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C   are strongly infl uenced by sub-

surface processes. Spatio-temporal distributions of soil 

moisture in the vadose zone aff ect the hydrologic cycle and play a 

key role in agriculture and meteorology (e.g., Georgakakos, 1996; 

Rodríguez-Iturbe et al., 1999; Reichle et al., 2002a). Surface soil 

moisture is a crucial storage parameter and controls the partition-

ing of energy and mass in evapotranspiration and rainfall–runoff  

processes (e.g., Vereecken et al., 2008). Th e saturated zone also 

plays an important role in determining a catchment response to 

atmospheric forcing. Recent experimental evidence (Kosugi et al., 

2008) has shown that groundwater fl ow is responsible for most of 

the observed streamfl ow in a headwater catchment, while Wörman 

et al. (2007) and Kollet and Maxwell (2008a,b) demonstrated the 

important contribution of subsurface processes to the formation 

of streamfl ow in large-scale catchments. Depending on the catch-

ment, other factors besides subsurface soil and geologic features 

(e.g., topography and vegetation) will, of course, also be important. 

Modeling tools capable of simulating the fully three-dimensional 

dynamics of the groundwater–surface water fl ow system are of 

paramount importance for fully capturing the hydrologic behavior 

of catchments. Recently, several models for the distributed, process-

based simulation of coupled surface and subsurface fl ow have been 

developed (e.g., VanderKwaak and Sudicky, 2000; Morita and Yen, 

2002; Panday and Huyakorn, 2004; Kollet and Maxwell, 2006; 

Qu and Duff y, 2007; Weill et al., 2009; Camporese et al., 2009a). 

Th ese models allow an accurate description of critical hydrologic 

processes such as rainfall–runoff –infi ltration partitioning, soil 

moisture redistribution, groundwater recharge, and stream–aquifer 

interactions. Nevertheless, uncertainties and inaccuracies in model 

structure, parameter estimates, and boundary conditions induce 

errors in the model predictions. Data assimilation, which allows 

the merging of information from spatially and temporally distrib-

uted observations and simulations, is an eff ective technique to 

improve accuracy and quantify uncertainties of model predictions 

(McLaughlin, 2002).

Several data assimilation studies have been conducted recently 

based on process-based hydrologic models (Margulis et al., 2006). 

Th e classic Kalman fi lter (KF) (Kalman, 1960) is a Bayesian method 

that yields the best linear unbiased estimate of a measurement 

update for linear dynamics if the noise (error) can be characterized 

as a Gaussian process. As such, it is suitable for saturated ground-

water fl ow problems and has been used, for example, to reduce the 
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 A : DEM, digital elevation model; EnKF, ensemble Kalman fi lter; NN, Newtonian nudging.

Data assimila  on in the geophysical sciences refers to methodologies to op  mally merge model predic  ons and obser-
va  ons. The ensemble Kalman fi lter (EnKF) is a sta  s  cal sequen  al data assimila  on technique explicitly developed for 
nonlinear fi ltering problems. It is based on a Monte Carlo approach that approximates the condi  onal probability densi-
 es of the variables of interest by a fi nite number of randomly generated model trajectories. In Newtonian relaxa  on 

or nudging (NN), which can be viewed as a special case of the classic Kalman fi lter, model variables are driven toward 
observa  ons by adding to the model equa  ons a forcing term, or relaxa  on component, that is propor  onal to the 
diff erence between simula  on and observa  on. The forcing term contains four-dimensional weigh  ng func  ons that 
can, ideally, incorporate prior knowledge about the characteris  c scales of spa  al and temporal variability of the state 
variable(s) being assimilated. In this study, we examined the EnKF and NN algorithms as implemented for a complex 
hydrologic model that simulates catchment dynamics, coupling a three-dimensional fi nite element Richards’ equa  on 
solver for variably saturated porous media and a fi nite diff erence diff usion wave approxima  on for surface water fl ow. 
We report on the retrieval performance of the two assimila  on schemes for a small catchment in Belgium. The results 
of the comparison show that nudging, while more straigh  orward and less expensive computa  onally, is not as eff ec-
 ve as the ensemble Kalman fi lter in retrieving the true system state. We discuss some of the strengths and weaknesses, 

both physical and numerical, of the NN and EnKF schemes.
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uncertainty in parameter estimation (Hantush and Mariño, 1997). 

For nonlinear dynamics, the extended Kalman fi lter (EKF) has been 

developed by linearizing the system equations along a reference state 

trajectory based on the previous estimate. Entekhabi et al. (1994) 

and Hoeben and Troch (2000) demonstrated the potential of EKF 

for estimating soil moisture profi les using sequential assimilation of 

remotely sensed surface moisture data in a one-dimensional mod-

eling context. Walker et al. (2001) compared direct insertion (a 

simple data assimilation technique) and the EKF using synthetic 

data, concluding that the Kalman fi lter-based assimilation scheme is 

superior to the direct insertion method. Th e better performance of 

the Kalman fi lter is a consequence of its ability to adjust the entire 

soil moisture vertical profi le, while direct insertion can only alter 

the profi le within the observation depth.

