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Abstract

Ž .We consider the compactification M atrix theory on a Riemann surface S of genus g)1. A natural generalization of
Ž .the case of the torus leads to construct a projective unitary representation of p S , realized on the Hilbert space of square1

Ž .integrable functions on the upper half-plane. A uniquely determined gauge connection, which in turn defines a gauged sl R2

algebra, provides the central extension. This has a geometric interpretation as the gauge length of a geodesic triangle, and
corresponds to a 2-cocycle of the 2nd Hochschild cohomology group of the Fuchsian group uniformizing S. Our

Ž . Ž .construction can be seen as a suitable double-scaling limit N™`, k™y` of a U N representation of p S , where k is1

the degree of the associated holomorphic vector bundle, which can be seen as the higher-genus analog of ’t Hooft’s clock
and shift matrices of QCD. We compare the above mentioned uniqueness of the connection with the one considered in the
differential-geometric approach to the Narasimhan–Seshadri theorem provided by Donaldson. We then use our infinite
dimensional representation to construct a Cw-algebra which can be interpreted as a noncommutative Riemann surface S .u

Finally, we comment on the extension to higher genus of the concept of Morita equivalence. q 2000 Elsevier Science B.V.
All rights reserved.

1. The quotient conditions

The P sNrR sector of the discrete light-coney
quantization of uncompactified M-theory is given by
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Ž .the supersymmetric quantum mechanics of U N
matrices. In temporal gauge, the action reads

1 2m m n˙ ˙ w xSs dt Tr X X q X , XÝH mž2 R
m)n

T ˙ T mw xqiQ QyQ G X ,Q , 1Ž .m /
where m,n s 1, . . . ,9. The compactification of
Ž . w x w xM atrix theory 1–3 as a model for M-theory 4

w x w xhas been studied in 5 . In 6–9 it has been treated
w xusing noncommutative geometry 10 . These investi-
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gations apply to the d-dimensional torus T d, and
have been further dealt with from various viewpoints

w xin 11–17 . These structures are also relevant in
w xnoncommutative string and gauge theories 18,19 .

Let e , i, js1,2, generate a 2-dimensional lattice ini j
2 Ž . 2R . In compactifying M atrix theory on the torus T

determined by this lattice one introduces unitary
operators UU and UU , defined on the covering space1 2

R2 of T 2, such that

UUy1 X UU sX q2p e , i , js1,2,i j i j i j

UUy1 X UU sX , as3, . . . ,9i a i a

UUy1Q UU sQ . 2Ž .i i

By consistency the operators UU and UU commute,1 2

up to a constant phase:

UU UU se2p iu UU UU . 3Ž .1 2 2 1

Ž .Ž .In this paper we extend Eqs. 2 3 to the case of
compact Riemann surfaces of genus g)1. This is a

Ž .first step towards the compactification of M atrix
theory on a Riemann surface. The explicit solutions
and their supersymmetry properties will be consid-
ered elsewhere.

A Riemann surface S of genus g)1 is con-
structed as the quotient HrG , where H is the upper

Ž . Ž .half-plane, and G;PSL R , G(p S , is a Fuch-2 1

sian group acting on H as

azqbba
gs gG , g zs . 4Ž .ž /c d czqd

In the absence of elliptic and parabolic generators,
the 2 g Fuchsian generators g satisfyj

g
y1 y1g g g g s I. 5Ž .Ž .Ł 2 jy1 2 j 2 jy1 2 j

js1

Ž .Inspired by M atrix theory, let us promote the
complex coordinate zsxq iy to an N=N complex
matrix ZsXq iY, with XsX † and YsY †. This
would suggest defining fractional linear transforma-

y1 Žtions of Z through conjugation UUZUU s aZq
.Ž .y1bI cZqdI . However, taking the trace we see

that this construction cannot be implemented for
finite N. Thus we will consider some suitable modi-
fication. For the moment note that requiring the UUk

to represent the g givesk
g

y1 y1 2p iuUU UU UU UU se I, 6Ž .Ž .Ł 2 ky1 2 k 2 ky1 2 k
ks1

which generalizes the relation of the noncommuta-
Ž .tive torus 3 .

2. The noncommutative torus revisited

In order to compactify in higher genus it is neces-
sary to extract some general guidelines from the case
of the torus. In gs1 the fundamental group is
Abelian. This implies that the associated differential

w xgenerators commute, i.e. E ,E s0, so it makes1 2

sense to apply the Baker–Campbell–Hausdorff
Ž . 2p iuBCH formula when computing the phase e . On
the contrary, the fundamental group of negatively
curved Riemann surfaces is nonabelian, and the BCH
formula is not useful. The derivation of the phase in
gs1 by means of techniques alternative to the BCH
formula will be the key point to solving the problem
in g)1.

