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The role of the odd particle at the critical point
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We investigate the phase transition in odd nuclei within the Interacting Boson Fermion Model in correspondence
with the transition from spherical to stable axially deformed shape. The odd particle is assumed to be moving in the
single-particle orbitals with angular momenta j = 1/2, 3/2, 5/2 with a boson-fermion Hamiltonian that leads
to the occurrence of the SUBF (3) boson-fermion symmetry when the boson part approaches the SU(3) condition.
Both energy spectra and electromagnetic transitions show characteristic patterns similar to those displayed by the
even nuclei at the corresponding critical point. The role of the additional particle in characterizing the properties
of the critical points in finite quantal systems is investigated by resorting to the formalism based on the intrinsic
frame.
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I. INTRODUCTION

The study of shape phase transitions in finite nuclear
quantal systems has recently been the subject of many
investigations. Most of the work has been carried out for
even-even nuclei, using either the Bohr Hamiltonian and the
surface collective variables or algebraic approaches based on
the use of interacting bosons. Recent review articles with
references to the original works can be found in Refs. [1–4]. In
the case of odd-even nuclei, where an odd particle is coupled
to an even core undergoing a phase transition, attention has
been put on the shape transition from sphericity to deformed
γ -instability. In correspondence with the critical point in
the even core, characterized by the critical point symmetry
E(5) [5], two new boson-fermion critical point symmetries
have been proposed, in the case of an odd particle moving in
a single j = 3/2 shell (E(5/4) symmetry [6]) or in the j =
1/2, 3/2, 5/2 shells (E(5/12) symmetry [7]). Characteristic
sequences of levels and ratios of electromagnetic transitions
are predicted in both cases. Shape phase transitions in odd-even
nuclei have been studied in Ref. [8] using a supersymmetric
approach.

In this article we consider another leg of the Casten shape
triangle, namely, the transition from the spherical vibrational
behavior to stable axial deformation. This transition in the
even-even case is normally named after the critical point
symmetry X(5) [9] developed within the collective Bohr
Hamiltonian formalism. The same situation has been studied
within the Interacting Boson Model (IBM) by Rosensteel and
Rowe [10]. In this work, we concentrate on the odd-even
nuclei and couple along the transition the even-even core to an
odd particle moving in the j = 1/2, 3/2, 5/2 single-particle
shells. This situation is described within the framework of
the IBFM (Interacting Boson Fermion Model), choosing a
boson-fermion Hamiltonian that leads to the occurrence of
the SUBF (3) boson-fermion symmetry when the boson part
approaches the SU(3) condition. A previous study of shape
phase transitions in odd-even nuclei using a supersymmetric
approach was presented in Ref. [8].

The aim of this article is twofold. First we would like to
identify other signatures of the phase transition, besides en-
ergies and electromagnetic transitions characterizing the X(5)
situation in the even nuclei. We have shown that, for example,
two-particle transfer matrix elements display characteristic
behaviors and sudden changes in correspondence of the critical
point [11], but we expect also that spectra and transitions in the
neighbor odd nuclei should display characteristic features at
the phase transition. Our second objective deals instead with
the concept itself of critical point in finite quantal systems.
For well-deformed cases, far from the critical point, we know
that the contribution of the coupling to the additional odd
particle (of the order of 1/N ) will not change appreciably the
position of the sharp minimum in the deformation parameter
for the energy surface. At the critical point, however, the energy
surface in the even core is known to be rather flat in the
deformation parameter, a feature that precisely characterizes
the transition point. This behavior may imply that some of
the energy surfaces characterizing the different states of the
odd-even nucleus may be driven by the coupling in either
direction (i.e., toward deformation or sphericity), effectively
changing the position of the critical point.

The article is structured as follows. In Sec. II, the model
Hamiltonian is presented and calculations along the transition
region are performed in the laboratory frame. In Sec. III, the
description of the transition region in the intrinsic frame is
discussed. Section IV is devoted to studying in detail the
critical point. Finally, a brief summary and some conclusions
are given in Sec. V.