Both the KF and the EKF defi ne an explicit model for the 

propagation in time of the covariance matrices expressing system 

noise statistics. Th e evaluation of these covariance matrices is non-

trivial, as demonstrated, for instance, by Van Geer et al. (1991) 

and Drécourt et al. (2006b). Moreover, due to computational 

and stability limitations (Reichle et al., 2002a), the KF and EKF 

are impractical for large, highly nonlinear, three-dimensional 

models (Evensen, 2006). Data assimilation studies applied to 

surface–subsurface simulators have thus been limited to simpler 

schemes such as NN, as proposed by Davies and Turner (1977) 

and subsequently applied in limited-area and regional climate 

modeling (e.g., Stauff er and Seaman, 1994; Waldron et al., 1996; 

von Storch et al., 2000; Miguez-Macho et al., 2004). In hydrology, 

NN has been implemented for a TOPMODEL-based soil–vege-

tation–atmosphere transfer model (Houser et al., 1998; Pauwels 

et al., 2001) and for a detailed Richards’ equation-based model 

(Paniconi et al., 2003). A diff erent technique applicable to large-

scale nonlinear problems is the EnKF. Th e EnKF uses a Monte 

Carlo approach to generate an ensemble of model trajectories from 

which the necessary error covariances are estimated at the time of 

an update (Evensen, 1994). Hydrologic models that have used 

the EnKF include the one-dimensional Richards’ equation (Das 

and Mohanty, 2006), three-dimensional saturated groundwater 

fl ow (Chen and Zhang, 2006) and transport (Liu et al., 2008), an 

integral-balance saturated–unsaturated subsurface model (Shu et 

al., 2005), and conceptual rainfall–runoff  models (Aubert et al., 

2003; Weerts and El Serafy, 2006; Clark et al., 2008).

Data assimilation is widely used in conjunction with land 

surface models. Several studies in this area have been published 

recently, addressing issues such as the sensitivity of the EnKF 

to ensemble size (Reichle et al., 2002a), the comparative per-

formance of the EnKF and EKF (Reichle et al., 2002b) and of 

one- and two-dimensional implementations of the EnKF (Reichle 

and Koster, 2003), the impact of observation frequency (Walker 

and Houser, 2001) and of model bias (De Lannoy et al., 2007), 

and the potential benefi t of assimilating streamfl ow (Pauwels and 

De Lannoy, 2006) and both soil moisture and streamfl ow (Crow 

and Van Loon, 2006). Land surface models (e.g., Chen et al., 

1996; Liang et al., 1996; Koster and Suarez, 1996; Dai et al., 

2003) typically include a thin surface soil layer coupled to one or 

several thicker root zone layers; they use simplifi ed representations 

of lateral subsurface fl ow and they neglect deeper groundwater 

fl ow. To improve the simulation of catchment dynamics, there is 

a need for robust assimilation of measurement information, both 

from remote sensing and local observations, into more complex, 

coupled surface–subsurface models (Camporese et al., 2009b).

In this study, we compare the performance of NN and the 

EnKF in assimilating synthetic observations for a detailed process-

based model of coupled surface– subsurface fl ow. Th e capabilities 

of the two assimilation techniques to retrieve the correct watershed 

response are assessed, and the tradeoff s between the two approaches 

are addressed. Th e simulations were conducted for the Brisy catch-

ment, a small watershed in southeast Belgium. Realistic precipitation 

and evaporation data were used to set up a synthetic true simulation, 

from which the measurements were extracted. Groundwater pressure 

head, soil moisture, and streamfl ow observations were then assimi-

lated for a scenario of perturbed atmospheric boundary conditions.

Methods
Coupled Hydrologic Model

Th e CATHY (CATchment HYdrology) model (Camporese 

et al., 2009a) couples a three-dimensional fi nite element Richards’ 

equation solver to a one-dimensional digital elevation model 

(DEM)-based fi nite diff erence equation for surface water dynam-

ics. Th e mathematical model can be written as (Bixio et al., 2000; 

Putti and Paniconi, 2004; Camporese et al., 2009a)
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where Sw = θ /φ is water saturation, θ is the volumetric moisture 

content (m3 m−3), φ is porosity or saturated moisture content (m3 

m−3), Ss is the aquifer specifi c storage coeffi  cient (m−1), ψ is pressure 

head (m), t is time (h), Ks is the saturated hydraulic conductivity 

(m h−1), Krw is the relative hydraulic conductivity, ηz = (0,0,1)T is 

the unit vector in the z direction, with z (m) the vertical coordinate 

directed upward, qss (m
3 m−3 h−1) represents distributed sources and 

sinks from the surface to the subsurface, dw (m) is the ponding head 

(depth of water on the surface of each cell), s (m) is the hillslope 

and channel link coordinate describing the one-dimensional sur-

face routing network, Q (m3 h−1) is the discharge along s, ck is the 

kinematic wave celerity (m h−1), Dh is the hydraulic diff usivity (m2 

h−1), and qs is the overland fl ow rate (m3 m−1 h−1) as computed by 

the subsurface module and passed on to the surface.

