Pair Correlation of Zeros, Primes in Short Intervals and Exponential Sums over Primes

Alessandro Languasco
Dipartimento di Matematica Pura e Applicata, Universtà di Padova, Via Belzoni, 7, 35131 Padua, Italy
E-mail: languasco@math.unipd.it
and
Alberto Perelli
Dipartimento di Matematica, Università di Genova,
Via Dodecaneso, 35, 16146 Genoa, Italy
E-mail: perelli@dima.unige.it
Communicated by A. J. Hildebrand

Received April 16, 1999; revised September 20, 1999

1. INTRODUCTION

In a previous paper [7] we considered, in connection with the problem of existence of Goldbach numbers in short intervals, the asymptotic behavior as $X \rightarrow \infty$ of

$$
S(X, \xi)=\int_{-\xi}^{\xi}|S(\alpha)|^{2} d \alpha \quad 0 \leqslant \xi \leqslant \frac{1}{2},
$$

where $S(\alpha)=\sum_{n \leqslant X} \Lambda(n) e(n \alpha), e(x)=e^{2 \pi i x}$ and $\Lambda(n)$ is the von Mangoldt function. Writing $f(x) \asymp g(x)$ for $f(x) \ll g(x) \ll f(x)$, we found

$$
S(x, \xi) \asymp \begin{cases}X^{2} \xi & \text { if } 0 \leqslant \xi \leqslant \frac{1}{X} \tag{1}\\ X & \text { if } \frac{1}{X} \leqslant \xi \leqslant \frac{1}{\log X} \\ X \xi \log X & \text { if } \frac{1}{\log X} \leqslant \xi \leqslant \frac{1}{2}\end{cases}
$$

as $X \rightarrow \infty$, uniformly in ξ. We remark that (1) was proved in [7] with

$$
\widetilde{S}(\alpha)=\sum_{n=1}^{\infty} \Lambda(n) e^{-n / X} e(n \alpha)
$$

in place of $S(\alpha)$, but a similar argument proves (1) as well.
In this note we are mainly concerned with the behavior as $X \rightarrow \infty$ of the remainder term function

$$
R(X, \xi)=\int_{-\xi}^{\xi}|R(\alpha)|^{2} d \alpha \quad 0 \leqslant \xi \leqslant \frac{1}{2},
$$

where $R(\alpha)=S(\alpha)-T(\alpha)$ and $T(\alpha)=\sum_{n \leqslant x} e(n \alpha)$.
It is known (see, e.g., Section 2 of Perelli [11]) that $R(X, \xi)$ is related with the mean-square of primes in short intervals, i.e., with

$$
J(X, h)=\int_{0}^{X}|\psi(x+h)-\psi(x)-h|^{2} d x,
$$

where $\psi(x)=\sum_{n \leqslant x} \Lambda(n)$. In turn (see, e.g., Goldson and Montgomery [5]) $J(X, h)$ is related with Montgomery's pair correlation function

$$
F(X, T)=\sum_{0<\gamma, \gamma^{\prime} \leqslant T} X^{i\left(\gamma-\gamma^{\prime}\right)} w\left(\gamma-\gamma^{\prime}\right),
$$

where $w(u)=4 /\left(4+u^{2}\right)$ and γ, γ^{\prime} run over the imaginary part of the nontrivial zeros of the Riemann zeta function. In view of the above results, we may therefore expect that the quantities $R(X, \xi), J(X, h)$ and $F(X, T)$ are closely related.

In fact, Goldston and Montgomery [5] proved that determining the asymptotic behavior of $J(X, h)$ or of $F(X, T)$, as $X \rightarrow \infty$ and h or T in suitable ranges, are, under the Riemann Hypothesis $(R H)$, equivalent problems. Our first goal is to show that such an equivalence can be extended to $R(X, \xi)$ as well. We have

Theorem 1. Assume RH. As $X \rightarrow \infty$, the following statements are equivalent:
(i) for every $\varepsilon>0, R(X, \xi) \sim 2 X \xi \log X \xi$ uniformly for $X^{-(1 / 2-\varepsilon)} \leqslant \xi$ $\leqslant \frac{1}{2}$
(ii) for every $\varepsilon>0, J(X, h) \sim h X \log \frac{X}{h}$ uniformly for $1 \leqslant h \leqslant X^{1 / 2-\varepsilon}$
(iii) for every $\varepsilon>0$ and $A \geqslant 1, F(X, T) \sim \frac{T}{2 \pi} \log \min (X, T)$ uniformly for $X^{1 / 2+\varepsilon} \leqslant T \leqslant X^{A}$.