II. THE INTERACTING BOSON FERMION MODEL 1
(IBFM-1) ALONG THE U(5)-SU(3) LINE WITH
COUPLING TO A j = 1/2, 3/2, 5/2 PARTICLE

We consider the spherical to axially deformed shape
transition in the framework of the IBFM-1, when the odd
particle occupies j = 1/2, 3/2, and 5/2 orbitals. For this
purpose we have chosen a Hamiltonian based on the one
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used for the corresponding U(5) to SU(3) transition in the
IBM-1 [10],

HB = (1 − x)nd − x

4NB

QB · QB, (2.1)

where NB is the total boson number, nd is the d-boson number
operator, and QB = (s† × d̃)(2) + (d† × s̃)(2) −

√
7

2 (d† × d̃)(2)

is the boson quadrupole operator. The Hamiltonian HB can be
written in terms of the boson Casimir operators (the subindex 1
indicates linear while the subindex 2 stands for quadratic
Casimir operators) as

HB = (1 − x)C1(UB5)

− x

8NB

[
3

2
C2(SUB3) − 3

8
C2(OB3)

]
. (2.2)

In this work the definitions for the Casimir operators are those
given in Ref. [12]. Because Casimir operators are defined up to
a constant, some references may use different expressions for
them (see Refs. [10] and [13]). We will use a similar form for
the Hamiltonian that describes the transition from spherical to
axially deformed odd-even nuclei within the IBFM-1,

HBF = (1 − x)C1(UBF 5)

− x

8NB

[
3

2
C2(SUBF 3) − 3

8
C2(OBF 3)

]
, (2.3)

where the superindex BF stands for boson-fermion. The Bose-
Fermi Casimir operators used in this work are defined as given
in Ref. [14].

To get physical insight into the problem, we rewrite the
boson-fermion Hamiltonian (2.3) as

HBF = (1 − x)(nd + n 3
2
+ n 5

2
) − x

4NB

QBF · QBF , (2.4)

where n 3
2
(n 5

2
) is the j = 3/2(5/2) fermion number operator

and QBF = QB + qF is the total (boson-fermion) quadrupole
operator. The explicit expression for the fermion quadrupole
operator qF can be obtained from Eq. (3.5) of Ref. [13] for
n = 2 and �, �′ = 0, 2,

qF = −
√

4

5
[(a+

1/2ã3/2)(2) − (a+
3/2ã1/2)(2)] −

√
6

5
[(a+

1/2ã5/2)(2)

+ (a+
5/2ã1/2)(2)] −

√
7

2

{
−

√
14

25
(a+

3/2ã3/2)(2) +
√

6

25

× [(a+
3/2ã5/2)(2) − (a+

5/2ã3/2)(2)] −
√

24

25
(a+

5/2ã5/2)(2)

}
.

(2.5)

Note that the choice of the fermion space is such that one
can profitably visualize the three angular momenta as arising
from the coupling of a pseudo spin 1/2 with a pseudo orbital
angular momentum 0 or 2. Because the Hamiltonian does not
depend on the pseudo spin, this gives rise to repeated level
couplets with J = L ± 1/2 (when L �= 0). This degeneracy
might eventually be broken by introducing a term proportional
to J 2 in the Hamiltonian.
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FIG. 1. Spectra obtained in the SUB (3) (upper panel) and
SUBF (3) limits (lower panel) for NB = 9 bosons. In the lower panel
the horizontal lines in the K = 0 bands represent two states (except
for L = 0).

With our choice of the Hamiltonian (2.4) we obtain for
x = 0 the UBF (5) dynamic symmetry and for x = 1 the
SUBF (3) one. In the lower part of Fig. 1 we show some of
the levels obtained in the latter case assuming that the core
is made up of NB = 9 bosons to which a single fermion
(NF = 1) is coupled. For a comparison, in the upper part the
corresponding spectrum for the even-even nucleus, NB = 9,
is shown. In the odd system, NB bosons plus one fermion,
the levels are arranged in rotational bands, characterized by
the quantum numbers (λ,µ) K and 2J . Some of them can be
identified with those of the even core, in the upper panel, with
NB bosons (in this case the levels are labeled by L), but others
[not fully symmetric with µ odd, e.g., the (λ = 18, µ = 1)]
arise genuinely from the fermion-boson nature of the problem.
Note that in each rotational band the energy goes as L(L + 1)
and not as J (J + 1). In addition to the degeneracy coming
from the pseudo spin coupling, we have degeneracies coming
from the bosonic plus fermionic orbital parts.

