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Abstract

We consider the compactification M(atrix) theory on a Riemann surface 3 of genus g > 1. A natural generalization of
the case of the torus leads to construct a projective unitary representation of (), realized on the Hilbert space of square
integrable functions on the upper half-plane. A uniquely determined gauge connection, which in turn defines a gauged sl ,(R)
algebra, provides the central extension. This has a geometric interpretation as the gauge length of a geodesic triangle, and
corresponds to a 2-cocycle of the 2nd Hochschild cohomology group of the Fuchsian group uniformizing 3. Our
construction can be seen as a suitable double-scaling limit N — o, k > —o of a U(N) representation of 7,(3), where k is
the degree of the associated holomorphic vector bundle, which can be seen as the higher-genus analog of 't Hooft's clock
and shift matrices of QCD. We compare the above mentioned uniqueness of the connection with the one considered in the
differential-geometric approach to the Narasimhan—Seshadri theorem provided by Donaldson. We then use our infinite
dimensional representation to construct a C*-algebra which can be interpreted as a noncommutative Riemann surface 3.
Finally, we comment on the extension to higher genus of the concept of Morita equivalence. © 2000 Elsevier Science B.V.
All rights reserved.

1. The quotient conditions the supersymmetric quantum mechanics of U(N)
matrices. In temporal gauge, the action reads

The P_=N/R sector of the discrete light-cone

1 .o 5
o Lo L =— Tr| X#X, + XH X?
guantization of uncompactified M-theory is given by S 2R f dt r( # L[ ]

n>v
+i@T@—@TIL[X”,@]), (1)
where u,v=1,...,9. The compactification of
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gations apply to the d-dimensional torus T¢ and
have been further dealt with from various viewpoints
in [11-17]. These structures are also relevant in
noncommutative string and gauge theories [18,19].
Let e, i,j = 1,2, generate a 2-dimensional lattice in
R2. In compactifying M(atrix) theory on the torus T 2
determined by this lattice one introduces unitary
operators %, and %,, defined on the covering space
R?2 of T2, such that

%X =X+ 27, 1,j=12,
WX =X, a=3,...9
2OU=0. (2

By consistency the operators %, and %, commute,
up to a constant phase:

U Uy =" U, U,. (3
In this paper we extend Egs. (2)(3) to the case of
compact Riemann surfaces of genus g > 1. Thisisa
first step towards the compactification of M(atrix)
theory on a Riemann surface. The explicit solutions
and their supersymmetry properties will be consid-
ered elsewhere.

A Riemann surface ¥ of genus g> 1 is con-
structed as the quotient H/I", where H is the upper
half-plane, and I'c PSL (R), I'= 7,(%), isaFuch-
sian group acting on H as

az+b

_(ab _
y_(Cd)EF’ vz e (4)

In the absence of eliptic and parabolic generators,
the 2g Fuchsian generators y; satisfy

g
jl_ll (yzjflyzj‘ygjlfl‘ygjl) =1 (5)

Inspired by M(atrix) theory, let us promote the
complex coordinate z= x+ iy to an N X N complex
matrix Z=X+iY, with X=X" and Y=Y". This
would suggest defining fractional linear transforma-
tions of Z through conjugation %Z#% = (azZ+
bl)(cZ + dI)~. However, taking the trace we see
that this construction cannot be implemented for
finite N. Thus we will consider some suitable modi-
fication. For the moment note that requiring the %,
to represent the vy, gives

9
kljl(?/zk—l U Wgi1 ) = €71, (6)

which generalizes the relation of the noncommuta-
tive torus (3).

2. The noncommutative torus revisited

In order to compactify in higher genus it is neces-
sary to extract some general guidelines from the case
of the torus. In g=1 the fundamental group is
Abelian. This implies that the associated differential
generators commute, i.e. [d;,d,]=0, so it makes
sense to apply the Baker—Campbell-Hausdorff
(BCH) formula when computing the phase €7'?. On
the contrary, the fundamental group of negatively
curved Riemann surfaces is nonabelian, and the BCH
formulais not useful. The derivation of the phase in
g = 1 by means of techniques aternative to the BCH
formula will be the key point to solving the problem
in g>1.

