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Abstract

In this paper, asymmetric algebraic Riccati equations are analyzed. In particular, we de-
rive a new parametrization of the set of solutions. Generalizing on the symmetric case, the
proposed parametrization is obtained in terms of pairs of invariant subspaces of two related
“feedback” matrices. Moreover, the connection is clarified between the new parametrization
and the classical homeomorphic one based on graph invariant subspaces of the pseudo-Ham-
iltonian matrix associated with the equation. We finally show that also the newly introduced
parametrization is given by a homeomorphic map. © 2001 Published by Elsevier Science Inc.
All rights reserved.
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1. Introduction

This paper is concerned with the real quadratic matrix equation

A1X + XA2 + XPX + Q = 0. (1.1)
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In the symmetric case, i.e., when the parameter matricesA1, A2, P andQ satisfy the
relationsA1 = AT

2,P = P T andQ = QT, Eq. (1.1) reduces to the classical algebraic
Riccati equation (ARE).

AsymmetricAREs of the form (1.1) have received increasing interest in recent
times due to their relevance in many problems of applied mathematics and system
theory. In particular, it has been shown thatfeedback control[1], optimal strategy
in differential games[5,7,32,29],H 2- andH∞-control problems [4,13],factoriza-
tion of polynomials[10,26,27],J-spectral factorization[22], stability of solutionsof
the symmetric ARE under small perturbations of the coefficients [8], andsingular
perturbationof a general boundary value problem [9] may all be reformulated in
terms of asymmetric Riccati equations. This is due to the fact that AREs may be
viewed as the algebraic counterpart of the problem offactorization of rational func-
tions[3,17,18,20,31,33,39,43], which is the essence of a great number of control and
applied mathematics problems, see [2,19], and references therein. A description of
the manifold applications of asymmetric AREs and many important results in this
field may be found in [16,24,25,28,30,34], and references therein.

An extensive study of the ARE has produced a large variety of results. In par-
ticular, starting from the classical work [40], various parametrizations of the set of
solutions (or of classes of solutions), both in the symmetric and in the general case,
have been established, see [11,14,15,18,21,35,38,41,42], to mention but a few.

In particular, it is well known that the set of solutions of (1.1) may be character-
ized in terms of graph invariant subspaces of thepseudo-Hamiltonianmatrix

H =
[

A2 P

−Q −A1

]
. (1.2)

More precisely, denoting byX the set of solutions of (1.1) and byL(H) the set of
graph invariant subspaces ofH, i.e., invariant subspaces ofH of the form

V = im

[
I

Y

]
,

the map

ϕ : X → L(H)

X �→ im

[
I

X

]
(1.3)

is a homeomorphic bijection ofX ontoL(H) [21, pp. 545–546].
In the symmetric case, this classification may be compared to the geometric para-

metrization of J.C. Willems [40], formulated in terms of invariant subspaces of a cer-
tain feedback matrix. In this comparison, the classification provided by (1.3) has the
disadvantage that the setL(H) is not easily described. On the other hand, it has been
observed in [38] that also Willems’ parametrization suffers from some drawbacks,
namely:
(i) It does not lead naturally to a concept of solution at infinity.
(ii) It does not admit an obvious generalization to the non-symmetric case.
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This paper, together with [34], may also be viewed as an attempt to overcome diffi-
culty (ii). In fact, we extend to the non-symmetric case the parametrization of [40],
introducing apair of “feedback” matrices and proving a correspondence between the
set of solutions of (1.1) and pairs of invariant subspaces of such feedback matrices.
Moreover, extending on [14,42], we show that the proposed parametrization is given
by a homeomorphic map.

The paper is organized as follows: in Section 2, we set some notation and re-
call some preliminary results. In Section 3, we derive a new parametrization for the
set of solutions of (1.1) and discuss the connection between this and the classical
homeomorphic one given by (1.3). Section 4 is devoted to proving that the newly
proposed parametrization is also a homeomorphism. In Section 5, we briefly draw
some conclusions. Moreover, Appendix A contains an alternative direct proof of
Theorem 4.1.

2. Notation and mathematical background

The vector spaceRn is equipped with the usual Euclidean norm, denoted by‖ · ‖,
which assigns to anyx ∈ Rn the non-negative real number‖x‖ := [xTx]1/2. Given
a matrixY ∈ Rm×n, we denote by‖Y‖ := max{‖Yx‖ : x ∈ Rn, ‖x‖ = 1} the spec-
tral norm ofY. It is well known that‖Y‖ equals the largest singular value of the
matrixY, i.e., the square root of the largest eigenvalue ofY TY . Moreover, ifm = n,
σ(Y ) denotes the spectrum ofY andsm(Y ) the smallest singular value ofY.