The strong nonlinearities in the model arise from the 

unsaturated soil hydraulic functions and from the dependence 

of qs and qss on ponding head. Spatial discretization proceeds 

from a DEM representing the catchment surface. Th ese DEM 

cells are triangulated and replicated vertically to form a three-

dimensional tetrahedral grid for the underlying soil and aquifer. 

Precipitation fl uxes during storm events and potential evapora-

tion during interstorm periods are the main driving forces of the 

model. Th e catchment partitions this atmospheric forcing into 

surface runoff , infi ltration, actual evaporation, and changes in 

storage via a surface boundary condition switching algorithm 

(Putti and Paniconi, 2004). Surface saturation or ponding can 

occur via the infi ltration excess or saturation excess mechanisms, 

and both of these are automatically accounted for by the same 

switching algorithm. Overland fl ow is assumed to concentrate in 

rills or rivulets confi ned to “hillslope” cells (upstream drainage 

area A below some prescribed threshold A*), while channel fl ow 



www.vadosezonejournal.org · Vol. 8, No. 4, November 2009 839

occurs on “stream” cells (A ≥ A*) (Montgomery and Foufoula-

Georgiou, 1993). Th e subsurface Eq. [1] is solved by the fi nite 

element method (Paniconi and Putti, 1994), whereas an explicit 

time discretization based on the Muskingum–Cunge scheme is 

used for the overland fl ow Eq. [2] (Orlandini and Rosso, 1996).

Parameters for the model include digital terrain data, surface 

fl ow characteristics such as Manning coeffi  cients for hillslopes and 

channels, subsurface properties such as saturated conductivity and 

soil retention curves, and atmospheric forcing terms (precipitation 

and potential evaporation). Th e model-computed state variables 

include spatially distributed quantities (e.g., moisture content, sur-

face and subsurface fl ow velocities, aquifer water levels, and ponding 

heads) and integral quantities (e.g., streamfl ow at the catchment 

outlet and groundwater volume). Th e time integration step size is 

dynamically adapted to ensure convergence of the nonlinear solver 

(D’Haese et al., 2007). Further details on the characteristics of the 

CATHY model are given in Camporese et al. (2009a).

Data Assimila  on Schemes
Nudging

In Newtonian nudging, which can be viewed as a special case 

of a Kalman fi lter (Li and Navon, 2001), state variables are driven 

toward observations by adding to the model equation a forcing 

term proportional to the diff erence between the actual solution 

and the observation to be assimilated (Davies and Turner, 1977; 

Stauff er and Seaman, 1994). In our implementation, the forcing 

term is added only to Eq. [1], resulting in the following expres-

sion (Paniconi et al., 2003):
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where x = (x,y,z)T is the Cartesian spatial coordinate vector, NT and 

NX are the number of observation times and points, respectively, 

ζokl and ζl are the observed and computed values of the state vari-

able being assimilated (their diff erence is termed the innovation 
vector), G determines the relative strength of the nudging term with 

respect to the physical forcing function, Wkl(x,t) are interpolation 

weights to be specifi ed as functions of space and time, and εl ≤ 1 

is a factor that refl ects the accuracy of the observations (equal to 1 

for perfect measurements). Th e state variable being measured and 

assimilated, ζ, can represent soil moisture θ or pressure head ψ 

(positive in the saturated zone, or negative, representing suction, in 

the vadose zone). Th e units of G depend on the state variable under 

consideration: (h−1) when assimilating soil moisture and (m−1 h−1) 

when assimilating pressure head. Th e weighting functions are used 

to spatially and temporally interpolate the innovations and can also 

be used to incorporate prior knowledge about the variability and 

characteristic scales of the state variables being assimilated (Paniconi 

et al., 2003). To mimic spatial and temporal correlation, Gaussian 

and exponential functions are used to defi ne the weight Wkl(x,t) = 

Wxy,lWz,lWt,k using the following expressions (Fig. 1):
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where dl
2 = (x − xl)

2 + (y − yl)
2, (xl,yl,zl)

T, and (x,y,z)T are the spatial 

coordinates of the observation points and grid points, respectively, 

Rxy and Rz are the horizontal and vertical radii of infl uence, respec-

tively, tk is the time of the observation, and τc is a characteristic 

measure of the observation-infl uenced time window.