Some of the degeneracies disappear as one moves away
from the SUBF (3) limit by acting on the control parameter
x. The transition from SUBF (3) toward UBF (5) is more
complicated than the one studied before [15] from OBF (6) to
UBF (5). In that case there was a common subgroup, OBF (5),
which supplied labels all over the transition. This is no longer
the case, and we can only use “asymptotic” SUBF (3) quantum
numbers (λ,µ) to label the states outside the extremes of
the transition. The possibility of using as asymptotic quantum
numbers the ones of UBF (5) is a worse choice because there
are more degeneracies at this extreme of the transition. One
could invoke the concept of quasi dynamical symmetry to have
a criterion on how to assign the asymptotic quantum numbers.
Similarly the arrangement of the levels into bands is not always
univoque and the information from the electromagnetic matrix
elements may not always be sufficient.

In Fig. 2 we show the full evolution of the energy of some
selected levels, normalized to the energy of the first excited
state, along the transition, still in the case of NB = 9. The
states are labeled all over with the SU(3) quantum numbers
(λ,µ), which are strictly valid only for x = 1, and L. For each
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FIG. 2. Energy levels (normalized to the excitation energy of the
first excited state) as a function of the control parameter ẋ in the
Hamiltonian (2.3). A number, NB = 9, of bosons has been assumed.
Each state is characterized by the (λ, µ) asymptotic quantum numbers
(strictly valid only for x = 1, at the SUBF (3) extreme) and L. The
two vertical lines indicate the position of the critical value of x for
the even-even and odd-even systems.

level the total angular momenta come from the coupling of the
OBF (3) quantum number L to the SUF

s (2) quantum number S.
In general the states are doubly degenerate except for L = 0.
The general behavior of the energy levels is rather smooth
close to the dynamic symmetry limits, changing more rapidly
in the neighborhood of the critical point for the even-even
core, indicated by a dashed vertical line. It is clear from the
figure that by using only energies (and eventually transition
rates) it is rather difficult to single out the precise position
of the critical point in the absence of other signatures, due to
the finite number of particles. The key way is based on the
concepts of intrinsic frame and energy surfaces, as is shown in
the next section.

III. THE INTRINSIC FRAME DESCRIPTION AND THE
CRITICAL POINT

A useful way of looking at phase transitions is to resort to
the concept of intrinsic states and associated energy surfaces.
In the case of the Interacting Boson Model for even-even nuclei
one introduces a ground band intrinsic state of the form

�gs(β, γ ) = 1√
NB!

[b†gs(β, γ )]NB |0〉, (3.1)

where |0〉 is the boson vacuum. The basic quadrupole boson
is given in the form

b†gs(β, γ ) = 1√
1 + β2

[
s† + β cos γ d

†
0

+ β√
2

sin γ (d†
2 + d

†
−2)

]
, (3.2)

and β and γ play a role similar to the intrinsic collective
variables in the Bohr Hamiltonian. The ground state energy
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FIG. 3. Energy surfaces for even-even nuclei with NB = 9 as a
function of the deformation, β, for different values of the control
parameter x and for different bands: ground state band (left panel),
β band (central panel), and γ band (right panel). The curves at the
critical value are shown as dashed. The position of the minima are
connected by a bold solid line. The calculations are performed for
γ = 0.

surface is obtained as the expectation value of the boson
Hamiltonian (2.1) in the intrinsic state, i.e.,

Egs(β, γ ) = 〈�gs(β, γ )|HB |�gs(β, γ )〉. (3.3)

In our specific case, for any value of the control parameter x the
energy surface has a minimum, as a function of the parameter
γ , for γ = 0. In other words, our boson Hamiltonian can never
lead to a stable triaxial shape. As far as the β dependence is
concerned, we show in Fig. 3 (left panel) the ground state
energy surfaces for different values of the control parameter
x. The figure shows in a clear way the occurrence of the
critical point. For small values of x the system finds more
convenient a spherical shape (βmin = 0), while after the critical
value a deformed minimum becomes lower in energy. The
occurrence of this first-order transition is shown in the figure
by a bold solid line that singles out the position of the minima
for the different values of x. As is well known, precisely at
the critical point the energy surface is rather flat [9]. The
phase transition occurs for a value of the control parameter
x = 16NB/(34NB − 27). In our case with NB = 9 bosons,
the critical value xc � 0.516 is obtained, rather close to the
asymptotic value x � 0.47 valid for large values of NB .