The equivalence between (ii) and (iii) is due to Goldston and Montgomery [5]. In fact, [5] obtains such equivalence in the wider range $1 \leqslant h \leqslant X^{1-\varepsilon}$ for $J(X, h)$ and $X^{\varepsilon} \leqslant T \leqslant X^{A}$ for $F(X, T)$. Our restriction comes from the fact that we compare $R(X, \xi)$ and $J(X, h)$ by Lemma 1 below, and such comparison apparently requires the restricted range of Theorem 1. We remark that the Abelian/Tauberian arguments in [5] play an important role in our proof as well. We also remark that, in analogy with [5], we may prove a "localized" form of Theorem 1 as well.

The asymptotic behavior of $R(X, \xi)$ in (i) of Theorem 1 allows us to replace (1) by the following conditional asymptotic formula.

Corollary. Assume (i) of Theorem 1. Then as $X \rightarrow \infty$,

$$
S(X, \xi) \sim X(1+2 \xi \log X \xi) \quad \text { uniformly for } \quad \frac{\log ^{10} X}{X} \leqslant \xi \leqslant \frac{1}{2}
$$

We remark that the asymptotic behavior of $S(X, \xi)$ can also be obtained, by a standard and unconditional argument in prime number theory, in the remaining range $0 \leqslant \xi \leqslant \frac{\log ^{10} X}{X}$. Moreover, the asymptotic formula in the corollary holds unconditionally in the ranges

$$
\begin{equation*}
\frac{\log ^{10} X}{X} \leqslant \xi \leqslant X^{-1 / 6-\varepsilon} \quad \text { and } \quad \frac{F(X)}{\log X} \leqslant \xi \leqslant \frac{1}{2} ; \tag{2}
\end{equation*}
$$

see (10) and (28) below. Further, under $R H$ the first range in (2) can be enlarged to

$$
\frac{\log ^{10} X}{X} \leqslant \xi \leqslant \frac{f(X)}{\log ^{2} X}
$$

see [7]. Here and throughout the paper we denote by $f(x)($ resp. $F(x))$ a function $f(x) \searrow 0$ (resp. $F(x) \nearrow \infty$) arbitrarily slowly.

We remark that we can actually prove the asymptotic formulae in Theorem 1 unconditionally in some restricted ranges; $R H$ is needed in case (iii). We have

Theorem 2. Let $A \geqslant 1$ be any fixed constant. Then, as $X \rightarrow \infty$,
(i) $R(X, \xi) \sim 2 X \xi \log X \xi$ uniformly for $\frac{F(X)}{\log X} \leqslant \xi \leqslant \frac{1}{2}$
(ii) $J(X, h) \sim h X \log \frac{X}{h}$ uniformly for $1 \leqslant h \leqslant f(X) \log X$
(iii) assuming $R H, F(X, T) \sim \frac{T}{2 \pi} \log \min (X, T)$ uniformly for $\frac{F(X) X}{\log X} \leqslant$ $T \leqslant X^{A}$.

The asymptotic formula in (iii) is due, in the range $X \leqslant T \leqslant X^{A}$, to the important work of Montgomery [10]. After we obtained Theorem 2, we found that Goldston [3], see Lemma B of [3], already proved (iii) in the remaining range, by a very similar argument. We remark that the proof of (i) and (ii) is also based on a similar argument. However, we give a sketch of the proof since (i) and (ii) are unconditional and, in view of the hypothesis (1.3) in Friedlander and Goldston [2], may have some interest.