Ensemble Kalman Filter

Th e implementation of the EnKF in CATHY can be repre-

sented, as is commonly done, by three vector-valued discrete-time 

equations: the model equation, the measurement equation, and 

the update equation (Camporese et al., 2009b):
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Th e vectors yj(t), where the index j indicates a single realiza-

tion of the ensemble, contain the uncertain hydrologic states that 

in our implementation are pressure head at each node of the sub-

surface grid and infl ow and outfl ow discharge at each cell of the 

surface discretization. Th e vector α represents the time-invariant 

set of soil parameters (saturated hydraulic conductivity, specifi c 

storage, porosity, retention curve parameters, etc.), while vector u(t) 
represents the time-dependent atmospheric forcing variables. Th e 

initial condition is given by y0(α) and the nonlinear operator A 

describes how the state at a previous time τ is related to the state at 

time t. Th e operator M represents the transfer model that describes 

how the observations are related to the system states, vector zi 

contains the measurements obtained at time ti, and ωi is a random 

noise term that accounts for measurement errors. With this imple-

mentation it is possible to assimilate soil moisture, pressure head, 

and streamfl ow, either individually or together. Th e Kalman gain 

Ki+1 in Eq. [7] depends on the system state and the measurement 

error covariance matrices (see, e.g., Margulis et al., 2002). Each 

member of the ensemble is generated by perturbing the nominal 

F . 1. The horizontal (d), ver  cal (z − z0), and  me (t − t0) com-
ponents of the Gaussian-exponen  al nudging four-dimensional 
weigh  ng func  ons [W(x,y,z,t)] used in the Newtonian nudging runs.
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mean values of soil parameters, initial conditions, and atmospheric 

forcing with random fl uctuations extracted from a chosen probabil-

ity density function, typically normally or lognormally distributed. 

Th e same procedure holds for the generation of the measurement 

ensemble. All the perturbations are spatially uncorrelated. For the 

time-variable atmospheric forcing fl uctuations, a time correlation 

function is taken into account as described in Evensen (2003):

2
1 11k k kq q w− −= γ + −γ  [8]

where qk is the sequence of perturbations to be applied to the 

atmospheric boundary conditions and wk is a sequence of white 

noise drawn from the desired normal or lognormal distribution. 

Th e coeffi  cient γ determines the time decorrelation of the stochas-

tic forcing and is computed as 1 − Δt/T, where Δt is the current 

time step and T is the specifi ed time decorrelation length. Note 

that T and the aforementioned nudging parameter τc have dif-

ferent meanings: the fi rst represents a time decorrelation length 

for the atmospheric boundary condition perturbations, while 

the second corresponds to the time decorrelation length of the 

nudging observations. We note that if the decorrelation time T 

is smaller than the time between observations, qk and qk−1 are 

uncorrelated and thus the EnKF can be applied.

Further details of the EnKF implementation in the CATHY 

model are given in Camporese et al. (2009b). It should be noted 

that there are other EnKF formulations, some of which account 

for possible bias in the model (e.g., Drécourt et al., 2006a; Kollat 

et al., 2008). Th ese are promising approaches but have thus far 

only been used with simple groundwater models.

Results and Discussion
Simula  on Setup

Th e Brisy catchment is located in the southeast of Belgium 

and has a drainage area of 4.64 km2. Th e maximum length is 

2.85 km from east to west and 3.27 km from north to south. Th e 

catchment contains shallow slopes in the north and steeper slopes 

in the south, toward the outlet (Fig. 2). Th e land use consists 

mostly of pasture and agriculture, except for a few forested areas 

and one urban area (the town of Brisy). A 30- by 30-m2 resolution 

DEM was used as a basis for the hydrologic model discretization 

and an average soil depth of 3.0 m was assumed on the basis of 

topographic and soil maps. Th e soil profi le was divided into a 

coarse-textured top layer (1.02 m) and a fi ner bottom layer (1.98 

m), with each of these layers discretized into three numerical grid 

layers for the model (Table 1) (Hurkmans et al., 2006).

Initial conditions, boundary conditions, and model parameters 

are all possible sources of error for the model. In this analysis, we 

considered a set of atmospheric boundary conditions biased with 

respect to a “true” (or “base”) run, to assess the capability of the 

NN and EnKF data assimilation schemes to retrieve the true state 

for a number of scenarios of a relatively long simulation (3600 h, 

i.e., 150 d). In these scenarios, the variables being assimilated were 

surface soil moisture (θ), pressure head at the bottom layer of the 

catchment (ψ), and, only for the EnKF, streamfl ow at the catchment 

outlet (Q). First, a “base run” or “true” simulation was performed to 

generate observed data synthetically, using atmospheric boundary 

conditions corresponding to a 150-d storm–interstorm period for 

the Brisy catchment between February and July 1993 (Fig. 3). All 

the subsequent runs used a biased set of atmospheric forcing, char-

acterized by uniformly drier conditions obtained by multiplying the 

base run precipitation and evaporation rates by a factor of 0.50 and 

1.50, respectively. Th e open loop scenario simply consisted of a single 

run (one realization) using biased atmospheric forcings. Observation 

values from the base run were selected every 6 d at six points distrib-

uted across the catchment (Fig. 2) for pressure head and soil moisture 

and at the catchment outlet cell of the surface DEM for streamfl ow. 

