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ALMOST SURE STABILIZABILITY
OF CONTROLLED DEGENERATE DIFFUSIONS∗
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Abstract. We develop a direct Lyapunov method for the almost sure open-loop stabilizability
and asymptotic stabilizability of controlled degenerate diffusion processes. The infinitesimal decrease
condition for a Lyapunov function is a new form of Hamilton–Jacobi–Bellman partial differential
inequality of second order. We give local and global versions of the first and second Lyapunov
theorems, assuming the existence of a lower semicontinuous Lyapunov function satisfying such an
inequality in the viscosity sense. An explicit formula for a stabilizing feedback is provided for affine
systems with smooth Lyapunov function. Several examples illustrate the theory.
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1. Introduction. For controlled diffusion processes in R
N ,

(CSDE)

{
dXt = f(Xt, αt)dt + σ(Xt, αt)dBt, αt ∈ A, t > 0,
X0 = x,

there are various possible notions of Lyapunov stability of an equilibrium, say, the
origin. The stability in probability has been studied for a long time; we recall here
the contributions of Kushner [31, 32], Has’minskii [26], and the recent book of Mao
[36] for uncontrolled systems, and the work of Florchinger [21, 22, 23] and Deng,
Krstić, and Williams [18] on feedback stabilization for (CSDE); see also the references
therein. The almost sure exponential stability was introduced and studied by Kozin
[29] (see also [26]), and it implies that, for each fixed sample in a set of probability
1, the (uncontrolled) system is exponentially stable in the usual sense. In this paper
we consider a property that we call almost sure stability, or uniform stability with
probability 1. For an uncontrolled system it says that for any η > 0 there exists δ > 0
such that, for any x with |x| ≤ δ, the process satisfies |Xt| ≤ η for all t ≥ 0 almost
surely (a.s.). Equivalently, for some increasing, continuous function γ null at 0, and
for small |x|,

|Xt| ≤ γ(|x|) ∀t ≥ 0 a.s.(1.1)

This property describes a behavior very similar to a stable deterministic system.
It is stronger than stability in probability and pathwise stability and, in fact, it is
never verified by a nondegenerate process. More precisely, we study the almost sure
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(stochastic open-loop) stabilizability of (CSDE), namely, that for each x as above
there exists an admissible control function whose trajectory X . verifies a.s. |Xt| ≤ η
(and |Xt| ≤ γ(|x|)) for all t. If, in addition, limt→+∞ Xt = 0 a.s., we say the system
is a.s. (stochastic open-loop) asymptotically stabilizable. For deterministic systems
(σ ≡ 0) the last property reduces to the well-known asymptotic controllability.

We follow the Lyapunov direct method and find that the infinitesimal decrease
condition to be satisfied by a Lyapunov function V for our problem is

max
α∈A, σ(x,α)TDV (x)=0

{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
≥ l(x),(1.2)

with l ≥ 0 for mere Lyapunov stability and l > 0 for x �= 0 for asymptotic stability,
where a := σσT /2. This is not a standard Hamilton–Jacobi–Bellman inequality,
because the constraint on the control α depends on V . In fact it should be viewed
rather as a system of PDEs and inequalities which, in the special case of uncontrolled
diffusion, i.e., σ = σ(x), reads{

maxα∈A {−DV (x) · f(x, α)} − trace
[
a(x)D2V (x)

]
≥ l(x),

σi(x) ·DV (x) = 0 ∀ i,
(1.3)

where σi denotes the ith column of the matrix σ. To motivate the infinitesimal
decrease condition (1.3), let us give a formal argument in the case V is of class C2.
By applying Ito’s formula to the inequality dV (Xt)/dt ≤ l(Xt), we get[

DV (Xt) · f(Xt, αt) + trace
(
a(Xt)D

2V (Xt)
)]

dt + σT (Xt)DV (Xt)dBt ≤ l(Xt).

Now the properties of the Brownian motion lead to the conditions

DV (Xt) · f(Xt, αt) + trace
(
a(Xt)D

2V (Xt)
)
≤ l(Xt),

σT (Xt)DV (Xt) = 0,

and the existence of a control αt verifying this is clearly related to (1.3). A more
detailed, yet still formal, derivation of (1.3) is the following. The Dynkin formula
gives, for any control,

EV (Xt) − V (x) = E

∫ t

0

[
DV (Xs) · f(Xs, αs) + trace(a(Xs)D

2V (Xs))
]
ds,

and from the inequality in (1.3) one argues the existence of a control function such
that

EV (Xt) − V (x) ≤ −E

∫ t

0

l(Xs)ds ≤ 0.(1.4)

Therefore, the process V (Xt) is a positive supermartingale. Following this argument,
it can be proved that a function satisfying merely the Hamilton–Jacobi–Bellman in-
equality in (1.3) is a Lyapunov function for the stability in probability. The additional
equalities σi(x) ·DV (x) = 0 in (1.3) say that there is diffusion only in the directions
tangential to the level sets of V , and they are necessary conditions for the invariance
of the sublevel sets of V for the process (CSDE). It turns out that the whole set (1.3)
of equalities and inequalities implies the weak invariance, or viability, of the sublevel
sets of V , i.e., the existence of a control that maintains forever a.s. the system in such
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a set if the initial position is in the set. From this property it is possible to infer that,
for some control,

V (Xt) − V (x) ≤ −
∫ t

0

l(Xs)ds ≤ 0 almost sure,

a stronger monotonicity-type property than (1.4), which allows us to prove the almost
sure stability.

We define a Lyapunov function for the almost sure stability as a lower semicon-
tinuous proper function V , continuous at 0 and satisfying (1.2) in the viscosity sense,
and we call it a strict Lyapunov function if l > 0 off 0; see Definitions 2.3 and 2.4
below. Our main results are the natural extensions of the first and second Lyapunov
theorems to the controlled diffusions:

The existence of a local Lyapunov function implies the almost sure
(open-loop) stabilizability of (CSDE); a strict Lyapunov function im-
plies the almost sure (open-loop) asymptotic stabilizability.

The same proof provides their global versions as well: if V satisfies (1.2) in R
N \ {0},

then (CSDE) is also a.s. (open-loop) Lagrange stabilizable, i.e., for all initial points
x there is a control such that (1.1) holds; moreover, if V is strict, then the system is
globally a.s. (open-loop) asymptotically stabilizable. We also give sufficient conditions
for the stability of viable (controlled invariant) sets more general than an equilibrium
point, and for the a.s. exponential stability.

These facts are much easier to prove when the Lyapunov function is smooth,
but this assumption is not necessary and would limit considerably their applicability.
The nonexistence of smooth Lyapunov functions is well known in the determinis-
tic case; see [30, 6] for stable uncontrolled systems, and see the surveys [43, 6] for
asymptotically stable controlled systems. Here we give an example of an uncontrolled
degenerate diffusion process that is a.s. stable but cannot have a continuous Lyapunov
function (Example 1 in section 6). Moreover, in a companion paper [12] the second
author proves a converse Lyapunov theorem, stating that any a.s. stabilizable system
(CSDE) has a lower semicontinuous (l.s.c.) local viscosity Lyapunov function.

All the results listed above refer to open-loop almost sure stabilizability. They
raise the question of the existence of a stabilizing feedback. Here we give an answer
only for affine systems with a smooth strict Lyapunov function. We adapt Sontag’s
method [41] to the stochastic setting and find an explicit formula for a feedback
that renders the system a.s. asymptotically stable. The feedback stabilizability of
controlled diffusions in the case of nonsmooth Lyapunov functions seems considerably
harder and we are not aware of any paper on the subject.

In the last section we study some simple applications and examples. For instance,
we consider a deterministic, asymptotically controllable system Ẋt = f(Xt, αt) with
Lyapunov pair (V,L) and look for conditions on a stochastic perturbation that keep
the system a.s. stabilizable with the same Lyapunov function V for some l ≤ L.

