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Abstract

In this paper, asymmetric algebraic Riccati equations are analyzed. In particular, we de-
rive a new parametrization of the set of solutions. Generalizing on the symmetric case, the
proposed parametrization is obtained in terms of pairs of invariant subspaces of two related
“feedback” matrices. Moreover, the connection is clarified between the new parametrization
and the classical homeomorphic one based on graph invariant subspaces of the pseudo-Ham-
iltonian matrix associated with the equation. We finally show that also the newly introduced
parametrization is given by a homeomorphic map. © 2001 Published by Elsevier Science Inc.
All rights reserved.
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1. Introduction

This paper is concerned with the real quadratic matrix equation
A1X+XA2+XPX+0=0. (1.2)
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In the symmetric case, i.e., when the parameter matrdged , P andQ satisfy the
relationsd; = A}, P = PTandQ = QT, Eq. (1.1) reduces to the classical algebraic
Riccati equation (ARE).

AsymmetricAREs of the form (1.1) have received increasing interest in recent
times due to their relevance in many problems of applied mathematics and system
theory. In particular, it has been shown tfi@édback contro]1], optimal strategy
in differential game$5,7,32,29],H?- and H *°-control problems [4,13Jfactoriza-
tion of polynomialg10,26,27]J-spectral factorizatio22], stability of solutionf
the symmetric ARE under small perturbations of the coefficients [8],simglilar
perturbationof a general boundary value problem [9] may all be reformulated in
terms of asymmetric Riccati equations. This is due to the fact that AREs may be
viewed as the algebraic counterpart of the problerfacoforization of rational func-
tions[3,17,18,20,31,33,39,43], which is the essence of a great number of control and
applied mathematics problems, see [2,19], and references therein. A description of
the manifold applications of asymmetric AREs and many important results in this
field may be found in [16,24,25,28,30,34], and references therein.

An extensive study of the ARE has produced a large variety of results. In par-
ticular, starting from the classical work [40], various parametrizations of the set of
solutions (or of classes of solutions), both in the symmetric and in the general case,
have been established, see [11,14,15,18,21,35,38,41,42], to mention but a few.

In particular, it is well known that the set of solutions of (1.1) may be character-
ized in terms of graph invariant subspaces offieeudo-Hamiltoniamatrix

A P
H= [_QZ _AJ : (1.2)

More precisely, denoting by’ the set of solutions of (1.1) and ' (H) the set of
graph invariant subspaceslidf i.e., invariant subspaces dfof the form

v=imm,

the map
0. X — LH)
X > im m (1.3)

is a homeomorphic bijection of onto ¥ (H) [21, pp. 545-546].

In the symmetric case, this classification may be compared to the geometric para-
metrization of J.C. Willems [40], formulated in terms of invariant subspaces of a cer-
tain feedback matrix. In this comparison, the classification provided by (1.3) has the
disadvantage that the s&t(H) is not easily described. On the other hand, it has been
observed in [38] that also Willems’ parametrization suffers from some drawbacks,
namely:

(i) It does not lead naturally to a concept of solution at infinity.
(i) It does not admit an obvious generalization to the non-symmetric case.
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This paper, together with [34], may also be viewed as an attempt to overcome diffi-
culty (ii). In fact, we extend to the non-symmetric case the parametrization of [40],
introducing gpair of “feedback” matrices and proving a correspondence between the
set of solutions of (1.1) and pairs of invariant subspaces of such feedback matrices.
Moreover, extending on [14,42], we show that the proposed parametrization is given
by a homeomorphic map.

The paper is organized as follows: in Section 2, we set some notation and re-
call some preliminary results. In Section 3, we derive a new parametrization for the
set of solutions of (1.1) and discuss the connection between this and the classical
homeomorphic one given by (1.3). Section 4 is devoted to proving that the newly
proposed parametrization is also a homeomorphism. In Section 5, we briefly draw
some conclusions. Moreover, Appendix A contains an alternative direct proof of
Theorem 4.1.