Mimicking the case of g=1, one expects the
building blocks for the solution to the quotient condi-
tionsin g> 1to havetheform e <1 or e/(Zn*#0),
for some gauged sl ,(R) operators .Z, to be deter-
mined. We will show that finding such %, is closely
connected with the computation of the phase without
using the BCH formula. In g =1 the BCH formula
is useful, as the commutator between covariant
derivatives can be a constant. On the contrary, in
g>1, the & will be a sort of gauged d,(R)
generators, and [ £, %] can never be a c-number.

The solution to the quotient conditionsin g=11is
expressed in terms of the exponential of covariant
derivatives V,, k= 1,2, so apparently we should use
both e+~ and e“n*<1) when passing to g> 1.
While the exponential e’ will generate translations,
the operator e~ will produce PSL ,(R) transfor-
mations. As the latter are real, we are forced to
discard €“*¥1) and to use %" only. This fact
is strictly related to the nonabelian nature of the
group m(3).

Let us consider the operators

%, = M A MNER, k=12, (7)

We also introduce the functions F,(x,,X,) defined
by

%k = er)\kaka_l, k= 1,2. (8)
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The identity Af(B)A™!=f(ABA™!) and Eq. (8)

give (9, + iA)F, = 0. Also note that e**F_*({x,})

= F '({x; + &, A DeM.  Therefore, defining

G, (x4,X%,) by
=erAkak, k= 1121 (9)

we conclude that

Fk({xj+5jk)\k}):Gk_l({ Xj})Fk({Xj})' (10)

The unitary operators %, can be used to derive
the phase of Eq. (3). First we note that pulling the
derivatives to the right we get

e
=F,eMF iR, et 2 F !
XF,e"MAF IR, e e L
= Fo( X, X)) Fr (X + Ay, X)) Fo( Xy + Aq, %)
XFy (X 4+ A, %, + Ay)
X Fy(Xq + A%+ A5) Fr (X, X, + 4)
XFp( Xy, %2 + A) F3 H(%g, %p) - (11)
Let us consider the curvature of A= A dx, + A, dx,

F=dA= (9, A, — 3, A))dx; A dx,=F,dx; A dX,.

(12)

Choosing the connection to be A, = —70x,, A, =
w0X, with 6 a constant, we have Fi,=2m0 and
?/ = e '7")‘19)(28)‘131 % — el’iT)\ 9xle)\232 Further-
more, we have

Gl — e—lwAlexz — el)\lAl, G2 — e|7TA29x1 — el/\z Az,

(13)
so Eg. (10) reads

Fi( X + Ay, Xp) = €™2F (X, X,),

Fo( Xp, %o + Ay) = €' ™2F, (X, X,). (14)

The solution is F, = e7%4%f(x,), F, =
e 'm0\ f (x,), with f, (f,) an arbitrary function of
X, (X,). Substituting this into (11) we get Eq. (3), as
we would using BCH.

From (9)(13) one would understand that the con-
nection in (7) can be smply pulled to the left.
However, this is the case only if one chooses a

particular gauge, as in general we have e Ad
e'MAverd Indeed, under the gauge transformation
A — A+ 9 x, we have

e/\k(ﬁk+i Atidex) — e*ixe)\k(ﬁkﬂ Ak)eiX

= eiX({Xj+5jk)\j))* i)(((xj))e)‘k(ak+i Ak)’

(15)

whereas under a gauge transformation, e'*«Axeh js
multiplied by e'*x{) |t is easily seen that the
correct expression is

MOt A ei[::”Kdak Acgidh (16)
where in the integrand one has A(a;,x,) if k=1
and A,(xy,a,) if k= 2. 1n (16) we used a shorthand
notation; the integration limits should be written
more precisely as f"‘ +2A) In particular, the con-
tour is easily recognlzed as the path joining x, and
X + A, @ong the line with X; . fixed. Since on the
torus we can choose the zero curvature metric,
straight lines correspond to geodesics of the metric.
Thus, the above contour is the geodesic joining {x;}
with {x; + &, A,}. A direct check of Eq. (16) is that

. e Xk
M+ A e—lfxodak Ake)\kﬁkelfxodak Ay
k k

_ eif::“‘kdakAke/\kak, (17)

where we used the property that d, [, day A, =
A (X,,%,). Thisis a distinguished feature "due to the
flatness of the torus that does not hold in g> 1.
However, we redefine the contour integral for the
torus in a way which easily generalizes to higher
genus, namely,

The contour integral is along the geodesic, with
respect to the constant curvature metric, joining the
points with coordinates {x;} and {x; + & A,}.