Our proof of the first Lyapunov-type theorem is based on the observation that
the infinitesimal decrease condition (1.2) has the rescaling property of the geometric
PDEs arising in the level set approach to front propagation (see, e.g., [9, 40] and the
references therein), and on a recent result of the first author and Jensen [11] on the
viability, or controlled invariance, of general closed sets for controlled diffusions (see
[3, 4] and the references therein for earlier work on viability for stochastic processes).
For the second Lyapunov-type theorem we use also martingale inequalities and other
properties of diffusions.
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The first Lyapunov-type theorem on local almost sure stabilizability was an-
nounced in [8], where we presented the simpler proof for uncontrolled processes. In
the forthcoming paper [13], the second author shows that the existence of an l.s.c. vis-
cosity solution of the Hamilton–Jacobi–Bellman inequality,

max
α∈A

{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
≥ l(x),

implies the open-loop stabilizability in probability of (CSDE). Converse theorems in
this setting appears in the Ph.D. thesis [14] of the second author.

We conclude with some additional references. Nonsmooth Lyapunov functions for
uncontrolled diffusion processes were studied by Ladde and Lakshmikantham [33] with
Dini-type derivatives along sample paths, and by Aubin and Da Prato [5] by means
of a stochastic contingent epiderivative. Recently, Arnold and Schmalfuss [1] gave an
extension of Lyapunov’s second method to random dynamical systems. Turning to
deterministic controlled systems, we recall that Soravia [45] gave direct and inverse
Lyapunov theorems for the open-loop stabilizability by means of viscosity solutions (in
the more general context of differential games); Sontag and Sussmann [41, 44] did it
for the asymptotic controllability (i.e., asymptotic open-loop stabilizability) by using
Dini directional derivatives. Viscosity methods for stability problems were also used
in [28, 46, 24]. There is a large literature on feedback stabilization: see [2, 42, 16], the
surveys [43, 15, 6], and the references therein. We refer to [17, 7] for the basic theory
of viscosity solutions, and to [34, 35, 9, 20, 48] for its applications to deterministic
and stochastic optimal control.

The paper is organized as follows. In section 2 we give the main definitions and
state the first and second Lyapunov-type theorems. Section 3 recalls some viabil-
ity theory and then gives the proofs of the two main theorems. Section 4 covers
feedback stabilization of affine systems with smooth Lyapunov functions. Section 5
contains some extensions to exponential stability, general equilibrium sets, and target
problems. Section 6 is devoted to the examples.

2. Lyapunov functions for almost sure stabilizability and asymptotic
stabilizability. We consider a controlled Ito stochastic differential equation,

(CSDE)

{
dXt = f(Xt, αt)dt + σ(Xt, αt)dBt, t > 0,
X0 = x,

where Bt is an M -dimensional Brownian motion. Throughout the paper we assume
that f, σ are continuous functions defined in R

N × A, where A is a compact metric
space, which take values, respectively, in R

N and in the space of N × M matrices,
and satisfy

|f(x, α) − f(y, α)| + ‖σ(x, α) − σ(y, α)‖ ≤ C|x− y| ∀x, y ∈ R
N , ∀α ∈ A.(2.1)

We adopt the definition of admissible control function, or admissible system, of
Haussmann and Lepeltier [27, Def. 2.2, p. 853]. For a given x ∈ R

N we denote by Ax

the set of admissible control functions, by α. its generic element (although it is not a
standard function R → A), and by X. the corresponding solution of (CSDE).

We define

a(x, α) :=
1

2
σ(x, α)σ(x, α)T
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and assume

{(a(x, α), f(x, α)) : α ∈ A} is convex ∀x ∈ R
N .(2.2)

Definition 2.1 (almost sure stabilizability). The system (CSDE) is a.s. (stochas-
tic open-loop Lyapunov) stabilizable at the origin if for every η > 0 there exists δ > 0
such that, for any initial point x with |x| ≤ δ, there exists an admissible control
function α· ∈ Ax whose corresponding trajectory X · verifies |Xt| ≤ η for all t ≥ 0
a.s.

The system is a.s. (stochastic open-loop) Lagrange stabilizable, or it has the
property of uniform boundedness of trajectories, if for each R > 0 there is S > 0 such
that for any initial point x with |x| ≤ R there exists an admissible control function
α· ∈ Ax whose corresponding trajectory X · verifies |Xt| ≤ S for all t ≥ 0 a.s.

Remark 1. The almost sure stabilizability implies that the origin is a controlled
equilibrium of (CSDE), i.e.,

∃α ∈ A : f(0, α) = 0, σ(0, α) = 0.

In fact, the definition gives for any ε > 0 an admissible control such that the
corresponding trajectory starting at the origin satisfies a.s. |Xt| ≤ ε for all t, so

Ex

∫ +∞
0

|Xt|e−λtdt ≤ ε
λ for any λ > 0. Then infα.∈Ax Ex

∫ +∞
0

|Xt|e−λtdt = 0. The
convexity assumption (2.2) and an existence theorem for optimal controls [27] imply
that the inf is attained, and the minimizing control produces a trajectory satisfy-
ing a.s. |Xt| = 0 for all t ≥ 0. The conclusion follows from standard properties of
stochastic differential equations.

Remark 2. As is common in the modern deterministic stability theory, the previ-
ous definitions can be reformulated in terms of the comparison functions introduced
by Hahn [25]. We will use the class K of continuous functions γ : [0,+∞) → [0,+∞)
strictly increasing and such that γ(0) = 0 and the class K∞ of functions γ ∈ K such
that limr→+∞ γ(r) = +∞.

The system (CSDE) is a.s. (open-loop) stabilizable at 0 if there exists γ ∈ K and
δo > 0 such that for any starting point x with |x| ≤ δo

∃α· ∈ Ax : |Xt| ≤ γ(|x|) ∀t ≥ 0 a.s.,(2.3)

where Xt is the trajectory corresponding to α·. If (2.3) holds for some γ ∈ K∞ and
for all x ∈ R

N , then the system is also a.s. (open-loop) Lagrange stabilizable.
Definition 2.2 (almost sure asymptotic stabilizability). The system (CSDE) is

a.s. (stochastic open-loop) locally asymptotically stabilizable (or a.s. locally asymp-
totically controllable) at the origin if for every η > 0 there exists δ > 0 such that, for
all |x| ≤ δ, there exists an admissible control function α· ∈ Ax whose corresponding
trajectory X · verifies a.s.

|Xt| ≤ η ∀t ≥ 0, lim
t→+∞

|Xt| = 0.

The system is a.s. (stochastic open-loop) globally asymptotically stabilizable (or
a.s. asymptotically controllable) at the origin if there is γ ∈ K∞ and for all x ∈ R

N

there exists α· ∈ Ax whose trajectory X · satisfies a.s.

|Xt| ≤ γ(|x|) ∀t ≥ 0, lim
t→+∞

|Xt| = 0.
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Next we give the appropriate definition of a Lyapunov function for the study of
almost sure stabilizability. We recall the definition of the second order semijet of an
l.s.c. function V at a point x:

J 2,−V (x) :=

{
(p, Y ) ∈ R

N × S(N) : for y → x

V (y) ≥ V (x) + p · (y − x) +
1

2
(y − x) · Y (y − x) + o(|y − x|2)

}
.

Definition 2.3 (control Lyapunov function). Let O ⊆ R
N be an open set con-

taining the origin. A function V : O → [0,+∞) is a control Lyapunov function for
the almost sure stability of (CSDE) if

(i) V is lower semicontinuous;
(ii) V is continuous at 0 and positive definite, i.e., V (0) = 0 and V (x) > 0

for all x �= 0;
(iii) V is proper, i.e., lim|x|→+∞ V (x) = +∞ or, equivalently, the level sets

{x|V (x) ≤ μ} are bounded for every μ ∈ [0,∞);
(iv) for all x ∈ O \ {0} and (p, Y ) ∈ J 2,−V (x) there exists α ∈ A such that

σ(x, α)T p = 0 and − p · f(x, α) − trace [a(x, α)Y ] ≥ 0.(2.4)

Remark 3. The conditions (ii) and (iii) in the previous definition can be stated
as

∃ γ1, γ2 ∈ K∞ : γ1(|x|) ≤ V (x) ≤ γ2(|x|) ∀x ∈ R
N .(2.5)

Therefore the level sets {V (x) ≤ μ} of the Lyapunov function form a basis of
neighborhoods of 0.

