+1(A;xn+1)Pn(dxn+1;xn, un)
)
P f

n (dxn).

(4.28)
If we define the cost functional

K(u) = log E
{
egN (x)P I

N (dx)
}

(4.29)

then we have that K(u) = J(u) for every u ∈ ad(U). This shows that, in a very precise
sense, the pair (P f

n , P I
n) is a sufficient statistics for the risk sensitive control problem or, in

terms more commonly used in control theory, it is an information state.
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As a consequence, it follows that the value function Vn can be thought of as a function of
the information state. In [12], Theorem 3.2, the ε → 0 limit of the value function is studied
by looking at the value function as a function of the information state (which is not the same
as here, see Remark 4.6 below). In the generality of our model a statement of the type of
Theorem 3.2. in [12] does not seem to make sense, and so we prefer to analyze the value
function as a function of the information vector. In our construction the information state
is only an auxiliary object that allows to express the cost functional J(u) in terms of the
information vector.

Remark 4.6 The information state for risk-sensitive control problems, which is rather recent
achievement in stochastic control theory, it has been first introduced in [1] and it is usually
defined (see [12]) through a measure transformation that decouples the observation from the
state. The notion of information state in [12] has, among other advantages, the one that in
the ε → 0 limit it induces a quite natural notion of information state for the limit dynamic
game. However, when the partially observed control problem is transformed into a totally
observed one by means of the information state in [12] one gets a value function which is, in
general, unbounded. In order to use large deviation techniques to control the ε → 0 limit of
the value function, some growth bound are needed, and these bounds come from assumptions
on the dynamics of the model. The assumptions that will be given in Section 4.3 would not
imply any growth bound. Our construction guarantees boundedness of the value function,
and appears to be more robust in terms of assumptions on the model.

4.3 Small parameter limit

In this section we investigate the limit of the value function in (4.23) as ε → 0. We first
introduce the basic assumptions on the model that are needed to study the small parameter
limit.
ASSUMPTION A

1. For n = 0, . . . , N − 1 the families of probability measures {P ε
n(dxn+1;xn, un) : ε >

0, (xn, un) ∈ X × U} are WULDF’s with rate functions HP
n (xn+1;xn, un), and they

are exponentially tight. Moreover, the map (xn, un) → P ε
n(dxn+1;xn, un) is weakly

continuous.

2. Let An = {(x, ξ, u) ∈ X × X × U : HP
n (x, ξ, u) < +∞}. Then for every sequence

(ξn, un) → (ξ, u) there exists a corresponding sequence xn → x such that HP
n (xn, ξn, un)

→ HP
n (x, ξ, u).

3. HP
n is jointly l.s.c. in (xn+1, xn, un).

4. For n = 1, . . . , N the families of probability measures {Qε
n(dyn;xn) : ε > 0, xn ∈

X} are WULDF’s with finite and continuous rate functions HQ
n (yn;xn), and they are

exponentially tight.

5. The reference measure α on Y such that Qε
n(dyn;xn) = qε

n(yn;xn)α(dyn) satisfies

inf
y∈K

α (B(y, γ)) > 0;

for every K ⊂ Y compact and γ > 0, where B(y, γ) is the ball centered at y with radius
γ. Moreover the density qε

n(yn;xn) is jointly continuous in (yn;xn).
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6. For every K ⊂ Y compact, C ⊂ X compact and every δ > 0 there exists δ′ > 0 and
ε′ > 0 such that if y, y′ ∈ K and d(y, y′) < δ′ then |ε log qε

n(y, x)− ε log qε
n(y′, x)| < δ for

all x ∈ C and ε < ε′.

7. For every K ⊂ Y, C ⊂ X compact the functions ε log qε
n(y, x) are uniformly bounded

from above on K ×X and uniformly bounded from below on K ×C (uniformly means
that the bound is independent of ε).

