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THE REVERSE BORDERING METHOD*

C. BREZINSKIi, M. MORANDI CECCHIt, AND M. REDIVO-ZAGLIA

Abstract. The bordering method allows recursive computation of the solution of a system of
linear equations by adding one new row and one new column at each step of the procedure. When
some of the intermediate systems are nearly singular, it is possible, by the block bordering method,
to add several new rows and columns simultaneously. However, in that case, the solutions of some
of the intermediate systems are not computed. The reverse bordering method allows computation
of the solutions of these systems afterwards. Such a procedure has many applications in numerical
analysis, that include orthogonal polynomials, Pad6 approximation, and the progressive forms of
extrapolation processes.
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1. Introduction. The bordering method is a recursive method for computing
the solution of a system of linear equations. It consists, at each step, of adding one
new row and one new column to the previous matrix and using the previous solution
to compute the new one. This method can only be used if some quantity is differ-
ent from zero at each step. If, at some steps, this quantity is zero (or nearly zero),
then it is possible to add several new rows and columns to the matrix simultaneously.
However, if this situation occurs, the solutions of the intermediate systems that have
been skipped are not computed. This is a drawback of the method since, in some
applications, the solutions of all the intermediate systems must be known (if non-

singular). In this paper we propose the reverse bordering method for avoiding this
case. The procedure is, after jumping over the near-singular intermediate systems and
computing the solution of the first nonnear-singular system, to go back by decreasing
the dimension of the matrix (that is, by deleting the last row and the last column)
and using the solution of the previous larger system for computing the solutions of
the smaller systems that have been skipped. Such a procedure has applications in the
recursive computation of orthogonal polynomials, in Pad approximation, and in the
implementation of the progressive forms of extrapolation algorithms.

2. Bordering method. When we must solve a system of linear equations that
is obtained by adding one new equation and one new unknown to a given system
or, in other words, when the matrix of the system has been bordered by a new row
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and a new column, the bordering method can be used to save computational time.
This method is well known in numerical analysis and permits us to solve a system
recursively by using the solution of the previous system (see, Faddeeva [7]). Let us
first explain this method.

Let Ak be a regular square matrix of dimension k and dk a vector of dimension
k. Let zk be the solution of the system

Akzk dk.

Now let uk be a column vector of dimension k, Vk a row vector of dimension k,
and ak a scalar. We consider the bordered matrix Ak+l of dimension k + 1 given by

Ak uk )Ak+l
vk ak

We have

-1 I A-lwAlukvkAl/k --Aluk/k )Ak+ --vkA- /t 1/k

with a a vaA-u.
Let fk be a scalar and Zk+l be the solution of the bordered system

Ak+lZk+l dk+l fk
Then we have

fk VkZk lUk
1 ).

This formula gives the solution of the bordered system in terms of the solution of
the previous system.

To avoid computation and storage of A-1, we can set qk -A-luk and compute
it recursively by the same bordering method. In such a way, we obtain the following
variant of the bordering method that needs the storage of Ak instead of that of A-1

for the original procedure.
Let q(k) be the solution of the system

Aq(k) --u(),

where u(i) is the vector formed by the first components of Uk. Thus u u and

q) q for M1 i. A is the matrix of dimension formed by the first rows and
columns of Ak.

We have, since A is a number,

q(k1)
(1)

k 0 a + vq) 1 1,...,k- 1,
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where uk,i+l is the (i + 1)th component of uk.
Then

(k) _A-iq qk

thus allowing us to use the previous formula for computing Zk+ without knowledge
of A-; [3] and [4] contain the subroutine BORDER performing this variant of the
bordering method.

3. Block bordering method. The bordering method can be applied only if

k : 0 for all k. When this is not the case, we can use a block bordering procedure
(see Brezinski, Redivo-Zaglia, and Sadok [5]).