Remark 4. If the dispersion matrix σ does not depend on the control, then
condition (iv) can be reformulated as follows:

V is a solution in viscosity sense in O \ {0} of the system{
σ(x)TDV (x) = 0,
maxα∈A

{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
≥ 0.

In the general case, we can observe that if condition (iv) holds, then V in particular
is a viscosity supersolution of

max
α∈A

{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
= 0.(2.6)

Moreover, if the function V is at least differentiable, then condition (iv) can be stated
more concisely as follows:

V is a supersolution in viscosity sense in O \ {0} of the equation

max{α∈A | σ(x,α)TDV (x)=0}
{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
= 0.

Definition 2.4 (strict control Lyapunov function). A function V : O → [0,+∞)
is a strict control Lyapunov function for the almost sure stability of (CSDE) if it
satisfies conditions (i), (ii), (iii) in Definition 2.3 and (iv)′ for all x ∈ O \ {0} and
(p, Y ) ∈ J 2,−V (x) there exists α ∈ A such that

σT (x, α)p = 0 and − p · f(x, α) − trace [a(x, α)Y ] − l(x) ≥ 0(2.7)
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for some positive definite and Lipschitz continuous l : O → R.
Remark 5. In the inequality in (iv)

′
we could take

p · f(x, α) − trace [a(x, α)Y ] − l(x, α) ≥ 0

for some continuous l : O × A → R, Lipschitz continuous in x uniformly in α, with
l(x,A) convex for all x ∈ O, and such that l̃(x) := minα∈A l(x, α) is positive definite.
However, this would not increase the generality of the definition because V would also
satisfy condition (2.7) with l replaced by l̃.

Our main results are the following versions for stochastic controlled systems of
the first and the second Lyapunov theorems.

Theorem 2.5 (almost sure stabilizability). Assume (2.1), (2.2), and the existence
of a control Lyapunov function V . Then

(i) the system (CSDE) is a.s. stabilizable at the origin;
(ii) if, in addition, the domain O of V is all R

N , the system is also a.s. Lagrange
stabilizable, and for all x ∈ R

N there exists α. ∈ Ax such that the corresponding
trajectory X . satisfies

|Xt| ≤ γ−1
1 (γ2(|x|)) ∀ t ≥ 0 a.s.(2.8)

with γ1, γ2 ∈ K∞ verifying (2.5).
Theorem 2.6 (almost sure asymptotic stabilizability). Assume (2.1), (2.2), and

the existence of a strict control Lyapunov function V . Then
(i) the system (CSDE) is a.s. locally asymptotically stabilizable at the origin;
(ii) if, in addition, the domain O of V is all R

N , the system is a.s. globally
asymptotically stabilizable.

3. A viability theorem and the proofs of stabilizability. In this section we
prove Theorems 2.5 and 2.6. Our main tool is a recent result in [11] about the almost
sure viability (called also controlled invariance and weak invariance) of an arbitrary
closed set for a controlled diffusion process. (See [3, 4] and the references therein for
earlier related results.)

Definition 3.1 (viable set). A closed set K ⊂ R
N is viable or controlled

invariant or weakly invariant for the stochastic system (CSDE) if for all initial points
x ∈ K there exists an admissible control α. ∈ Ax such that the corresponding trajectory
X. satisfies Xt ∈ K for all t > 0 a.s.

It is easy to see from its definition that the almost sure stabilizability follows from
the viability of all the sublevel sets of any function satisfying conditions (i)–(iii) of
Definition 2.3. The next result gives a geometric characterization of viable sets. It
will allow us to check that the sublevel sets of a control Lyapunov function are viable
by means of condition (iv) in Definition 2.3. The Nagumo-type geometric condition
in the viability theorem is given in terms of the following second order normal cone
to a closed set K ⊂ R

N , first introduced in [10]:

N 2
K(x):=

{
(p, Y ) ∈ R

N × S(N) : for y → x, y ∈ K,

p · (y − x) +
1

2
(y − x) · Y (y − x) ≥ o(|y − x|2)

}
,

where S(N) is the set of symmetric N × N matrices. Note that, if (p, Y ) ∈ N 2
K(x)

and x ∈ ∂K, the vector p is a generalized (proximal or Bony) interior normal to the
set K at x. In particular, if ∂K is a smooth surface in a neighborhood of x, p/|p| is
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the interior normal and Y is related to the second fundamental form of ∂K at x; see
[10].

Theorem 3.2 (viability theorem [11]). Assume (2.1) and (2.2). Then a closed
set K ⊆ R

N is viable for (CSDE) if and only if

∀x ∈ ∂K, ∀(p, Y ) ∈ N 2
K(x), ∃α ∈ A : f(x, α) · p + trace [a(x, α)Y ] ≥ 0.(3.1)

The second tool for the proof of the Lyapunov-type theorem, Theorem 2.5, is
the following lemma on the change of unknown for second order PDEs. It says that
the Hamilton–Jacobi–Bellman inequality in condition (2.4) in the definition of a con-
trol Lyapunov function behaves as a geometric equation if the unknown satisfies also
the condition in (2.4) of orthogonality between its gradient and the columns of the
dispersion matrix σ. We refer the interested reader to the chapters by Evans and
Souganidis in the book [9] for an introduction to the geometric PDEs of the theory
of front propagation.

Lemma 3.3. Let v satisfy condition (2.4) for all (p, Y ) ∈ J 2,−V (x), x ∈ R
N \{0}.

Let φ be a twice continuously differentiable strictly increasing real map. Then w = φ◦v
is a viscosity supersolution of

max
α∈A

{
−DV (x) · f(x, α) − trace

[
a(x, α)D2V (x)

]}
= 0.(3.2)

Proof. It is easy to check that, if (p, Y ) ∈ J 2,−w(x), then

(ψ′(w(x))p, ψ′(w(x))Y + ψ′′(w(x))p⊗ p) ∈ J 2,−v(x),

where ψ is the inverse of φ and p⊗ p is the N ×N matrix whose (i, j) entry is pipj .
Then, for (p, Y ) ∈ J 2,−w(x) and x �= 0 there exists α such that

{−ψ′(w(x))p · f(x, α) − trace [a(x, α) · (ψ′(w(x))Y + ψ′′(w(x))p⊗ p)]} ≥ 0

and

trace [a(x, α) · ψ′′(w(x))p⊗ p] =
ψ′′(w(x))

(ψ′(w(x)))2
|σ(x, α)Tψ′(w(x))p|2 = 0.

Therefore

−ψ′(w(x))p · f(x, α) − trace [a(x, α) · ψ′(w(x))Y ] ≥ 0

and we can conclude that

sup
α∈A

{−p · f(x, α) − trace [a(x, α) · Y ]} ≥ 0.

Proof of Theorem 2.5. We begin with the proof of (ii). We fix an arbitrary μ > 0
and consider the sublevel set of the function V ,

K := {x |V (x) ≤ μ}.

We claim that K is viable. Then for all initial points x ∈ R
N there exists α. ∈ Ax

such that the associated trajectory X . satisfies

γ1(|Xt|) ≤ V (Xt) ≤ V (x) ≤ γ1(|x|) ∀t ≥ 0 a.s.,
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which gives estimate (2.8). Then the system is a.s. stabilizable and Lagrange stabi-
lizable because γ−1

1 ◦ γ2 ∈ K∞.
To prove that K is viable we will check condition (3.1) of the viability theorem,

Theorem 3.2. For a given λ > 0 we define the nondecreasing continuous real function

ψλ(t) =

⎧⎨
⎩

0, t ≤ μ,
λ(t− μ), μ ≤ t,≤ μ + 1

λ ,
1, t ≥ μ + 1

λ .