2. Notation and mathematical background

The vector spac®” is equipped with the usual Euclidean norm, denoted by,
which assigns to any € R” the non-negative real numbgt|| := [x'x]¥/2. Given
amatrixY € R™*" we denote by Y| := max{||Yx| : x € R", ||x|| = 1} the spec-
tral norm ofY. It is well known that||Y| equals the largest singular value of the
matrix Y, i.e., the square root of the largest eigenvalu® b¥ . Moreover, ifm = n,

o (Y) denotes the spectrum ¥fands,, (Y) the smallest singular value &t

We endow the set of linear subspace®6fwith the gap metric This is defined

as follows. Given two subspacés, S, letd be the function

d(S1, S2) := || Ps; — Ps,ll, (2.1)

wherePs, denotes the orthogonal projection onto the spaace= 1, 2. The function
dis a distance on the set of subspace®b&fwe refer to [21] for a discussion of the
properties of the gap metric induced @yFinally, given a square matrik € R**",
we denote by, (Y) the set ok-dimensional invariant subspacesYof

3. Asymmetric algebraic Riccati equations

ForAi € R Ay € R"2*"2, P € R™2*" gndQ € R™*"2, et
RA(X) :=A1X + XA+ XPX +Q (3.1)
and consider the asymmetric ARE
A(X) =0. (3.2)

We will establish a parametrization of the solutiotiss R*1*"2 of (3.2) in terms of
pairs of subspaces of two generalized feedback matrices, in analogy with the well-
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known theory for the symmetric ARE. To this aim, we assume that we have a solution
Xo of (3.2), such that the two “feedback” matrices

I'io:= A1+ XoP, I'20:=—A2— PXp 3.3)
have non-intersecting spectra:
o(I'10) No(I'20) = 9. (3.4)

In such a way, in the same spirit as [37], we may parametrize the solutions of (3.2)
in terms of those of thiomogeneoualgebraic Riccati equation (HARE)

I'ioD — DI'20+ DPD = 0. (3.5)
In fact, we may rewrite the equalitf(Xo) = 0 as
I'10Xo — Xol'20— XoPXo+ QO =0. (3.6)

By subtracting (3.6) from (3.2), it is immediate to check that, given an arbitrary
solution X of (3.2), the differenceD = X — X satisfies the homogeneous asym-
metric ARE (3.5). Conversely, summing Eq. (3.5) and (3.6), one can check that to
any solutionD of (3.5) there corresponds a soluti&n= D + Xg of (3.2).

Remark 3.1. By applying the characterization (1.3) to the homogeneous ARE (3.5),
the set of solution® is seen to be in a one-to-one correspondence with the set
% (H1) of graph invariant subspaces of the block triangular matrix

| —T20 P
Hy = |: 0 _F101| . 3.7

The latter is related to the original pseudo-Hamiltonian matrkefined in (1.2) by
the similarity transformation

-1
H1=|:;0 ﬂ H[;O ?] (3.8)

so that we have
I 0
Y(H) = [Xo I} L (Hy). 3.9

Notice that (3.9) exactly reproduces the relation between solutions to the ARE (3.2)
and solutions to the associated HARE (3.5), in terms of the parametrization (1.3). In
fact,

o(D) = im [g] e (Hy),
i.e.,D solves (3.5), if and only if
¢(X) =im [;} € Y(H),

i.e.,Xsolves (3.2), being = Xo+ D, i.e.,
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1 1 o1
=l Tf) o
3.1. A new parametrization of the set of solutions
To parametrize the solutions of (3.5), and hence of (3.2)§let ykl(FIO) and

S2 € Sk, (I'20), Withny — kg = np — ko =: 1, where 0< [ < min(nq, n2). Moreover,
let

T = [T11|T12] e RMX To = [T21|T22] e R"2X"2 (3.10)
be orthogonal matrices, such that
S1=imT1q, S2 = im To1. (3.11)

Then, we have

N11 0
N :=T[T'1oT1 = ,
171071 |:N21 sz]

(3.12)
M M
T . 11 12
M.—T2F20T2—|: 0 M22j|’
whereN»2 andM»2 are square matrices of dimensioMoreover, define thes x nq
matrix
Li1 L1z
L:=TJPT = , 3.13
2t |:L21 Lzz] (3.13)
partitioned in such a way that alé®; is a square matrix of dimensidn
Clearly, from (3.4) it follows that (N22) N o (M22) = @, and hence the Sylvester
equation

AN22 — M4 + L2 =0 (3.14)
has a unique solutiod € R/, see e.g. [23, Theorem 4.4.6].

Remark 3.2. It should be obvious that, in the case whegs 0, one formally has
T1 = Ti1, To = To1, N = N11, M = M11, L = Lj1, and, in particular, there is no
Eq. (3.14) to consider.