Mimicking the case of gs1, one expects the
building blocks for the solution to the quotient condi-
tions in g)1 to have the form e LL nyLL n

†
or eiŽ LL nqLL n

†.,
( )for some gauged sl R operators LL to be deter-2 n

mined. We will show that finding such LL is closelyn

connected with the computation of the phase without
using the BCH formula. In gs1 the BCH formula
is useful, as the commutator between covariant
derivatives can be a constant. On the contrary, in

Ž .g)1, the LL will be a sort of gauged sl Rn 2
w xgenerators, and LL , LL can never be a c-number.n m

The solution to the quotient conditions in gs1 is
expressed in terms of the exponential of covariant
derivatives = , ks1,2, so apparently we should usek

both e LL nyLL n
†

and eiŽ LL nqLL n
†. when passing to g)1.

While the exponential eE k will generate translations,
LL nyLL n

† Ž .the operator e will produce PSL R transfor-2

mations. As the latter are real, we are forced to
discard eiŽ LL nqLL n

†. and to use e LL nyLL n
†

only. This fact
is strictly related to the nonabelian nature of the

Ž .group p S .1

Let us consider the operators

UU selkŽE kqi A k . , l gR, ks1,2, 7Ž .k k

Ž .We also introduce the functions F x , x definedk 1 2

by

UU sF elk E k Fy1 , ks1,2. 8Ž .k k k
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Ž . y1 Ž y1 . Ž .The identity Af B A s f ABA and Eq. 8
Ž . lk E k y1Ž� 4.give E q iA F s0. Also note that e F xk k k k k
y 1Ž� 4. lk E ks F x q d l e . Therefore, definingk j jk k

Ž .G x , x byk 1 2

UU sG elk E k , ks1,2, 9Ž .k k

we conclude that

y1 � 4 � 4F x qd l sG x F x . 10� 4 Ž .Ž . Ž .Ž .k j jk k k j k j

The unitary operators UU can be used to derivek
Ž .the phase of Eq. 3 . First we note that pulling the

derivatives to the right we get

UU UU UUy1 UUy1
1 2 1 2

sF el1E1 Fy1F el2 E 2 Fy1
1 1 2 2

=F eyl1E1 Fy1F eyl 2 E 2 Fy1
1 1 2 2

sF x , x Fy1 x ql , x F x ql , xŽ . Ž . Ž .1 1 2 1 1 1 2 2 1 1 2

=Fy1 x ql , x qlŽ .2 1 1 2 2

=F x ql , x ql Fy1 x , x qlŽ . Ž .1 1 1 2 2 1 1 2 2

=F x , x ql Fy1 x , x . 11Ž . Ž . Ž .2 1 2 2 2 1 2

Let us consider the curvature of AsA dx qA dx1 1 2 2

FsdAs E A yE A dx ndx sF dx ndx .Ž .1 2 2 1 1 2 12 1 2

12Ž .

Choosing the connection to be A sypu x , A s1 2 2

pu x with u a constant, we have F s2pu and1 12

UU s eyipl1u x 2 el1E1, UU s eipl2 u x1 el2 E 2. Further-1 2

more, we have

G seyipl1u x 2 sei l1 A1 , G seipl2 u x1 sei l2 A2 ,1 2

13Ž .

Ž .so Eq. 10 reads

F x ql , x seipl1u x 2 F x , x ,Ž . Ž .1 1 1 2 1 1 2

F x , x ql seyipl2 u x1 F x , x . 14Ž . Ž . Ž .2 1 2 2 2 1 2

ip u x 1 x 2 Ž .The solution is F s e f x , F s1 1 2 2
yipu x1 x 2 Ž . Ž .e f x , with f f an arbitrary function of2 1 1 2
Ž . Ž . Ž .x x . Substituting this into 11 we get Eq. 3 , as2 1

we would using BCH.
Ž .Ž .From 9 13 one would understand that the con-

Ž .nection in 7 can be simply pulled to the left.
However, this is the case only if one chooses a

particular gauge, as in general we have elkŽE kqi A k ./

eilk A k elk E k. Indeed, under the gauge transformation
A ™A qE x , we havek k k

elkŽE kqi A kqi E k x .seyi xelkŽE kqi A k .ei x

sei x Ž� x jqd jk l j4.y i x Ž� x j4.elkŽE kqi A k . ,
15Ž .