We now assume the following dimensions for the matrices involved in the process

Ak nk nk,

Uk rtk Pk,

Vk Pk nk,

ak Pk Pk

and finally

Ak+l nk+l nk+l

with nk+l --nk nu Pk.
We set

k ak Vk A- uk

and we have

A- ( A- -t--I- uk lvkAvkA- -A-luk/-lk )Z[i

fk is now a vector with Pk components and we obtain

Zk+l ( ;k ) -t- ( -A-l’ttk )Ik 1 (fk VkZk)

where Ik is the identity matrix of dimension Pk.
The subroutine BLBORD given in [4] performs this block bordering method.
Remark. We note that the subroutine BLBORD only works if all 1, which can

always be made true. It is also possible to add the instruction A(1,1)=I.0D0/A(1,1)
after the instruction Z(1)=D(1)/A(1,1).

Again it is possible to avoid computation and storage of A-1 by setting qk

-A-uk (whose dimension is nk pk) and computing it recursively by the bordering
method in the following way.

Let u(ki) be the ni x pk matrix formed by the first ni rows of uk for <_ k, ni <_ nk.

We have ui)
ui. Let q(ki) be the ni x pk matrix satisfying 2tiqkA(i) _u() for i _< k.

We have q}i) qi.

We set

q(kl) _A-I uk(1)
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and then we have

with i ai + vq) and uk,+l the matrix formed by the rows n + 1,..., ni + p of
tk

Instead of using the block bordering method when k is zero for some k, it is
possible to use a pivoting strategy. If, for some k, /k 0, then the last row of the
matrix can be interchanged with the next one and so on until some/k # 0 has been
obtained. Such a procedure is not adapted when the solutions of the intermediate
systems must be computed. It can be used if only the last solution is needed and if
the solutions of the intermediate systems are not required.

Obviously, the block bordering method can also be used even if the matrix/k is
nonsingular and thus, at each step, an arbitrary number of new rows and columns can
be added. In particular, when some of the intermediate systems are almost singular,
such a strategy allows us to jump over them and thus improve the numerical stability
and precision of the solutions of the subsequent systems. However, in such a case the
solutions of the systems that have been skipped have not been computed. The reverse
bordering method that we now present allows us to come back afterwards to these
systems by deleting rows and columns one by one and obtain their solutions from the
solution of the larger system.

4. Reverse bordering method. Let us now look at the possibility of finding
-1A- from Ak+l.

-1 of dimension under the formWe write the inverse matrix At+l nk+l

nk Pk

Ak+ Vk ak ,’

The matrix Ak+- will also be partitioned by blocks with the same corresponding
dimensions. Thus Ak will be the square matrix of dimension nk nk+ --Pk obtained
by suppressing the last p rows and columns of Ak+l.

From the block bordering method we know that

Because

--1ak k

then

Uk ak Uk

and thus
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Thus using this in the expression of A gives us

/--1(1) A- Ak uk ak Vk
This formula, which corresponds to the Schur complement, was already given by
Duncan in 1944 [6]. The following relations also hold.

det A-1 det Ak+l/det a,
det Ak+l det Ak det k.

Moreover, from the Sherman-Morrison formula (see [8] for review), we have

A’k (Ak Uk a- Vk)-
A (A ua-1 v)- t--1 I--1 1--1 I--1Ak + Ak uk k vk Ak

with

This is another proof of (1).
From these formulm, we obtain

( ,-1 ,)-1At A’-l + u a- vk A uk a vk

(Ak--uak lvk)-A’k A- + u’k a’k Vk

Now we want to compute the solution zk of the previous system

Akzk dk

starting from the solution zk+ of the bordered system

Ak+ Zk+ dk+ fk p

As previously stated

Zk+ ( Ztk ) ( Zok ) _. ( --Al?-tk "ck Ik / - (fk VZk

a
Thus

ck a’kft akvkzk,

that is,

I-- I--1
at lck fk VkZk or vkzt f a c

and

zk zk + uk f vkZk) Zk + Uk a- Ck.
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Finally, it holds that

But

Thus

and we have

/--1
Zk zk uk ak ck.