On the other hand, fdr> 0, we observe thaV,,, M2 and L2 not only depend
on the pair(S1, S2), but also on the choice of the matricEsand7». However, let

Ty =[TIT) # T and T = [Ty|Ty] # T
be orthogonal matrices, such ttt=im 7, and S, = im 7,,;, and denote by,

M,, and L}, the corresponding matrices obtained as in (3.12) and (3.13). It is easy
to check that7,' 7 and 7,) T, are block-diagonal matrices. This fact, taking into

account tharTl.T = Ti‘l, i =1, 2, implies that there exist two non-singular matrices
W1 andWa, such that
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Njy = Wi tNoogW1,  Mby = Wy MaoWa, Ly = W, LooW1.  (3.15)
In conclusion, a different choice @ andT> leads to the equation
= AW INooW1 — Wy tMapWod' + Wyt LopWn
=Wy WA W] N2 — MoaWad' Wit 4 Logl Wy, (3.16)

whose unique solutior’ is related to the solutiord of (3.14) by
A= Wod Wit (3.17)

Thus, given the ARE (3.2) and the reference solutly the rank of the unique
solution 4 of Eq. (3.14) only depends on the pair of invariant subsp&sess»).

O
In view of the previous remark, the set
I :={(S51,82) : S1 € L1, (o), S2 € Lap(I'20), n1— k1 =nz —kp =:1;
if 1 > 0, the solution4 of (3.14) is non-singulay (3.18)

is well defined.

Remark 3.3. Itis interesting to notice that, under the assumption of non-intersect-
ing spectraioc (N22) N o (M22) =, observability of the paikN22, L22) and con-
trollability of the pair (M22, L22) are necessary conditions for invertibility of the
(unique) solution of (3.14) [12]. Such conditions are also sufficient in the special
case wherly; has rank 1 [36]. O

The following theorem gives a complete parametrization of the set of solutions of
(3.5), and, consequently, of the asymmetric ARE (3.2).

Theorem 3.1. Let & be the set of solutions of the homogeneous ARE). Un-
der assumptiori3.4), there is a bijective correspondence betweeand the sets
defined in(3.18). This correspondence is given by the map

O:9—> 7
D +— (kerD', kerD). (3.19)

Proof. As afirst step, we prove thatid € &, then® (D) € .#. Post-multiplication
of Eq. (3.5) by avector € ker D shows that keD is al'zg-invariant subspace. In the
same way, it can be checked that ke is aI']-invariant subspace. Moreover, it is
clear that ifk; andk, denote the dimensions of k&' and kerD, respectively, then
the differenceg; — k1 andny — k> coincide, both equaling:= rankD = rankDT.

It remains to show that to the paify, S») := (kerDT, kerD), with [ > 0, there
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corresponds a non-singular solution of Eq. (3.14). To this aim, let the orthogonal
matrices7Ty; and 7> be chosen accordingly to (3.10) and (3.11). Then, multiplying
Eqg. (3.5) on the left by}" and on the right by, we get

T{ 10T\ Ty DT> — T{ DT>T; I'20T> + T DT>T; PTyT; DT> =0.  (3.20)
Taking into account (3.10) and (3.11), we see ﬂ“féDTz has the form

0O O

0 D2’
whereD»; is a square non-singular matrix of dimensloithen, Eqg. (3.20) reduces
to

N22D22 — D22M2o + Do2lo2D22 = 0, (3.21)

whereN>2, M22 andLy2 are defined by (3.12) and (3.13). Sinbey is hon-singular,
A= D2‘21 is the unique solution of (3.14) and it is clearly non-singular.

We now prove that the ma@ is injective. LetD’, D” € & and assume thay :=
kerD'T = kerD'T and S, := kerD’ = kerD”, with [ := rankD’ = rankD” > 0.
Now, if I =0, we get equality, sincdd’ = D" =0. If I > 0, let T3 and T> be
orthogonal matrices satisfying (3.10) and (3.11). Then, we have

T/ D'T; = [8 D(;z] ., TD'T= [8 D(Z’j : (3.22)

where bothD,, and D3, are square non-singular matrices of dimensjsolving Eq.
(3.21). This clearly implies that bottD,,)~! and(D},) ! are solutions of (3.14).
Hence, in view of the uniqueness of the solutialy,) ! = (Dj,) L. Thus,Dj, =
Dj,andD’ = D",