We thank Prof. D. A. Goldston for a useful discussion on this subject, and in particular for the following remark concerning the restricted range of the asymptotic formulae in Theorem 1. Let $\widetilde{S}(\alpha)$ be as above and write

$$
\begin{aligned}
\tilde{T}(\alpha) & =\sum_{n=1}^{\infty} e^{-n / X} e(n \alpha) & \tilde{R}(\alpha) & =\tilde{S}(\alpha)-\tilde{T}(\alpha) \\
\tilde{R}(X, \xi) & =\int_{-\xi}^{\xi}|\tilde{R}(\alpha)|^{2} d \alpha & \tilde{J}(X, h) & =\int_{0}^{\infty}|\psi(x+h)-\psi(x)-h|^{2} e^{-2 x / X} d x .
\end{aligned}
$$

In this case, the arguments in Lemma 1 and Theorem 1 show that the asymptotic formulae for $\widetilde{R}(X, \xi)$ and $\widetilde{J}(X, h)$ are equivalent in the full range for ξ and h, i.e., under $R H$

$$
\begin{equation*}
\tilde{R}(X, \xi) \sim X \xi \log X \xi \quad \text { uniformly for } \quad X^{-(1-\varepsilon)} \leqslant \xi \leqslant \frac{1}{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{J}(X, h) \sim \frac{1}{2} h X \log \frac{X}{h} \quad \text { uniformly for } \quad 1 \leqslant h \leqslant X^{1-\varepsilon} \tag{4}
\end{equation*}
$$

are equivalent. Moreover, a standard Abelian/Tauberian argument, see Section 7.12 of Titchmarsh [13], shows that (4) is equivalent with

$$
\begin{equation*}
J(X, h) \sim h X \log \frac{X}{h} \quad \text { uniformly for } \quad 1 \leqslant h \leqslant X^{1-\varepsilon}, \tag{5}
\end{equation*}
$$

and from Goldston and Montgomery [5] we have that (5) is equivalent with

$$
\begin{equation*}
F(X, T) \sim \frac{T}{2 \pi} \log \min (X, T) \quad \text { uniformly for } \quad X^{\varepsilon} \leqslant T \leqslant X^{A} . \tag{6}
\end{equation*}
$$

Therefore, a stronger version of Theorem 1 holds in the smoothed case, in the sense that Theorem 1 holds with (i), (ii) and (iii) replaced by (3), (4) and (6), respectively.

2. PROOF OF THEOREM 2

Let

$$
\hat{f}(t)=\int_{-\infty}^{+\infty} f(x) e(-t x) d x
$$

be the Fourier transform of $f(x)$ and, for $h>0$, write

$$
K(\alpha, h)=\sum_{-h \leqslant n \leqslant h}(h-|n|) e(n \alpha) \quad \text { and } \quad U(\alpha, h)=\left(\frac{\sin \pi h \alpha}{\pi \alpha}\right)^{2} .
$$

The following lemma forms the basis of our subsequent arguments; see also Lemma 1 of Brüdern and Perelli [1].

Lemma 1. Let $h>0$. Then

$$
\int_{0}^{1}|R(\alpha)|^{2} K(\alpha, h) d \alpha=\int_{-\infty}^{+\infty}|R(\alpha)|^{2} U(\alpha, h) d \alpha=J(X, h)+E(X, h),
$$

where, as $X \rightarrow \infty$,

$$
E(X, h) \ll\left\{\begin{array}{lll}
(h+1)^{3} \log ^{2} X & \text { uniformly for } & 0<h \leqslant X^{1 / 100} \\
h^{3} & \text { uniformly for } & X^{1 / 100} \leqslant h \leqslant \frac{X}{2}
\end{array}\right.
$$

and, under RH, also

$$
E(X, h) \ll(h+1) X \log ^{4} X \quad \text { uniformly for } \quad 0<h \leqslant \frac{X}{2} .
$$

Proof. The argument in the proof of Gallagher's lemma, see Lemma 1.9 of Montgomery [9], gives

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|R(\alpha)|^{2} U(\alpha, h) d \alpha=\int_{-\infty}^{+\infty}\left|\sum_{\substack{|n-x|<h / 2 \\ 1 \leqslant n \leqslant X}}(\Lambda(n)-1)\right|^{2} d x . \tag{7}
\end{equation*}
$$