whereas under a gauge transformation, ei lk A k elk E k is
multiplied by ei lk x Ž� x j4.. It is easily seen that the
correct expression is

x qlk kl ŽE qi A . i da A l EHk k k k k k ke se e , 16Ž .x k

Ž .where in the integrand one has A a , x if ks11 1 2
Ž . Ž .and A x ,a if ks2. In 16 we used a shorthand2 1 2

notation; the integration limits should be written
more precisely as H� x jqd jk l j4. In particular, the con-� x 4j
tour is easily recognized as the path joining x andk

x ql along the line with x fixed. Since on thek k j/ k

torus we can choose the zero curvature metric,
straight lines correspond to geodesics of the metric.

� 4Thus, the above contour is the geodesic joining x j
� 4 Ž .with x qd l . A direct check of Eq. 16 is thatj jk k

x xk k
l ŽE qi A . yi da A l E i da AH Hk k k k k k k k k0 0e se e ex xk k

x qlk ki da A l EH k k k kse e , 17Ž .x k

where we used the property that E H x k da A sk x k kk 0

Ž .A x , x . This is a distinguished feature due to thek 1 2

flatness of the torus that does not hold in g)1.
However, we redefine the contour integral for the
torus in a way which easily generalizes to higher
genus, namely,

The contour integral is along the geodesic, with
respect to the constant curvature metric, joining the

� 4 � 4points with coordinates x and x qd l .j j jk k

Due to the fact that along the integration contour
either dx s0 or dx s0, we can replace da A1 2 k k

with A:

x x x qlk k k kl ŽE qi A . yi A l E i A i A l EH H Hk k k k k k k0 0UU se se e e se e ,x x xk k k k

18Ž .

so that F seyiHx k
0

x k A. Even if on the torus the F arek k

not essential, we introduced them as their higher-
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genus analog will lead to a new class of functions.
By Stokes’ theorem

UU UU UUy1 UUy1
1 2 1 2

x ql , x x ql , x qlŽ . Ž .1 1 2 1 1 2 2sexp i Aq i AH H
Ž .x , x x ql , xŽ .1 2 1 1 2

Ž .x , xx , x qlŽ . 1 21 2 2qi Aq i AH H
x ql , x ql x , x qlŽ . Ž .1 1 2 2 1 2 2

sexp i A sexp i F se2p i l1l2 u , 19Ž .E Hž /ž /
E FF FF

where FF is a fundamental domain for the torus.
Note that l l is the area of the torus. Normalizing1 2

Ž .the area to 1, we get Eq. 3 .
We now show that the only possible connection

leading to a constant value of E A is the one withEFF

constant curvature. In order to denote the depen-
dence on the basepoint of the domain we use the

Ž .notation FF . Independence from x , x meansx x 1 21 2

that

Fs F , 20Ž .H H
X XFF FFx x x x1 2 1 2

Ž X X . 2 2for any x , x gR . Any point in R can be1 2
Ž . Ž X X .obtained by a translation x , x ™ x , x s1 2 1 2

Ž . Ž . X Xm x , x ' x qb , x qb . Noticing that FF1 2 1 1 2 2 x x1 2

Ž .smFF , we see that Eq. 20 is satisfied only ifx x1 2

the curvature two-form F is invariant under arbitrary
Ž .translations of x , x . This fixes F to be a constant1 2

two-form.
The above investigation captures the essence of

the construction in gs1, somehow extracting it
from its specific context. This is very useful to
reformulate the problem of deriving a projective
unitary representation of the fundamental group of a
class of manifolds which is much more general than
the torus. We can say that in order to get a projective
unitary representation of the fundamental group of a
given manifold MM by means of operators acting on

2Ž .the space L MM , we should consider the previous
well-defined guidelines.

( )3. Projective unitary representation of p S on1
2( )L H

We now apply the above general analysis to the
case of higher genus Riemann surfaces. We start by

Ž .first considering a unitary representation of p S1
2Ž . Ž lk E k .realized on L H the analog of e . For ns
Ž . nq1 Ž .y1,0,1 and e z sz let us set ll se z E .n n zn