8. The functions gn appearing in the cost functional J(u) are continuous and bounded.

Note that conditions 2-3, 5-7 correspond to the assumptions of Propositions 3.4 and 3.7
respectively.

A sufficient condition for Assumption A to hold is provided by the following.
ASSUMPTION B

1. Let W be a metric space. For n = 0, . . . , N − 1 let fn : X × U ×W → X be con-
tinuous functions, and {µε

n : ε > 0} be an exponentially tight family of probability
measures on W satisfying a LDP with rate function hn(w). The probability measures
P ε

n(dxn+1;xn, un) are defined by

P ε
n(A;xn, un) = µε

n{w : fn(xn, un, wn) ∈ A}.

2. Let Y = IRd, and, for n = 1, . . . , N , let φn : X × IRd → IRd be continuous functions.
Moreover, let {νε

n : ε > 0}, n = 1, . . . , N , be exponentially tight families of probability
measures satisfying a LDP with rate function kn(v), that is finite and continuous.
Suppose the following conditions are satisfied:

a) for every fixed x ∈ X the map v → φn(x, v) is a diffeomorphism in IRd. Moreover the
inverse map φ−1

n (x, y) and Dyφ−1
n (x, y) are continuous on X × IRd, where Dy denotes

differentiation w.r.t. y.

b) For every K ⊂ IRd compact, the map det (Dyφ−1
n ) is bounded on X ×K.

c) νε
n 2 dv, and {ε log dνε

n
dv : ε > 0} is a family of functions that, when restricted to any

compact subset of IRd, are equicontinuous and uniformly bounded from below, and are
uniformly bounded from above on all IRd

The probability measures Qε
n(dyn;xn) are defined by

Qε
n(B;xn) = νε

n{v : φn(xn, v) ∈ B}.

3. The functions gn appearing in the cost functional J(u) are continuous and bounded.

Note that, under Assumption B, the dynamics for Xn, Yn have the form

Xn+1 = fn(Xn, un,Wn)
Yn = φn(Xn, Vn)

where {W0, . . . ,WN−1, V1, . . . , VN} are independent random variable with Wn ∼ µε
n and

Vn ∼ νε
n.

The following fact will be proved in the Appendix.
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Proposition 4.7 Assumption B implies Assumption A.

Example 4.8

1. We give first some examples where Assumption B holds. Assume W = IRm. Suppose
also that, for n = 0, 1, . . . , N−1 we are given Borel measurable functions h̃n : IRm → IR,
k̃n : IRd → IR such that

i) h̃n(w), k̃n(v) → +∞ as ‖w‖ → +∞, ‖v‖ → +∞;

ii) e−h̃n , e−k̃n are integrable w.r.t. the Lebesgue measure;

iii) h̃n is a.e. bounded from below, k̃n is continuous.

Then we can define

µε
n(dw) =

e−ε−1h̃n(w)dw∫
e−ε−1h̃n(w)dw

, νε
n(dw) =

e−ε−1k̃n(v)dv∫
e−ε−1k̃n(v)dv

.

Then µε
n, νε

n satisfy the requirements given in Assumption B, with corresponding rate
functions hn(w) = h̃n(w) − inf h̃n, kn(v) = k̃n(v) − inf k̃n. Note that this example
includes the Gaussian noise considered in [12].

To complete the description of the model we can assign any continuous functions fn :
X × U ×W → X for the state dynamic equations, while examples of output functions
φn satisfying Assumption B are provided by functions of type

φn(x, v) = βn(x) + γn(x)v

where βn : X → IRd, γn : X → L(IRd, IRd) are continuous functions and, for all v ∈ IRd,
the inequality ‖γn(x)v‖2 ≥ δ‖v‖2 holds for a constant δ independent of x ∈ X . Note
that no boundedness or growth assumptions on βn are required.