We endow the set of linear subspaces ofRn with thegap metric. This is defined
as follows. Given two subspacesS1, S2, let d be the function

d(S1, S2) := ‖PS1 − PS2‖, (2.1)

wherePSi denotes the orthogonal projection onto the spaceSi , i = 1,2. The function
d is a distance on the set of subspaces ofRn; we refer to [21] for a discussion of the
properties of the gap metric induced byd. Finally, given a square matrixY ∈ Rn×n,
we denote bySk(Y ) the set ofk-dimensional invariant subspaces ofY.

3. Asymmetric algebraic Riccati equations

ForA1 ∈ Rn1×n1, A2 ∈ Rn2×n2, P ∈ Rn2×n1 andQ ∈ Rn1×n2, let

R(X) := A1X + XA2 + XPX + Q (3.1)

and consider the asymmetric ARE

R(X) = 0. (3.2)

We will establish a parametrization of the solutionsX ∈ Rn1×n2 of (3.2) in terms of
pairs of subspaces of two generalized feedback matrices, in analogy with the well-
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known theory for the symmetric ARE. To this aim, we assume that we have a solution
X0 of (3.2), such that the two “feedback” matrices

�10 := A1 + X0P, �20 := −A2 − PX0 (3.3)

have non-intersecting spectra:

σ(�10) ∩ σ(�20) = ∅. (3.4)

In such a way, in the same spirit as [37], we may parametrize the solutions of (3.2)
in terms of those of thehomogeneousalgebraic Riccati equation (HARE)

�10D − D�20 + DPD = 0. (3.5)

In fact, we may rewrite the equalityR(X0) = 0 as

�10X0 − X0�20 − X0PX0 + Q = 0. (3.6)

By subtracting (3.6) from (3.2), it is immediate to check that, given an arbitrary
solutionX of (3.2), the differenceD = X − X0 satisfies the homogeneous asym-
metric ARE (3.5). Conversely, summing Eq. (3.5) and (3.6), one can check that to
any solutionD of (3.5) there corresponds a solutionX = D + X0 of (3.2).

Remark 3.1. By applying the characterization (1.3) to the homogeneous ARE (3.5),
the set of solutionsD is seen to be in a one-to-one correspondence with the set
L(H1) of graph invariant subspaces of the block triangular matrix

H1 =
[−�20 P

0 −�10

]
. (3.7)

The latter is related to the original pseudo-Hamiltonian matrixH defined in (1.2) by
the similarity transformation

H1 =
[
I 0
X0 I

]−1

H

[
I 0
X0 I

]
, (3.8)

so that we have

L(H) =
[
I 0
X0 I

]
L(H1). (3.9)

Notice that (3.9) exactly reproduces the relation between solutions to the ARE (3.2)
and solutions to the associated HARE (3.5), in terms of the parametrization (1.3). In
fact,

ϕ(D) = im

[
I

D

]
∈ L(H1),

i.e.,D solves (3.5), if and only if

ϕ(X) = im

[
I

X

]
∈ L(H),

i.e.,X solves (3.2), beingX = X0 + D, i.e.,
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I

X

]
=

[
I 0
X0 I

] [
I

D

]
. �

3.1. A new parametrization of the set of solutions

To parametrize the solutions of (3.5), and hence of (3.2), letS1 ∈ Sk1(�
T
10) and

S2 ∈ Sk2(�20), withn1 − k1 = n2 − k2 =: l, where 0� l � min(n1, n2). Moreover,
let

T1 = [
T11|T12

] ∈ Rn1×n1, T2 = [
T21|T22

] ∈ Rn2×n2 (3.10)

be orthogonal matrices, such that

S1 = im T11, S2 = im T21. (3.11)

Then, we have

N := T T
1 �10T1 =

[
N11 0
N21 N22

]
,

M := T T
2 �20T2 =

[
M11 M12

0 M22

]
,

(3.12)

whereN22 andM22 are square matrices of dimensionl. Moreover, define then2 × n1
matrix

L := T T
2 PT1 =

[
L11 L12
L21 L22

]
, (3.13)

partitioned in such a way that alsoL22 is a square matrix of dimensionl.
Clearly, from (3.4) it follows thatσ(N22) ∩ σ(M22) = ∅, and hence the Sylvester

equation

�N22 − M22� + L22 = 0 (3.14)

has a unique solution� ∈ Rl×l , see e.g. [23, Theorem 4.4.6].

Remark 3.2. It should be obvious that, in the case whenl = 0, one formally has
T1 = T11, T2 = T21, N = N11, M = M11, L = L11, and, in particular, there is no
Eq. (3.14) to consider.