Due to the fact that along the integration contour
either dx, =0 or dx, =0, we can replace da, A,
with A:

. . Xk . Xk S X+ A
Y, = Mt AY e—|fXEAeAkake|fxEA _ elfx: kAe)\kz?k,
(18)

so that F, = e /%A Even if on the torus the F, are
not essential, we introduced them as their higher-
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genus analog will lead to a new class of functions.
By Stokes' theorem

UUU Uy

. + Aq, . + AL, X+ A
=exp[|f(xl 1X2)A+I (Xg+Ag, Xz 2)A
(X1,X2) (X3+A1,X2)
. JXot+ A . (Xq,X5)
+i (X1, X2+ A3) A+i 1, X2 A}
(X3 A1, X+ A3) (X1, X2+ A3)

= exp(igﬁ A) =exp(if F) =emhrl  (19)
0F F

where # is a fundamental domain for the torus.

Note that A, A, is the area of the torus. Normalizing
the areato 1, we get Eq. (3).

We now show that the only possible connection
leading to a constant value of ¢, A is the one with
constant curvature. In order to denote the depen-
dence on the basepoint of the domain we use the

notation &, , . Independence from (x,,x,) means
that

F= F, 20
[ F=] (20)

for any (x;,x,) €R? Any point in R? can be
obtained by a trandation (x;,X,) = (X},X5) =
Xy, X5) = (X + by, %, + by). Noticing that 7,
= uFy x,» We see that Eq. (20) is satisfied only if
the curvature two-form F isinvariant under arbitrary
trandlations of (x,,X,). Thisfixes F to be a constant
two-form.

The above investigation captures the essence of
the construction in g=1, somehow extracting it
from its specific context. This is very useful to
reformulate the problem of deriving a projective
unitary representation of the fundamental group of a
class of manifolds which is much more genera than
the torus. We can say that in order to get a projective
unitary representation of the fundamental group of a
given manifold .# by means of operators acting on
the space L?(.#), we should consider the previous
well-defined guidelines.

3. Projective unitary representation of 77,(3) on
L2(H)

We now apply the above general analysis to the
case of higher genus Riemann surfaces. We start by

first considering a unitary representation of (%)
realized on L?(H) (the analog of e™%). For n=
—1,01 and e(z)=2z""" let us set /,=e(2)d,
Define

Ln =€, 1/2/ne%/2 =€,

n

o+ —”). (21)
They satisfy the sl ,(R) algebra
[LooLol=(n=mM)Lp,ns [LoiLas] =0,
[L,.f]=2""%,f. (22)
For k=1,2,...,29, consider the operators

T, = (-1t Lneif(Lot Lo (Lt Ly (23)

with the A picked such that

T ZT; L a2+ b 24
k2l _ykZ_CkZ+dk’ (24)
so that by (5)
g
l!;[l(TZk—szkTZ_kl—lTZ_kl) =10 (25)

On L%(H) we have the scalar product {¢|y) =
[udvéiy, with dv(2) =idz A dz/2=dx A dy. One
can check that the T, provide a unitary representa-
tion of I

For any function F satisfying |F|= 1, we define
the operators

ZP=F(z,2)L,F (2,2

1€
=ela+ Ee—” —a,InF(z,2)|, (26)

n

which also satisfy the algebra (22). Its adjoint is
given by

HON =~ R = F (@)
We now observe that the operators

AP = 2F) — It — golF) | (R, (28)
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enjoy the fundamental property that both their chiral
components are gauged in the same way by the
function F, that is

AP =F(L,+L,)F 1, (29)
while also satisfying the sl ,(R) algebra:

(A9 AP] = (n—m) AD,,
[ASf] = (2", + 2" 8,1 (30)

Furthermore, since AV = — A, the operators
el = Feln*LiE~1 are unitary.

