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1. INTRODUCTION

In a previous paper [7] we considered, in connection with the problem
of existence of Goldbach numbers in short intervals, the asymptotic
behavior as X � � of

S(X, !)=|
!

&!
|S(:)|2 d: 0�!� 1

2 ,

where S(:)=�n�X 4(n) e(n:), e(x)=e2?ix and 4(n) is the von Mangoldt
function. Writing f (x) �� g(x) for f (x)<<g(x)<< f (x), we found

X2! if 0�!�
1
X

S(x, !) ��{X if
1
X

�!�
1

log X
(1)

X! log X if
1

log X
�!�

1
2
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as X � �, uniformly in !. We remark that (1) was proved in [7] with

S� (:)= :
�

n=1

4(n) e&n�Xe(n:)

in place of S(:), but a similar argument proves (1) as well.
In this note we are mainly concerned with the behavior as X � � of the

remainder term function

R(X, !)=|
!

&!
|R(:)|2 d: 0�!� 1

2 ,

where R(:)=S(:)&T(:) and T(:)=�n�X e(n:).
It is known (see, e.g., Section 2 of Perelli [11]) that R(X, !) is related

with the mean-square of primes in short intervals, i.e., with

J(X, h)=|
X

0
|�(x+h)&�(x)&h| 2 dx,

where �(x)=�n�x 4(n). In turn (see, e.g., Goldson and Montgomery [5])
J(X, h) is related with Montgomery's pair correlation function

F(X, T )= :
0<#, #$�T

X i(#&#$)w(#&#$),

where w(u)=4�(4+u2) and #, #$ run over the imaginary part of the non-
trivial zeros of the Riemann zeta function. In view of the above results, we
may therefore expect that the quantities R(X, !), J(X, h) and F(X, T ) are
closely related.

In fact, Goldston and Montgomery [5] proved that determining the
asymptotic behavior of J(X, h) or of F(X, T ), as X � � and h or T in
suitable ranges, are, under the Riemann Hypothesis (RH), equivalent
problems. Our first goal is to show that such an equivalence can be
extended to R(X, !) as well. We have

Theorem 1. Assume RH. As X � �, the following statements are
equivalent:

(i) for every =>0, R(X, !)t2X! log X! uniformly for X&(1�2&=)�!
� 1

2

(ii) for every =>0, J(X, h)thX log X
h uniformly for 1�h�X 1�2&=

(iii) for every =>0 and A�1, F(X, T )t
T
2? log min(X, T ) uniformly

for X1�2+=�T�XA.
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The equivalence between (ii) and (iii) is due to Goldston and Montgomery
[5]. In fact, [5] obtains such equivalence in the wider range 1�h�X1&=

for J(X, h) and X =�T�X A for F(X, T ). Our restriction comes from the
fact that we compare R(X, !) and J(X, h) by Lemma 1 below, and such
comparison apparently requires the restricted range of Theorem 1. We
remark that the Abelian�Tauberian arguments in [5] play an important
role in our proof as well. We also remark that, in analogy with [5], we
may prove a ``localized'' form of Theorem 1 as well.

The asymptotic behavior of R(X, !) in (i) of Theorem 1 allows us to
replace (1) by the following conditional asymptotic formula.

Corollary. Assume (i) of Theorem 1. Then as X � �,

S(X, !)tX(1+2! log X!) uniformly for
log10X

X
�!�

1
2

.

We remark that the asymptotic behavior of S(X, !) can also be obtained,
by a standard and unconditional argument in prime number theory, in the
remaining range 0�!� log 10 X

X . Moreover, the asymptotic formula in the
corollary holds unconditionally in the ranges

log10X
X

�!�X&1�6&= and
F(X)
log X

�!�
1
2

; (2)

see (10) and (28) below. Further, under RH the first range in (2) can be
enlarged to

log10 X
X

�!�
f (X)

log2 X
;

see [7]. Here and throughout the paper we denote by f (x) (resp. F(x)) a
function f (x)z0 (resp. F(x)Z�) arbitrarily slowly.