The last step is to prove that the m@ps surjective. Clearly, the paiiR™!, R"2)
# corresponds to the solutioh = 0. Moreover, let(S1, S2) € .#, with [ :=n1 —
dimS1 = np — dimS2 > 0, and the orthogonal matricds and 7> be as in (3.10)
and (3.11). Then, the corresponding Eq. (3.14) admits a unique soMitiwhich is
invertible. Now,4~* solves (3.21) and

0O O

b=1 [0 A1

] T) = Tip471T), (3.23)
is a solution of (3.5), such th&fy, $») = (kerDT, kerD). O

Remark 3.4. Condition (3.4) is rather stringent. In fact, there is no guarantee that
to any reference solutio of the ARE (3.2), there correspond “feedback” matri-
cesl'1p andI'yg with non-intersecting spectra. Even worse, examples can be found
where noXg exists such that (3.4) is satisfied.

Yet, our standing assumption is not strictly necessary. On one hand, th&map
D — (kerDT, kerD) can be anyhow defined, regardless of (3.4), mapping the set
2 of solutions of the HARE (3.5) surjectively onto a sét of pairs of invariant
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subspaces. Actually, itis not difficult to show that su€tcan be obtained by slightly
modifying the definition of the se¥, given by (3.18). Namely, in general we have
to consider

I ={(51,52) : S1€ Siy(T]g), S2 € Sry(I'20), n1— k1 =np — ko =:1;
if I > 0, (3.14) has a non-singular solutio}. (3.24)

However, though always surjective, the map 2 — .#’ is not generally injective.

In fact, to turn it into a bona fide parametrization of the Sgtwe need that the
Sylvester equation (3.14), associated to any pgir S») € #’, with [ > 0, has just

one non-singular solution. Thus, a necessary and sufficient condition to prove the
result of Theorem 3.1 should be equivalenbtQVa2) N o (M22) = @, for all pairs

Na2, M2, of matrices associated 11, S2) € .#’. To express such a condition di-
rectly in terms of the coefficients of the ARE (3.2) or of the HARE (3.5), is still a
matter of research.d

Remark 3.5. The parametrization given by Theorem 3.1 has been derived, by suit-
ably choosing coordinates in the spad®$ and R"2. Actually, a completely co-
ordinate-free characterization of the set of solutibnef (3.5) would be possible,
by recognizing that keb ¢ R"2 is a (right-)invariant subspace fdko, an operator
from R"2 to R"2, while left kerD c (R")* is a (left-)invariant subspace fdi o, to
be interpreted as a map of the dual spég&L)* into itself. In this set-upD itself
should be either interpreted as a transformatio®®f into R™1, or of (R*1)* into
(R"2)*, while P should be taken as defining a bilinear form @if'2)* x R"*. We
might then define the operatoBy,, Noo, M22 and Ly; in coordinate-free terms, to
end up with a parametrization of the solution set of (3.5), completely equivalent to
the one, which has been presented.

However, we have preferred the other way, relying on matrices for the sake of
computability, especially in view of the discussion of the continuity issue in Section 4
and in Appendix A. [

3.2. The relation betwee& (Hy) and.#

Since the familyZ of solutions of the HARE (3.5) may be parametrized both
in terms of # and in terms of the se#’(H1) of graph invariant subspaces of the
pseudo-Hamiltonian matrik/1 defined in (3.7), it is clear that these two sets are in a
one-to-one correspondence. Such a connection is rendered explicit in this section.

To this purpose, under the standing assumption (3.4, letR"2*"*1 be the unique
solution to the Sylvester equation

Elgog—T2oE+ P =0 (3.25)

and define the compound matrix
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I E
Vo= [0 ; } . (3.26)

Then, the following relation holds.

Theorem 3.2. Let D € Z be any solution 0f3.5) and ¥ = ¢(D) be the corre-
sponding graph invariant subspace Bf. Moreover let (S1, S2) = ©(D). Then

g:v{@):xesz,yesf}. (3.27)

Relation (3.27) explicitly describes the bijective composed fap ¢ o 71,
thus providing a complete parametrizationsst Hy) in terms of.#. The proof of the
theorem is based on the following general fact from linear algebra.

Lemma3.l. LetD € R"*"2, Then

[)-[s 1) <morema)

whereE € R"2*" is any matrix such thabED = D.