At each of the six points, soil moisture values were extracted at the 

surface node while pressure head measurements were extracted at 

the two bottom nodes. Initial conditions for all runs were generated 

with a 10-d simulation during which the catchment, initially fully 

saturated, was subjected to an evaporative fl ux of 0.25 mm h−1 (6 

mm d−1). Th e pressure head distribution thus computed represents 

F . 2. A 30- by 30-m2 resolu  on digital eleva  on map of the Brisy 
catchment. Eleva  on values are in meters above sea level. Crosses 
indicate the observa  on points for the data assimila  on experiments.

T  1. Soil proper  es for the Brisy catchment at soil depth increments from 0 to 3.0 m. For the ensemble Kalman fi lter (EnKF) simula  ons, 
parameter values represent the nominal ensemble mean.

Soil parameter
Value

0–0.27 m 0.27–0.63 m 0.63–1.02 m 1.02–1.68 m 1.68–2.34 m 2.34–3.00 m
Saturated conduc  vity (Ks), m h−1 0.025 0.025 0.025 0.00371 0.00371 0.00371

Aquifer specifi c storage (Ss), m
−1 0.016 0.016 0.016 0.016 0.016 0.016

Porosity (φ) 0.45 0.45 0.45 0.49 0.49 0.49

van Genuchten (1980) reten  on curve parameter α, m−1 1.45 1.45 1.45 1.45 1.45 1.45

van Genuchten (1980) reten  on curve parameter n 3.245 3.245 3.245 3.245 3.245 3.245

Residual moisture content (θr) 0.085 0.085 0.085 0.085 0.085 0.085
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the actual initial conditions for the true, the open loop, and 

the NN runs and the nominal mean values of the initial 

conditions for all the EnKF runs.

All the parameters relative to the data assimilation 

runs are summarized in Table 2 and include G, ε, and the 

spatial and temporal weighting functions for NN and the 

uncertainty, in terms of the CV, used in the defi nition of 

the ensemble for the EnKF. Th e values of G and τc were 

assigned on the basis of the numerical experiments reported 

in Hurkmans et al. (2006) and correspond to the best com-

promise between numerical eff ort and retrieval potential 

of the current implementation of the nudging scheme, 

while the chosen value of ε refl ects the same measurement 

accuracy adopted for the EnKF. Th e Gaussian-exponential 

weighting functions describe the spatial and temporal cor-

relation behavior of the nudging observations and mimic 

the time behavior of the EnKF. Th is is probably not an 

optimal choice for NN compared with the more typical 

Cressman-type functions (Stauff er and Seaman, 1990) as 

it does not consider the infl uence of observations back-

ward in time, but it is consistent with the behavior of our 

EnKF implementation. We want to stress that the choice of 

weighting functions in nudging implementations is still an 

unresolved issue, is often made empirically, and may have a 

strong infl uence on the performance of the scheme. For the EnKF 

runs, as mentioned above, we took into account the uncertainty of 

the initial conditions, boundary conditions, and the model param-

eters, generating an ensemble of realizations by perturbing all the 

aforementioned factors. In these scenarios, the largest uncertainty 

was assigned to the saturated hydraulic conductivity (CV = 50%, i.e., 

a standard deviation 0.5 times the nominal values), while a smaller 

CV was ascribed to the initial conditions (CV = 20%). Th e rainfall 

(positive values) and evaporation (negative values) rates shown in 

Fig. 3 represent the time-variable mean of the atmospheric forcings, 

perturbed with random lognormal fl uctuations with CV = 20% and 

a time decorrelation length T = 30 h. For both data assimilation 

techniques, two scenarios were examined: pressure head assimila-

tion (NN-ψ and EnKF-ψ) and soil moisture assimilation (NN-θ 
and EnKF-θ). For the EnKF, a third scenario with streamfl ow as the 

observation variable was also simulated (EnKF-Q).