2. Assumption A has the advantage of being more general than Assumption B, and some-
what more directly usable in the proofs. Besides technical convenience, the description
of the model in terms of transition probabilities, rather than difference equations with
noise, may be more natural in some contexts, e.g. when X and/or Y are finite sets. For
instance, in the case of X finite, one may consider transition probabilities of the form

P ε
n(xn+1;xn, un) =

e−ε−1HP
n (xn+1;xn,un)∑

z∈X e−ε−1HP
n (z;xn,un)

. (4.30)

If HP
n is finite and continuous in un, then (4.30) automatically satisfies 1-3 of Assump-

tion A. A similar transition mechanism can be defined for the output, when Y is finite;
if X and Y are both finite, conditions 4-7 of Assumption A are trivially satisfied.

Dynamics of type (4.30) appear naturally in statistical mechanical models of particle
systems; in that context ε is a temperature parameter, while the control un may be
seen as an external field perturbing some “free” evolution.

In what follows we will use objects defined in Section 4.2. We find convenient to give a
list of all identities we are going to use, showing explicitly the dependence on ε.

P f,ε
n+1(B; zn+1) =

∫
X

( ∫
B qε

n+1(yn+1, xn+1)P ε
n(dxn+1;xn, un)

)
P f,ε

n (dxn; zn)∫
X

( ∫
X qε

n+1(yn+1, xn+1)P ε
n(dxn+1;xn, un)

)
P f,ε

n (dxn; zn)
(4.31)
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ρε
n(zn+1) =

∫ ( ∫
qε
n+1(yn+1, xn+1)P ε

n(dxn+1;xn, un)
)
P f,ε

n (dxn; zn) (4.32)

P I,ε
n+1(A; zn+1) =

∫
X

( ∫
A eε−1gn(xn,un)qε

n+1(yn+1, xn+1)P ε
n(dxn+1;xn, un)

)
P I,ε

n (dxn; zn)

ρε
n(zn+1)

(4.33)

J ε(u) = ε log E
{

exp ε−1
[
Gε

N (zN )
]}

(4.34)

Gε
N (zN ) = ε log

∫
eε−1gN (xN )P I,ε

N (dxN ; zN ) (4.35)

V ε
n(zn) = inf

u∈U ε log
∫

exp ε−1[V ε
n+1(zn, u, yn+1)]PO,ε

n+1(yn+1; zn, u). (4.36)

Remark 4.9 By using Assumption B one checks by rather standard arguments that the
value functions V ε

n(zn) are continuous. By Remark 4.4 we know that they are also bounded,
and it is clear that the bound does not depend on ε.

We now give the main result of this section.

Theorem 1 There are functions Vn : Zn → IR, for n = 0, . . . , N , such that V ε
n → Vn

uniformly on the compact subsets of Zn. Moreover the functions Vn satisfy the following
recursion

VN (zN ) = supx

[
gN (x)−HI

N (x; zN )
]

Vn(zn) = infun supyn+1

[
Vn+1(zn, un, yn+1)−HO

n (yn+1; zn, un)
] (4.37)

where HI
N ,HO

n are determined by the following recursions

HI
0 (x) = Hf

0 (x)
{

0 if x = ξ
+∞ otherwise

HO
n (yn+1; zn, un) = inf

xn+1,xn

[
HQ

n+1(yn+1;xn+1) + HP
n (xn+1;xn, un) + Hf

n(xn; zn)
]

(4.38)

Hf
n+1(xn+1; zn+1) = HQ

n+1(yn+1;xn+1) + inf
xn

[
HP

n (xn+1;xn, un) + Hf
n(xn; zn)

]
(4.39)

−HO
n (yn+1; zn, un).

HI
n+1(x; zn+1) = HQ

n+1(yn+1;x) + inf
η∈X

[
HP

n (x, η, un) + HI
n(η, zn)− gn(η, un)

]
(4.40)

−HO
n (yn+1; zn, un).

Remark 4.10 We have observed above that the functions V ε
n are continuous and bounded.