Proof. We need to show that any vector of the form

=[]

with w € R"2 can also be written as

v = |:x + Ey]
y
with x € kerD andy € im D, and vice versa. In fact, givem, we takey = Dw €
im D andx = w — Ey € kerD, sinceDx = (D — DE D)w = 0. Converselyy cor-

responding to givem € ker D andy < im D is obviously computedas = x + Ey,
yieldingDw = Dx + DEy =y. O

Proof of Theorem 3.2. For the trivial solutionD = 0, the result is obviously true.
Also, for any non-zero matri € &, let
(51.82) =O(D) € 4, Ti=[TulT1z], T2=T2lT2]

be orthogonal matrices satisfying (3.11). Then, by multiplying Eq. (3.25) on the left
by 7.} and on the right b1, we get

THET11 T}ET [Nn 0}
TLETy TLETio| N2t N2z

T T
_|:M11 MlZ] |:T21ET11 TZlET12:| |:L11 le}

—o, (3.28)
0 Mx TLET1 TLET:2 Loy Lo



146 A. Ferrante et al. / Linear Algebra and its Applications 329 (2001) 137-156

so that the unique non-singular solutigiof (3.14) corresponding t@1, S2) is given
by 4 = TZTZEle. Recalling, now, that the associated solut@rof (3.5) has been
computed in (3.23) ap = leA‘szTz, we can verify in a direct way thdbED =
T12A Y TLET1472T), = D.

Thus, we may apply Lemma 3.1, with

¥ =@(D) =im B)] and (81, S2) = O(D) = (kerD', kerD).
The proof is now complete. O

Finally, letting the pair(S1, S2) vary into .# = @(2), we obtain the following
representation of the s&f (Hy) = ¢(2).

Corollary 3.1. The set¥?(Hj) of graph invariant subspaces of the pseudo-Hamil-
tonian matrixH1 can be parametrized by the sétof pairs of subspaces defined in
(3.18), as

y(Hl)z{V%: /%:{(}C) x € S, yeSi‘}, (51,52)61}-
(3.29)

3.3.  Symmetric algebraic Riccati equations

If A1=AJ, P=PT andQ = QT, then (3.2) is a standard symmetric ARE.
If, moreover, the reference solutidty is also symmetric, thetzo = —I'], and
(3.5) is a symmetric HARE. In this case Dfis a symmetric solution, then kér =
kerDT =: S, so that@(D) = (S, S) € .#. Notice also that one can tallg = 7> in
(3.12) and (3.13), yielding422 = —N,, and Lo, = L], and hence turning (3.14)
into a Lyapunov equation. Conversely, it is easy to check that, if (3.5) is symmetric
andSis al'yp-invariant subspace, such that (3.14) has a non-singular solution, i.e.,
(S, S) € 7, then the corresponding soluti@nis a symmetric matrix. In this way, we
can recover the classical parametrization of symmetric solutions of symmetric ARES,
as a function of a single invariant subsp&do all other pairgS1, S2) € .7, with
S1 # 8o, there correspond asymmetric solutions, even if the ARE is a symmetric
one.

Let us consider the following example:

ATX+XA+XPX+0=0 (3.30)

1 0 0 1 0 O
A=AT=[O 2}, P=|:1 o] Q=|:O 0] (3.31)

with
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Let Xo =0, so thatlI';p = A and I'yp = — A, satisfying the standing assumption
(3.4). There are four differeriyg-invariant subspaces, namely

So=R%, Si=im|L|, Sp=im|2], s3={0}
0 1
However, the symmetric solutions of (3.30) are only two,
Xo=Dg=0= @_1(S0, So) and X3 = D3 = |:_03 _031| = @_1(S3, S3).

In fact, fori = 1, 2, the pair(S;, S;) ¢ .#, since the unique solution of the associated
Lyapunov equation (3.14) is singular.

Moreover, the se¥ contains the pair&S, S2) and(S2, S1), corresponding to the
two asymmetric solutions of the symmetric ARE (3.30). In fact, let

10 0 1

n[s . w2y 63
and compute

Noo =2, Moyp=-1 Lyp=1 (3.33)
Now, solving (3.14), one get$ = —1/3, yielding

1 o]/ 1\*' 0 0

X1=D1=0""(5,8) = [1} <—§ [1]0]= 3 ol (3.34)
The other asymmetric solution of (3.30) is

Xo =Dy =018, 851) = [8 _03} = X]. (3.35)

4. Continuity results

We have established in Theorem 3.1 a parametrization of th@ sdtsolutions
of the HARE (3.5), in terms of elements of the seétlefined in (3.18), by means of
the map® given by (3.19). We now endow the sétwith the metricd;, which as-
sociates to any paif = (S1, S»), I = (S1, S») the distancel; (I, I) := d(S1, S1) +
d(S2, S2), and with the induced topology. Moreover, the Seis endowed with the
topology induced by the matrix north ||.