We remark that we can actually prove the asymptotic formulae in Theorem
1 unconditionally in some restricted ranges; RH is needed in case (iii). We
have

Theorem 2. Let A�1 be any fixed constant. Then, as X � �,

(i) R(X, !)t2X! log X! uniformly for F(X )
log X�!� 1

2

(ii) J(X, h)thX log X
h uniformly for 1�h� f (X) log X

(iii) assuming RH, F(X, T )t
T
2? log min(X, T ) uniformly for F(X) X

log X �
T�XA.
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The asymptotic formula in (iii) is due, in the range X�T�XA, to the
important work of Montgomery [10]. After we obtained Theorem 2, we
found that Goldston [3], see Lemma B of [3], already proved (iii) in the
remaining range, by a very similar argument. We remark that the proof of
(i) and (ii) is also based on a similar argument. However, we give a sketch
of the proof since (i) and (ii) are unconditional and, in view of the hypo-
thesis (1.3) in Friedlander and Goldston [2], may have some interest.

We thank Prof. D. A. Goldston for a useful discussion on this subject,
and in particular for the following remark concerning the restricted range
of the asymptotic formulae in Theorem 1. Let S� (:) be as above and write

T� (:)= :
�

n=1

e&n�Xe(n:) R� (:)=S� (:)&T� (:)

R� (X, !)=|
!

&!
|R� (:)|2 d: J� (X, h)=|

�

0
|�(x+h)&�(x)&h| 2 e&2x�X dx.

In this case, the arguments in Lemma 1 and Theorem 1 show that the
asymptotic formulae for R� (X, !) and J� (X, h) are equivalent in the full range
for ! and h, i.e., under RH

R� (X, !)tX! log X! uniformly for X&(1&=)�!� 1
2 (3)

and

J� (X, h)t
1
2

hX log
X
h

uniformly for 1�h�X1&= (4)

are equivalent. Moreover, a standard Abelian�Tauberian argument, see
Section 7.12 of Titchmarsh [13], shows that (4) is equivalent with

J(X, h)thX log
X
h

uniformly for 1�h�X1&=, (5)

and from Goldston and Montgomery [5] we have that (5) is equivalent
with

F(X, T )t
T
2?

log min(X, T ) uniformly for X =�T�X A. (6)

Therefore, a stronger version of Theorem 1 holds in the smoothed case,
in the sense that Theorem 1 holds with (i), (ii) and (iii) replaced by (3), (4)
and (6), respectively.
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2. PROOF OF THEOREM 2

Let

f� (t)=|
+�

&�
f (x) e(&tx) dx

be the Fourier transform of f (x) and, for h>0, write

K(:, h)= :
&h�n�h

(h&|n| ) e(n:) and U(:, h)=\sin ?h:
?: +

2

.

The following lemma forms the basis of our subsequent arguments; see also
Lemma 1 of Bru� dern and Perelli [1].

Lemma 1. Let h>0. Then

|
1

0
|R(:)|2 K(:, h) d:=|

+�

&�
|R(:)| 2 U(:, h) d:=J(X, h)+E(X, h),

where, as X � �,

E(X, h)<<{(h+1)3 log2 X
h3

uniformly for 0<h�X1�100

uniformly for X 1�100�h� X
2

and, under RH, also

E(X, h)<<(h+1) X log4 X uniformly for 0<h�
X
2

.

Proof. The argument in the proof of Gallagher's lemma, see Lemma 1.9
of Montgomery [9], gives

|
+�

&�
|R(:)| 2 U(:, h) d:=|

+�

&� } :

1�n�X
|n&x|<h�2

(4(n)&1) }
2

dx. (7)

By periodicity we have

|
+�

&�
|R(:)| 2 U(:, h) d:=|

1

0
|R(:)| 2 \ :

+�

n=&�

U(n+:, h)+ d:.
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Since U� (:, h)=max(h&|:|, 0), by Poisson summation formula we get

:
+�

n=&�

U(n+:, h)= :
+�

n=&�

U� (n, h) e(n:)=K(:, h),

and hence

|
1

0
|R(:)|2 K(:, h) d:=|

+�

&�
|R(:)| 2 U(:, h) d:

=|
+�

&� } :

1�n�X
|n&x|<h�2

(4(n)&1)}
2

dx. (8)

The right hand side of (8) is easily reduced to J(X, h). In fact, we have

|
+�

&� } :

1�n�X
|n&x| <h�2

(4(n)&1)}
2

dx=J(X, h)+E(X, h),

where E(X, h) is the sum of the four integrals, each integrated over an
interval of length <<h+1, of functions of the form

g( y, k)= } :
y�n� y+k

(4(n)&1)}
2

with y�2X and 0�k�h.
The result follows now, in the unconditional case, using the trivial

estimate g( y, k)<<(k+1)2 log2X when 0�k�X1�200 and the estimate
g( y, k)<<k2, coming from Brun�Titchmarsch's theorem, when X1�200�
k�X. Assuming RH, we may also use the classical estimate

�( y)= y+O( y1�2 log2 y) (9)

to bound g( y, k). Hence g( y, k)<<X log4 X uniformly for y, k�2X, and
Lemma 1 follows. K

We first sketch the proof of (i) of Theorem 2. Clearly

R(X, !)=S(X, !)+O(T(X, !))+O(S(X, !)1�2 T(X, !)1�2),

where

T(X, !)=|
!