We claim that the function ψλ ◦ V is a viscosity supersolution of (3.2) for every
λ. To prove the claim we choose a sequence ψn of strictly increasing, smooth real
maps that converge uniformly on compact sets to ψλ. Then, for every n, the map
ψn ◦V is a viscosity supersolution of (3.2) by Lemma 3.3. By the stability of viscosity
supersolutions with respect to uniform convergence, we get the claim.

Next we observe that the net ψλ ◦ V is increasing and converges as λ → +∞ to
the indicator function

C(x) =

{
0, x ∈ K,
1, x �∈ K.

Viscosity supersolutions are stable with respect to the pointwise increasing conver-
gence (see, e.g., Prop. V.2.16, p. 306 of [7]). Therefore the indicator function C of K
is a viscosity supersolution of (3.2). From the definitions it is easy to check that

J 2,−C(x) = −N 2
K(x) ∀x ∈ ∂K.

By plugging this formula into (3.2) we obtain exactly condition (3.1) of the viability
theorem and complete the proof of (ii).

To prove (i) we choose μ > 0 small enough so that K := {x ∈ O : V (x) ≤ μ},
for μ ≤ μ, is closed in R

N (for instance, μ < infy∈∂O lim infx→y V (x)). Then the
preceding part of this proof gives the viability of K and the estimate (2.8) for all x
such that V (x) ≤ μ. Therefore, for some δo > 0, (2.8) holds for all x with |x| ≤ δo,
and this gives the almost sure stabilizability of the origin.

Next we give the proof of Theorem 2.6 about asymptotic stability. It is obtained
by first applying Theorem 2.5 to a new system with an extra variable and then using
martingale inequalities as, e.g., in [18].

Proof of Theorem 2.6. We consider the differential system{
dXt = f(Xt, αt)dt + σ(Xt, αt)dBt,
dZt = l(Xt)dt

with initial data X0 = x and Z0 = 0. We rewrite this system in R
N+1 as

(CSDE2)

{
d(Xt, Zt) = f(Xt, Zt, αt)dt + σ(Xt, Zt, αt)d(Bt, 0), t > 0,
(X0, Z0) = (x, 0),

where f(x, z, α) = (f(x, α), l(x)) and σ(x, z, α) = (σ(x, α), 0). Clearly it satisfies
conditions (2.1) and (2.2). Let us consider the function

W (x, z) :O × R → R,

(x, z) �−→ V (x) + |z|.



84 MARTINO BARDI AND ANNALISA CESARONI

We claim that it is a Lyapunov function for (CSDE2). In fact, W is positive definite
(because W ≥ 0 and W = 0 only for (x, z) = (0, 0)); W is l.s.c., continuous at (0, 0),
and proper since V is so. We have only to prove that W satisfies condition (2.4). Fix
x �= 0 and (x, z) with z > 0 and a smooth function φ such that W − φ has a local
minimum at (x, z), i.e.,

V (x) + z − φ(x, z) ≤ V (y) + w − φ(y, w),

for every (y, w), w > 0 in a neighborhood of (x, z). If we choose w = z we get a mini-
mum in x for the function V (·)−φ(·, z); therefore (Dxφ(x, z), D2

xxφ(x, z)) ∈ J2,−V (x).
If we choose y = x we find a minimum in z for the smooth function w �−→ w−φ(x,w),
so Dzφ(x, z) = 1. Then there exists α ∈ A such that (σ(x, α), 0)T (Dxφ(x, z), 1) = 0
and {

−Dφ(x, z) · f(x, z, α) − trace
[
a(x, z, α)D2φ(x, z)

]}

=

{
−(Dxφ(x, z), 1)

(
f(x, α)
l(x)

)
− trace

[(
a(x, α) 0

0 0

)
D2φ(x, z)

]}

=
{
−Dxφ(x, z) · f(x, α) − trace

[
a(x, α)D2

xxφ(x, z)
]}

− l(x) ≥ 0,

since V is a strict Lyapunov function. Now fix (x, z) with z < 0 and let φ be a smooth
function such that

V (x) − z − φ(x, z) ≤ V (y) − w − φ(y, w)

for every (y, w), w < 0 in a neighborhood of (x, z). We argue as before and now get
that there exists α ∈ A such that (σ(x, α), 0)T · (Dxφ(x, z),−1) = 0 and

−Dxφ(x, z) · f(x, α) − trace
[
a(x, α)D2

xxφ(x, z)
]
+ l(x)

> −Dxφ(x, z) · f(x, α) − trace
[
a(x, α)D2

xxφ(x, z)
]
− l(x) ≥ 0

because l is positive and V is a Lyapunov function. Finally, we consider (x, 0) and a
smooth function φ such that

V (x) − φ(x, 0) ≤ V (y) − w − φ(y, w)

for every (y, w), w < 0 in a neighborhood of (x, 0) and

V (x) − φ(x, 0) ≤ V (y) + w − φ(y, w)

for all (y, w), w > 0 in a neighborhood of (x, 0). Then (Dxφ(x, z), D2
xxφ(x, z)) ∈

J2,−V (x), Dzφ(x, 0) ≥ −1, and Dzφ(x, 0) ≤ 1. Therefore there exists α ∈ A such
that (σ(x, α), 0)T · (Dxφ(x, z), Dzφ(x, z)) = 0 and{

−Dφ(x, z) · f(x, z, α) − trace
[
a(x, z, α)D2φ(x, z)

]}
=

{
−Dxφ(x, z) · f(x, α) − trace

[
a(x, α)D2

xxφ(x, z)
]}

−Dzφ(x, z)l(x)

=
{
−Dxφ(x, z) · f(x, α) − trace

[
a(x, α)D2

xxφ(x, z)
]}

− l(x) ≥ 0.
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This completes the proof of the claim, so we can apply Theorem 2.5 to get for
every x ∈ O an admissible control α. ∈ Ax such that the corresponding trajectory
(X ., Z.) of (CSDE2) with initial data (x, 0) remains a.s. in the level set K = {(y, w) ∈
O × R |W (y, w) ≤ W (x, 0)}. Then, for all t ≥ 0 and a.s., Xt ∈ O,

W (Xt, Zt) = V (Xt) + Zt = V (Xt) +

∫ t

0

l(Xs)ds ≤ W (x, 0) = V (x)

and

0 ≤ V (Xt) ≤ V (x) −
∫ t

0

l(Xs)ds.(3.3)

In particular, since l ≥ 0, for some r > 0, |Xt| ≤ r for all t a.s.
Next we claim that l(Xt) → 0 a.s. as t → +∞. Let us assume by contradiction

that the claim is not true: then there exist ε > 0, a subset Ωε ⊆ Ω with P(Ωε) > 0,
and for every ω ∈ Ωε a sequence tn(ω) → +∞ such that l(Xtn(ω)) > ε. We define

F (r) := max
|x|≤r,α∈A

|f(x, α)|, Σ(r) := max
|x|≤r,α∈A

‖σ(x, α)‖.

We compute

E

{
sup

t≤s≤t+h
|Xs −Xt|2

}

= E

{
sup

t≤s≤t+h

∣∣∣∣
∫ s

t

f(Xu, αu)du +

∫ s

t

σ(Xu, αu)dBu

∣∣∣∣
2
}

≤ 2E

{
sup

t≤s≤t+h

∣∣∣∣
∫ s

t

f(Xu, αu)du

∣∣∣∣
2
}

+ 2E

{
sup

t≤s≤t+h

∣∣∣∣
∫ s

t

σ(Xu, αu)dBu

∣∣∣∣
2
}

≤ 2F 2(r)h2 + 2E

{
sup

t≤s≤t+h

∣∣∣∣
∫ s

t

σ(Xu, αu)dBu

∣∣∣∣
2
}

=: K.