Another way of finding zk is as follows. From (1), we have

/-1A-ldk Adk uk ak v dk.

a fk vd + af )"

Ad zk ukf and vkdt c akfk

5. Variants and particular cases. Instead of bordering the matrix Ak as we

did, we can also add the new rows and columns on the top and on the left according
to the scheme

ak vk )A+I u A
Thus the inverse matrix becomes

A+ _A_u/_[1 - vkA- )A- + A- uk- vkA-
The solution z+ of the bordered system

Ak+lZk+ dk+l dk

can be computed by

Zk+ Z _A-Iu Zk (f

Similarly for the reverse bordering method, starting from

Pk nk

Ak+I- u A nk

we have

A--A-uka va.
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The solution zk of the system

Akzk dk

can be obtained from the solution zk+l of the bordered system

We set

and we have

vAk+ zk+l d+l d n

()’kCk Pk
Zk+ t

Z n

Zk Ztk Uk ak Ck.

Thus the block bordering method and the reverse bordering method can be ap-
plied in the following two cases.

Case 1.

Vk ak
Zk+l fk

Case 2.

(o 1 )uk A Zk+ d
There are also two other possibilities of bordering that could be investigated.
Case 3.

ak Vk
Z+t fk

This case can be treated the same as Case 2 because we can put the last pa rows
of the matrix and the right-hand side on the top and all the formulm for the methods
are the same.

Case 4.

(vklak)
This case can be treated the same as Case 1 for the reason explained in Case 3.
Two particular cases can be interesting since they have many applications.
Let us first consider the case where Ak is a Hankel matrix; that is, when its

elements aij are such that aij ci+j where the ci are given complex numbers. In this
case, the reverse bordering method must be applied in its normal formulation because
the structure of the inverse matrix does not permit any simplification.

Let us now consider the case of Toeplitz matrices. Let Ak (aij) be the Her-
mitian positive definite Toeplitz matrix, built from a sequence of complex numbers
co, c,c2, Thus we have aij "-Ci-j (for i,j 0,...,nt 1), cz T-l, and

Ak T()
nk

CO C1 C2 Cnk
(21 (20 (21 Cnk--2

Cnk --1 Cnk --2 Cnk --3 CO
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In this case, Ak+l can be obtained from Ak by bordering either at the bottom and on
the right or at the top and on the left. In both cases, due to the particular structure

--Tof the matrix, we have vk uk
Thus we can choose between two bordered matrices of dimension nk+l nk Pk

Ak uk ak wkAk+ --T or Ak+uk ak wk Ak

Obviously the two possibilities are not equivalent and the systems to be solved
are different. However, in both cases, the bordering method can be applied after the
simplification due to the special structure of the matrices.

If we consider the reverse unit matrix J (i.e., the unit matrix with its columns in
the reverse order) of order nk and the reverse unit matrix Jt of order Pk, we have

wk JkJ.

6. Numerical examples. When solving a system of linear equations by the
bordering method some intermediate systems can be nearly singular. In that case, the
block bordering method described in [5] allows us to jump over these near-singularities
and the numerical stability of the process is thus improved.

Before giving a numerical example, let us discuss our strategy for deciding when
and how far to jump. This strategy is based on the relation

det Ak+l det Ak det k.

Assuming that A-1 has already been obtained, we first add one new row and one new
column to the matrix Aa; that is, we use the formulm of 2 (or, equivalently, those of

3 with Pk 1). If

for some given e > 0, we will add one more new row and one more new column to A
and use the formulm of 3 with pk 2. If

det1 -< e

we again add one new row and one new column to Ak and repeat the process until,
after having added Pk new rows and columns, we obtain a matrix k such that

det kl > .
-1Then Ak+ and zk+ can be computed by the formulm of 3. Let us also mention

that the determinant of k is computed as the product of the pivots in a Gaussian
elimination process. Such a strategy avoids the inversion of nearly singular matrices

k, thus improving the numerical stability of the bordering method as shown by the
following examples.