The situation may be modified if one looks at excited states.
We are, in fact, dealing with a finite quantal system, and one
knows that one-phonon excitations are expected to produce
energy corrections of the order of 1/NB . This can be important
precisely at the critical point where the energy surface is flat
and small corrections can drive the system in either direction
(i.e., toward deformation or sphericity). In the central and right
panels of Fig. 3 we show the energy surfaces associated with
the β and γ bands. The corresponding intrinsic states are given
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by

�β(β, γ ) = 1√
(NB − 1)!

[b†gs(β, γ )]NB−1b
†
β(β, γ )|0〉,

(3.4)
�γ (β, γ ) = 1√

(NB − 1)!
[b†gs(β, γ )]NB−1b†γ (β, γ )|0〉,

where the basic β and γ bosons are given by

b
†
β(β, γ ) = 1√

1 + β2

[
−βs† + cos γ d

†
0+

+ 1√
2

sin γ (d†
2 + d

†
−2)

]
(3.5)

and

b†γ (β, γ ) = 1√
2

(d†
2 − d

†
−2). (3.6)

One can see from the figure that, ceteris paribus (that is, all
other things being the same), the β band tends to favor prolate
deformation, while the γ band for small values of x drives
the system slightly on the opposite direction (toward oblate
deformation). This has no significant effect for well-deformed
systems, but if one compares the three energy surfaces at the
ground-state critical value (dashed curves in the three frames),
at variance to the flat surface for the ground state, we have
prolate and oblate minima for the β and γ bands, respectively.
As a result, the effective critical point is shifted to higher values
of x for the γ band, with the opposite tendency for the β band.

This discussion on the critical point for excited states in
boson systems anticipates a similar behavior for the coupled
boson-fermion systems in odd nuclei. The reader is referred to
Ref. [16] for a recent account of the topic of phase transitions
in excited states. Intrinsic frame states for odd systems can
be constructed by coupling the odd single-particle states (with
each angular momentum j and magnetic component k) to
the intrinsic states of the even core. The lowest states of the
odd nucleus are expected to originate from the coupling to
the intrinsic ground-state �gs(β, γ ). One first constructs the
coupled states

�jk(β, γ ) = �gs(β, γ ) ⊗ |jk〉 (3.7)

and diagonalize in this basis (for each value of β and γ )
the total boson-fermion Hamiltonian, giving a set of energy
eigenvalues En(β, γ ), n being a running index to count the
solutions. In our specific UF (12) algebra we have a total
of 12 components, but this is restricted to 6 within the
symmetry k ↔ −k. In addition, because the Hamiltonian does
not depend on the pseudo spin, the active role is played by
the pseudo orbital angular momenta l = 0 (with kl = 0) and
l = 2 (with kl = 0,±1,±2). We expect, therefore, for the
general Hamiltonian (2.4) four different intrinsic states and
consequently four different bands. For γ = 0 the Hamiltonian
preserves the quantum number k and the diagonalization is
independently done for each value of k. In this case we
obtain two states with k = 1/2, one degenerate pair with
k = 1/2, 3/2 and the last degenerate with k = 3/2, 5/2.

We first show in Fig. 4 (left panel) the boson-fermion
energy surfaces for a well-deformed case (x = 1, leading
to the SUBF (3) dynamical symmetry) as a function of the
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FIG. 4. (Color online) Energy surfaces in the odd-even nucleus
with NB = 9 as a function of the deformation parameter β. The
different curves refer to the different intrinsic states. The dashed lines
give the corresponding energy surfaces for the even-even case. The
three panels correspond to different choices of the control parameter
x. The left panel (x = 1) corresponds to the SUBF (3) dynamical
symmetry; the other panels correspond to the critical points in the
even-even case (x = 0.516) and the odd-even case (x = 0.485). In
all cases we have assumed γ = 0, so that states are characterized by
good k values.