By Theorem 3.4 in [19] (the process |
∫ s

t
σ(Xu, αu)dBu| is a positive semimartingale)

we get

K ≤ 2F 2(r)h2 + 8 sup
t≤s≤t+h

E

{∣∣∣∣
∫ s

t

σ(Xu, αu)dBu

∣∣∣∣
2
}

and by the Ito isometry,

K ≤ 2F 2(r)h2 + 8E

{∫ t+h

t

|σ(Xu, αu)|2du
}

≤ 2F 2(r)h2 + 8Σ2(r)h.

Then, the Chebyshev inequality gives

P

{
sup

t≤s≤t+h
|Xs −Xt| > k

}
≤

E
{
supt≤s≤t+h |Xs −Xt|2

}
k2

≤ 2F 2(r)h2 + 8Σ2(r)h

k2
.
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Since l is continuous, we can fix δ such that |l(x) − l(y)| ≤ ε
2 if |x − y| ≤ δ and

|x|, |y| ≤ r. We define

C :=

{
ω ∈ Ω : sup

0≤s≤h
|Xs − x| ≤ δ

}

and choose 0 < k < P(Ωε) and h > 0 depending on δ and ε such that

Px(C) ≥ 1 − 2F 2(r)h2 + 8Σ2(r)h

δ2
≥ 1 + k − P(Ωε).

By the uniform continuity of l, the set

B :=

{
ω ∈ Ω : sup

0≤s≤h
|l(Xs) − l(x)| ≤ ε/2

}

contains C and then

Px(B) ≥ 1 + k − P(Ωε).(3.4)

From inequality (3.3), letting t → ∞, we get

V (x) ≥ Ex

∫ +∞

0

l(Xs)ds ≥
∫

Ωε

∫ +∞

0

l(Xs) ds dP ≥
∫

Ωε

∑
n

∫ tn(ω)+h

tn(ω)

l(Xs)ds dP

≥
∫

Ωε

∑
n

h inf
[tn(ω),tn(ω)+h]

l(Xt) ≥ h
∑
n

∫
Ωε

inf
[tn(ω),tn(ω)+h]

l(Xt)dP

≥ h
∑
n

ε

2
P

[(
sup

0≤s≤h
|l(Xs) − l(x)| ≤ ε/2 | x = Xtn

)
∩ Ωε

]
.

By the properties of the solutions of (CSDE) estimate (3.4) gives P
(
sup0≤s≤h |l(Xs)−

l(x)| ≤ ε/2‖ x = Xtn

)
≥ 1+k−Px(Ωε) for every n. Therefore P

[(
sup0≤s≤h |l(Xs)−

l(x)| ≤ ε/2‖ x = Xtn

)
∩ Ωε

]
≥ k for every n. Then by the previous inequality, we

get

V (x) ≥ h
∑
n

ε

2
k = +∞.

This gives a contradiction; thus P(Ωε) = 0 for every ε > 0. We have proved that
l(Xt) → 0 a.s. as t → +∞, now the positive definiteness of l implies that |Xt| → 0
a.s. as t → +∞.

Remark 6. If the function l is only nonnegative semidefinite, the proof of the last
theorem gives, for any x, a control α. whose trajectory Xt satisfies a.s. V (Xt) ≤ V (x)
and l(Xt) → 0 as t → +∞. Then the set L := {y | l(y) = 0} is an attractor, for
a suitable choice of the control, in the sense that dist(Xt,L) → 0 a.s. as t → +∞.
For uncontrolled diffusion processes, results of this kind can be found in [37] and [18]
and are considered stochastic versions of a theorem by La Salle. The earlier paper
of Kushner [32] also studies a stochastic version of the La Salle invariance principle,
namely, that the omega limit set of the process is an invariant subset of L in a suitable
sense.
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4. Almost sure feedback stabilization of affine systems. In this section
we give a result on the feedback stabilizability of systems affine in the control in the
case where there exists a smooth strict control Lyapunov function. It is an analogue
for the almost sure stability of a celebrated theorem of Artstein [2] and Sontag [42]
for deterministic systems, extended by Florchinger [21] to the stability of controlled
diffusions in probability.

We begin with the simple case of a single-input affine system with uncontrolled
diffusion, that is,

dXt = (f(Xt) + αtg(Xt)) dt + σ(Xt)dBt,(4.1)

where f, g, σ are vector fields in R
N with f(0) = 0 and σ(0) = 0, Bt is a one-

dimensional Brownian motion, and the control αt takes values in R. We seek a
function k : R

N → R, at least continuous in R
N \ {0}, such that the origin is a.s.

asymptotically stable for the stochastic differential equation

dXt = (f(Xt) + k(Xt)g(Xt)) dt + σ(Xt)dBt.(4.2)

Then k is called an a.s. asymptotically stabilizing feedback for the control system (4.1).
If there are no constraints on the control, a smooth strict control Lyapunov func-

tion V satisfies, in R
N \ {0},

f ·DV + trace

[
1

2
σσTD2V

]
+ inf

α∈R

{αg ·DV } ≤ −l, σ ·DV = 0.

Set γ(x) := f ·DV + trace
[
σσTD2V

]
/2 + l/2 and observe that the inequality for V

means

g(x) ·DV (x) = 0 ⇒ γ(x) ≤ −l(x)/2 < 0.

It is clear that k(x) := −γ(x)/g(x) ·DV (x), k(x) := 0 if g(x) ·DV (x) = 0 could be a
stabilizing feedback, but it is discontinuous where g(x) ·DV (x) vanishes. If this case
occurs, we build a continuous feedback by means of Sontag’s universal formula [42],
i.e.,

k(x) := −γ(x) +
√
γ2(x) + (g(x) ·DV (x))4

g(x) ·DV (x)
if g(x) ·DV (x) �= 0,(4.3)

and k(x) = 0 if g(x) · DV (x) = 0. By the argument in [42], k ∈ C(RN \ {0}) if
V ∈ C2(RN \{0}) and k ∈ C1(RN \{0}) if f, g, l are of class C1 and V ∈ C3(RN \{0}).
Moreover

(f + kg) ·DV + trace

[
1

2
σσTD2V

]
≤ − l

2
, σ ·DV = 0,

in R
N \ {0}, so V is a strict Lyapunov function for (4.2) and the origin is a.s. asymp-

totically stable. In conclusion, k is a stabilizing feedback for the affine control system
(4.1).

If the control must satisfy a hard constraint, say α ∈ [−1, 1], it is not hard to
check that k(x) can be used in a neighborhood of the origin provided that DV and
D2V are bounded near 0 and either g(x) → 0 or DV (x) → 0 as x → 0.
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Next we use the same idea for the more general system with both the drift and
the diffusion terms affine in the control

dXt =

(
f(Xt) +

P−1∑
i=1

αi
tgi(Xt)

)
dt +

(
σ(Xt) + αP

t τ(Xt)
)
dBt,(4.4)

where f, gi, σ, τ are vector fields in R
N , Bt is a standard one-dimensional Brownian

motion, and the controls αi
t, i = 1, . . . , P , are R-valued. The existence of a strict

control Lyapunov function V implies that for some real number r the vector σ + rτ
is orthogonal to DV , so τ ·DV �= 0 at all points where σ ·DV �= 0, and we can define
for all x ∈ R

N \ {0},

h(x) :=

{
0 if σ(x) ·DV (x) = 0,

−σ(x)·DV (x)
τ(x)·DV (x) if σ(x) ·DV (x) �= 0.

Proposition 4.1. Assume system (4.4) has a strict control Lyapunov function
V ∈ C2(RN \{0}) and the function h is continuous in R

N \{0}. Then there exists con-
tinuous functions ki : R

N \ {0} → R, i = 1, . . . , P − 1, such that (k1(x), . . . , kP−1(x),
h(x)) is an a.s. asymptotically stabilizing feedback for system (4.4).

Moreover, ki(x) ∈ [−1, 1] for x in a neighborhood of 0 if DV and D2V are bounded
near 0, and either DV (x) → 0 or gi(x) → 0 for all i as x → 0.