Theorem 4.1. Let the setZ and the set/ be endowed with the topologies defined
above. Thenthe map® is a homeomorphism.

Proof. As mentioned in Section 1, the map
09— L(Hy)
D im [H (4.1)
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is @ homeomorphism, when the getis endowed with the topology induced by the
matrix norm|| - | and the set¥ (H;) with the topology induced by the gap metric
[21, pp. 545-546].

The result then follows by composition, writi = 5 o ¢, if we show that the
map

(S1. S2) > V{G) xSy, yesf}

with V given by (3.26) is also a homeomorphism. This is, in turn, an immediate
consequence of the following facts:

() Vis a constant non-singular matrix;

(i) d(S,S) — Oifandonly ifd(st, St) - 0. O

The above proof is based on the connection between the two parametrizations of
2, provided by Theorem 3.2, and on well-known facts about the continuigy 8f
direct proof, which does not employ the parametrization based on graph invariant
subspaces, is derived in Appendix A.

5. Conclusions

In this paper, we have considered the algebraic Riccati equation with no symmetry
constraint. A parametrization of the solution set of such an equation has been ob-
tained, in terms of pairs of linear subspaces. In fact, by choosing a particular solution
of the original equation, an equivalent homogeneous ARE has been derived. We have
then proved that the solution set of such HARE is in a one-to-one correspondence
with a subset of pairs oﬂo- andI'pp-invariant subspaces, respectively, wherg
and I';o denote two related “feedback” matrices. When the natural topologies are
used for the set of real matrices and the set of (pairs of) linear subspaces, such a
parametrization turns out to be a homeomorphic map. Both the parametrization and
its homeomorphic characterization appear to be the extension of classical results to
the non-symmetric case. As a particular example, the newly introduced parametri-
zation allows one to classify in a natural way asymmetric solutions of symmetric
AREs.
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Appendix A. A direct proof of the continuity of @ and @~

For a direct proof of Theorem 4.1, we need to establish some preliminary results.
First, we refer to [21, Theorem 13.5.1] for the proof of the next lemma.

LemmaA.l. LetD € R"*™, There exists a constait > 0, such that
d(kerD,kerD) < K||D — D|| (A.1)
forall D € R™™ with rankD = rankD.

Now, let2,, .= {(N,M,L): N,M,L € R"", o(N)No(M) = @}. Then, the
following lemma holds true.

LemmaA.2. Forany(N, M, L) € #,, the Sylvester equation
AN —MA4+L =0 (A.2)

has a unique solutior, which is a continuous function of the coefficiefits M, L).
If 4 is non-singularthe inverse1~1 is a continuous function afv, M, L), as well.

Proof. Existence and uniqueness of the solution are well-known facts. Continuity of
A is easy to check, by writing the solution of (A.2) as a contour integral [6, p. 206].
Continuity of 4~1 is obvious. [

Proposition A.1. LetY € R"*” andm = rankY. Partition Y as

Y1 Y12
Y = , A.3
|:Y21 Yz} "3

whereY, € R™*™ and letn1 =n —m and p1 = p — m be the number of rows
and columnsrespectively of Y1. Moreover let U and V be orthogonal matrices of
dimensionp x p andn x n, respectively such that the firsp; columns of U are a

basis forkerY and the firstz; columns ofv' T are a basis fokerY T :

U1 Uz T i U1
U = , U'U=1kerY=im , A.4a
|:U21 Uz] [Uﬂ] (42
vV Vi
v=|.t 21 yTy =1  keryT =im , (A.4b)
Vor. W2 v

where the partition of U and V is such thég and V, are square matrices of dimen-
sion m. Finally let

0 O
2=[0 2] a9

be ann x p matrix, with Z, being a non-singular square matrix of dimension m.