Define

1 eX
ny1r2 1r2L se ll e se E q . 21Ž .n n n n zn ž /2 en

Ž .They satisfy the sl R algebra2

w xL , L s nym L , L , L s0,Ž .m n mqn m n

w x nq1L , f sz E f . 22Ž .n z

For ks1,2, . . . ,2 g, consider the operators

Ž k . Ž k . Ž k .l Ž L qL . l Ž L qL . l Ž L qL .y1 y1 y1 0 0 0 1 1 1T se e e , 23Ž .k

with the lŽk . picked such thatn

a zqbk ky1T zT sg zs , 24Ž .k k k c zqdk k

Ž .so that by 5

g
y1 y1T T T T s I. 25Ž .Ž .Ł 2 ky1 2 k 2 ky1 2 k

ks1

2Ž . ² < :On L H we have the scalar product f c s
Ž .H dnfc , with dn z s idzndzr2sdxndy. OneH

can check that the T provide a unitary representa-k

tion of G .
< <For any function F satisfying F s1, we define

the operators

ŽF . y1LL sF z , z L F z , zŽ . Ž .n n

1 eX
n

se E q yE ln F z , z , 26Ž . Ž .n z zž /2 en

Ž .which also satisfy the algebra 22 . Its adjoint is
given by

y1ŽF .† 1r2 1r2 y1 ŽF .LL syFe E e F syLL . 27Ž .n n z n n

We now observe that the operators

y1ŽF . ŽF . ŽF .† ŽF . ŽF .L sLL yLL sLL qLL , 28Ž .n n n n n
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enjoy the fundamental property that both their chiral
components are gauged in the same way by the
function F, that is

ŽF . y1L sF L qL F , 29Ž .Ž .n n n

Ž .while also satisfying the sl R algebra:2

ŽF . ŽF . ŽF .L , L s nym L ,Ž .m n mqn

ŽF . nq1 nq1L , f s z E qz E f . 30Ž .Ž .n z z

Furthermore, since LŽF .† syLŽF ., the operatorsn nŽF .L L qL y1n n ne sFe F are unitary.
Let b be a real number, and A a Hermitean

connection to be identified presently. Set

g zk
i b AHUU se T , 31Ž .zk k

where the integration contour is taken to be the
Poincare geodesic connecting z and g z. As the´ k

Ž .gauging functions introduced in 26 we will take the
y1Ž .F z, z solutions of the equation F T F sk k k k

e ibHz
g k z AT , that isk

g zkyi b AHF g z ,g z se F z , z . 32Ž . Ž .Ž . zk k k k

Ž . Ž .With the choice 32 for F , 29 becomesk

ŽF . y1L sF L qL FŽ .n ,k k n n k

nq1
nq1sz E q yE ln Fz z kž /2 z

nq1
nq1qz E q yE ln F . 33Ž .z z kž /2 z

The LŽF . satisfy the algebran,k

ŽF . ŽF .L , Lm , j n ,k

ŽF . y1 < < ŽF . < <y1s nym L qF e L e FŽ . mq n , j k n n ,k n k

= y1 < < ŽF . < <y1F e L e F ln F y ln F ,Ž .j m m , j m j j k

ŽF . nq1 nq1L , f s z E qz E f . 34Ž .Ž .n ,k z z

Upon exponentiating LŽF . one findsn,k

UU sely1
Ž k . Ly1 ,k

ŽF .
el0

Ž k . L0 ,k
ŽF .

el1
Ž k . L1 ,k

ŽF .
, 35Ž .k

that is, the UU are unitary, andk

g z zky1 y1 yi b A yi b A y1H Hy1UU sT e se T . 36Ž .z g zk k kk

Ž .It is immediate to see that the UU defined in 31k
Ž . 1satisfy 6 for a certain value of u :

g
† †UU UU UU UUŽ .Ł 2 ky1 2 k 2 ky1 2 k

ks1

g z g z z1 2
i b A ib A yi b A y1H H Hy1se T e T e Tz z g z1 2 11

=
z

yi b A y1Hy1e T . . .g z 22

g z g g z y11 2 1 g g g z1 2 1sexp ib q qH H Hž z g z g g z1 2 1

y1 y1g g g g z2 1 2 1q q . . . AH /y1g g g z1 2 1

=

g
y1 y1 i b AET T T T se , 37Ž .Ž .Ł E FF2 ky1 2 k 2 ky1 2 k z

ks1

� y1 4where FF s z,g z,g g z,g g g z, . . . is a fun-z 1 2 1 1 2 1

damental domain for G . The basepoint z, plus the
action of the Fuchsian generators on it, determine
FF , as the vertices are joined by geodesics.z

Ž .For 37 to provide a projective unitary represen-
tation of G , H dA should be z-independent. Chang-FFz

ing z to zX can be expressed as z™zX sm z for
Ž .some m g PSL R . Then FF ™ FF s2 z m z