Proof. We recall from [42] that the function φ(a, 0) := 0 for a < 0, φ(a, b) :=
(a +

√
a2 + b2)/b is real-analytic in the set S := {(a, b) ∈ R

2 : b > 0 or a < 0}. We
set

γ(x) := f(x) ·DV (x) + trace

[
(σ(x) + h(x)τ(x))(σ(x) + h(x)τ(x))T

D2V (x)

2

]
+

l(x)

2
,

β(x) :=
P−1∑
i=1

(gi(x) ·DV (x))2.

Since V is a strict control Lyapunov function,

γ(x) + inf
αi∈R

P−1∑
i=1

αigi(x) ·DV (x) ≤ − l(x)

2
,

so, for x �= 0,

β(x) = 0 ⇒ γ(x) ≤ −l(x)/2 < 0.

Therefore (γ(x), β(x)) ∈ S. Now we define, for i = 1, . . . , P − 1,

ki(x) := −φ(γ(x), β(x))gi(x) ·DV (x), x �= 0,

and k(0) = 0. Then (k1(x), . . . , kP−1(x), h(x)) is continuous in R
N \ {0} and satisfies(

f +
P−1∑
i=1

kigi

)
·DV + trace

[
(σ + hτ)(σ + hτ)

T D2V

2

]
+

l

2

= γ − βφ(γ, β) = −
√
γ2 + β2 < 0.
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Since (σ + hτ) · DV = 0 by definition of h, V is a strict Lyapunov function for the
equation

dXt =

(
f(Xt) +

P−1∑
i=1

ki(Xt)gi(Xt)

)
dt + (σ(Xt) + h(Xt)τ(Xt)) dBt.

Therefore the origin is a.s. asymptotically stable for this equation.
Finally, we check the boundedness of k in a neighborhood of 0. This is trivial for

β(x) = 0. If β(x) �= 0, then

|k| ≤ |γ + |γ| + β|√
β

.

Since either DV → 0 or gi → 0 for all i, β(x) → 0 as x → 0. We fix δ > 0 such
that β(x) ≤ δ implies γ(x) < 0 and then choose a neighborhood of the origin where
β(x) ≤ δ. In this set |k(x)| ≤

√
β(x) → 0.

Remark 7. The proof above gives an explicit formula for the stabilizing feedback
in terms of the data and the Lyapunov function V only, which reduces to (4.3) if
τ ≡ 0 and P = 2. From the formula, one sees that the feedback is C1 in R

N \ {0} if
h, f, g, σ, τ , and l are C1 in R

N \ {0} and V ∈ C3(RN \ {0}).
Note also that the continuity assumption on h is automatically satisfied if τ ·DV

is either always nonnull or identically 0.
Finally, it is straightforward to extend the proposition to the case of M -dimensional

noise with independent Brownian components B1
t , . . . , B

M
t and a diffusion term of the

form
∑P+M−1

i=P

(
σi + αi

tτi
)
dBi

t, with σi, τi vector fields and αi
t scalar controls.

5. Some variants and extensions. In this section we collect several remarks
on other applications of our methods. We begin with the almost sure exponential
stabilizability. It means that there exists a positive rate λ and γ ∈ K such that for
every initial data x there exists an admissible control α. ∈ Ax whose corresponding
trajectory X . satisfies

|Xt| ≤ e−λtγ(|x|) a.s.

Proposition 5.1 (almost sure exponential stabilizability). Under assumptions
(2.1) and (2.2), the null state is a.s. exponentially stabilizable for (CSDE) if there
exists a control Lyapunov function V satisfying conditions (i), (ii), (iii) of Definition
2.3 and, for some λ > 0,

(iv)′ for every (p, Y ) ∈ J 2,−V (x) there exists α ∈ A such that

σ(x, α)T p = 0 and − p · f(x, α) − trace [a(x, α)Y ] − λV (x) ≥ 0.

Proof. We consider the system{
dXt = f(Xt, αt)dt + σ(Xt, αt)dBt,
dYt = dt

with initial data X0 = x and Y0 = 0, and the Lyapunov function W (x, y) = eλyV (x).
By applying Theorem 2.5 we obtain the existence of a control α. such that the
corresponding trajectory a.s. satisfies V (Xt) ≤ V (x)e−λt, which is the desired in-
equality.
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Next we extend the results of section 2 to the stabilizability of a general closed
set M ⊆ R

N . We denote by d(x,M) the distance between a point x ∈ R
N and M .

Definition 5.2 (almost sure stabilizability at M). The system (CSDE) is
a.s. (stochastic open-loop) stabilizable at M if there exists γ ∈ K such that, for every
x in a neighborhood of M , there is an admissible control function α· ∈ Ax whose
trajectory X · verifies

d(Xt,M) ≤ γ(d(x,M)) ∀ t ≥ 0 a.s.

If, in addition,

lim
t→+∞

d(Xt,M) = 0 a.s.,

the system is a.s. (stochastic open-loop) locally asymptotically stabilizable at M .
If these properties hold for all x ∈ R

N , the system is a.s. (stochastic open-loop)
globally asymptotically stabilizable at M .

Remark 8. If M is a.s. stabilizable, then it is viable for (CSDE). In fact, the
definition gives for x ∈ M and ε > 0 an admissible control such that a.s. d(Xt,M) ≤ ε
for all t ≥ 0.

Then for such control and any λ > 0 Ex

∫ +∞
0

d(Xt,M)e−λtdt ≤ ε
λ , and so

inf
α.∈Ax

Ex

∫ +∞

0

d(Xt,M)e−λtdt = 0.

The convexity assumption (2.2) and an existence theorem for optimal controls [27]
imply that the inf is attained, and the minimizing control produces a trajectory re-
maining in M for all t ≥ 0.

Definition 5.3 (control Lyapunov functions at M). Let O be an open neighbor-
hood of the closed set M . A function V : O → [0,+∞) is a control Lyapunov function
at M for (CSDE) if

(i) V is lower semicontinuous;
(ii) there exists γ1 ∈ K∞ such that V (x) ≤ γ1(d(x,M)) for all x ∈ O;
(iii) there exists γ2 ∈ K∞ such that γ2(d(x,M)) ≤ V (x) for all x ∈ O;
(iv) for all x ∈ O \ M and (p, Y ) ∈ J 2,−V (x) there exists α ∈ A such that

condition (2.4) holds.
The function V is a strict control Lyapunov function at M if it satisfies conditions

(i)–(iii) and
(iv)′ for some Lipschitz continuous l : O → R, l > 0 for all x ∈ O \ M and

(p, Y ) ∈ J 2,−V (x), there exists α ∈ A such that condition (2.7) holds.
Now we can state the analogues of the first and second Lyapunov theorems for the

almost sure stabilizability at M . Their proofs are easily obtained from the arguments
of Theorems 2.5 and 2.6 by using d(x,M) instead of |x| and noting that conditions
(ii) and (iii) in the Definition 5.3 say that the sublevel sets of the Lyapunov function
form a basis of neighborhoods of M .

Theorem 5.4. Assume (2.1), (2.2), and the existence of a control Lyapunov
function V at M . Then

(i) the system (CSDE) is a.s. stabilizable at M;
(ii) if, in addition, the domain O of V is all R

N , for all x /∈ M there exists
α. ∈ Ax such that the corresponding trajectory X . satisfies

d(Xt,M) ≤ γ−1
1 (γ2(d(x,M))) ∀ t ≥ 0 a.s.
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with γ1, γ2 ∈ K∞ from Definition 5.3; in particular, if M is bounded, the system is
also a.s. Lagrange stabilizable.

Theorem 5.5. Assume (2.1), (2.2), and the existence of a strict control Lyapunov
function V at M . Then

(i) the system (CSDE) is a.s. locally asymptotically stabilizable at M;
(ii) if, in addition, the domain O of V is all R

N , the system is a.s. globally
asymptotically stabilizable at M .