Then we have
d(kerY,kerZ) = ||Ur2| = |U21ll, (A.63)
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dkery T, kerZ") = ||Viz|l = || Vaull. (A.6b)

If, moreover | U12|| < 1/2and| Vo1l < 1/2, thenU, and V, are non-singular and
setting

Tr = (U2U; DT, T = (Ve o)), (A7)
we have
U2l < ITRII < V/2||U12ll, (A.8a)
Vil < ITLll < V2| Vaall, (A.8D)
and
="l 1] (A9)
! , .

where the matrix» is non-singular. Finally the inequality

Y —Z|| < [||TL|| N TrI+ max{||T¢]l, ||TR||}] Y2l + Y2 — Z2||
(A.10)

holds.

Proof. Equality (A.6a) is proven in [42, Lemma 3.1]. Equality (A.6b) is the trans-
posed version of (A.6a). The fact that|||if/12|| < 1/2, thenU> is non-singular and
inequality (A.8a) holds, is proven in [42, Lemma 4.1] under slightly stronger as-
sumptions. These assumptions, however, are not used there to establish (A.8a), but
only to derive other results of that lemma. Inequality (A.8b) is the transposed version
of (A.8a).

To prove that the factorization (A.9) holds, we observe ¥WéU has the block-
diagonal form diag0, 4}, whereA is non-singular. Hence,

Yy=vT [8 ﬂ U’

- [TL} viAau[1e 1], (A11)

which clearly impliest> = V,) AU, , and hence (A.9). Moreover, sint®, 4 andU-
are non-singular matrices, sokis. Finally, (A.10) readily follows from the following
decomposition:

T YoTR T; Yo ]

Y‘Zz[ YaTw  Yo— Za
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[TeyaTr O 0 T.Y2] [0 0
—[ 0 O]+[Y2TR 0 ]+[0 Yz—Zz]' 0 (A12)

We now come to a direct proof of Theorem 4.1, alternative to the one given in Sec-
tion 4.

Proof of Theorem 4.1. To show that® is continuous, we first prove that@ and
D solve (3.5), with ranlD < rankD, then there exist& > 0, only depending on the
coefficientsl 10, I'20 andP, and on the rankof D, such that

|D— D| >8. (A.13)
To this aim, sets; = kerD' andS, = kerD. Let 1 and7>» be defined as in (3.10)
and (3.11), andN, M andL be defined and partitioned as in (3.12) and (3.13). Then,
as given by (3.23),

0 0
TlTDT2=|:O A—l}’

whered € R/ is the unique solution of (3.14). Now, let
Dy 5_12}

S
Iy DTz = |:D21 D;

be partitioned conformably withi,’ D7>. Note that rankD < rankD implies thatD,
is a singular matrix. Then, we have

A T = -1_ A -1 1
ID— Dl =Ty (D—D)T2|| 2 |47 = D2|| = sp(477) = T (A.14)
where the last inequality derives from the fact tifatis singular.
Now, lety be a smooth closed contour in the complex plane, leavititjo) and
a fortiori o (N22) in its interior, whileo (I'20) and hencer (M>2) are outside ofy.
Recalling that1 solves (3.14) and employing Rosemblum’s formula [6, p. 206], we
have

1
A= —_55 (M2 — z1)"*Lp(Nap — z1) L . (A.15)
2mi ¥

Then, settingy = max{||(z/ — ')}l : z € y} > maxX|(z] — N2 : z ey}
andgz = max||(zI — I'20)7Y : z € y} = max||(z] — M22) 71| : z € ¥}, we have

ly|
41 < Z”P”gng (A.16)

with |y| being the length ofy. Therefore, taking into account (A.14), inequality
(A.13) holds with

ly| -1
a=<zl||p||g1g2> . (A.17)
JT

Clearly,s is positive and it depends only on the coefficieRis, I'2o andP.
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In particular, inequality (A.13) implies that if two solutio@sand D of (3.5) are
sufficiently close, then they have the same rank. Therefore, in view of Lemma A.1,
there existk > 0, such that/(kerD, kerD)< K ||D — D| andd(kerDT, kerDT)
< K||D — D||, yielding

d1(0(D), 0(D)) < 2K||D - D| (A.18)

and, hence, the continuity of the mép o
We now prove that the inverse ma';p*1 is continuous, as well. LdtS1, S2) € ¥
andTy, T» be orthogonal matrices, such that

T1=[TwulTiz], imTui=S81, Tr=[TalT], iMT1=S. (A.19)