By periodicity we have

$$
\int_{-\infty}^{+\infty}|R(\alpha)|^{2} U(\alpha, h) d \alpha=\int_{0}^{1}|R(\alpha)|^{2}\left(\sum_{n=-\infty}^{+\infty} U(n+\alpha, h)\right) d \alpha
$$

Since $\hat{U}(\alpha, h)=\max (h-|\alpha|, 0)$, by Poisson summation formula we get

$$
\sum_{n=-\infty}^{+\infty} U(n+\alpha, h)=\sum_{n=-\infty}^{+\infty} \hat{U}(n, h) e(n \alpha)=K(\alpha, h)
$$

and hence

$$
\begin{align*}
\int_{0}^{1}|R(\alpha)|^{2} K(\alpha, h) d \alpha & =\int_{-\infty}^{+\infty}|R(\alpha)|^{2} U(\alpha, h) d \alpha \\
& =\int_{-\infty}^{+\infty}\left|\sum_{\substack{|n-x| \mid h / 2 \\
1 \leqslant n \leqslant X}}(\Lambda(n)-1)\right|^{2} d x . \tag{8}
\end{align*}
$$

The right hand side of (8) is easily reduced to $J(X, h)$. In fact, we have

$$
\int_{-\infty}^{+\infty}\left|\sum_{\substack{|n-x|<h / 2 \\ 1 \leqslant n \leqslant X}}(\Lambda(n)-1)\right|^{2} d x=J(X, h)+E(X, h)
$$

where $E(X, h)$ is the sum of the four integrals, each integrated over an interval of length $\ll h+1$, of functions of the form

$$
g(y, k)=\left|\sum_{y \leqslant n \leqslant y+k}(\Lambda(n)-1)\right|^{2}
$$

with $y \leqslant 2 X$ and $0 \leqslant k \leqslant h$.
The result follows now, in the unconditional case, using the trivial estimate $g(y, k) \ll(k+1)^{2} \log ^{2} X$ when $0 \leqslant k \leqslant X^{1 / 200}$ and the estimate $g(y, k) \ll k^{2}$, coming from Brun-Titchmarsch's theorem, when $X^{1 / 200} \leqslant$ $k \leqslant X$. Assuming $R H$, we may also use the classical estimate

$$
\begin{equation*}
\psi(y)=y+O\left(y^{1 / 2} \log ^{2} y\right) \tag{9}
\end{equation*}
$$

to bound $g(y, k)$. Hence $g(y, k) \ll X \log ^{4} X$ uniformly for $y, k \leqslant 2 X$, and Lemma 1 follows.

We first sketch the proof of (i) of Theorem 2. Clearly

$$
R(X, \xi)=S(X, \xi)+O(T(X, \xi))+O\left(S(X, \xi)^{1 / 2} T(X, \xi)^{1 / 2}\right)
$$

where

$$
T(X, \xi)=\int_{-\xi}^{\xi}|T(\alpha)|^{2} d \alpha \ll X .
$$

Moreover, the argument in the proof of Theorem 2 of [7] in this case gives

$$
\begin{equation*}
S(X, \xi)=2 X \xi \log X \xi+O\left(X(\xi \log X)^{1 / 3}\right)+O(X), \tag{10}
\end{equation*}
$$

and (i) follows at once.
In order to prove (ii), we observe that Lemma 1 implies, for $1 \leqslant h \ll \log X$, that

$$
\begin{equation*}
J(X, h)=\sum_{-h \leqslant n \leqslant h}(h-|n|) \int_{0}^{1}|R(\alpha)|^{2} e(-n \alpha) d \alpha+o(h X \log X) . \tag{11}
\end{equation*}
$$

By (i), the term with $n=0$ in the right hand side of (11) contributes

$$
\begin{equation*}
h R\left(X, \frac{1}{2}\right) \sim h X \log \frac{X}{h} . \tag{12}
\end{equation*}
$$