� y1 4m z,g m z,g g m z,g g g m z, . . . . Now consider1 2 1 1 2 1
� y1 4FF ™ mFF s m z,mg z,mg g z,mg g g z, . . . .z z 1 2 1 1 2 1

The congruence mFF (FF follows from two facts:z m z

that the vertices are joined by geodesics, and that
Ž .PSL R maps geodesics into geodesics. Since G is2

defined up to conjugation, G™mGmy1, if mFF is az

fundamental domain, so is FF . Thus, to have z-in-m z
Ž .dependence we need ;mgPSL R2

dAs dAs dAs dA. 38Ž .H H H H
FF FF mFF FFz m z z

Ž . Ž .This fixes the 1,1 -form dA to be PSL R -in-2

variant. It is well known that the Poincare form´
Ž . Ž .is the unique PSL R -invariant 1,1 -form, up2

to an overall constant factor. This is a particular case
w xof a more general fact 20 . The Poincare metric´

2 y2 2 2 w 2< < < < < <ds sy dz s2 g dz se dz has curvaturez z
z z wR s yg E E ln g s y1, so that H dn e sz z z z FF

Ž . Ž .y2px S , where x S s2y2 g is the Euler

1 Ž .The differential representation of PSL R acts in reverse2

order with respect to the one by matrices.
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Ž .characteristic. As the Poincare 1,1 -form is dAs´
ewdn , this uniquely determines the gauge field to be

dx
AsA dzqA dzs , 39Ž .z z y

modulo gauge transformations. Using E AsH dAEFF FF

Ž .we finally have that 37 becomes
g

† † 2p i bx ŽS .UU UU UU UU se . 40Ž .Ž .Ł 2 ky1 2 k 2 ky1 2 k
ks1

4. Nonabelian gauge fields

Up to now we considered the case in which the
connection is Abelian. However, it is easy to extend
our construction to the nonabelian case in which the

Ž . Ž .gauge group U 1 is replaced by U N . The opera-
tors UU now becomek

g zk
i b AHUU sPe T , 41Ž .zk k

where the T are the same as before, times thek
Ž .N=N identity matrix. Eq. 37 is replaced by

g
† † i b AEUU UU UU UU sPe . 42Ž .Ž .Ł E FF2 ky1 2 k 2 ky1 2 k z

ks1

Given an integral along a closed contour s withz

basepoint z, the path-ordered exponentials for a
connection A and its gauge transform AU sUy1AU

y1 w xqU dU are related by 21

i AEPe sz

i AU y1EsU z Pe U zŽ . Ž .sz

1m n y1Ž . Ž . Ž .i ds d sss U ss F ss U ssE H nmsU z PeŽ . s 0z

=Uy1 z . 43Ž . Ž .
Ž .Applying this to 42 , we see that the only possibility

to get a coordinate-independent phase is for the
Ž . w xcurvature 1,1 -form FsdAq A, A r2 to be the

Ž .identity matrix in the gauge indices times a 1,1 -form
h, that is FshI. It follows that

i b A ib FE HPe se . 44Ž .E FF FF

This is only a necessary condition for coordinate-in-
dependence. However, this is the same as the Abelian

case so that h should be proportional to the Poincaré
Ž .1,1 -form.

Denoting by E the vector bundle on which A is
1Ž . Ž .defined, we have ksdeg E s tr H F. Set m EFF2p

Ž .s krN so that H F s 2pm E I and h sFF
Ž .m E wy e dn , i.e.
Ž .x S

Fs2pm E v I, 45Ž . Ž .
w w Ž .where vs e rH dn e dn . Thus, by 44 we haveŽ .FF

Ž .that Eq. 42 becomes
g

† † 2p i bmŽE .UU UU UU UU se I, 46Ž .Ž .Ł 2 ky1 2 k 2 ky1 2 k
ks1

which provides a projective unitary representation of
Ž . 2Ž N .p S on L H,C .1

5. Hochschild cohomology and gauge lengths

A basic object is the gauge length function
Ž . wd z,w sH A, where the contour integral is alongA z

the Poincare geodesic connecting z and w. In the´
Abelian case

dx zywRe w
d z ,w s syiln , 47Ž . Ž .HA ž /y wyzRe z

which is equal to the angle a spanned by the arcz w

of geodesic connecting z and w. Observe that the
gauge length of the geodesic connecting two punc-
tures, i.e. two points on the real line, is p . This is to
be compared with the usual divergence of the