On the other hand, forl > 0, we observe thatN22, M22 andL22 not only depend
on the pair(S1, S2), but also on the choice of the matricesT1 andT2. However, let

T ′
1 = [

T ′
11|T ′

12

]
/= T1 and T ′

2 = [
T ′

21|T ′
22

]
/= T2

be orthogonal matrices, such thatS1 = im T ′
11 andS2 = im T ′

21, and denote byN ′
22,

M ′
22 andL′

22 the corresponding matrices obtained as in (3.12) and (3.13). It is easy
to check thatT T

1 T ′
1 andT T

2 T ′
2 are block-diagonal matrices. This fact, taking into

account thatT T
i = T −1

i , i = 1,2, implies that there exist two non-singular matrices
W1 andW2, such that



142 A. Ferrante et al. / Linear Algebra and its Applications 329 (2001) 137–156

N ′
22 = W−1

1 N22W1, M ′
22 = W−1

2 M22W2, L′
22 = W−1

2 L22W1. (3.15)

In conclusion, a different choice ofT1 andT2 leads to the equation

0=�′N ′
22 − M ′

22�
′ + L′

22

=�′W−1
1 N22W1 − W−1

2 M22W2�′ + W−1
2 L22W1

=W−1
2 [W2�′W−1

1 N22 − M22W2�′W−1
1 + L22]W1, (3.16)

whose unique solution�′ is related to the solution� of (3.14) by

� = W2�′W−1
1 . (3.17)

Thus, given the ARE (3.2) and the reference solutionX0, the rank of the unique
solution� of Eq. (3.14) only depends on the pair of invariant subspaces(S1, S2).

�

In view of the previous remark, the set

I :={(S1, S2) : S1 ∈ Sk1(�
T
10), S2 ∈ Sk2(�20), n1 − k1 = n2 − k2 =: l;

if l > 0, the solution� of (3.14) is non-singular} (3.18)

is well defined.

Remark 3.3. It is interesting to notice that, under the assumption of non-intersect-
ing spectra:σ(N22) ∩ σ(M22) = ∅, observability of the pair(N22, L22) and con-
trollability of the pair (M22, L22) are necessary conditions for invertibility of the
(unique) solution� of (3.14) [12]. Such conditions are also sufficient in the special
case whenL22 has rank 1 [36]. �

The following theorem gives a complete parametrization of the set of solutions of
(3.5), and, consequently, of the asymmetric ARE (3.2).

Theorem 3.1. Let D be the set of solutions of the homogeneous ARE(3.5). Un-
der assumption(3.4), there is a bijective correspondence betweenD and the setI
defined in(3.18). This correspondence is given by the map

� : D → I

D �→ (kerDT, kerD). (3.19)

Proof. As a first step, we prove that ifD ∈ D, then�(D) ∈ I. Post-multiplication
of Eq. (3.5) by a vectorv ∈ kerD shows that kerD is a�20-invariant subspace. In the
same way, it can be checked that kerDT is a�T

10-invariant subspace. Moreover, it is
clear that ifk1 andk2 denote the dimensions of kerDT and kerD, respectively, then
the differencesn1 − k1 andn2 − k2 coincide, both equalingl := rankD = rankDT.
It remains to show that to the pair(S1, S2) := (kerDT, kerD), with l > 0, there
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corresponds a non-singular solution of Eq. (3.14). To this aim, let the orthogonal
matricesT1 andT2 be chosen accordingly to (3.10) and (3.11). Then, multiplying
Eq. (3.5) on the left byT T

1 and on the right byT2, we get

T T
1 �10T1T

T
1 DT2 − T T

1 DT2T
T
2 �20T2 + T T

1 DT2T
T
2 PT1T

T
1 DT2 = 0. (3.20)

Taking into account (3.10) and (3.11), we see thatT T
1 DT2 has the form[

0 0
0 D22

]
,

whereD22 is a square non-singular matrix of dimensionl. Then, Eq. (3.20) reduces
to

N22D22 − D22M22 + D22L22D22 = 0, (3.21)

whereN22, M22 andL22 are defined by (3.12) and (3.13). SinceD22 is non-singular,
� := D−1

22 is the unique solution of (3.14) and it is clearly non-singular.
We now prove that the map� is injective. LetD′,D′′ ∈ D and assume thatS1 :=

kerD′T = kerD′′T and S2 := kerD′ = kerD′′, with l := rankD′ = rankD′′ � 0.
Now, if l = 0, we get equality, sinceD′ = D′′ = 0. If l > 0, let T1 and T2 be
orthogonal matrices satisfying (3.10) and (3.11). Then, we have

T T
1 D′T2 =

[
0 0
0 D′

22

]
, T T

1 D′′T2 =
[
0 0
0 D′′

22

]
, (3.22)

where bothD′
22 andD′′

22 are square non-singular matrices of dimensionl, solving Eq.
(3.21). This clearly implies that both(D′

22)
−1 and(D′′

22)
−1 are solutions of (3.14).