Numerical Results
Computational performance statistics for all the simulations 

are summarized in Table 3, which shows the number of backsteps 

(i.e., nonlinear convergence failures that cause a repetition of the 

time step with a smaller Δt), total number of time steps, average 

time step size, average number of nonlinear iterations per time step, 

and the total CPU time. As expected, nudging is computationally 

more effi  cient than the EnKF, chiefl y because the latter needs, in our 

case, the forward propagation of 100 realizations. Th e ensemble size 

was chosen on the basis of previous similar experiments (Camporese 

et al., 2009b). Note that some realizations may use combinations of 

parameter values that cause computational diffi  culties and lead to a 

drop in the average time step size with respect to the NN runs. As 

far as NN is concerned, assimilation of pressure head is more com-

putationally demanding than assimilation of soil moisture, due to 

diff erent strengths of the forcing functions aff ecting the stiff ness of 

the ordinary diff erential equation (ODE) system that arises from the 

spatial discretization of Eq. [3]. We should note that we are using 

standard backward Euler for the time discretization, so that the 

stiff ness of the ODE system aff ects the time step size that guarantees 

convergence of the nonlinear iteration (Gustafsson and Söderlind, 

1997). For the EnKF, assimilation of streamfl ow is more expensive 

than assimilation of pressure head or soil moisture. Th is is due to 

the characteristics of the covariance matrix between the streamfl ow 

at the outlet and the pressure head distribution of the watershed, 

which, as shown by Camporese et al. (2009b), is often badly ill con-

F . 3. Net atmospheric boundary condi  ons for the base run (black) and the 
open loop and data assimila  on runs (gray). The plo  ed series represents the 
actual forcing imposed on the Newtonian nudging and open loop scenarios 
and the nominal mean for the ensemble Kalman fi lter scenarios. Posi  ve val-
ues correspond to rainfall rates and nega  ve values to evapora  on rates.

T  2. Nudging and ensemble Kalman fi lter parameters used in 
the data assimila  on runs. For the ensemble Kalman fi lter (EnKF) 
uncertainty levels (CVs) are also indicated.

Data assimila  on 
method

Parameter

Nudging nudging term rela  ve strength with 
respect to physical forcing (G) = 0.5 h−1 
(assimila  on of surface moisture content, θ)

G = 0.15 m−1 h−1 (assimila  on of 
bo  om layer pressure head, ψ)

observa  on accuracy (ε) = 0.99

horizontal radius of infl uence (Rxy) = 500 m

ver  cal radius of infl uence (Rz) = 0.5 m

characteris  c observa  on-infl uenced 
 me window (τc) = 6 h

Ensemble 
Kalman fi lter

ensemble size = 100

lognormal saturated hydraulic 
conduc  vity (Ks) (CV = 50%)

lognormal aquifer specifi c 
storage coeffi  cient (S s) (CV = 20%)

normal ini  al condi  ons (CV = 20%)

lognormal atmospheric forcing (CV = 20%)

lognormal θ and outlet streamfl ow 
(Q) measurements (CV = 1.0%)

normal ψ measurements (CV = 1.0%)

atmospheric forcing decorrela  on  me (T) = 30 h

All observa  on interval = 144 h



www.vadosezonejournal.org · Vol. 8, No. 4, November 2009 842

ditioned. Th is is refl ected in our simulations by the large number of 

backsteps, small time steps, and hence more CPU eff ort.

Figure 4 shows the diff erence in surface saturation between 

the perturbed atmospheric boundary condition runs (including 

the open loop) and the base run at the end of the simulation (t = 

3600 h), which coincides with the last update. Th e estimate of the 

system state for the EnKF runs is represented by the ensemble 

average. Both NN runs show a spatially limited retrieval capability, 

accurately recovering the true saturation only in the vicinity of the 

measurement points, while both scenarios of the EnKF are much 

more eff ective and are able to improve surface soil moisture for the 

whole catchment. Th is result was not surprising, since the covari-

ance matrices of the EnKF scheme have the capability to take into 

account the correlation existing between points located far apart 

across the catchment. Assimilation of θ, for both NN and the EnKF, 

manifests a slight overshooting eff ect, probably due to the nonlinear-

ity of the operator M, which relates the soil moisture measurements 

to the subsurface system state (expressed in terms of ψ). Th is phe-

nomenon is indeed absent when M is linear, as for example in the 

case when only pressure heads are assimilated. On the other hand, 

assimilation of ψ seems to be less eff ective than θ, the latter exhibit-

ing an overall better performance for a given assimilation scheme. 

We note that the catchment remains relatively wet throughout the 

simulation, with a generally shallow water table except at the high-

est elevations. Finally, assimilation of streamfl ow alone is not able 

to recover the saturation state of the catchment, resulting in only a 

minor improvement with respect to the open loop scenario. Th is is 

probably due to the aggregated nature of the measurement, along 

with the limited dimension of the measurement space (equal to 1 in 

this case) with respect to the system state space (close to 50,000) and, 

as mentioned above, the ill conditioning of the Kalman gain.

Figure 5 is analogous to Fig. 4 but reports water table depth 

rather than surface saturation. Th e results are broadly consistent with 

those of Fig. 4, with a few notable diff erences. Similarly to the previ-

ous case, the EnKF performed better than NN. Th e EnKF results for 

the scenario of streamfl ow assimilation suff er from the same draw-

backs mentioned above. Assimilation of soil moisture exhibits some 

numerical overshooting, especially for the NN scenario, again prob-

ably due to the nonlinearity of the retention curves. Still, assimilation 

of θ performed slightly better than assimilation of ψ in terms of water 

table depth for the EnKF scenarios. Th e water table depth in the 

case of pressure head assimilation was, in fact, slightly overestimated 

in the vicinity of the Brisy streambed, where, instead, it was better 

matched for the scenario of streamfl ow assimilation. Th is unexpected 

behavior may be explained by the smaller variability that charac-

terizes the pressure head in the saturated zone, especially near the 

bottom layer of the three-dimensional grid, compared with the soil 

moisture variability at the surface. A larger variability of the system 

state in fact implies a stronger correction when an update occurs. 