Remark 9 (stochastic target problems and absorbing sets). A stochastic target
problem consists of steering the state of the system (CSDE) in finite time into a
given closed set T (the target) by an appropriate choice of the control. One of the
objects of interest is the set of initial positions from which this goal can be achieved
a.s. in a given time t. We define these reachability sets for t > 0 as

R(t) = {x ∈ R
N | ∃α. ∈ Ax : Xt ∈ T a.s.}.

We consider a target T containing 0 and being invariant for the stochastic system
and we assume there exists a global strict control Lyapunov function V as defined in
(2.4) such that

inf
RN\T

l(x) = L > 0.

We are going to show that each reachability set R(t) lies between two sublevel sets of
the Lyapunov function V . The arguments in the proof of Theorem 2.6 show that for
every initial point x �∈ T there exists a control α. ∈ Ax such that the first entry time
τx of the corresponding trajectory in the target is a.s. bounded by

τx ≤
(
V (x) − inf

∂T
V (y)

)/
L.(5.1)

In particular, since the target T is invariant, it is reached a.s. in a finite time, and as
such time is also uniformly bounded, T is an absorbing set for the system according
to the terminology in [5]. Next, from the assumptions and inequality (5.1) we get{

x ∈ R
N | V (x) ≤ Lt + inf

∂T
V (y)

}
⊆ R(t).

Using Chebyshev inequality and estimates of the same kind as in the proof of Theorem
2.6 we can find also for every t > 0 a positive number k(t) depending continuously on
t such that

R(t) ⊆ {x ∈ R
N | V (x) ≤ k(t)}.

Let us mention that Soner and Touzi [39] developed recently a PDE approach to
stochastic target problems; see also [40] and the references therein for some interesting
applications to geometric PDEs and front propagation problems.

6. Examples. We begin with an example of an uncontrolled system that does
not have a continuous Lyapunov function but has an l.s.c. Lyapunov function and
therefore is a.s. stable. It shows that allowing V to be merely l.s.c. in Theorem
2.5 really increases the range of the applications. Our example is a variant of a
deterministic one by Krasowski [30], namely,{

Ẋt = Yt,

Ẏt = −Xt + Yt(X
2
t + Y 2

t )3 sin2
(

π
X2

t +Y 2
t

)
;
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see [6] for a discussion of this and other deterministic examples.

Example 1. We transform the previous system into polar coordinates and perturb
it with a white noise tangential to the circles Cn := {(x, y) : |(x, y)| = 1√

n
} and

nondegenerate between two consecutive circles:

⎧⎨
⎩

dρt =
[
ρ7
t sin2(θt) sin2( π

ρ2
t
)
]
dt +

[
σ(ρt, θt) sin2( π

ρ2
t
)
]
dBt,

dθt =
[
−1 + ρ6

t sin(θt) cos(θt) sin2( π
ρ2
t
)
]
dt,

where Bt is a one-dimensional Brownian motion and σ satisfies the hypotheses for the
existence and uniqueness of the solution of the stochastic differential equation. As in
the undisturbed case, the circles Cn are a.s. invariant and any point in Cn is eventually
reached a.s. by any trajectory starting in Cn. Then any Lyapunov function V is
constant on Cn because V (ρt, θt) ≤ V (ρ0, θ0) a.s., and cn := V|Cn

�= cn−1 := V|Cn−1

at least on a subsequence. By property (iv) in Definition 2.3 of the Lyapunov function,
for every (ρ, θ) in the interior of Cn−1 \ Cn and every (p,X) ∈ J 2,−V (ρ, θ), we get
(σ(ρ, θ) sin2( π

ρ2 ), 0) · p = 0. Since the diffusion is nondegenerate in the ρ direction in

the interior of Cn−1 \ Cn, from the previous equality we deduce that, for such (ρ, θ),
every element in J 2,−V (ρ, θ) is of the form ((0, p2), X). This implies that the function
V is constant in the ρ direction in the interior of Cn−1 \Cn and cannot be continuous.

Now we check that the Lyapunov function of the undisturbed system in the unit
ball does the job also for our perturbed stochastic system. We take

V (ρ, θ) :=
1√
n

for
1√
n
< ρ ≤ 1√

n− 1
∀θ.

This is a positive definite function, l.s.c. and continuous at 0. We calculate its second
order subjets and plug them into (2.4). If ρ �= 1√

n
for all n, (p,X) ∈ J2,−V (ρ, θ) if

and only if p = 0 and X ≤ 0, so condition (2.4) is trivially satisfied. On the other
hand, (p,X) ∈ J2,−V ( 1√

n
, θ) if and only if

p =

(
s
0

)
, s ≥ 0, and X =

(
a b
b c

)
, c ≤ 0.

At the points with ρ = 1√
n

the drift f of the system is (0,−1) and the dispersion

vector σ is (0, 0). Then

f · p +
1

2
trace

[
σσTX

]
= 0, σ · p = 0,

and condition (2.4) is satisfied. Therefore Theorem 2.5 applies and the system is
a.s. Lyapunov stable at the origin.

The next two examples are about stochastic perturbations of stabilizable systems.
We consider a deterministic controlled system in R

N ,

Ẋt = f(Xt, αt),(6.1)

globally asymptotically (open-loop) stabilizable at the origin, i.e., asymptotically con-
trollable in the terminology of deterministic systems [43, 44]. By the converse Lya-
punov theorem of Sontag [41, 44], there exists a strict continuous control Lyapunov
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function for the system, i.e., for some positive definite continuous function L, a proper
function V satisfying, in R

N \ {0},

max
α∈A

{−f(x, α) ·DV } − L(x) ≥ 0(6.2)

in the viscosity sense. (This is perhaps not explicitly stated in the literature; the
original result of Sontag [41] interprets this inequality in the sense of Dini derivatives
of V along relaxed trajectories; the paper of Sontag and Sussmann [44] interprets it
in the sense of directional Dini subderivatives; and both these senses are known to be
equivalent to the viscosity one; see, e.g., [47, 7]).

In the following examples we perturb (6.1) in two different ways and give a con-
dition under which V remains a control Lyapunov function for the almost sure stabi-
lizability of the new stochastic system.

Example 2. Consider the controlled diffusion process

dXt = f(Xt, α)dt + σ(Xt)dBt,(6.3)

where Bt is an M -dimensional Brownian motion and σ a Lipschitzean N ×M matrix.
Then V is a Lyapunov function for (6.3) if, for some open set O � 0 and some
continuous l : O → [0,+∞), V satisfies in viscosity sense in O \ {0},

−trace

[
1

2
σσTD2V

]
+ L− l ≥ 0, σi ·DV = 0 ∀i,(6.4)

and it is a strict Lyapunov function if l is positive definite.
In fact, this inequality and (6.2) give, for any (p,X) ∈ J2,−V (x),

max
α∈A

{−f(x, α) · p} − trace

[
1

2
σσTX

]
− l ≥ 0,

so V satisfies the inequality in condition (2.7), whereas the equality in condition (2.7)
reduces to σi · p = 0.

In the classical special case of V (x) = |x|2 and M = 1, the sufficient condition
(6.4) for V to be a Lyapunov function of (6.3) reads

l(x) := L(x) − |σ(x)|2 ≥ 0, σ(x) · x = 0.

For a noise of dimension M = N an example of σ satisfying the orthogonality condition
in (6.4) is

σ(x) = k

(
I − DV (x) ⊗DV (x)

|DV (x)|2

)

for any constant k.
Example 3. Here we consider the perturbation of the deterministic system (6.1)

by a function g of a K-dimensional diffusion process Yt:{
Ẋt = f(Xt, αt) + g(Xt, Yt),
dYt = b(Yt, Xt, αt)dt + τ(Yt, Xt, αt)dBt,

(6.5)

where the function g : R
n × R

K → R
n is Lipschitz continuous with g(0, y) = 0 for

all y, Bt is a one-dimensional Brownian motion, and b, τ are vector fields in R
K
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with the usual assumptions. We are still assuming that (6.1) has a strict control
Lyapunov function V , i.e., (6.2) holds with L positive definite. We are interested in
the stabilizability of the perturbed system at the set M := {(x, y) ∈ R

n×R
K : x = 0},

which corresponds to the origin of the unperturbed system (6.1); see Definition 5.2.
Note that the assumption on g implies the viability of M for (6.5).