The terms with $n \neq 0$ contribute

$$
\begin{aligned}
& \sum_{\substack{-h \leqslant n \leqslant h \\
n \neq 0}}(h-|n|) \sum_{\substack{1 \leqslant n_{1}, n_{2} \leqslant X \\
n_{1}-n_{2}=n}}\left(\Lambda\left(n_{1}\right)-1\right)\left(\Lambda\left(n_{2}\right)-1\right) \\
& \quad=\sum_{\substack{h \leqslant n \leqslant h \\
n \neq 0}}(h-|n|)\left\{\psi(X, n)+O\left(X+\sum_{\substack{1 \leqslant n_{1}, n_{2} \leqslant X \\
n_{1}-n_{2}=n}} \Lambda\left(n_{1}\right)\right)\right\} \\
& \quad=\sum_{\substack{-h \leqslant n \leqslant h \\
n \neq 0}}(h-|n|) \psi(X, n)+O\left(h^{2} X\right)
\end{aligned}
$$

by the prime number theorem, where $\psi(X, n)$ is the n-twin primes counting function weighted by the von Mangoldt function. By a well known sieve estimate, for $n \neq 0$ we have

$$
\psi(X, n) \lll(n) X,
$$

where $\mathfrak{G}(n)$ is the singular series of the n-twin primes problem, see Chap. 17 of [9]. Moreover,

$$
\sum_{n \leqslant x} \mathfrak{S}(n) \ll x,
$$

see again Chap. 17 of [9].
Hence the contribution of the terms with $n \neq 0$ is

$$
\begin{equation*}
O\left(h^{2} X\right), \tag{13}
\end{equation*}
$$

and (ii) follows from (11)-(13).

3. PROOF OF THEOREM 1 AND COROLLARY

In view of Theorem 2, throughout the proof we will assume that $X^{-1 / 2+\varepsilon} \leqslant \xi \leqslant(\log X)^{-1 / 2}$ in (i) and $(\log X)^{1 / 2} \leqslant h \leqslant X^{1 / 2-\varepsilon}$ in (ii) of Theorem 1. This is not strictly necessary, but simplifies the argument.

Assume (i). We use Lemma 1 in the form

$$
\begin{equation*}
J(X, h)=\int_{0}^{1}|R(\alpha)|^{2} K(\alpha, h) d \alpha+o\left(h X \log \frac{X}{h}\right) \tag{14}
\end{equation*}
$$

uniformly for $1 \leqslant h \leqslant X^{1 / 2-\varepsilon}$. Observe that both $|R(\alpha)|^{2}$ and $K(\alpha, h)$ are even functions of α, and hence we may restrict our attention to $\alpha \in\left[0, \frac{1}{2}\right]$. Let $V=F(X)$. Since

$$
\begin{equation*}
K(\alpha, h) \ll \min \left(h^{2}, \frac{1}{\alpha^{2}}\right), \tag{15}
\end{equation*}
$$

by partial integration we have

$$
\begin{align*}
\left(\int_{0}^{1 / h V}+\int_{V / h}^{1 / 2}\right)|R(\alpha)|^{2} K(\alpha, h) d \alpha & \ll h^{2} R\left(X, \frac{1}{h V}\right)+\int_{V / h}^{1 / 2}|R(\alpha)|^{2} \frac{d \alpha}{\alpha^{2}} \\
& \ll \frac{h X \log X}{V} . \tag{16}
\end{align*}
$$

In the remaining range $\frac{1}{h V} \leqslant \alpha \leqslant \frac{V}{h}$ we write

$$
|R(\alpha)|^{2}=X \log \frac{X}{h}+X \log h \alpha+\left(|R(\alpha)|^{2}-X \log X \alpha\right) .
$$

By (15) we have

$$
\begin{align*}
\int_{1 / h V}^{V / h}|R(\alpha)|^{2} K(\alpha, h) d \alpha= & X \log \frac{X}{h} \int_{0}^{1 / 2} K(\alpha, h) d \alpha+X \int_{1 / h V}^{V / h} \log (h \alpha) K(\alpha, h) d \alpha \\
& +\int_{1 / h V}^{V / h}\left(|R(\alpha)|^{2}-X \log X \alpha\right) K(\alpha, h) d \alpha \\
& +O\left(\frac{h X \log X}{V}\right) \\
= & I_{1}+I_{2}+I_{3}+O\left(\frac{h X \log X}{V}\right) \tag{17}
\end{align*}
$$

say. Clearly,

$$
\begin{equation*}
I_{1}=\frac{h X}{2} \log \frac{X}{h}, \tag{18}
\end{equation*}
$$

while

$$
\begin{equation*}
I_{2} \ll h^{2} X \int_{0}^{V / h}|\log h \alpha| d \alpha \ll h X V \log V . \tag{19}
\end{equation*}
$$