We first consider the system

1 1 1 1 -1 0 -1 1
1 1 2 0 1 1 -1 2
1 1 -1 0 2 -2 0 3

-1 1 2 0 -1 1 2 4
0 0 0 0 1 1 2 5
0 0 0 0 1 1 1 6
0 0 0 0 -1 0 2 7

-2
13
-2
22
25
18
9
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TABLE
Solutions with the bordering method (r/-- 10-14).

1 --0.2000(1)
2-0.0(x6) 0.0()
3--0.1001(16) 0.1001(16)
4 -0.4500(1) 0.7500(1)
5 --0.2950(2) --0.9297(1)
6 -0.7006(15) -0.1171(16)
7 0.9222 0.1859(1)

o.5ooo()
o.4992(1) -O.lOO1(2)
o.1333(2) o.4833(2)
0.9348(15) 0.1635(16)
0.3006(1) 0.3570(1)

0.500()
0.7006(15) -0.7006(15)
0.5078(1) 0.5922(1) 0.7000(1)

TABLE 2
Solutions with the block bordering method (r/= 10-14,-- 10-14).

1 --0.2000(1)
2
3
4--0.4500(1) 0.7500(1)
5 -0.2950(2) -0.9167(1)
6
7 0.1000(1) 0.2000(1)

0.5000( -0.1000(2)
0.1333(2) 0.4833(2) 0.2500(2)

0.3000(1) 0.4000(1) 0.5000(1) 0.6000(1) 0.7000(1)

In this system, the subsystems of dimensions 2, 3, and 6 are singular. Thus we
add a perturbation to all and a55. So that the solution of the system remains the
same, we also add r/to the first component of the right-hand side and 5r/to its fifth
component.

Using the bordering and the block bordering methods for solving this system, we
obtain the results in Tables 1 and 2 (e denotes the threshold under which the block
bordering method jumps and the numbers in parentheses denote the powers of 10).

However, in some applications, it is necessary to compute the solutions of all the
intermediate systems. For example, this is the case in the computation of orthogonal
polynomials [9], the Pad approximation, and the implementation of the progressive
forms of extrapolation processes where the first step consists of the computation of
the first descending diagonal of the triangular array [4]. In such cases, the block
bordering method allows us to jump over the near-singular systems and then the
reverse bordering method allows us to compute afterwards their solution with an
improved numerical stability.

Let us first discuss the strategy used in the reverse bordering method. We assume
--1that A-1 and Ak+ are known and we want to compute the solutions of the inter-

mediate systems of dimensions nk+l 1,..., nk / 1, which were skipped in the block
bordering method when climbing to higher dimensions. We begin by deleting the last

-1 that is, we use the formulm of 4 with p 1 androw and the last column of Ak+l,
n nk+l 1. For that, we must compute a-. If a is nearly singular, we delete

--1the last two rows and the last two columns of Ak+l; that is, we use the formulm of

4 with p 2 and n ne+ 2 and so on until a nonnearly singular matrix aa
has been obtained. The near singularity of a is tested by computing its determinant
(again by Gaussian elimination) and checking to see if Idet al _< e’ or not. However,
if, in this test, we take e >_ (where e is the threshold used in the block bordering
method) then a jump will occur from n+l to ne and the intermediate systems that
were not solved when climbing to higher dimensions will again be skipped. Thus we
must choose e < e.
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TABLE 3
Solutions with the block bordering method and the reverse bordering method (? 10-14,

10-14, 10-20).

-o.ooo()
--0.1501(16) 0.1501(16)
--0.1001(16) 0.1001(16)
-oAoo() o.oo(1)
--0.2950(2) --0.9167(1)
-0.7006(15) -0.1168(16)
o.ooo() o.ooo()

o.5ooo()
o.5ooo(1) -O.lOOO(2)
o.1333(2) o.4833(2)
0.9341(15) 0.1635(16)
0.3000(i) 0.4000(1)

0.2500(2)
0.7006(15) -0.7006(15)
0.5000(1) 0.6000(1) o.7ooo()

Let us now return to our previous example Table 3 shows this improvement (e
is the threshold for jumping in the reverse bordering method).