Hence, in view of the uniqueness of the solution,(D′
22)

−1 = (D′′
22)

−1. Thus,D′
22 =

D′′
22 andD′ = D′′.
The last step is to prove that the map� is surjective. Clearly, the pair(Rn1,Rn2) ∈

I corresponds to the solutionD = 0. Moreover, let(S1, S2) ∈ I, with l := n1 −
dimS1 = n2 − dimS2 > 0, and the orthogonal matricesT1 andT2 be as in (3.10)
and (3.11). Then, the corresponding Eq. (3.14) admits a unique solution�, which is
invertible. Now,�−1 solves (3.21) and

D = T1

[
0 0
0 �−1

]
T T

2 = T12�−1T T
22 (3.23)

is a solution of (3.5), such that(S1, S2) = (kerDT, kerD). �

Remark 3.4. Condition (3.4) is rather stringent. In fact, there is no guarantee that
to any reference solutionX0 of the ARE (3.2), there correspond “feedback” matri-
ces�10 and�20 with non-intersecting spectra. Even worse, examples can be found
where noX0 exists such that (3.4) is satisfied.

Yet, our standing assumption is not strictly necessary. On one hand, the map� :
D �→ (kerDT, kerD) can be anyhow defined, regardless of (3.4), mapping the set
D of solutions of the HARE (3.5) surjectively onto a setI′ of pairs of invariant
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subspaces. Actually, it is not difficult to show that suchI′ can be obtained by slightly
modifying the definition of the setI, given by (3.18). Namely, in general we have
to consider

I′ :={(S1, S2) : S1 ∈ Sk1(�
T
10), S2 ∈ Sk2(�20), n1 − k1 = n2 − k2 =: l;

if l > 0, (3.14) has a non-singular solution�}. (3.24)

However, though always surjective, the map� : D → I′ is not generally injective.
In fact, to turn it into a bona fide parametrization of the setD, we need that the
Sylvester equation (3.14), associated to any pair(S1, S2) ∈ I′, with l > 0, has just
one non-singular solution. Thus, a necessary and sufficient condition to prove the
result of Theorem 3.1 should be equivalent toσ(N22) ∩ σ(M22) = ∅, for all pairs
N22,M22 of matrices associated to(S1, S2) ∈ I′. To express such a condition di-
rectly in terms of the coefficients of the ARE (3.2) or of the HARE (3.5), is still a
matter of research.�

Remark 3.5. The parametrization given by Theorem 3.1 has been derived, by suit-
ably choosing coordinates in the spacesRn1 and Rn2. Actually, a completely co-
ordinate-free characterization of the set of solutionsD of (3.5) would be possible,
by recognizing that kerD ⊂ Rn2 is a (right-)invariant subspace for�20, an operator
from Rn2 to Rn2, while left kerD ⊂ (Rn1)∗ is a (left-)invariant subspace for�10, to
be interpreted as a map of the dual space(Rn1)∗ into itself. In this set-up,D itself
should be either interpreted as a transformation ofRn2 into Rn1, or of (Rn1)∗ into
(Rn2)∗, while P should be taken as defining a bilinear form on(Rn2)∗ × Rn1. We
might then define the operatorsD22, N22, M22 andL22 in coordinate-free terms, to
end up with a parametrization of the solution set of (3.5), completely equivalent to
the one, which has been presented.

However, we have preferred the other way, relying on matrices for the sake of
computability, especially in view of the discussion of the continuity issue in Section 4
and in Appendix A. �

3.2. The relation betweenL(H1) andI

Since the familyD of solutions of the HARE (3.5) may be parametrized both
in terms ofI and in terms of the setL(H1) of graph invariant subspaces of the
pseudo-Hamiltonian matrixH1 defined in (3.7), it is clear that these two sets are in a
one-to-one correspondence. Such a connection is rendered explicit in this section.

To this purpose, under the standing assumption (3.4), letE ∈ Rn2×n1 be the unique
solution to the Sylvester equation

E�10 − �20E + P = 0 (3.25)

and define the compound matrix
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V :=
[
I E

0 I

]
. (3.26)

Then, the following relation holds.

Theorem 3.2. Let D ∈ D be any solution of(3.5) andL = ϕ(D) be the corre-
sponding graph invariant subspace ofH1. Moreover, let (S1, S2) = �(D). Then,

L = V

{(
x

y

)
: x ∈ S2, y ∈ S⊥

1

}
. (3.27)

Relation (3.27) explicitly describes the bijective composed map� = ϕ ◦ �−1,
thus providing a complete parametrization ofL(H1) in terms ofI. The proof of the
theorem is based on the following general fact from linear algebra.

Lemma 3.1. LetD ∈ Rn1×n2. Then,

im

[
I

D

]
=

[
I E

0 I

]{(
x

y

)
: x ∈ kerD, y ∈ imD

}
,

whereE ∈ Rn2×n1 is any matrix such thatDED = D.