&!
|T(:)|2 d:<<X.
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Moreover, the argument in the proof of Theorem 2 of [7] in this case gives

S(X, !)=2X! log X!+O(X(! log X)1�3)+O(X), (10)

and (i) follows at once.
In order to prove (ii), we observe that Lemma 1 implies, for 1�h<<log X,

that

J(X, h)= :
&h�n�h

(h&|n| )|
1

0
|R(:)|2e(&n:) d:+o(hX log X). (11)

By (i), the term with n=0 in the right hand side of (11) contributes

hR \X,
1
2+thX log

X
h

. (12)

The terms with n{0 contribute

:

n{0
&h�n�h

(h&|n| ) :

n1&n2=n
1�n1 , n2�X

(4(n1)&1)(4(n2)&1)

= :

n{0
&h�n�h

(h&|n| ) {�(X, n)+O \X+ :

n1&n2=n
1�n1 , n2�X

4(n1)+=
= :

n{0
&h�n�h

(h&|n| ) �(X, n)+O(h2X )

by the prime number theorem, where �(X, n) is the n-twin primes counting
function weighted by the von Mangoldt function. By a well known sieve
estimate, for n{0 we have

�(X, n)<<S(n) X,

where S(n) is the singular series of the n-twin primes problem, see
Chap. 17 of [9]. Moreover,

:
n�x

S(n)<<x,

see again Chap. 17 of [9].
Hence the contribution of the terms with n{0 is

O(h2X), (13)

and (ii) follows from (11)�(13). K
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3. PROOF OF THEOREM 1 AND COROLLARY

In view of Theorem 2, throughout the proof we will assume that
X&1�2+=�!�(log X)&1�2 in (i) and (log X)1�2�h�X1�2&= in (ii) of
Theorem 1. This is not strictly necessary, but simplifies the argument.

Assume (i). We use Lemma 1 in the form

J(X, h)=|
1

0
|R(:)|2 K(:, h) d:+o \hX log

X
h + , (14)

uniformly for 1�h�X1�2&=. Observe that both |R(:)|2 and K(:, h) are
even functions of :, and hence we may restrict our attention to : # [0, 1

2].
Let V=F(X). Since

K(:, h)<<min \h2,
1
:2+ , (15)

by partial integration we have

\|
1�hV

0
+|

1�2

V�h + |R(:)|2 K(:, h) d:<<h2R \X,
1

hV++|
1�2

V�h
|R(:)|2 d:

:2

<<
hX log X

V
. (16)

In the remaining range 1
hV�:� V

h we write

|R(:)|2=X log
X
h

+X log h:+(|R(:)|2&X log X:).

By (15) we have

|
V�h

1�hV
|R(:)| 2 K(:, h) d:=X log

X
h |

1�2

0
K(:, h) d:+X |

V�h

1�hV
log(h:) K(:, h) d:

+|
V�h

1�hV
( |R(:)| 2&X log X:) K(:, h) d:

+O \hX log X
V +

=I1+I2+I3+O \hX log X
V + , (17)
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say. Clearly,

I1=
hX
2

log
X
h

, (18)

while

I2<<h2X |
V�h

0
|log h:| d:<<hXV log V. (19)

By partial summation we have that

K$(:, h)<<
h2

:
for

1
hV

�:�
V
h

, (20)

and hence by partial integration we get

I3<<o(hXV log X). (21)

Choosing F(X) in a suitable way with respect to the infinitesimal function
implicit in (21), we see that (ii) follows from (14) and (16)�(21).

Now assume (ii). Since we adapt the proof of Lemma 4 of Goldston and
Montgomery [5] to our case, we only sketch the argument.

As in Lemma 4 of [5], let '>0 and

k'(x)=
sin 2?x+sin 2?(1+') x

2?x(1&4'2x2)
,

so that

1 if |t|�1

k� '(t)={cos2 \?( |t|&1)
2' + if 1�|t|�1+'

0 if |t|�1+'.