Ž .Poincare distance. Under a PSL R -transformation´ 2
Ž .m, we have m 'E m xx x

i m mz w
d m z ,mw sd z ,w y ln . 48Ž . Ž . Ž .A A ž /2 m mz w

Therefore, the gauge length of an n-gon
n

Žn. � 4d z s d z , zŽ .Ž . ÝA k A k kq1
ks1

n

sp ny2 y a , 49Ž . Ž .Ý k
ks1

where z 'z , nG3, and a are the internalnq1 1 k
Ž .angles, is PSL R -invariant.2

We now show that the length of the triangle is
proportional to the Hochschild 2-cocycle of G . The
Fuchsian generators g gG are projectively repre-k
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sented by means of unitary operators UU acting onk
2Ž .L H . The product g g is represented by UU ,k j jk

which equals UU UU up to a phase:j k

UU UU se2p iu Ž j ,k .UU . 50Ž .j k jk

Associativity implies

u j,k qu jk ,l su j,kl qu k ,l . 51Ž . Ž . Ž . Ž . Ž .
Ž .We can easily determine u j,k :

g z g g z g g zj k j k j

UU UU sexp ib Aq ib Ay ib A UUH H Hj k jkž /z g z zj

sexp ib A UU , 52Ž .H jkž /
t jk

where t denotes the geodesic triangle with verticesjk
Ž .z, g z and g g z. This identifies u j,k as the gaugej k j

length of the perimeter of the geodesic triangle t jk

times br2p . By Stokes’ theorem this is the Poincaré
Ž .area of the triangle. One can check that u j,k in

Ž .fact satisfies 51 . This phase has been considered in
different contexts, such as the quantum Hall effect

w xon H 22 and Berezin’s quantization of H and Von
w xNeumann algebras 23 .

The information on the compactification of
Ž .M atrix theory is encoded in the action of G on H,

plus a projective representation of G . The latter
amounts to the choice of a phase. Physically inequiv-

Ž .alent choices of u j,k turn out to be in one-to-one
correspondence with elements in the 2nd Hochschild

Ž .cohomology group of G , which is U 1 . Hence
Ž .usbx S is the unique parameter for this compact-
Ž Ž . .ification usbm E in the general case .

Ž .The Poincare metric is PSL R invariant whereas´ 2

A is not. So the equality E AsH F should be aEFF FF

consequence of the fact that the variation of A under
Ž . Ž . Ža PSL R transformation, z™m zs azqb r cz2

.qd , corresponds to a total derivative. In fact we
have

PSL R : AŽ .2

dm zqdm z
™ i

m zym z

sAy iE ln czqd dzq iE ln czqd dz . 53Ž . Ž . Ž .z z

Ž .Since czqd has no zeroes, we have that ln czqd
Žis a genuine function on H. It follows that yiE ln czz

. Ž .qd dzq iE ln czqd dz, can be written as an ex-z
Ž .ternal derivative so that Eq. 53 becomes

i

2
PSL R : A™Aqdln m rm , 54Ž . Ž .Ž .2 z z

Ž .where m 'E m z. So a PSL R -transformation ofz z 2

A is equivalent to a gauge transformation. Under
w w Ž . Ž .A™Aqdx we have H A™H Aqx w yx z ,z z

i
2Ž . Ž .which for x z s ln m rm , becomesz z

w w i m mz w
A™ Aq ln . 55Ž .H H

2 m mz z z w

6. Preautomorphic forms

Another reason why the gauge-length function is
Ž .important is that it also appears in the definition 32

of the F . The latter functions, which apparentlyk

never appeared in the literature before, are of particu-
Ž . Ž .lar interest. By 32 and 47 ,

b
g zyzk

F g z ,g z s F z , z . 56Ž . Ž .Ž .k k k kž /zyg zk

Ž .Since under a PSL R transformation the factor2
Ž . Ž .wyz r zyw gets transformed by a factor which
is typical of automorphic forms, we call the Fk

Ž .preautomorphic forms. Eq. 32 indicates that finding
Ž .the most general solution to 56 is a problem in

geodesic analysis. In the case of the inversion g zsk
Ž .y1rz and b an even integer, a solution to 56 is

b b
2 2Ž .F s zrz . By 47 F s zrz is related to theŽ . Ž .k k

A-length of the geodesic connecting z and 0:

i b0 zb AH
2 2ze sF z , z s . 57Ž . Ž .k ž /z

Ž .An interesting formal solution to 56 is

byj yjy1` g zyg zk k
F z , z s . 58Ž . Ž .Łk yjy1 yjž /g zyg zjs0 k k

Consider the uniformizing map J :H™S, whichH

Ž . Ž .enjoys the property J g z sJ z , ;ggG . ThenH H

Ž . Ž .another solution to 56 is given by G J , J F ,H H k

where G is an arbitrary function of the uniformizing
< < < <map. We should require G s1 for F s1.k
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7. Relation with Donaldson’s approach to stable
bundles