deformation parameter β. A value γ = 0 is assumed. For
a better comparison we also include, as a dashed line, the
energy surface corresponding to the even–even core ground
state. A number, NB = 9, of bosons has been assumed for
the core. We can see that all energy surfaces display the
minimum for the same value of the deformation parameter
β. In this well-deformed case, therefore, the addition of the
extra particle is not changing the features of the system. Each
state of the odd nucleus can be put in correspondence with
one of the rotational bands appearing in Fig. 1. The lowest
k = 1/2 state is the intrinsic state of the ground band (20,0)
of Fig. 1. Similarly the next k = 1/2, 3/2 state is the intrinsic
state of the doubly degenerate band (18,1). Finally the last
k = 1/2 and k = 3/2, 5/2 states are the band heads of one
of the two degenerate multiple bands with quantum numbers
(16,2). Note that the intrinsic frame approach reproduces quite
well the energies of the band heads. We get, from the energies
of the minima, excitation energies equal to 0.750, 1.51, and
1.51, very close to the values 0.854, 1.58, and 1.65 obtained
in the laboratory frame.

The situation is different around the critical point of the
even-even core (central frame). We see from the figure that in
this case the odd particle drives the system toward deformation
or sphericity (according to the different states of the odd-even
nucleus). This gives rise to an effective shift of the critical
point. For example, for the ground band, the critical point
moves to x = 0.485, where in fact the corresponding energy
surface becomes flat (right panel).

We conclude this section with some remarks on the γ

dependence. In Fig. 5 we show the ground-state energy
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of the energy surface in the odd-even nucleus. Higher thin solid lines
give the energy surfaces of excited states as a function of γ for the
odd-even case.

surfaces for the even-even (dot-dashed) and odd-even case
(solid) as a function of γ for x = 1, x = 0.516 (critical point
for the even-even nucleus), and x = 0.485 (critical point for
the odd-even nucleus) and selected values of β around the
minima of the ground-state energy surfaces. As we mentioned
before, the energy surfaces for our boson Hamiltonian as a
function of γ display minima for γ = 0 for all values of
the control parameter x. The depth of the minima changes
along the transition. These behaviors are also observed for the
boson-fermion Hamiltonian. We see in Fig. 5 that, while for
the well-deformed case (left panel) the minimum at γ = 0 is
very deep, the minimum at the critical point (either for the
even-even nuclei or the odd-even nuclei) is rather shallow and
the system tends to be more γ soft.

IV. SPECTRA AND TRANSITIONS AT THE
CRITICAL POINT

We calculate the odd-even nucleus spectrum for xc−oe =
0.485, according to the Hamiltonian (2.4). The resulting
sequence of levels, arranged in bands, is shown in the lower
panel in Fig. 6. For a better comparison, in the upper panel
of the figure we show the corresponding spectrum for the
even-even core at its critical point. Degeneracies coming from
the bosonic plus fermionic orbital parts are broken. In addition,
in the odd-even spectrum, in some bands with odd µ the order
of the J ’s has been altered.

Comparing the even-even and odd-even spectra, energies
ratios for equivalent states (those that have (λ,µ) in the even-
even and (λ + 2, µ) in the odd-even) differ slightly. To be
more quantitative, in Table I we present a comparison of some
selected energy ratios. The values of these ratios for the critical
odd-even and even-even nuclei are quite close to each other, but

rather different from the X(5) values, especially the
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FIG. 6. Spectra obtained at the critical points in the case of NB =
9. The upper panel displays the spectrum in the even-even case (xc =
0.516), the lower panel displays the spectrum in the neighbor odd-
even, boson-fermion case (xc = 0.485).

ratio, as expected. The energy ratios within the ground-state
band provided by the X(5) values are closer to those of SU(3)
than those obtained within IBM for the studied critical points.

Additional important information comes from the elec-
tromagnetic transitions. The corresponding intensities for
selected transitions are reported in Fig. 7. Also in this case the
general behavior for the odd-even case follows closely the one
for the even-even case. It can be observed that, although (λ,µ)
are not good quantum numbers for x = xc−oe, transitions in
the odd-even nucleus between different (λ,µ)asint are highly
hindered. In Table I few selected B(E2) ratios are presented for
the even-even and the odd-even nuclei at the critical points.
The X(5) results for the even-even case are also presented

TABLE I. Selected energy and reduced matrix element ratios
at the critical point of the even-even (xc = 0.516) and odd-even
(xc = 0.485) nucleus for NB = 9. In the second, third, and fourth
columns the corresponding U(5), SU(3), and X(5) results for the
even-even nucleus are given as references. The ratios given in the first
column correspond to the even-even nucleus, and the corresponding
ratios for the odd-even nucleus are given in the last column. The
SU(3) value marked with ∗ depends on the parameters used in
the SU(3) Hamiltonian; the value written in this table corresponds
to the Hamiltonian (2.1) with x = 1 and NB = 9.