Hence, again considering only positive values of :, for '>0 we have

|
�

0
|R(:)| 2 k� ' \:

!
(1+')+ d:�

1
2

R(X, !)�|
�

0
|R(:)| 2 k� ' \:

!+ d:. (22)

By Lemma 3 of [5] we have

k� '(t)=|
�

0
k"'(x) U(t, x) dx,
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and hence, writing

|R(:)|2=X log X:+(|R(:)|2&X log X:)

and observing that U( :
! , x)=!2U(:, x

!), we get

|
�

0
|R(:)| 2 k� ' \:

!+ d:

=X |
�

0
log(X:) k� ' \:

!+ d:

+!2 |
�

0
k"'(x) \|

�

0
( |R(:)|2&X log X:) U \:,

x
!+ d:+ dx

=J1+J2 , (23)

say. A direct computation shows that

J1=(1+O('))(1+o(1)) X! log X!. (24)

In order to estimate J2 we first observe that

|
�

0
U(:, 1) d:= 1

2 ,

therefore again by a direct computation, based on the substitution := {!
x ,

we get

|
�

0
X log(X:) U \:,

x
!+ d:=

Xx
2!

log
X!
x

+O \Xx
! + . (25)

We need the following

Lemma 2. Assume RH and (ii) of Theorem 1. Then, as X � �,

|
�

0
|R(:)|2 U(:, h) d:

O(X log X) uniformly for 0<h�1

={1
2

(1+o(1)) hX log
X
h

uniformly for 1�h�X1�2&=

O(hX log4X) uniformly for h�X1�2&=
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Proof. For 0<h�1 we have U(:, h)<<min(1, |:|&2) and hence by
periodicity

|
�

0
|R(:)| 2 U(:, h) d:<< :

�

n=1

1
n2 |

n

n&1
|R(:)| 2 d:

<<T \X,
1
2++S \X,

1
2+<<X log X,

while for 1�h�X1�2&= the assertion follows immediately from Lemma 1
and (ii).

In order to treat the last range, we recall the well known bound

J(X, h)<<hX log2X,

obtained by Selberg [12] under RH. Hence the result follows at once by
Lemma 1, for X1�2&=�h� X

2 . Finally, for h� X
2 we use the classical

estimate (9) and our assertion follows from (7). K

By Lemma 2 with h= x
! and (25) we have

|
�

0
( |R(:)|2&X log X:) U \:,

x
!+ d:

={
O(X log X ) if 0<x�!

(26)
o \x

!
X log X+ if !�x�!X 1�2&=

O \x
!

X log4 X+ if x�!X1�2&=

uniformly in x. Observe that since the ='s in (i) and (ii) are arbitrarily
small, we may assume that !X1�2&=>>X = in the range of ! under considera-
tion. Since from Lemma 3 of [5] we have

k"'(x)<<' min(1, x&3),

from (23) and (26) we get

J2=o'(X! log X!). (27)

Choosing 'z0 in a suitable way with respect to the infinitesimal func-
tion implicit in (27), from (22)�(24) and (27) we see that

R(X, !)�2(1+o(1)) X! log X!.
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In a similar way we also get that

R(X, !)�2(1+o(1)) X! log X!,

and (i) follows.
Since the equivalence between (ii) and (iii) can be obtained by the same

argument of [5], the proof of Theorem 1 is now complete.
The proof of Corollary is not difficult. We first observe that the argument

in [11], coupled with Huxley's density estimate [6], gives

S(X, !)tX uniformly for
log10X

X
�!�X&1�6&=. (28)

In the remaining range we write

|S(:)|2=|R(:)| 2+2ReS(:) T(:)&|T(:)|2 (29)

and use (i) of Theorem 1. Hence

R(X, !)t2X! log X! uniformly for X&1�6&=�!� 1
2 (30)

and clearly

|
!

&!
|T(:)|2 d:tX uniformly for X &1�6&=�!� 1

2 . (31)

Moreover, for X&1�6&=�!� 1
2 we have

|
!

&!
S(:) T(:) d:= :

n�X
|

1

0
S(:) e(&n:) d:

+O \\|
1�2

!
|S(:)|2 d:+

1�2

\|
1�2

!
|T(:)|2 d:+

1�2

+
=�(X)+O \\X log X

! +
1�2

+=X(1+o(1)) (32)

by the prime number theorem.
Our Corollary follows at once from (28)�(32). K
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