By partial summation we have that

$$
\begin{equation*}
K^{\prime}(\alpha, h) \ll \frac{h^{2}}{\alpha} \quad \text { for } \quad \frac{1}{h V} \leqslant \alpha \leqslant \frac{V}{h}, \tag{20}
\end{equation*}
$$

and hence by partial integration we get

$$
\begin{equation*}
I_{3} \ll o(h X V \log X) . \tag{21}
\end{equation*}
$$

Choosing $F(X)$ in a suitable way with respect to the infinitesimal function implicit in (21), we see that (ii) follows from (14) and (16)-(21).

Now assume (ii). Since we adapt the proof of Lemma 4 of Goldston and Montgomery [5] to our case, we only sketch the argument.

As in Lemma 4 of [5], let $\eta>0$ and

$$
k_{\eta}(x)=\frac{\sin 2 \pi x+\sin 2 \pi(1+\eta) x}{2 \pi x\left(1-4 \eta^{2} x^{2}\right)}
$$

so that

$$
\hat{k}_{\eta}(t)=\left\{\begin{array}{lll}
1 & \text { if } & |t| \leqslant 1 \\
\cos ^{2}\left(\frac{\pi(|t|-1)}{2 \eta}\right) & \text { if } \quad 1 \leqslant|t| \leqslant 1+\eta \\
0 & \text { if }|t| \geqslant 1+\eta
\end{array}\right.
$$

Hence, again considering only positive values of α, for $\eta>0$ we have

$$
\begin{equation*}
\int_{0}^{\infty}|R(\alpha)|^{2} \hat{k}_{\eta}\left(\frac{\alpha}{\xi}(1+\eta)\right) d \alpha \leqslant \frac{1}{2} R(X, \xi) \leqslant \int_{0}^{\infty}|R(\alpha)|^{2} \hat{k}_{\eta}\left(\frac{\alpha}{\xi}\right) d \alpha . \tag{22}
\end{equation*}
$$

By Lemma 3 of [5] we have

$$
\hat{k}_{\eta}(t)=\int_{0}^{\infty} k_{\eta}^{\prime \prime}(x) U(t, x) d x
$$

and hence, writing

$$
|R(\alpha)|^{2}=X \log X \alpha+\left(|R(\alpha)|^{2}-X \log X \alpha\right)
$$

and observing that $U\left(\frac{\alpha}{\xi}, x\right)=\xi^{2} U\left(\alpha, \frac{x}{\xi}\right)$, we get

$$
\begin{align*}
& \int_{0}^{\infty}|R(\alpha)|^{2} \hat{k}_{\eta}\left(\frac{\alpha}{\xi}\right) d \alpha \\
& \quad=X \int_{0}^{\infty} \log (X \alpha) \hat{k}_{\eta}\left(\frac{\alpha}{\xi}\right) d \alpha \\
& \\
& \quad+\xi^{2} \int_{0}^{\infty} k_{\eta}^{\prime \prime}(x)\left(\int_{0}^{\infty}\left(|R(\alpha)|^{2}-X \log X \alpha\right) U\left(\alpha, \frac{x}{\xi}\right) d \alpha\right) d x \tag{23}\\
& \quad=J_{1}+J_{2}
\end{align*}
$$

say. A direct computation shows that

$$
\begin{equation*}
J_{1}=(1+O(\eta))(1+o(1)) X \xi \log X \xi \tag{24}
\end{equation*}
$$