It follows by Theorem 1 that also the function Vn are continuous and bounded. Indeed, in
any metric space, uniform convergence on compact subsets preserves continuity.
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The proof of Theorem 1 is based on the following result, whose proof is given at the end
of this section.

Proposition 4.11 The families {PO,ε
n (dyn+1; zn, un)}, n = 0, . . . , N−1, {P f,ε

n (dxn; zn)} and
{P I,ε

n (dxn, zn)}, n = 0, . . . , N , are WULDF with rate functions HO
n ,Hf

n ,HI
n respectively.

In the proof of Theorem 1 we also use the following technical result, that we prove in the
Appendix.

Lemma 4.12 Let E be a metric space, F a compact metric space, and f ε : E × F → IR,
ε ≥ 0, be a family of continuous functions such that f ε → f0 uniformly on the compact
subsets of E × F . Define gε : E → IR by

gε(x) = inf
y∈F

f ε(x, y).

Then gε → g0 uniformly on the compact subsets of E.

Proof of Theorem 1. We prove the convergence V ε
n → Vn by backward induction on n. For

n = N the claim is an immediate consequence of (4.35) and Proposition 4.11. We now prove
the inductive step. Define

T ε
n(zn, u) = ε log

∫
exp ε−1[V ε

n+1(zn, u, yn+1)]PO,ε
n+1(yn+1; zn, u), (4.41)

so that
V ε

n(zn) = inf
u∈U T ε

n(zn, u). (4.42)

By inductive assumption V ε
n+1(zn, u, yn+1) → Vn+1(zn+1) uniformly on the compact subsets

of Zn+1. Thus, by using Lemma 2.12 and Proposition 4.11

T ε
n(zn, u) → sup

yn+1∈Y

[
Vn+1(zn, u, yn+1)−HO

n (yn+1; zn, un)
]
. (4.43)

By (4.42) and Lemma 4.12 the conclusion follows.

Proof of Proposition 4.11. We prove by induction that HI
n and Hf

n are the rate functions for
P I,ε

n and P f,ε
n respectively. The n = 0 case is clear, since the singleton {δξ} is a WULDF with

rate function HI
0 = Hf

0 . The inductive step, in both cases, is a simple application of (4.31),
(4.33), Propositions 3.4 and 3.7. The fact that HO

n is the rate function for PO,ε
n also follows

for (4.12) and Proposition 3.4.

4.4 Interpretation of the limit value function

In this section we show that the limit value function Vn can be interpreted as the value
function for a partially observed dynamic game. Although this would not be necessary, for
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conceptual simplicity Assumption B will be assumed throughout this section. Thus, the
stochastic dynamics for the risk-sensitive control problem are given, in short, by{

xn+1 = fn(xn, un, wn)
yn = φn(xn, vn) (4.44)

with wn ∼ µε
n and vn ∼ νε

n. Now, consider the deterministic, zero sum dynamic game with
dynamics given by (4.44) and cost functional

J(u) = sup
v,w

[ N−1∑
n=0

(
gn(xn, un)− hn(wn)− kn+1(vn+1)

)
+ gN (xN )

]
(4.45)

defined for u ∈ ad(U). The supremum in (4.45) is over all sequences w = (w0, . . . , wN−1) ∈
WN , v = (v1, . . . , vN ) ∈ (IRd)N . Note that, for u ∈ ad(U) fixed, the expression in (4.45)
within square brackets is a function of w,v.