Proof. We need to show that any vector of the form

v =
[
w

Dw

]
with w ∈ Rn2 can also be written as

v =
[
x + Ey

y

]
with x ∈ kerD andy ∈ imD, and vice versa. In fact, givenw, we takey = Dw ∈
imD andx = w − Ey ∈ kerD, sinceDx = (D − DED)w = 0. Conversely,wcor-
responding to givenx ∈ kerD andy ∈ imD is obviously computed asw = x + Ey,
yieldingDw = Dx + DEy = y. �

Proof of Theorem 3.2. For the trivial solutionD = 0, the result is obviously true.
Also, for any non-zero matrixD ∈ D, let

(S1, S2) = �(D) ∈ I, T1 = [
T11|T12

]
, T2 = [

T21|T22
]

be orthogonal matrices satisfying (3.11). Then, by multiplying Eq. (3.25) on the left
by T T

2 and on the right byT1, we get[
T T

21ET11 T T
21ET12

T T
22ET11 T T

22ET12

][
N11 0
N21 N22

]

−
[
M11 M12

0 M22

][
T T

21ET11 T T
21ET12

T T
22ET11 T T

22ET12

]
+

[
L11 L12
L21 L22

]
= 0, (3.28)
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so that the unique non-singular solution� of (3.14) corresponding to(S1, S2) is given
by � = T T

22ET12. Recalling, now, that the associated solutionD of (3.5) has been
computed in (3.23) asD = T12�−1T T

22, we can verify in a direct way thatDED =
T12�−1T T

22ET12�−1T T
22 = D.

Thus, we may apply Lemma 3.1, with

L = ϕ(D) = im

[
I

D

]
and (S1, S2) = �(D) = (kerDT, kerD).

The proof is now complete. �

Finally, letting the pair(S1, S2) vary into I = �(D), we obtain the following
representation of the setL(H1) = ϕ(D).

Corollary 3.1. The setL(H1) of graph invariant subspaces of the pseudo-Hamil-
tonian matrixH1 can be parametrized by the setI of pairs of subspaces defined in
(3.18), as

L(H1) =
{
VM : M =

{(
x

y

)
: x ∈ S2, y ∈ S⊥

1

}
, (S1, S2) ∈ I

}
.

(3.29)

3.3. Symmetric algebraic Riccati equations

If A1 = AT
2, P = P T andQ = QT, then (3.2) is a standard symmetric ARE.

If, moreover, the reference solutionX0 is also symmetric, then�20 = −�T
10 and

(3.5) is a symmetric HARE. In this case, ifD is a symmetric solution, then kerD =
kerDT =: S, so that�(D) = (S, S) ∈ I. Notice also that one can takeT1 = T2 in
(3.12) and (3.13), yieldingM22 = −NT

22 andL22 = LT
22 and hence turning (3.14)

into a Lyapunov equation. Conversely, it is easy to check that, if (3.5) is symmetric
andS is a�20-invariant subspace, such that (3.14) has a non-singular solution, i.e.,
(S, S) ∈ I, then the corresponding solutionD is a symmetric matrix. In this way, we
can recover the classical parametrization of symmetric solutions of symmetric AREs,
as a function of a single invariant subspaceS. To all other pairs(S1, S2) ∈ I, with
S1 /= S2, there correspond asymmetric solutions, even if the ARE is a symmetric
one.

Let us consider the following example:

ATX + XA + XPX + Q = 0 (3.30)

with

A = AT =
[
1 0
0 2

]
, P =

[
0 1
1 0

]
, Q =

[
0 0
0 0

]
. (3.31)
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Let X0 = 0, so that�10 = A and �20 = −A, satisfying the standing assumption
(3.4). There are four different�20-invariant subspaces, namely

S0 = R2, S1 = im

[
1
0

]
, S2 = im

[
0
1

]
, S3 = {0}.

However, the symmetric solutions of (3.30) are only two,

X0 = D0 = 0 = �−1(S0, S0) and X3 = D3 =
[

0 −3
−3 0

]
= �−1(S3, S3).

In fact, fori = 1,2, the pair(Si , Si) �∈ I, since the unique solution of the associated
Lyapunov equation (3.14) is singular.

Moreover, the setI contains the pairs(S1, S2) and(S2, S1), corresponding to the
two asymmetric solutions of the symmetric ARE (3.30). In fact, let

T1 =
[
1 0
0 1

]
, T2 =

[
0 1
1 0

]
(3.32)

and compute

N22 = 2, M22 = −1, L22 = 1. (3.33)

Now, solving (3.14), one gets� = −1/3, yielding

X1 = D1 = �−1(S1, S2) =
[
0
1

](
−1

3

)−1 [
1 0

] =
[

0 0
−3 0

]
. (3.34)

The other asymmetric solution of (3.30) is

X2 = D2 = �−1(S2, S1) =
[
0 −3
0 0

]
= XT

1 . (3.35)

4. Continuity results

We have established in Theorem 3.1 a parametrization of the setD of solutions
of the HARE (3.5), in terms of elements of the setI defined in (3.18), by means of
the map� given by (3.19). We now endow the setI with the metricdI , which as-
sociates to any pairI = (S1, S2), Ī = (S̄1, S̄2) the distancedI (I, Ī ) := d(S1, S̄1) +
d(S2, S̄2), and with the induced topology. Moreover, the setD is endowed with the
topology induced by the matrix norm‖ · ‖.