In order to estimate J_{2} we first observe that

$$
\int_{0}^{\infty} U(\alpha, 1) d \alpha=\frac{1}{2}
$$

therefore again by a direct computation, based on the substitution $\alpha=\frac{\tau \xi}{x}$, we get

$$
\begin{equation*}
\int_{0}^{\infty} X \log (X \alpha) U\left(\alpha, \frac{x}{\xi}\right) d \alpha=\frac{X x}{2 \xi} \log \frac{X \xi}{x}+O\left(\frac{X x}{\xi}\right) \tag{25}
\end{equation*}
$$

We need the following

Lemma 2. Assume RH and (ii) of Theorem 1. Then, as $X \rightarrow \infty$,

$$
\begin{aligned}
& \int_{0}^{\infty}|R(\alpha)|^{2} U(\alpha, h) d \alpha \\
&=\left\{\begin{array}{lll}
O(X \log X) & \text { uniformly for } & 0<h \leqslant 1 \\
\frac{1}{2}(1+o(1)) h X \log \frac{X}{h} & \text { uniformly for } & 1 \leqslant h \leqslant X^{1 / 2-\varepsilon} \\
O\left(h X \log ^{4} X\right) & \text { uniformly for } h \geqslant X^{1 / 2-\varepsilon}
\end{array}\right.
\end{aligned}
$$

Proof. For $0<h \leqslant 1$ we have $U(\alpha, h) \ll \min \left(1,|\alpha|^{-2}\right)$ and hence by periodicity

$$
\begin{aligned}
\int_{0}^{\infty}|R(\alpha)|^{2} U(\alpha, h) d \alpha & \ll \sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{n-1}^{n}|R(\alpha)|^{2} d \alpha \\
& \ll T\left(X, \frac{1}{2}\right)+S\left(X, \frac{1}{2}\right) \ll X \log X,
\end{aligned}
$$

while for $1 \leqslant h \leqslant X^{1 / 2-\varepsilon}$ the assertion follows immediately from Lemma 1 and (ii).

In order to treat the last range, we recall the well known bound

$$
J(X, h) \ll h X \log ^{2} X
$$

obtained by Selberg [12] under RH. Hence the result follows at once by Lemma 1, for $X^{1 / 2-\varepsilon} \leqslant h \leqslant \frac{X}{2}$. Finally, for $h \geqslant \frac{X}{2}$ we use the classical estimate (9) and our assertion follows from (7).

By Lemma 2 with $h=\frac{x}{\xi}$ and (25) we have

$$
\begin{align*}
& \int_{0}^{\infty}\left(|R(\alpha)|^{2}-X \log X \alpha\right) U\left(\alpha, \frac{x}{\xi}\right) d \alpha \\
& \quad=\left\{\begin{array}{lll}
O(X \log X) & \text { if } & 0<x \leqslant \xi \\
o\left(\frac{x}{\xi} X \log X\right) & \text { if } & \xi \leqslant x \leqslant \xi X^{1 / 2-\varepsilon} \\
O\left(\frac{x}{\xi} X \log ^{4} X\right) & \text { if } & x \geqslant \xi X^{1 / 2-\varepsilon}
\end{array}\right. \tag{26}
\end{align*}
$$

uniformly in x. Observe that since the ε 's in (i) and (ii) are arbitrarily small, we may assume that $\xi X^{1 / 2-\varepsilon} \gg X^{\varepsilon}$ in the range of ξ under consideration. Since from Lemma 3 of [5] we have

$$
k_{\eta}^{\prime \prime}(x) \ll_{\eta} \min \left(1, x^{-3}\right),
$$

from (23) and (26) we get

$$
\begin{equation*}
J_{2}=o_{\eta}(X \xi \log X \xi) . \tag{27}
\end{equation*}
$$

Choosing $\eta \searrow 0$ in a suitable way with respect to the infinitesimal function implicit in (27), from (22)-(24) and (27) we see that

$$
R(X, \xi) \leqslant 2(1+o(1)) X \xi \log X \xi .
$$

In a similar way we also get that

$$
R(X, \xi) \geqslant 2(1+o(1)) X \xi \log X \xi,
$$

and (i) follows.
Since the equivalence between (ii) and (iii) can be obtained by the same argument of [5], the proof of Theorem 1 is now complete.