Proposition 4.13 The following identity holds for n = 0, . . . , N − 1:

sup
[ n∑

l=0

(
gl(xl, ul)− hl(wl)− kl+1(vl+1)

)
: (4.44) holds, and

w0, . . . , wn, v1, . . . , vn+1 are such that (y0, . . . , yn+1, u0, . . . , un) = zn+1, xn+1 = x
]

= −HI
n+1(x; zn+1)−

n∑
k=0

HO
k (yk+1; zk, uk). (4.46)

Proof. Under Assumption B, we can rewrite (4.40) as

HI
n+1(x; zn+1) = inf

η∈X inf
w∈W inf

v∈IRd

[
kn+1(v) + hn(w) + HI

n(η, zn)− gn(η, un)

: fn(η, un, w) = x,φn+1(x, v) = yn+1

]
−HO

n (yn+1; zn, un). (4.47)

We prove (4.46) by induction on n. For n = 0 the claim follows using (4.47). Otherwise, by
using the inductive assumption and (4.47), we get

sup
[ n∑

l=0

(
gl(xl, ul)− hl(vl)− kl+1(vl+1)

)
: (4.44) holds, and

w0, . . . , wn, v1, . . . , vn+1 are such that (y0, . . . , yn+1, u0, . . . , un) = zn+1, xn+1 = x
]

= sup
η∈X

sup
w∈W

sup
v∈IRd

[
gn(η, un)−kn+1(v)−hn(w)−HI

n(η, zn) : fn(η, un, w) = x,φn+1(x, v) = yn+1

]

−
n−1∑
k=0

HO
k (yk+1; zk, uk)

= −HI
n+1(x; zn+1)−

n∑
k=0

HO
k (yk+1; zk, uk). (4.48)
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Proposition 4.13 allows to transform the dynamic game (4.44)(4.45) into a totally observed
one, in terms of the information vector

zn+1 = (zn, un, yn+1) (4.49)

J(u) = sup
y

[ N−1∑
n=0

Gn(zn, un, yn+1) + GN (zN )
]

(4.50)

with
GN (zN ) = sup

x∈X

[
gN (x)−HI

N (x; zN )
]
, (4.51)

Gn(zn, un, yn+1) = −HO
n (yn+1; zn, un), (4.52)

and where the supremum in (4.50) is over all sequences y = (y1, . . . , yN ) ∈ YN . We recall that
the standard definition of the upper value function Vn(zn) for the dynamic game (4.49)(4.50)
is the infimum of

sup
yn+1,...,yN

N−1∑
k=n

Gk(zk, uk, yk+1) + GN (zN )

over u ∈ ad(U) where the dynamics (4.49) start at time n from zn. A simple dynamic
programming argument yields the following.

Proposition 4.14 The upper value function Vn for the zero sum, two players dynamic game
(4.49) (4.50) is given by (4.37).

Remark 4.15 We have seen that the pair (P f,ε
n , P I,ε

n ) is an information state for the risk
sensitive control problem. The corresponding pair (Hf

n ,HI
n) can be interpreted as an infor-

mation state for the limit dynamic game. In fact, the following totally observed dynamic
game with state variables (Hf

n ,HI
n) is equivalent to (4.49)(4.50):

Hf
n+1(x) = HQ

n+1(yn+1;x) + inf
η

[
HP

n (xn+1; η, un) + Hf
n(η)

]
(4.53)

− inf
x

{
HQ

n+1(yn+1;x) + inf
ξ

[
HP

n (xn+1; ξ, un) + Hf
n(ξ)

]}
HI

n+1(x) = HQ
n+1(yn+1;x) + inf

η∈X

[
HP

n (x, η, un) + HI
n(η)− gn(η, un)

]
(4.54)

− inf
x

{
HQ

n+1(yn+1;x) + inf
ξ

[
HP

n (xn+1; ξ, un) + Hf
n(ξ)

]}
,

J(u) = sup
y

{
−

N−1∑
n=0

inf
x

{
HQ

n+1(yn+1;x) + inf
ξ

[
HP

n (xn+1; ξ, un) + Hf
n(ξ)

]}
(4.55)

+ sup
x∈X

[
gN (x)−HI

N (x)
]
.
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It should be noticed that there is a simpler notion of information state for the dynamic game
(4.44)-(4.45), given by the real valued function Kn : X → IR, evolving according to the
equation

Kn+1(x) = HQ
n+1(yn+1;x) + inf

η∈X

[
HP

n (x, η, un) + Kn(η)− gn(η, un)
]
. (4.56)

It can be shown that
J(u) = sup

y
sup
x∈X

[
gN (x)−KN (x)

]
. (4.57)

It can be proved that the function Kn(x) is the rate function of a WULDF that is recursively
defined as in (4.33) where the denominator ρε

n is dropped. The measure obtained in this way
is quite related to the information state in [12]; the use of this measure in place of P I

n gives
rise to an unbounded value function, posing serious difficulty to the small parameter analysis.