Let b be a real number, and A a Hermitean
connection to be identified presently. Set

%= e bIZWZATk ) (31)

where the integration contour is taken to be the
Poincaré geodesic connecting z and vy, z As the
gauging functions introduced in (26) we will take the
F(z,2) solutions of the equation F,T,F, =
e'ZAT, | that is

F(vz2) —e oL "F(2.2). (32)
With the choice (32) for F,, (29) becomes

A(an) = Fk( I-n + En) I:k_:L

n+1
=z""1 9, + —d,InF,
22
1 n+1
+Z 62+T—8zlan . (33)

The A{) satisfy the algebra
42342
= (n—m) A+ F e ARle T R,
XF el AR e, I ' F(InF, —
[AG ] = (2", + 2" %)) f. (34)

Upon exponentiating A(7) one finds

InF,),

U, = eXIAT @ AL @MY ALY (35)
that is, the %, are unitary, and

— T te A e AT, (36)

It is immediate to see that the %, defined in (31)
satisfy (6) for a certain value of 6:*

9
| (AR RIN

Lz L (Y22 A
— b A b A —ib A 1
=€ [z T, € [z Te! [vilz Ty

gib
=exp Ib(/ /»7271 fvflvznz
Y12 Y2Y1Z
V2 vanaz A
7{172712

X 1_[( k1 T2k Tak 1T2k) eibg%%Av (37)

where 7, ={2,v,2,v,7:2y1 "¥,7:12 ...} is a fun-
damental domain for I'. The basepoint z, plus the
action of the Fuchsian generators on it, determine
&,, as the vertices are joined by geodesics.

For (37) to provide a projective unitary represen-
tation of I", [ dA should be z-independent. Chang-
ing z to Z can be expressed as z— 7 —,uz for
some w € PSL 2(IR) Then 7,- 7,
{nzy1 0Zy2v1 0ZY1 Y2V 02, ) Now conider
F, = nF, = mZ,uy1Z,0y,7, 2, P«'YII')’z'YlZv oy
The congruence pu, =7, , follows from two facts:
that the vertices are joined by geodesics, and that
PSL ,(R) maps geodesics into geodesics. Since I is
defined up to conjugation, I' - ulu ™, if w7, isa
fundamental domain, so is #,,,. Thus, to have zin-
dependence we need Yu € PSL ,(R)

/yZdA=fy_ﬂdA=fMysz=fy_dA. (38)

This fixes the (1,1)-form dA to be PSL,(R)-in-
variant. It is well known that the Poincaré form
is the unique PSL,(R)-invariant (1,1)-form, up
to an overall constant factor. This is a particular case
of a more genera fact [20]. The Poincaré metric
ds? =y~ 2|dz|* = 2g,,|dz|* = e¢|dz|* has curvature
R= —-9%%,4Ing,,= —1, so tha [,dve®=
—2mx(2), where x(3)=2-2g is the Euler

! The differential representation of PSL,(R) acts in reverse
order with respect to the one by matrices.
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characteristic. As the Poincare (1,1)-form is dA=
e®dy, this uniquely determines the gauge field to be

dx
A=A,dz+A,dz= 3 (39)

modulo gauge transformations. Using ¢, A = [ dA
we finally have that (37) becomes

9
I:(lj[l(?/Zk—lg/Zk?/;k—l?/;k) =272, (40)

4. Nonabelian gauge fields

Up to now we considered the case in which the
connection is Abelian. However, it is easy to extend
our construction to the nonabelian case in which the
gauge group U(1) is replaced by U(N). The opera-
tors %, now become

#, — Pl AT, (41)
where the T, are the same as before, times the
N X N identity matrix. Eq. (37) is replaced by

g

I:(I;[l(?/zk—l?/zk?/gk—l?/;k) = Pehs (42)

Given an integral along a closed contour o, with
basepoint z, the path-ordered exponentials for a
connection A and its gauge transform AY = U~ !AU
+ U~ 1dU are related by [21]

Pei$, A
—U(2)Peb AU 1(2)

= U( Z) pei¢ dcr”foldssrr”U*l(sg)pw(sg)u(sg)
XU_l( Z). (43)

Applying thisto (42), we see that the only possibility
to get a coordinate-independent phase is for the
curvature (1,1)-form F=dA+[A,Al/2 to be the
identity matrix in the gauge indicestimes a(1,1)-form
m, that is F = nl. It follows that

PeibqjagA=eib[gF' (44)

This is only a necessary condition for coordinate-in-
dependence. However, thisis the same as the Abelian

case so that % should be proportiona to the Poincaré
(1,1D-form.