The proof of Corollary is not difficult. We first observe that the argument in [11], coupled with Huxley's density estimate [6], gives

$$
\begin{equation*}
S(X, \xi) \sim X \quad \text { uniformly for } \quad \frac{\log ^{10} X}{X} \leqslant \xi \leqslant X^{-1 / 6-\varepsilon} . \tag{28}
\end{equation*}
$$

In the remaining range we write

$$
\begin{equation*}
|S(\alpha)|^{2}=|R(\alpha)|^{2}+2 \operatorname{Re} S(\alpha) \overline{T(\alpha)}-|T(\alpha)|^{2} \tag{29}
\end{equation*}
$$

and use (i) of Theorem 1. Hence

$$
\begin{equation*}
R(X, \xi) \sim 2 X \xi \log X \xi \quad \text { uniformly for } \quad X^{-1 / 6-\varepsilon} \leqslant \xi \leqslant \frac{1}{2} \tag{30}
\end{equation*}
$$

and clearly

$$
\begin{equation*}
\int_{-\xi}^{\xi}|T(\alpha)|^{2} d \alpha \sim X \quad \text { uniformly for } \quad X^{-1 / 6-\varepsilon} \leqslant \xi \leqslant \frac{1}{2} . \tag{31}
\end{equation*}
$$

Moreover, for $X^{-1 / 6-\varepsilon} \leqslant \xi \leqslant \frac{1}{2}$ we have

$$
\begin{align*}
\int_{-\xi}^{\xi} S(\alpha) \overline{T(\alpha)} d \alpha= & \sum_{n \leqslant X} \int_{0}^{1} S(\alpha) e(-n \alpha) d \alpha \\
& +O\left(\left(\int_{\xi}^{1 / 2}|S(\alpha)|^{2} d \alpha\right)^{1 / 2}\left(\int_{\xi}^{1 / 2}|T(\alpha)|^{2} d \alpha\right)^{1 / 2}\right) \\
= & \psi(X)+O\left(\left(\frac{X \log X}{\xi}\right)^{1 / 2}\right)=X(1+o(1)) \tag{32}
\end{align*}
$$

by the prime number theorem.
Our Corollary follows at once from (28)-(32).

REFERENCES

1. J. Brüdern and A. Perelli, Goldbach numbers and uniform distribution mod 1, in "Analytic Number Theory" (Y. Motohashi, Ed.), pp. 43-51, Cambridge Univ. Press, Cambridge, UK, 1997.
2. J. B. Friedlander and D. A. Goldston, Some singular series averages and the distribution of Goldbach numbers in short intervals, Illinois J. Math. 39 (1995), 158-180.
3. D. A. Goldston, "Large Differences between Consecutive Prime Numbers," Ph.D. thesis, University of California, Berkeley, 1981.
4. D. A. Goldston, Linnik's theorem on Goldbach numbers in short intervals, Glasgow Math. J. 32 (1990), 285-297.
5. D. A. Goldston and H. L. Montgomery, Pair correlation of zeros and primes in short intervals, in "Analytic Number Theory and Dioph. Probl." (A. C. Adolphson et al., Eds.), pp. 183-203, Birkhäuser, Basel, 1987.
6. M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 155-164.
7. A. Languasco and A. Perelli, On Linnik's theorem on Goldbach numbers in short intervals and related problems, Ann. Inst. Fourier 44 (1994), 307-322.
8. Yu. V. Linnik, Some conditional theorems concerning the binary Goldbach problem, (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 16 (1952), 503-520.
9. H. L. Montgomery, "Topics in Multiplicative Number Theory," Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin/New York, 1971.
10. H. L. Montgomery, The pair correlation of zeros of the zeta function, Proc. A.M.S. Symp. Pure Math. 24 (1973), 181-193.
11. A. Perelli, Local problems with primes, I, J. Reine Angew. Math. 401 (1989), 209-220.
12. A. Selberg, On the normal density of primes in small intervals, and the difference between consecutive primes, Arch. Math. Naturvid. 47 (1943), 87-105.
13. E. C. Tichmarsh, "The Theory of the Riemann Zeta-function," 2nd ed., Oxford Univ. Press, Oxford, 1986.