Example 4.16 In the case X = IRp, and

µε
n(dw) =

1
(2πε)p/2

e−
1
2ε ||w||2dw and νε

n(dv) =
1

(2πε)d/2
e−

1
2ε ||v||2dv,

we have hn(w) = 1
2 ||w||2, and kn(w) = 1

2 ||v||2, and we recover the model in [12], but with
much more general equation for the dynamics.

5 The Completly Observed Case

The risk sensitive control problems satisfying Assumptions A do not include the completely
observed case (Yn = Xn). It is clear, however, that the method used in this paper can
be easily directly applied to the dynamic programming equation of a completely observed
problem.

Consider a probability space (Ω,F , P ) with a filtration (Fn)N
n=0. Define ad(U), the set of

admissible controls, to be the set of the Fn-adapted U-valued processes. For u ∈ ad(U), we
let Xε,u

n to be the Fn-adapted X -valued process such that:

P{Xε,u
n+1 ∈ · |Fn} = P ε

n(· ;Xε,u
n , un).

The cost functional is as in (4.7), but defined in this new set of admissible controls. Consider
the value function:

V ε
n(x) = inf

u∈ ad(U)
ε log E

{
exp

[
ε−1

( N−1∑
k=n

gk(Xn, un) + gN (XN )
)]}

.

The following result is proved by induction as in Theorem 1. Note that the assumptions
needed are much weaker than those of a similar result given in [4].

Theorem 2 Assume that part 1 of either Assumptions A or B holds. Then there are func-
tions Vn such that V ε

n → Vn as ε → 0, uniformly on compact subsets of X .
Moreover, if part 1 of Assumptions B holds, then Vn is the upper value function for the

deterministic dynamic game with dynamic given by:

xn+1 = fn(xn, un, wn),

and with cost functional given by:

J(u) = sup
w

[ N−1∑
n=0

(
gn(xn, un)− hn(wn)

)
+ gN (xN )

]
.
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6 Appendix

6.1 Proof of Proposition 4.7

Properties 1. and 4. of Assumption A follow from Proposition 2.7 and Lemma 2.10.
In the rest of the proof we drop the index n everywhere.

Proof of property 2. Suppose (x, ξ, u) ∈ A, i.e. HP (x; ξ, u) < ∞. First note that, since
the set {w : f(ξ, u, w) = x} is closed, then there is w ∈ W such that f(ξ, u, w) = x and
h(w) = HP (x; ξ, u).

Suppose now we have a sequence (ξk, uk) → (ξ, u). We construct a sequence xk → x such
that HP (xk; ξk, uk) → HP (x; ξ, u). Define xk = f(ξk, uk, w). By continuity of f , we have that
xk → x. Then let wk be such that xk = f(ξk, uk, wk) and h(wk) = HP (xk; ξk, uk). Clearly
h(wk) ≤ h(w), and therefore the sequence wk has has a convergent subsequence wnk → w′.
By lower semicontinuity of h we have

h(w′) ≤ lim inf h(wnk) ≤ h(w). (6.1)

But, again by continuity of f , we also have x = f(ξ, x, w′), and therefore

h(w′) ≥ h(w). (6.2)

By (6.1) and (6.2) we have
lim
k

h(wk) = h(w)

as desired.
Proof of property 3. Consider a sequence (xk, ξk, uk) → (x, ξ, u). We must show that

lim inf HP (xk; ξk, uk) ≥ HP (x; ξ, u). (6.3)