Theorem 4.1. Let the setD and the setI be endowed with the topologies defined
above. Then, the map� is a homeomorphism.

Proof. As mentioned in Section 1, the map

ϕ : D → L(H1)

D �→ im

[
I

D

]
(4.1)
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is a homeomorphism, when the setD is endowed with the topology induced by the
matrix norm‖ · ‖ and the setL(H1) with the topology induced by the gap metric
[21, pp. 545–546].

The result then follows by composition, writing� = �−1 ◦ ϕ, if we show that the
map

� : I → L(H1) (4.2)

(S1, S2) �→ V

{(
x

y

)
: x ∈ S2, y ∈ S⊥

1

}

with V given by (3.26) is also a homeomorphism. This is, in turn, an immediate
consequence of the following facts:
(i) V is a constant non-singular matrix;
(ii) d(S, S̄) → 0 if and only ifd(S⊥, S̄⊥) → 0. �

The above proof is based on the connection between the two parametrizations of
D, provided by Theorem 3.2, and on well-known facts about the continuity ofϕ. A
direct proof, which does not employ the parametrization based on graph invariant
subspaces, is derived in Appendix A.

5. Conclusions

In this paper, we have considered the algebraic Riccati equation with no symmetry
constraint. A parametrization of the solution set of such an equation has been ob-
tained, in terms of pairs of linear subspaces. In fact, by choosing a particular solution
of the original equation, an equivalent homogeneous ARE has been derived. We have
then proved that the solution set of such HARE is in a one-to-one correspondence
with a subset of pairs of�T

10- and�20-invariant subspaces, respectively, where�10
and�20 denote two related “feedback” matrices. When the natural topologies are
used for the set of real matrices and the set of (pairs of) linear subspaces, such a
parametrization turns out to be a homeomorphic map. Both the parametrization and
its homeomorphic characterization appear to be the extension of classical results to
the non-symmetric case. As a particular example, the newly introduced parametri-
zation allows one to classify in a natural way asymmetric solutions of symmetric
AREs.
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Appendix A. A direct proof of the continuity of � and �−1

For a direct proof of Theorem 4.1, we need to establish some preliminary results.
First, we refer to [21, Theorem 13.5.1] for the proof of the next lemma.

Lemma A.1. LetD ∈ Rn×m. There exists a constantK � 0, such that

d(kerD, kerD̄) � K‖D − D̄‖ (A.1)

for all D̄ ∈ Rn×m, with rankD̄ = rankD.

Now, letPn := {(N,M,L) : N,M,L ∈ Rn×n, σ (N) ∩ σ(M) = ∅}. Then, the
following lemma holds true.

Lemma A.2. For any(N,M,L) ∈ Pn, the Sylvester equation

�N − M� + L = 0 (A.2)

has a unique solution�, which is a continuous function of the coefficients(N,M,L).
If � is non-singular, the inverse�−1 is a continuous function of(N,M,L), as well.

Proof. Existence and uniqueness of the solution are well-known facts. Continuity of
� is easy to check, by writing the solution of (A.2) as a contour integral [6, p. 206].
Continuity of�−1 is obvious. �

Proposition A.1. LetY ∈ Rn×p andm = rankY . Partition Y as

Y =
[
Y1 Y12
Y21 Y2

]
, (A.3)

whereY2 ∈ Rm×m, and let n1 = n − m and p1 = p − m be the number of rows
and columns, respectively, of Y1. Moreover, let U and V be orthogonal matrices of
dimensionp × p andn × n, respectively, such that the firstp1 columns of U are a
basis forkerY and the firstn1 columns ofV T are a basis forkerY T :

U =
[
U1 U12
U21 U2

]
, UTU = I, kerY = im

[
U1
U21

]
, (A.4a)

V =
[
V1 V12
V21 V2

]
, V TV = I, kerY T = im

[
V T

1

V T
12

]
, (A.4b)

where the partition of U and V is such thatU2 andV2 are square matrices of dimen-
sion m. Finally, let

Z =
[
0 0
0 Z2

]
(A.5)

be ann × p matrix, with Z2 being a non-singular square matrix of dimension m.
Then, we have:

d(kerY, kerZ) = ‖U12‖ = ‖U21‖, (A.6a)
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d(kerY T, kerZT) = ‖V12‖ = ‖V21‖. (A.6b)

If, moreover, ‖U12‖ < 1/2 and‖V21‖ < 1/2, thenU2 andV2 are non-singular and,
setting

TR := (U12U
−1
2 )T, TL := (V−1

2 V21)
T, (A.7)

we have:
‖U12‖ � ‖TR‖ �

√
2‖U12‖, (A.8a)

‖V21‖ � ‖TL‖ �
√

2‖V21‖, (A.8b)

and

Y =
[
TL
I

]
Y2

[
TR I

]
, (A.9)

where the matrixY2 is non-singular. Finally, the inequality

‖Y − Z‖ �
[
‖TL‖ · ‖TR‖ + max{‖TL‖, ‖TR‖}

]
· ‖Y2‖ + ‖Y2 − Z2‖

(A.10)

holds.