The matricesV := T, I'1oT1 and M := T, I'»oT> have the same block-triangular
structure adN andM in (3.12). Thus, we can write

- ]\_/11 0 — Mll M12
N=|1 | M= =
[N21 sz] [0 Mzz] (A.20)
= AT L1 Li2
L:=T)PT1=|"= -
244 |:L21 Lzz}

whereN»,, M, and Lo, are square matrices with the same dimensions.
Now, letD = ©~1(S1, S») be the corresponding solution of (3.5). Then, the ma-
trix

Z =T DT, € R">"2 (A.21)
solves the equation

NZ—-ZM+ ZLZ =0. (A.22)
SinceZ may be partitioned as

=6 2}
Z» is the inverse of the unique solution to the Sylvester equation

AN2o — Moo/ + Lop = 0. (A.23)
We observe that

S1=kerD" = TykerZ", Sy=kerD = TokerZ. (A.24)
Consider now a second pdif1, S2) € .# and letD = ©~1(81, S2) be the corre-

sponding solution of (3.5). Moreover, define the matrix

| T2
- [Yn Yz} =T, DT>, (A.25)

partitioned conformably witlZ. Clearly, alsoy is a solution of (A.22) and
Sy =kerDT = Tikery', S, =kerD = T kerY. (A.26)
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Thus, by orthogonality of’; and7», we have
d(S1,S1) =dkerZT, kerY"), d(So, S2) = d(kerZ, kerY). (A.27)
Therefore,

dkerzZT keryT) — 0,
dkerZ,kerY) — 0.

Now, with reference tor given by (A.25) andZ given by (A.21), define/ and
U as in (A.4a) and (A.4b), respectively. df ((S1, S2), (51, S2)) < 1/2, then both
d(kerZ,kerY) < 1/2 andd(kerZ", ker¥T) < 1/2. We can then apply Proposi-
tion A.1 and obtain

di((S1, $2), (51, 52)) > 0 = { (A.28)

1

whereTr andT;, are defined as in (A.7) anig is hon-singular.
SinceY solves (A.22), we have

NY —YM+YLY =0. (A.30)

Y = [TL] va[Te 1] (A.29)

By muiltiplying this equation by{?] on the right-hand side and 49 7] on the
left-hand side, and taking into account the factorization (A.29), afe get

[N21  Nog] |:7;L] Yo—Y2[Tr 1] [g;ﬂ

+Y2[Te 1)L [TIL] Yo =0. (A.31)

Finally, we have
N22Ys — YoMap + YoLooYs = 0, (A.32)
where we have defined

- _ _ T _ _
N2z :=[N21 N2 [ IL] = Na1TL, + N2z, (A.33a)
i 7 -
Moy = [TR I] [M;ﬂ = TrM12 + M22, (A.33b)

. [T - - - _
Loo = [TR I] L |: IL1| = TrL11T1, + L21Tr, + TrL12 + Lo2. (A.33c)

We observe that, in view of (A.6a), (A.8a) and (A.28Yf((S1, S2), (S1, S2)) —
0, then both| Tk || — 0 and||T.|| — O, so that
|| Noz — Nogl| — O, | M22 — Maz|| — O, L2z — L2l — 0. (A.34)

This, in particular, implies that each of the eiggnvalueﬁ?@jtends to one of the ei-
genvalues oV, and each of the eigenvaluesiMb, tends to one of the eigenvalues



154 A. Ferrante et al. / Linear Algebra and its Applications 329 (2001) 137-156

of M2,. Thus, since, by assumption(N22) N o (M22) = 9, if d;((S1. S2). (51, 52))
is sufficiently small, we also have(N22) N o (M22) = @, so that the Sylvester equa-
tion

A]\Nfzz — MzzA + 1122 =0 (A.35)

has a unique~soluti0£l. By continuity with respect to the coefficients of (A.35) (see
LemmaA.2)4 — A4 = Zz_l. On the other hand, Eqg. (A.32) has a unigue non-singu-

lar solutionY>. Hence,Y{l solves (A.35) and therefoi® = 2171. Thus,Y> — Zo,
whereZ; is the inverse of the unique solution of Eq. (A.23).

Therefore, employing (A.10), a& ((S1, S2), (51, S2)) — 0,]|Y — Z|| — 0. This
implies, by the definition ofY and Z, that |[D — D|| — 0, which completes the
proof. O
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