It is enough to prove the following statement: suppose there is a subsequence (xnk , ξnk , unk)
such that

lim
k

HP (xnk ; ξnk , unk) = l < ∞; (6.4)

then l ≥ HP (x; ξ, u). To prove this, let wnk be such that xnk = f(ξnk , unk , wnk) and h(wnk) =
HP (xnk ; ξnk , unk). By (6.4), the sequence wnk has a limit point w. By continuity of f ,
f(ξ, u, w) = x, and therefore h(w) ≥ HP (x; ξ, u). Finally, by lower semicontinuity of h

l = lim
k

h(wnk) ≥ h(w) ≥ HP (x; ξ, u)

which completes the proof of property 3.
Proof of properties 5. and 6. Letting

ρε =
dνε

dv
we easily get

ε log qε(y;x) = ε log ρε(φ−1(x, y)) + ε log
∣∣∣ det

(
Dyφ

−1(x, y)
)∣∣∣ (6.5)

Property 5. follows from (6.5), equicontinuity of ε log ρε, continuity of φ−1 and the fact that
log | det (Dyφ−1)|, being continuous, is bounded on the compact subsets of X ×IRd. Property
6. follows from (6.5) and boundedness of ε log ρε and det (Dyφ−1).

The only thing left to prove is the finiteness and continuity of the rate function HQ. This
follows from finiteness and continuity of k and the identity

HQ(y;x) = k(φ−1(x, y)).
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6.2 Proof of Lemma 4.11

We first show that, for ε ≥ 0, gε is continuous. We omit the index ε in this part of the proof.
Upper semicontinuity is obvious. To prove lower semicontinuity, observe that, due to the
compactness of F , for every x ∈ E there is a “minimizer” y ∈ F such that g(x) = f(x, y). So
let xn → x, and yn be the corresponding sequence of minimizers. We have to show that

lim inf g(xn) ≥ g(x).

To do so, it is not restrictive to assume that the sequence g(xn) has limit. Moreover, let y
be a limit point of {yn}. We have:

lim g(xn) = lim f(xn, yn) = f(x, y) ≥ g(x).

Thus the functions gε, ε ≥ 0, are continuous.
Now, let K ⊂ E be compact. Let δ > 0 be arbitrary, and let ε′ > 0 be such that for every

ε < ε′ ∣∣∣f ε(x, y)− f0(x, y)
∣∣∣ < δ (6.6)

for any x ∈ K, y ∈ F . Given x ∈ K, let yε be such that gε(x) = f ε(x, yε). By (6.6), for ε < ε′
and x ∈ K,

gε(x) = f ε(x, yε) ≥ f0(x, yε)− δ ≥ g0(x)− δ.

To complete the proof we have to show that there exists ε′′ such that for any ε < ε′′

gε(x) ≤ g0(x) + δ (6.7)

for all x ∈ K. Suppose, by contradiction, that there is no such ε′′. Then there is a sequence
εn → 0 and a corresponding sequence xn in K such that

gεn(xn) > g0(xn) + δ (6.8)

for all n. Denote by x a limit point of {xn} and by y a limit point of the sequence of
minimizers yεn

n . By possibly passing to subsequences, we may assume that {xn} → x and
yεn

n → y. Thus
lim
n

gεn(xn) = lim
n

f εn(xn, yεn
n ) = f0(x, y). (6.9)

On the other hand, by continuity of g0,

lim
n

g0(xn) = g0(x). (6.10)

Thus, by (6.8), (6.9) and (6.10) we have f0(x, y) ≥ g0(x) + δ. Therefore, there is a y′ with
f0(x, y) ≥ f0(x, y′) + δ. This implies

lim
n

[
f εn(xn, yεn

n )− f εn(xn, y′)
] ≥ δ

which is impossible since f εn(xn, yεn
n ) = infz f εn(xn, z).
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