Let us now give an example with the e-algorithm. This algorithm is an extrapo-
lation process whose theory can be found in [4]. It can be interpreted as solving the
system

aoSo + alS1 +’" + akSk 1
a0S1 W alS2 + -t- akSk+l 1

aoSk - alSk+l -[-’" - akS2k 1

and then computing [1]
k

e) 1/E a.
i--0

Let us apply the e-algorithm to the partial sums of the series expansion of

1 + blx +... + bm-lXm-1 -F Xm
f(x)

1 / x"
Thanks to the theory of the e-algorithm and its connection with Pad approxi-

mants (see the next section), we should have

2m-- f(x).

With r/= 0.25, rn- 10, x 2, and b -i.r/, we have f(x) 2.998536585365854.
We set e 10-6 and e 10-30 for the block bordering and reverse bordering methods

and we obtain the following results for (0) R means that the corresponding value’2k
was obtained by the reverse bordering method.

k
0

2
3
4
5
6
7
8
9
10

Bordering method Block and reverse

1.000000000000000
0.833333333333333
1.500000000000007
1.500000000000006
1.500000000000004
1.500000000000004
1.500000000000006
1.500000000000007
1.057370161706715
5.442384375014805
2.965829933964836

1.000000000000000
0.833333333333333
1.500000000000007
1.500000000000007
1.499999999999987
1.499999999999984
1.500000000000006
1.500000000000006
1.061205132114060
5.530461077969034
2.998536585365856
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Thus, only two exact digits are obtained for ) with the bordering method and
fifteen exact digits with the block bordering and reverse bordering methods.

Let us now take 0.1, m 10, x 1, bi q/i, and 10-3.
We have f(x) 1.141448412698413 and we obtain

k Bordering method
0 1:000000000000000

1
2
3
4
5
6
7
8
9
10

1.200000000000000
1.299999999999898
1.366666666630687
1.416666663166007
1.416669182535733
1.370133070676631
1.363779438853716
1.299241827763746
1.221626694740750
1.141448412733146

Block and reverse
1.000000000000000
1.200000000000000
1.299999999999898
1.366666666630683
1.416666665980086
1.416669185348150
1.370133070822927
1.363779438821982
1.299241827748625
1.221626694709201
1.141448412698013

Again the precision has been improved by the reverse bordering method.
In both examples, the subsystems of dimensions 3, 4, 5, and 6 were nearly singular

and their solutions were obtained by the reverse bordering method from the solution
of the system of dimension 7.

7. Application to Pad6 approximants. An important application of the bor-
dering and the reverse bordering methods is the recursive computation of Pad6 ap-
proximants. We now recall the necessary definitions (see [2]).

A Pad6 approximant is a rational function whose series expansion in ascending
powers of the variable agrees with a given power series f up to the term whose
degree is the sum of the degrees of its numerator and its denominator. Such a Pad6
approximant is denoted by /q]f(x), where p is the degree of the numerator and q
the degree of the denominator. By definition we have

[p/qlf(x) f(x) O(xP-bq+l).

Let us define the linear functional c on the vector space of polynomials by

c(xi) =c fori=0,1,

We consider the polynomial Pk of degree k belonging to the family of orthogonal
polynomials with respect to c; that is,

such that

Pk(x) bo + bx +... + bxk

k

o
j=0

for 0, 1,...,k- 1.

One of the bi’s is arbitrary and we choose the normalization b0 1.
The coefficients bl,..., bk are obtained as the solution of a linear system

cl c2 ck b co
C2 C3 Ck+ b2 Cl

ek k+1 2k-1 bk Ok-1
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If we denote by Ak the Hankel matrix of the preceding system, by dk its right-
hand side, and by zk (bl,..., bk)w its solution, we can solve this system by the
block bordering and the reverse bordering methods.