Denoting by E the vector bundle on which A is
defined, we have k = deg(E) = s=tr [, F. Set w(E)
=k/N so tha [,F=27u(E)l and 7 =
— B eedy, e

x(3)

F=27u( E)wl, (45)

where w = ( €%/, dve®)dv. Thus, by (44) we have
that Eq. (42) becomes

g
I1 (7/21« 1?/2k%;k—17/;k) = 2P, (46)
k=1
which provides a projective unitary representation of
m(3) on L2(H,CM).

5. Hochschild cohomology and gauge lengths

A basic object is the gauge length function
d,(zw) = [,"A, where the contour integra is along
the Poincaré geodesic connecting z and w. In the
Abelian case

da( Z,W) = fREW% _ —iln( Z__\TZ) (47)

Rez Y w

which is equal to the angle «,,, spanned by the arc
of geodesic connecting z and w. Observe that the
gauge length of the geodesic connecting two punc-
tures, i.e. two points on the real line, is 7r. Thisis to
be compared with the usual divergence of the
Poincaré distance. Under a PSL ,(R)-transformation
w, we have (u, = d ux)

i —
du( pz.uw) = dy(zw) = 51| 250 (ag)
Moz Ky
Therefore, the gauge length of an n-gon
n
di"({zd) = X da(z2ci1)
k=1
n
—7(n-2) - ¥ a, (49)
k=1

where z,, , =2z, n>3, and «, ae the internal
angles, is PSL ,(R)-invariant.

We now show that the length of the triangle is
proportional to the Hochschild 2-cocycle of I'. The
Fuchsian generators y, € I' are projectively repre-



G. Bertoldi et al. / Physics Letters B 484 (2000) 323332 329

sented by means of unitary operators %, acting on
L?(H). The product v,y is represented by %,
which equals %%, up to a phase:

%% = ey, (50)
Associativity implies

6(j.k) +o(ik,1)=6(j.k)+6(k,l). (51)
We can easily determine 6(j,k):

. Y2 . YKYjZ . YKYjZ
?/j?/k—exp(lbfz A+|bfyZ A—|bfZ A)%k

= exp(ib/ A)?/jk, (52)

where 7;, denotes the geodesic triangle with vertices
z, y;z and vy, y; z. This identifies 6(,k) as the gauge
length of the perimeter of the geodesic triangle
times b/27. By Stokes' theorem this is the Poincarée
area of the triangle. One can check that 6(j,k) in
fact satisfies (51). This phase has been considered in
different contexts, such as the quantum Hall effect
on H [22] and Berezin's quantization of H and Von
Neumann algebras [23].

The information on the compactification of
M(atrix) theory is encoded in the action of I" on H,
plus a projective representation of I'. The latter
amounts to the choice of a phase. Physically inequiv-
aent choices of 6(j,k) turn out to be in one-to-one
correspondence with elements in the 2nd Hochschild
cohomology group of I', which is U(1). Hence
0 = by () isthe unique parameter for this compact-
ification (6 = bu(E) in the general case).

The Poincaré metric is PSL ,(R) invariant whereas
A is not. So the equality ¢, A= [, F should be a
consequence of the fact that the variation of A under
a PSL,(R) transformation, z— pwz=(az+b)/(cz
+ d), corresponds to a total derivative. In fact we
have

PSL,(R): A
duz+dupz
e E———
nZ—pmz
=A—idIn(cz+d)dz+idlIn(cz+d)dz. (53)
Since ¢z + d has no zeroes, we have that In(cz+ d)
is a genuine function on H. It follows that —id,In(cz

+ d)dz+i4d,In(cz+ d)dz, can be written as an ex-
ternal derivative so that Eq. (53) becomes

PSL,(R): A— A+din( u,/z,)°, (54)

where u,=d,uz. So a PSL ,(R)-transformation of
A is eguivalent to a gauge transformation. Under
A—>A+dy we have ["A— [YA+ y(w)— x(2),
which for x(z) =In( u,/7,)?, becomes

w w b,y
A A+ —=In . 55
A=At (55)