Th is explanation, however, cannot be generalized and holds as long as 

the soil moisture does not get too close to its upper and lower limits, 

i.e., saturated and irreducible water content, respectively. When soil 

moisture is near these limits, the covariance matrix approaches iden-

tity, and moreover, the distribution of θ would become skewed and 

thus stray from the hypothesis of a Gaussian distribution that is 

required for Eq. [7] to yield an optimal update.

Th e results discussed above fi nd further confi rmation in Fig. 

6, which shows the time evolution of subsurface storage for all the 

simulations. Th e EnKF performed better than NN in retrieving 

T  3. Summary of numerical results for the base, open loop, and the Newtonian nudging (NN) and ensemble Kalman fi lter (EnKF) data assimi-
la  on runs for surface soil moisture (θ), pressure head at the bo  om layer of the catchment (ψ), and streamfl ow at the catchment outlet (Q).

Parameter Base run Open loop NN-ψ NN-θ EnKF-ψ EnKF-θ EnKF-Q

Backsteps 0 0 365 61 345 22 1,328
No. of  me steps 1,937 1,937 4,783 2,210 8,535 6,039 17,905
Average  me step size, h 1.86 1.86 0.75 1.63 0.42† 0.60† 0.20†
Average nonlinear itera  ons per  me step 2.29 2.66 4.43 3.42 162.77‡ 188.72‡ 161.84‡
Total CPU  me, s 561 637 16,568 2750 170,609‡ 138,880‡ 364,538‡

† Ensemble average.
‡ Sum of all the ensemble members.

F . 4. Diff erence in water satura  on at the surface nodes between 
the open loop run and the base run and between the base run and 
the Newtonian nudging (NN) and ensemble Kalman fi lter (EnKF) 
data assimila  on runs for surface soil moisture (θ), pressure head 
at the bo  om layer of the catchment (ψ), and streamfl ow at the 
catchment outlet (Q) at the end of the simula  on (t = 3600 h) .

F . 5. Diff erence in water table depth between the open loop run 
and the base run and between the base run and the Newtonian 
nudging (NN) and ensemble Kalman fi lter (EnKF) data assimila  on 
runs for surface soil moisture (θ), pressure head at the bo  om layer 
of the catchment (ψ), and streamfl ow at the catchment outlet (Q) 
at the end of the simula  on (t = 3600 h).
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the overall subsurface response of the catchment except for the 

case of streamfl ow assimilation, which yielded results comparable 

to the two nudging scenarios. Assimilation of soil moisture by the 

EnKF gave a slightly more accurate estimate of the subsurface 

volume than the corresponding assimilation of pressure head.

Figure 7 shows the streamfl ow hydrograph at the catch-

ment outlet (bottom panel) for all the simulations, as well as 

the cumulated streamfl ow hydrographs (top panel). Nudging 

provided a limited contribution to the improvement of the 

hydrograph, consistent with the results for the subsurface state. 

Note that the only runoff  generation mechanism for this test 

case was saturation excess. We conclude that NN does not pro-

vide suffi  cient groundwater to fi ll the catchment subsurface, and 

thus the runoff  component of the watershed response cannot be 

improved signifi cantly. On the other hand, the EnKF, as imple-

mented in CATHY, also updates the overland fl ow system even 

for measurements related to the subsurface alone. Th is feature, 

combined with the capability of the EnKF scheme to capture 

subsurface dynamics, allows the streamfl ow hydrograph to be 

improved signifi cantly with respect to the open loop run. Despite 

the general improvement in terms of cumulated volume, there 

are still a few mismatches between the true solution and the two 

EnKF scenarios, as can be seen, for instance, in the delay aff ecting 

the fi rst and largest streamfl ow peak. Th e timing and peak errors 

seem to be more signifi cant when not assimilating streamfl ow. 

On the other hand, there are signifi cant drawbacks when not 

assimilating distributed, subsurface state variables such as pres-

sure head or soil moisture. In this case, a closer inspection of Fig. 

7 reveals an erratic peak in the EnKF-Q streamfl ow immediately 

following the updates. Th is is due again to the ill-conditioned 

covariance matrix, which causes an overshooting of the surface 

volume update and hence the subsequent streamfl ow peak when 

this volume reaches the outlet.