We claim that the function V , defined by V (x, y) := V (x) for all y, is a Lyapunov
function at M for (6.5) (see Definition 5.3) if, for some open set O � 0 and some
continuous l : O × R

K → [0,+∞), V satisfies in viscosity sense in O \ {0},

inf
y∈RK

{−g(x, y) ·DV (x) − l(x, y)} + L(x) ≥ 0,(6.6)

and V is a strict Lyapunov function if l(x, y) > 0 for all x �= 0 and all y.
In fact, since d((x, y),M) = |x|, V satisfies conditions (i)–(iii) of Definition 5.3.

By (6.2) and (6.6) V is also a viscosity supersolution in O × R
K \M of

sup
a∈A

{−f(x, a) ·DV (x)} − g(x, y) ·DV (x) − l(x, y) ≥ 0,

which is the inequality in (2.7) in this case, because V is constant in y. Finally, for
the same reason, the condition in (2.7) of orthogonality of the diffusion vector to the
level sets of V is trivially satisfied.

The inequality (6.6) is a smallness condition of the component of g in the direction
of DV with respect to L in the set O, uniformly in y. For l ≡ 0 and V smooth in
O \ {0}, it becomes

sup
y∈RK

g(x, y) ·DV (x) ≤ L(x) in O \ {0},(6.7)

which is satisfied, in particular, if

sup
y∈RK

|g(x, y)| ≤ L(x)/LipV,

where LipV denotes the Lipschitz constant of V in O. We recall that, under our as-
sumption that the deterministic system (6.1) be asymptotically controllable, although
V may not be smooth, it can be chosen semiconcave in RN \{0} and therefore locally
Lipschitz [38]. If we make this choice, it is enough that inequality (6.7) holds for all
points x ∈ O where V is differentiable, and the last inequality is guaranteed for all
perturbations g with small sup-norm with respect to y.

In the next two examples we give conditions on a radial function to be a Lyapunov
function for almost sure stability.

Example 4. We consider as a candidate Lyapunov function for the general con-
trolled system (CSDE) the function V (x) = v(|x|), for some smooth v : [0,+∞) →
[0,+∞) with v′(r) > 0 for r > 0. Since DV (x) = xv′(|x|)/|x|, in view of the orthog-
onality condition in (2.4), we restrict ourselves to controls α ∈ A such that

σi(x, α) · x = 0 ∀ i = 1, . . . ,M.(6.8)

We compute

trace
[
a(x, α)D2V (x)

]
=

v′(|x|)
|x| trace a(x, α) +

(
v′′(|x|) − v′(|x|)

|x|

)
|σ(x, α)Tx|2

|x|2
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and use (6.8) to obtain that V is a Lyapunov function if and only if, in a neighborhood
O of 0,

l(x) := max
α∈A, σ(x,α)T x=0

[−f(x, α) · x− trace a(x, α)]
v′(|x|)
|x| ≥ 0,

i.e.,

min
α∈A, σ(x,α)T x=0

[f(x, α) · x + trace a(x, α)] ≤ 0.(6.9)

This condition is independent of the choice of v. Moreover, if l > 0 and Lipschitz
in O \ {0} and l → 0 as x → 0, then V is a strict Lyapunov function. Note that,
although the radial component of the diffusion must be null by (6.8), its rotational
component still plays a destabilizing role. In fact, trace a(x, α) ≥ 0 and whenever it
is nonnull it must be compensated by a negative radial component of f .

In particular, a single-input affine system with uncontrolled diffusion and one-
dimensional noise Bt,

dXt = (f(Xt) + αtg(Xt)) dt + σ(Xt)dBt, αt ∈ [−1, 1],

has a radial Lyapunov function in O if and only if

σ(x) · x = 0 and |g(x) · x| ≥ f(x) · x +
|σ(x)|2

2
in O,

and V (x) = |x|2/2 is a strict Lyapunov function in O if and only if

l(x) := |g(x) · x| − f(x) · x− |σ(x)|2
2

> 0 in O \ {0}.

Moreover, k(x) := −sign(g(x) · x) is a stabilizing feedback if g(x) · x does not change
sign; if it does, k is discontinuous, and then a continuous stabilizing feedback in a
neighborhood of 0 is given by the formula (4.3) in section 4.

Example 5. Here we study a system in R
2 written in polar coordinates (ρ, θ) and

look for radial Lyapunov functions, i.e., of the form V (ρ, θ) = v(ρ). Consider the
stochastic controlled system:

(CSDE)

{
dρt = f(ρt, θt, αt)dt + σ(ρt, θt, αt)dBt,
dθt = g(ρt, θt, α)dt + τ(ρt, θt, αt)dBt,

where all functions f, σ, g, τ are 2π-periodic and Bt is (for simplicity) a one-dimensional
Brownian motion. The conditions for a function V = v(ρ) to be a Lyapunov function
of this system at the set M := {(0, θ) : θ ∈ R} are the following. The orthogonality
condition in (2.7) requires that for every (ρ, θ) there exists a subset A(ρ, θ) �= ∅ of the
control set A such that

σ(ρ, θ, α) = 0 ∀α ∈ A(ρ, θ).

Then the condition (2.7) is satisfied if v is a viscosity supersolution of the ordinary
differential inequality

sup
α∈A(ρ,θ)

{−f(ρ, θ, α) · v′(ρ)} ≥ 0
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for ρ > 0 and for each fixed θ ∈ [0, 2π]. Of course the same result can be obtained
from the previous example with some calculations based on the Ito chain rule.

The last two examples are about the stabilization of systems to sets M different
from the origin, namely, the complement of a ball and a periodic orbit.

Example 6. We consider the general system (CSDE) and the set

M := {x | |x| ≥ R} = R
N \BR.

We assume M is viable for the system. We take the radial function V

V (x) :=

{
R2 − |x|2 |x| < R,
0 |x| ≥ R

and use the calculations of Example 4 to see that V is a Lyapunov function at M if
and only if for every x with |x| < R there exists α ∈ A such that

σi(x, α) · x = 0 ∀i and f(x, α) · x + trace a(x, α) ≥ 0.

Contrary to Example 4, here the rotational component of the diffusion has a stabilizing
effect. In fact, the drift f(x, a) is allowed also to point away from M if its negative
radial component is compensated by the positive term trace a(x, α).

If K ⊂ BR is a compact set and

l(x) := max
α∈A, σ(x,α)T x=0

[f(x, α) · x + trace a(x, α)] > 0 in BR \K,

then M is locally asymptotically stable by Theorem 5.5, and for all initial points
x /∈ K there is a control whose trajectories tend a.s. to M as t → +∞. In this case
we can say that K can be made a.s. repulsive by a suitable choice of the controls. In
particular, we have a criterion of instability of an equilibrium point.

Note also that if l > 0 on ∂M = ∂BR, then for some control the trajectories
starting in a suitable neighborhood of ∂M reach M in finite time a.s., as we observed
in the last remark of section 5. In particular, if l > 0 in BR, then for every x ∈ BR

there exists a control α. such that the exit time of the corresponding trajectory X .

from BR is a.s. bounded by (R2 − |x|2)/minBR
l.

Example 7. Consider (CSDE) in R
2 and assume the circle γ := {x : |x| = R} is

a viable set. By the results of [11] this occurs if for all x ∈ γ there exists α ∈ A such
that

σ(x, α) · x = 0 and f(x, α) · x + trace a(x, α) = 0.

Then γ is locally asymptotically stabilizable if, in a neighborhood {x : R− ε ≤ |x| ≤
R + ε},

max
α∈A, σ(x,α)T x=0

[f(x, α) · x + trace a(x, α)] > 0 if |x| < R,

min
α∈A, σ(x,α)T x=0

[f(x, α) · x + trace a(x, α)] < 0 if |x| > R.

This follows immediately from the arguments of Examples 4 and 6.
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