Even-even Odd-even

Ratio U(5) SU(3) X(5) IBM IBFM Ratio

E
4+

1
−E

0+
1

E
2+

1
−E

0+
1

2.00 3.33 2.91 2.45 2.44
E

9/2+
1

−E
1/2+

1
E

5/2+
1

−E
1/2+

1
E

6+
1

−E
0+

1
E

2+
1

−E
0+

1

3.00 7.00 5.45 4.33 4.29
E

13/2+
1

−E
1/2+

1
E

5/2+
1

−E
1/2+

1
E

0+
2

−E
0+

1
E

2+
1

−E
0+

1

2.00 22.67∗ 5.67 2.65 2.64
E

1/2+
2

−E
1/2+

1
E

5/2+
1

−E
1/2+

1

B(E2;4+
1 →2+

1 )

B(E2;2+
1 →0+

1 )
2.00 1.43 1.58 1.71 1.73

B(E2;9/2+
1 →5/2+

1 )

B(E2;5/2+
1 →1/2+

1 )

B(E2;6+
1 →4+

1 )

B(E2;2+
1 →0+

1 )
3.00 1.57 1.96 2.00 2.06

B(E2;13/2+
1 →9/2+

1 )

B(E2;5/2+
1 →1/2+

1 )

B(E2;2+
1 →0+

2 )

B(E2;2+
1 →0+

1 )
1.20 0.00 0.13 0.24 0.25

B(E2;5/2+
1 →1/2+

2 )

B(E2;5/2+
1 →1/2+

1 )
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FIG. 7. Reduced E2 transition probabilities for x = xc−oe and
NB = 9. For K = 0 bands, in levels with L �= 0 (see the lower panel
of Fig. 6 to know the J of each level), the left (right) arrow represents
the transition from the initial state Ji = Li − 1/2(Ji = Li + 1/2) to
the final state Jf = Lf − 1/2(Jf = Lf + 1/2). For K �= 0 the left
(right) horizontal line represents states with the lowest (highest) J

for the corresponding L as represented in the lower panel of Fig. 6.

as reference. It is clear that the odd-even results follow
closely the even-even ones. Major differences with the X(5)
results are found in transitions involving the 0+

2 state. The
similarity between the even-even and odd-even systems is
easily understood in the limit of pure states. Assuming

|1/21〉 ≈ |LB = 01 × j = 1/2〉
|1/22〉 ≈ |LB = 02 × j = 1/2〉
|5/21〉 ≈ |LB = 21 × j = 1/2〉,

all the B(E2) ratios shown in Table I have to be equal
in the even-even nucleus and in the corresponding transition
in the odd-even system. This is clearly the situation observed

in Table I although in the calculations leading to Table I states
in the odd-even nucleus are not pure but have other small
components.

V. SUMMARY AND CONCLUSIONS

In this article we have considered, within the IBFM, the case
of the coupling of an odd particle moving in the j = 1/2, 3/2,
and 5/2 orbitals to a boson core undergoing a transition
from U(5) to SU(3). We have followed the evolution of the
spectrum along the transition and studied in detail energies
and transitions in correspondence with the critical point. The
position of the critical point has been discussed by resorting to
the intrinsic fermion-boson states. We found that the position
of the critical point has been shifted by the addition of the
odd particle with respect to the even case, but the magnitude
of this shift is of the order of 1/N,N being the number of
active bosons. As a consequence the behavior of the odd and
even systems at the corresponding critical points are rather
similar, with the exclusion of the additional bands in the odd
case that only arise from the fermion-boson character of the
system. Our study confirms the importance of the odd nuclei
as necessary signatures to characterize the occurrence of the
phase transition and to determine the precise position of the
critical point.
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