We consider the formal power series

f(x) co + c x + c x +...

and the polynomial Pk(x) given by

k(X) Xk Pk (x-l) bk - bk-1 X r -- bl xk-1 -- xk.

From the connections between Pad approximants and orthogonal polynomials, we
know that Pk(x) is the denominator of the Pad6 approximant [k- 1/k]f (x). If we
want to have the normalization bk 1 one can simply consider the polynomial

g (x) b-lk(X).
Thus the block bordering and the reverse bordering methods allow us to compute

recursively the coefficients of the denominators of the Pad approximants [0/1], [1/2],
[2/3],

To control the accuracy and numerical stability of the reverse bordering method,
we take f as the power series expansion of a rational function with numerator of degree
k- 1 and denominator of degree k. In that case, the Pad approximant [k- 1/k]f
must be identical to f. We set

f(x)
1 + clx + Oz2x2 -- - OZk-1xk-1

1 + 0X CO -- C X -" C2x2 --Giving some values to the ai’s and to the /i’s, we compute the ci’s so that
[k- 1/k]1, f; that is, in order to have

b0 xk1+ 0xk 1 + -Tk
where b0 1, b is the coefficient of xk in the orthogonal polynomial Pk, and all the
b,i 1,... ,k- 1 are zero. The c’s depend on a parameter r and we give to it
different values.

We set as the threshold under which the block bordering method jumps, and
as the threshold under which the reverse bordering method jumps.

In the following examples, we give the residual rk IAk Zk- dkl, where z is
the vector of the coefficients b,i 1,... ,k of the polynomial Pk (the numbers in
parenthesis denote again the powers of 10). The coefficients of the polynomial P,
which is the denominator of [k- 1/k]- f, are also given.

7.1. Example 1. We consider the function

f(x)
1 + rx + rx2

1 + rx + rx2 + x3 + rx4 + rx5 + x6 +...
1 x3

We should have [2/3]i f, that is, P 1 x3.



934 C. BREZINSKI, M. MORANDI CECCHI, AND M. REDIVO-ZAGLIA

.(-5)

.11(-15) .46(-16)

.0 .21(-16) .50(-11)

v/-- 10-5

Bordering method Block and reverse

no jump e-- 10-4,e 10-10

P 1_.28.10-16x .49.10-11x2 x3 P 1 +.25.10-21x .23.10-2:2 x

r] I0-10
Bordering method Block and reverse

no jump ---- 10-9, 10-15k

2 .0 .83(-17)
.0 .(-1) .0

P -.25.10-16x- x3

.0

.0

P 1 + .61.10-26x- x3

7.2. Example 2. We consider the function

f(x)
1 + fix + 2fix2 -9 3]x3

1 X4
1 + fiX + 2fix2 -9 3fix3 -9 x4 -9 T]x

5 -9 2]x6 -9 3]x7 -9"

We should have [3/4]f f, that is, in particular, P 1- x4.
The system to be solved is

? 2 3
2] 3] 1
3] 1
1 r]

1 bl 1
r] 52 r]

2r] b3 2r]
3r] b4 3

r= 10-4

Bordering method
no jump

.0

.2(-s) .s(-)

.0 .66(-15) .47(--11)

.44(-15) .55(-15) .25(-12) .61(-12)

P 1 + .75.10-15x- .24.10-12x2- .61.10-12x3- x4

7= 10-4

Block and reverse

k e 10-4, s 10-10

.0

2 .22(-15) .51(-15) R
3 .0 .23(-15) .76(-16)
4 .11(-15) .20(-15) .53(-15) .61(-12)

P 1- .74.10-16x- .34.10-15x2 -.61.10-12x3 --x4
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10-4
Block and reverse

k --- 1.1.10-4 ’ 10-l

.67(-15) R
2 .20(-12) .17(-12)
3 .11(-15) .23(-15) .52(-15)
4 .11(-15) .12(-15) .92(-16) .61(-12)