To conclude our analysis, we show the behavior of the RMSE 

(m), calculated for the subsurface state as

( )2a t

1
RMSE

N
i ii

N

= ψ −ψ
=

∑
 [9]

where N is the number of subsurface grid nodes, ψi
a is the pressure 

head estimate at the ith node, and ψi
t is the true (base run) pressure 

head at the ith node. Th e time evolution of the RMSE is shown in 

Fig. 8 for all the runs, demonstrating that the EnKF consistently 

outperforms NN in all cases. For the surface state, we calculate the 

time average of the outlet streamfl ow square error as follows:

( )t
2a t

1

t

RMSE

N
i ii

Q

Q Q

N

= −
=

∑
 [10]

where Nt is the number of time steps, Qi
a is the outlet stream-

fl ow estimate at the ith time step, and Qi
t is the true (base run) 

outlet streamfl ow at the ith time step. Th e streamfl ow RMSEQ are 

reported in Table 4 for all scenarios. Again, the EnKF outperforms 

NN in all cases. Obviously the integral nature of RMSEQ does not 

provide an accurate measure of the instantaneous errors, which is 

better conveyed in Fig. 7; still, we use Eq. [10] to compare the 

performances of diff erent schemes. From the table, we observe 

that the best RMSEQ reduction with respect to the open loop was 

obtained by assimilation of soil moisture and not by assimilation 

F . 6. Time evolu  on of the water volume stored in the catchment 
subsurface for the base run, the open loop run, and the Newtonian 
nudging (NN) and ensemble Kalman fi lter data assimila  on runs for 
surface soil moisture (θ), pressure head at the bo  om layer of the 
catchment (ψ), and streamfl ow at the catchment outlet (Q). The 
storage includes both the saturated zone and the vadose zone.

F . 7. Streamfl ow hydrograph (bo  om) and cumulated streamfl ow 
volume (top) at the catchment outlet for the base run, the open 
loop run, and Newtonian nudging (NN) and ensemble Kalman fi lter 
(EnKF) data assimila  on runs for surface soil moisture (θ), pressure 
head at the bo  om layer of the catchment (ψ), and streamfl ow at 
the catchment outlet (Q). The red symbols denote the streamfl ow 
observa  ons used for scenario EnKF-Q.

F . 8. Time evolu  on of the RMSE computed on the system state 
in terms of pressure head across the en  re three-dimensional 
subsurface grid using Eq. [9] for the Newtonian nudging (NN) and 
ensemble Kalman fi lter (EnKF) data assimila  on runs for surface soil 
moisture (θ), pressure head at the bo  om layer of the catchment 
(ψ), and streamfl ow at the catchment outlet (Q).
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of streamfl ow, another symptom of the ill conditioning that aff ects 

the covariance matrices when assimilating only surface discharge.

Conclusions
Two data assimilation techniques implemented in a detailed, 

process-based, hydrologic model of coupled surface–subsurface fl ow 

were compared for a small catchment test case. Th e fi rst method, 

Newtonian relaxation or nudging, was easy to implement and less 

computationally expensive, but its capability to retrieve the true 

system state strongly depends on the number of spatial observations. 

We showed that assimilation of either pressure head or soil mois-

ture can improve the subsurface state only locally, in the vicinity of 

the measurement locations. As a result, the streamfl ow hydrograph 

cannot be accurately recovered without a large number of obser-

vations, since subsurface storage is underestimated (for the case of 

perturbation to drier conditions, as simulated in this study). On 

the one hand, spurious correlation between points characterized 

by diff erent dynamics may be introduced if the radius of infl uence 

of the nudging term weighting functions is extended over the real 

physical correlation distance of the system state. On the other hand, 

increasing the relaxation time G may result in an improved subsur-

face storage retrieval, but at the cost of a much larger computational 

eff ort (Paniconi et al., 2003; Hurkmans et al., 2006) unless more 

appropriate time integrators are used (Ascher and Petzold, 1998). 

Moreover, there is an upper limit of G recommended in the literature, 

equal to 1/Δt for the case of soil moisture assimilation (Stauff er and 

Seaman, 1990), that should not be exceeded. A possible approach 

to improve the performance of NN could be to use the covariance 

matrix structures obtained from an EnKF application to defi ne new 

weighting functions in a matrix form. Th is idea requires careful study 

of the dynamics of the covariance matrices for this type of hydrologic 

application, and is left as a possible topic for future research.

Th e second assimilation method examined, the EnKF, is more 

computationally expensive but is more eff ective in retrieving the true 

system state. Its capability resides in the covariance matrices used by 

the algorithm, which automatically take into account the physical 

correlation of the system state values between points located far apart 

across the domain. Assimilation of both pressure head and soil mois-

ture with the EnKF resulted in an almost complete retrieval of the true 

subsurface state and in a signifi cant improvement of the streamfl ow 

hydrograph. On the other hand, assimilation of streamfl ow alone at 

the catchment outlet performed worse than assimilation of θ and ψ, 

in terms of both the subsurface state and the streamfl ow hydrograph, 

mainly due to the ill conditioning of the covariance matrix between 

streamfl ow at the outlet and the pressure head distribution. Th is arises 

from the aggregated nature of the assimilated variable and causes some 

numerical artifacts that cannot be easily controlled.
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