We now present some facts about projective, uni-
tary representations of G and the theory of holomor-

w xphic vector bundles 24,25 . Let E™S be a holo-
morphic vector bundle over S of rank N and degree
k. The bundle E is called stable if the inequality
Ž X. Ž .m E -m E holds for every proper holomorphic

subbundle EX ;E. We may take yN-kF0. We
will further assume that G contains a unique primi-

Ž N .tive elliptic element g of order N i.e., g s I ,0 0

with fixed point z gH that projects to x gS.0 0

Given the branching order N of g , let r:G™0
Ž .U N be an irreducible unitary representation. It is

Ž . y2 p i k r Nsaid admissible if r g se I. Putting the0

elliptic element on the right-hand side, and setting
Ž . Ž .r 'r g , 5 becomesk k

g
y1 y1 2p i k r Nr r r r se I. 59Ž .Ž .Ł 2 jy1 2 j 2 jy1 2 j

js1

On the trivial bundle H=C N
™H there is an

Ž . Ž Ž . .action of G : z,Õ ™ g z,r g Õ . This defines the
quotient bundle

H=C NrG™HrG(S . 60Ž .
Any admissible representation determines a holo-
morphic vector bundle E ™S of rank N and de-r

gree k. When ks0, E is simply the quotientr

Ž . Nbundle 60 of H=C ™H. The Narasimhan–
Ž . w xSeshadri NS theorem 26 now states that a holo-

morphic vector bundle E over S of rank N and
degree k is stable if and only if it is isomorphic to a
bundle E , where r is an admissible representationr

of G . Moreover, the bundles E and E are iso-r r1 2

morphic if and only if the representations r and r1 2

are equivalent.
A differential-geometric approach to stability has

w xbeen given by Donaldson 27 . Fix a Hermitean
metric on S, for example the Poincare metric, nor-´
malized so that the area of S equals 1. Let us denote

Ž .by v its associated 1,1 -form. A holomorphic bun-
dle E is stable if and only if there exists on E a
metric connection A with central curvature F sD D

Ž .y2p im E v I; such a connection A is unique.D

The unitary projective representations of G we
constructed above have a uniquely defined gauge
field whose curvature is proportional to the volume

form on S. With respect to the representation con-
sidered by NS, we note that NS introduced an elliptic
point to produce the phase, while in our case the
latter arises from the gauge length. Our construction
is directly connected with Donaldson’s approach as

Ž .Fs iF , where F is the curvature 45 . The mainD

difference is that our operators are unitary differen-
2Ž N .tial operators on L H,C instead of unitary matri-

ces on C N. This allowed us to obtain a non-trivial
phase also in the Abelian case.

It is however possible to understand the formal
relation between our operators and those of NS. To
see this we consider the adjoint representation of G

on End C N,

Ad r g Zsr g Zry1 g , 61Ž . Ž . Ž . Ž .
where ZgEnd C N is understood as an N=N ma-
trix. Let us also consider the trivial bundle H=

N Ž .End C ™ H. The action of G z ,Z ¨
Ž Ž . .g z,Ad r g Z defines the quotient bundle

H=End C NrG™HrG(S . 62Ž .
Then the idea is to consider a vector bundle EX in the

X X Ž X.double scaling limit N ™`, k™y`, with m E
X X Ž X. Ž .sk rN fixed, that is m E sbm E . In this limit,

2Ž N .fixing a basis in L H,C , the matrix elements of
Ž .our operators can be identified with those of r g .