Moz My

6. Preautomorphic forms

Another reason why the gauge-length function is
important is that it also appears in the definition (32)
of the F,. The latter functions, which apparently
never appeared in the literature before, are of particu-
lar interest. By (32) and (47),

F(veZ,v¢2) = ( ZK_ZYK;) F(2,2). (56)

Since under a PSL,(R) transformation the factor
(w—2)/(z— W) gets transformed by a factor which
is typical of automorphic forms, we call the F,
preautomorphic forms. Eq. (32) indicates that finding
the most general solution to (56) is a problem in
geodesic analysis. In the case of the inversion y, z=
—1/z and b an even integer, a solution to (56) is
F.=(2/2):. By (47) F, = (z/2) isrelated to the
A-length of the geodesic connecting z and O:

i 0
—b[ZA

b

z
=Fk(z,2)=(5)2. (57)
An interesting formal solution to (56) is

. . b
I I har S P
F(z,2) = 1_[0 —) . (58)
l:

__1 — =
YTz l'z

Consider the uniformizing map J,:H — ¥, which
enjoys the property Jy(y2) = Ju(2), Vye I'. Then
another solution to (56) is given by G(Jy,Jy)F,,
where G is an arbitrary function of the uniformizing
map. We should require |G| = 1 for |F,|= 1.
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7. Relation with Donaldson’s approach to stable
bundles

We now present some facts about projective, uni-
tary representations of I" and the theory of holomor-
phic vector bundles [24,25]. Let E— 3 be a holo-
morphic vector bundle over 3 of rank N and degree
k. The bundle E is caled stable if the inequality
u(E") < u(E) holds for every proper holomorphic
subbundle E' cE. We may take —N<k<0. We
will further assume that I" contains a unique primi-
tive eliptic element y, of order N (i.e,, y{ =10,
with fixed point z, € H that projectsto x, € 3.

Given the branching order N of vy,, let p:I'—
U(N) be an irreducible unitary representation. It is
sad admissible if p(y,) =e 2"'*/NI. Putting the
eliptic element on the right-hand side, and setting
P = p(yy), (5) becomes

g

ljl(sz—lpszEJI—lpz_jl):eZﬂk/Nﬂ- (59)

On the trivial bundie H x CN —» H there is an
action of I': (z,v) = (yz,p(y)v). This defines the
guotient bundle

HxCN/I>H/I'=53. (60)

Any admissible representation determines a holo-
morphic vector bundle E, > 3 of rank N and de-
gree k. When k=0, E is simply the quotient
bundle (60) of HxCN—H. The Narasimhan—
Seshadri (NS) theorem [26] now states that a holo-
morphic vector bundle E over ¥ of rank N and
degree k is stable if and only if it isisomorphic to a
bundle E,, where p is an admissible representation
of I'. Moreover the bundles E, and E, are iso-
morphic if and only if the repr&entatlons p, and p,
are equivalent.

A differential-geometric approach to stability has
been given by Donaldson [27]. Fix a Hermitean
metric on X, for example the Poincaré metric, nor-
malized so that the area of 3 equals 1. Let us denote
by o its associated (1,1)-form. A holomorphic bun-
dle E is stable if and only if there exists on E a
metric connection A with centra curvature Fy =
—27iu(BE)wl; such a connection A is unique.

The unitary projective representations of I' we
constructed above have a uniquely defined gauge
field whose curvature is proportional to the volume

form on 3. With respect to the representation con-
sidered by NS, we note that NS introduced an elliptic
point to produce the phase, while in our case the
latter arises from the gauge length. Our construction
is directly connected with Donaldson’s approach as
F =iF,, where F is the curvature (45). The main
difference is that our operators are unitary differen-
tial operators on L*(H,C") instead of unitary matri-
ces on CN. This allowed us to obtain a non-trivial
phase aso in the Abelian case.