P 1 + .6.10-17x q-.91.10-16x2 .61 10-12x3 x4

v/ 10-4

Block and" reverse

k -- 10-3 ’ i0-10

2 .67(-15) .24(-15) R
3 .11(-15) .23(-15) .76(-16) R
4 .0 .0 .0 .0

P + .94.10-21x .11.10-19x2- .24.10-19x3- x4

r/-- 10- lO

Bordering method

no jump

.0

.11(-15) .26(-15)

.0 .45(-15)

.22(-15) .83(-16)
.35(-5)
.36(-6) .36(-16)

P 1 + .19.10-15x- .36. lO--6X2- X4

r/ 10-10

Block and reverse

10-9, ’ 10-15
.0 R
.0 .37(-15) R
.0 .83(-17) .41(-15) R
.o .o .o .e(-e)

P 1- .37.10-26x- .93-10-26x2- .51.10-25x3- x4

7 10-15
Bordering method

no jump

.0

.0 .16(-15)

.44(-15) .12(-14)

.22(-15) .11(-14)
.96(-2)
.96(-2) .96(-17)

P2 1 + .1 10-14x .96.10-2x2 x4



936 C. BREZINSKI, M. MORANDI CECCHI, AND M. REDIVO-ZAGLIA

k

.89(-15)
2 .(-a) .av(-)
3 .22(-15) .33(-15)
4 .0 .20(--30)

v] 10-15

Block and reverse

10--14, P 10-20

P -.16.10-3x + .71.10-31x2 x4

7.3. Example 3. We consider the function

1 + x + r/x2 + 2r/x3 + 3fix4f(x)
1 x5

l+x+r]x2+2fIx3+3fIx4+x5+x6+fIx7+2fIx8+3r]x9+.

We should have [4/51f f, that is, P 1 x5.

r/= 10-5

Bordering method

k no jump

.0

2 .0 .0

3 .22(--15) .0 .29(-15)
4 .22(-15) .22(-15) .51(-15)
5 .22(-15) .22(-15) .47(-15)

.62(-11)

.84(-11) .11(-15)

P* 1 -.41.10-11x + .41.10-11x2 -J-.41.10-11x3 -.41.10-11x4 x55

r/= 10-5

Block and reverse

k s 10-4, P 10-10

1 .0

.0 .0

.11(-15) .0 .16(-15)

.0 .0 .46(-16)

.22(-15) .0 .61(-16)
.73(-16)
.26(-15) .30(-15)

P,* 15.10-16x -t-.76.10-16x2 + 18.10-15x3 n 12.10-15x4 x5

r] 10-15

Bordering method

k no jump

.0

.0 .0

.0 .22(--15)

.22(-15) .11(-15)

.22(-15) .11(-15)

.11(--15)

.11(--15)

.(-7) .59(--15)

P 1 -1-.6.10-1x- .6.10-1x2- .6.10-1x3 + .6.10-1x4- 1.06x5



THE REVERSE BORDERING METHOD 937

? 10-15

Block and reverse

k e 10-14 ’ 10-2o

1 .0
2 .0 .22(--15)
3 .ii(--15) .22(--15) .Ii(--15)
4 .0 .11(--15) .33(--15)
5 .0 .0 .(-)

.33(--15)

.44(--15) .22(-15)

P 1 + .11.10-15x- .22.10-15x2- .22.10-15x3- x5

8. Conclusions. In Gaussian elimination, pivotal strategies are often necessary
to ensure a better numerical stability. In particular, they avoid division by numbers
close to zero (which are possibly due to cancellation errors in the previous steps),
thus preventing possible catastrophic errors. The block bordering method provides a
similar strategy in a different context for the same drawback. However, with such a
strategy, the solutions of the intermediate systems that were skipped when climbing
to higher and higher dimensions are not computed. It was the purpose of this paper
to propose an algorithm (the reverse bordering method) for obtaining these solutions.
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