Proof. Equality (A.6a) is proven in [42, Lemma 3.1]. Equality (A.6b) is the trans-
posed version of (A.6a). The fact that, if‖U12‖ < 1/2, thenU2 is non-singular and
inequality (A.8a) holds, is proven in [42, Lemma 4.1] under slightly stronger as-
sumptions. These assumptions, however, are not used there to establish (A.8a), but
only to derive other results of that lemma. Inequality (A.8b) is the transposed version
of (A.8a).

To prove that the factorization (A.9) holds, we observe thatVYU has the block-
diagonal form diag{0,�}, where� is non-singular. Hence,

Y =V T
[
0 0
0 �

]
UT

=
[
V T

21

V T
2

]
�

[
UT

12 UT
2

]

=
[
TL
I

]
V T

2 �UT
2

[
TR I

]
, (A.11)

which clearly impliesY2 = V T
2 �UT

2 , and hence (A.9). Moreover, sinceV2, � andU2
are non-singular matrices, so isY2. Finally, (A.10) readily follows from the following
decomposition:

Y − Z=
[
TLY2TR TLY2
Y2TR Y2 − Z2

]
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=
[
TLY2TR 0

0 0

]
+

[
0 TLY2

Y2TR 0

]
+

[
0 0
0 Y2 − Z2

]
. � (A.12)

We now come to a direct proof of Theorem 4.1, alternative to the one given in Sec-
tion 4.

Proof of Theorem 4.1. To show that� is continuous, we first prove that ifD and
D̄ solve (3.5), with rankD̄ < rankD, then there existsδ > 0, only depending on the
coefficients�10, �20 andP, and on the rankl of D, such that

‖D̄ − D‖ � δ. (A.13)

To this aim, setS1 = kerDT andS2 = kerD. Let T1 andT2 be defined as in (3.10)
and (3.11), andN, M andL be defined and partitioned as in (3.12) and (3.13). Then,
as given by (3.23),

T T
1 DT2 =

[
0 0
0 �−1

]
,

where� ∈ Rl×l is the unique solution of (3.14). Now, let

T T
1 D̄T2 =

[
D̄1 D̄12

D̄21 D̄2

]

be partitioned conformably withT T
1 DT2. Note that rankD̄ < rankD implies thatD̄2

is a singular matrix. Then, we have

‖D − D̄‖ = ‖T T
1 (D − D̄)T2‖ � ‖�−1 − D̄2‖ � sm(�−1) = 1

‖�‖ , (A.14)

where the last inequality derives from the fact thatD̄2 is singular.
Now, letγ be a smooth closed contour in the complex plane, leavingσ(�10) and

a fortiori σ(N22) in its interior, whileσ(�20) and henceσ(M22) are outside ofγ .
Recalling that� solves (3.14) and employing Rosemblum’s formula [6, p. 206], we
have

� = 1

2�i

∮
γ

(M22 − zI)−1L22(N22 − zI)−1 dz. (A.15)

Then, settingg1 = max{‖(zI − �10)
−1‖ : z ∈ γ } � max{‖(zI − N22)

−1‖ : z ∈ γ }
andg2 = max{‖(zI − �20)

−1‖ : z ∈ γ } � max{‖(zI − M22)
−1‖ : z ∈ γ }, we have

‖�‖ � |γ |
2π

‖P‖g1g2 (A.16)

with |γ | being the length ofγ . Therefore, taking into account (A.14), inequality
(A.13) holds with

δ =
( |γ |

2π
‖P‖g1g2

)−1

. (A.17)

Clearly,δ is positive and it depends only on the coefficients�10, �20 andP.
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In particular, inequality (A.13) implies that if two solutionsD andD̄ of (3.5) are
sufficiently close, then they have the same rank. Therefore, in view of Lemma A.1,
there existsK > 0, such thatd(kerD, kerD̄)� K‖D − D̄‖ andd(kerDT, kerD̄T)

� K‖D − D̄‖, yielding

dI (�(D),�(D̄)) � 2K‖D − D̄‖ (A.18)

and, hence, the continuity of the map�.
We now prove that the inverse map�−1 is continuous, as well. Let(S̄1, S̄2) ∈ I

andT̄1, T̄2 be orthogonal matrices, such that

T̄1 = [
T̄11|T̄12

]
, im T̄11 = S̄1, T̄2 = [

T̄21|T̄22
]
, im T̄21 = S̄2. (A.19)

The matricesN̄ := T̄ T
1 �10T̄1 and M̄ := T̄ T

2 �20T̄2 have the same block-triangular
structure asN andM in (3.12). Thus, we can write

N̄ =
[
N̄11 0
N̄21 N̄22

]
, M̄ =

[
M̄11 M̄12

0 M̄22

]
,

(A.20)