8. Noncommutative uniformization

Let us now introduce two copies of the upper
half-plane, one with coordinates z and z, the other
with coordinates w and w. While the coordinates z
and z are reserved to the operators UU we intro-k

duced previously, we reserve w and w to construct a
new set of operators. We now introduce noncommu-
tative coordinates expressed in terms of the covariant
derivatives

WsE q iA , WsE q iA , 63Ž .w w w w

Ž . w xwith A sA s1r 2 Im w , so that W,W s iF ,w w w w
2w Ž . xwhere F s ir 2 Im w . Let us consider the fol-w w

Ž .lowing realization of the sl R algebra:2

1ˆ ˆL syw , L sy wE qE w ,Ž .y1 0 w w2

L̂ syE wE . 64Ž .1 w w
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We then define the unitary operators

Ž k . Ž k . Ž k .ˆ ˆ ˆ ˆ ˆ ˆl Ž L qL . l Ž L qL . l Ž L qL .y1 y1 y1 0 0 0 1 1 1T̂ se e e , 65Ž .k

Žk . ˆŽ .where the l are as in 23 . Set VV sT UU . Sincen k k k
ˆ Ž .the T satisfy 25 , it follows that the VV satisfyk k

Ž .46 , times the N=N identity matrix, and

a E qbk w ky1 y1ˆ ˆVV E VV sT E T s . 66Ž .k w k k w k c E qdk w k

y1 2Ž .Setting WsGE G , i.e. Gs wyw , and usingw
Ž . y1 Ž y1 .Af B A s f ABA , we see that

y1 ˆ ˆy1 ˆ ˆy1 y1VV W VV sT WT sG w T E T G w ,Ž . Ž .˜ ˜k k k k k w k

67Ž .

where

ˆ ˆy1wsT wT˜ k k

yl 0
Ž k . Žk . ˆ Žk .sye q2l L yl wŽ .1 0 y1

Žk .2 l0
Ž k . ˆ Žk . ˆ Žk .2yl e L q2l L yl w , 68Ž .ž /1 1 y1 0 y1

Ž .and by 66

˜a Wqbk ky1 y1ˆ ˆVV W VV sT WT s , 69Ž .k k k k ˜c Wqdk k

where

y1W̃sE qG w E G w , 70Ž . Ž . Ž .˜ ˜w w

which differs from W by the connection term. Eq.
Ž .69 can be seen as representing the noncommutative
analog of uniformization.

9. Cw-algebra

By a natural generalization of the n-dimensional
noncommutative torus, one defines a noncommuta-
tive Riemann surface S in g)1 to be an associa-u

tive algebra with involution having unitary genera-
Ž .tors UU obeying the relation 40 . Such an algebra isk

a Cw-algebra, as it admits a faithful unitary represen-
2Ž N .tation on L H,C whose image is norm-closed.

Ž .Relation 40 is also satisfied by the VV . However,k

while the UU act on the commuting coordinates z, z,k

the VV act on the operators W and W. The latter,k
Ž .factorized by the action of the VV in 69 , can bek

pictorially identified with a sort of noncommutative
coordinates on S .u

Each g/ I in G can be uniquely expressed as a
positive power of a primitive element pgG , primi-
tiÕe meaning that p is not a positive power of any

X w xother p gG 28 . Let VV be the representative ofp

p. Any VVgCw can be written as

`

Ž p. nVVs c VV qc I, 71Ž .Ý Ý n p 0
� 4 ns0pg prim

for certain coefficients cŽ p., c . A trace can ben 0

defined as tr VVsc .0

In the case of the torus one can connect the
w Ž . Ž .C -algebras of U 1 and U N . To see this one can

use ’t Hooft’s clock and shift matrices V , V , which1 2
2p i M N wŽ .satisfy V V se V V . The U N C -algebra1 2 2 1

is constructed in terms of the V and of the unitaryk
Ž . woperators representing the U 1 C -algebra. Morita

equivalence is an isomorphism between the two. In
Ž .higher genus, the analog of the V is the U Nk

Ž .representation r g considered above. One can ob-
Ž .tain a U N projective unitary differential represen-

Ž .tation of G by taking VV r g , with VV Abelian.k k k

This nonabelian representation should be compared
with the one obtained by the nonabelian VV con-k

structed above. In this framework it should be possi-
ble to understand a possible higher-genus analog of
the Morita equivalence.

The isomorphism of the Cw-algebras is a direct
consequence of an underlying equivalence between

Ž . Ž .the U 1 and U N connection. The z-independence
of the phase requires F to be the identity matrix in
the gauge indices. This in turn is deeply related to
the uniqueness of the connection we found. The
latter is related to the uniqueness of the NS connec-
tion. We conclude that Morita equivalence in higher
genus is intimately related to the NS theorem.

Our operators correspond to the N™` limit of
projective unitary representations of G . These opera-
tors may be useful in studying the moduli space of
Ž . w xM atrix string theory 29 . They also play a role in

w xthe N™` limit of QCD as considered in 30 .
Finally, let us note that an alternative proposal of

noncommutative Riemann surfaces and Cw-algebras
w xhas been considered in 22,31 .
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