L̄ := T̄ T
2 P T̄1 =

[
L̄11 L̄12

L̄21 L̄22

]
,

whereN̄22, M̄22 andL̄22 are square matrices with the same dimensions.
Now, letD̄ = �−1(S̄1, S̄2) be the corresponding solution of (3.5). Then, the ma-

trix

Z := T̄ T
1 D̄T̄2 ∈ Rn1×n2 (A.21)

solves the equation

N̄Z − ZM̄ + ZL̄Z = 0. (A.22)

SinceZ may be partitioned as

Z =
[
0 0
0 Z2

]
,

Z2 is the inverse of the unique solution to the Sylvester equation

�N̄22 − M̄22� + L̄22 = 0. (A.23)

We observe that

S̄1 = kerD̄T = T̄1 kerZT, S̄2 = kerD̄ = T̄2 kerZ. (A.24)

Consider now a second pair(S1, S2) ∈ I and letD = �−1(S1, S2) be the corre-
sponding solution of (3.5). Moreover, define the matrix

Y =
[
Y1 Y12
Y21 Y2

]
:= T̄ T

1 DT̄2, (A.25)

partitioned conformably withZ. Clearly, alsoY is a solution of (A.22) and

S1 = kerDT = T̄1 kerY T, S2 = kerD = T̄2 kerY. (A.26)
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Thus, by orthogonality of̄T1 andT̄2, we have

d(S̄1, S1) = d(kerZT, kerY T), d(S̄2, S2) = d(kerZ, kerY ). (A.27)

Therefore,

dI ((S1, S2), (S̄1, S̄2)) → 0 ⇒
{
d(kerZT, kerY T) → 0,
d(kerZ, kerY ) → 0.

(A.28)

Now, with reference toY given by (A.25) andZ given by (A.21), defineV and
U as in (A.4a) and (A.4b), respectively. IfdI ((S1, S2), (S̄1, S̄2)) � 1/2, then both
d(kerZ, kerY ) � 1/2 andd(kerZT, kerY T) � 1/2. We can then apply Proposi-
tion A.1 and obtain

Y =
[
TL
I

]
Y2

[
TR I

]
, (A.29)

whereTR andTL are defined as in (A.7) andY2 is non-singular.
SinceYsolves (A.22), we have

N̄Y − YM̄ + Y L̄Y = 0. (A.30)

By multiplying this equation by
[

0
I

]
on the right-hand side and by

[
0 I

]
on the

left-hand side, and taking into account the factorization (A.29) ofY, we get

[
N̄21 N̄22

] [
TL
I

]
Y2 − Y2

[
TR I

] [
M̄12

M̄22

]

+Y2
[
TR I

]
L̄

[
TL
I

]
Y2 = 0. (A.31)

Finally, we have

Ñ22Y2 − Y2M̃22 + Y2L̃22Y2 = 0, (A.32)

where we have defined

Ñ22 := [
N̄21 N̄22

] [
TL
I

]
= N̄21TL + N̄22, (A.33a)

M̃22 := [
TR I

] [
M̄12

M̄22

]
= TRM̄12 + M̄22, (A.33b)

L̃22 := [
TR I

]
L̄

[
TL
I

]
= TRL̄11TL + L̄21TL + TRL̄12 + L̄22. (A.33c)

We observe that, in view of (A.6a), (A.8a) and (A.28), ifdI ((S1, S2), (S̄1, S̄2)) →
0, then both‖TR‖ → 0 and‖TL‖ → 0, so that

‖Ñ22 − N̄22‖ → 0, ‖M̃22 − M̄22‖ → 0, ‖L̃22 − L̄22‖ → 0. (A.34)

This, in particular, implies that each of the eigenvalues ofÑ22 tends to one of the ei-
genvalues ofN̄22 and each of the eigenvalues ofM̃22 tends to one of the eigenvalues
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of M̄22. Thus, since, by assumption,σ(N̄22) ∩ σ(M̄22) = ∅, if dI ((S1, S2), (S̄1, S̄2))

is sufficiently small, we also haveσ(Ñ22) ∩ σ(M̃22) = ∅, so that the Sylvester equa-
tion

�Ñ22 − M̃22� + L̃22 = 0 (A.35)

has a unique solutioñ�. By continuity with respect to the coefficients of (A.35) (see
Lemma A.2),�̃ → � = Z−1

2 . On the other hand, Eq. (A.32) has a unique non-singu-

lar solutionY2. Hence,Y−1
2 solves (A.35) and thereforeY2 = �̃

−1
. Thus,Y2 → Z2,

whereZ2 is the inverse of the unique solution of Eq. (A.23).
Therefore, employing (A.10), asdI ((S1, S2), (S̄1, S̄2)) → 0,‖Y − Z‖ → 0. This

implies, by the definition ofY and Z, that ‖D − D̄‖ → 0, which completes the
proof. �
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