It is however possible to understand the formal
relation between our operators and those of NS. To
see this we consider the adjoint representation of I’
on EndC",

Adp(y)Z=p(v)Zp *(y), (61)

where Z€ EndCN is understood as an N X N ma
trix. Let us aso consider the trivia bundle H X
EndCN - H. The action of I' (z,Z2) —~
(yz,Ad p(y)Z) defines the quotient bundle

HxEndCN/I'>H/I'=3. (62)

Then the ideais to consider a vector bundle E’ in the
double scaling limit N’ — «, k' - —o, with u(E’)
=K /N’ fixed, that is w(E') = bu(E). In this limit,
fixing a basis in L2(H,C"), the matrix elements of
our operators can be identified with those of p(y).

8. Noncommutative unifor mization

Let us now introduce two copies of the upper
half-plane, one with coordinates z and z, the other
with coordinates w and w. While the coordinates z
and z are reserved to the operators %, we intro-
duced previously, we reserve w and W to construct a
new set of operators. We now introduce honcommu-
tative coordinates expressed in terms of the covariant
derivatives

W=4q,+iA,, W=a,+iA,, (63)

with A, = A, = 1/(2Imw), so that [W,W] = iF,,,
where F,5 |/[2(Imw)2] Let us consider the fol-
lowing realization of the d ,(R) algebra:

A~

L,=—w, Ly=—23(wg,+3qw),

L, = —a,wa,. (64)
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We then define the unitary operators

A

Tk = e/\(—k}( L 1+_|:— 1)e/\%k)( |:0+_|:o)e/\(1k)( i+ E1) , (65)

where the A are as in (23). Set 7} = T,%,. Since
the T, satisfy (25), it follows that the 7, satisfy
(46), times the N X N identity matrix, and
ad, + by

70,7 =T34, T = i d
k “w k

(66)

Setting W= G4,G ™, i.e. G=(w—W)?, and using
Af(B)A~ 1 =f( ABA™1), we see that

W7, = TWI = G(W)T,4,T 1GY(W),

(67)
where
W=TwT !
= —e M 4 200 (Lo — A%w)
=22 ( L, + 2000 — A92w),  (68)
and by (66)
w7, = T 1= S D (69)
W +d,
where
W= a, + G(W)[ 4,6 2(W)], (70)

which differs from W by the connection term. Eq.
(69) can be seen as representing the noncommutative
analog of uniformization.

9. C*-algebra

By a natural generalization of the n-dimensional
noncommutative torus, one defines a noncommuta:
tive Riemann surface 3, in g > 1 to be an associa-
tive algebra with involution having unitary genera-
tors %, obeying the relation (40). Such an algebrais
a C*-algebra, asit admits a faithful unitary represen-
tation on L2(H,CN) whose image is norm-closed.
Relation (40) is also satisfied by the 7. However,
while the %, act on the commuting coordinates z,z,
the 7, act on the operators W and W. The latter,
factorized by the action of the 7, in (69), can be

pictoridly identified with a sort of nhoncommutative
coordinates on 3.

Each y#1in I' can be uniquely expressed as a
positive power of a primitive element pe I', primi-
tive meaning that p is not a positive power of any
other p' e I" [28]. Let 7, be the representative of
p. Any '€ C* can be written as

7= )Y L cP7 +cl, (71)
pe{prim} n=0

for certain coefficients c(”, c,. A trace can be
defined as tr 7= c,,.

In the case of the torus one can connect the
C*-agebras of U(1) and U(N). To see this one can
use 't Hooft's clock and shift matrices V,, V,, which
satisfy V,V, = 2" MM,y The U(N) C*-algebra
is constructed in terms of the V, and of the unitary
operators representing the U(1) C*-algebra. Morita
equivalence is an isomorphism between the two. In
higher genus, the analog of the V, is the U(N)
representation p(y) considered above. One can ob-
tain a U(N) projective unitary differential represen-
tation of I' by taking 7} p(y,), with ;. Abelian.
This nonabelian representation should be compared
with the one obtained by the nonabelian 7, con-
structed above. In this framework it should be possi-
ble to understand a possible higher-genus analog of
the Morita equivalence.

The isomorphism of the C*-algebras is a direct
consequence of an underlying equivalence between
the U(1) and U(N) connection. The z-independence
of the phase requires F to be the identity matrix in
the gauge indices. This in turn is deeply related to
the uniqueness of the connection we found. The
latter is related to the uniqueness of the NS connec-
tion. We conclude that Morita equivalence in higher
genus is intimately related to the NS theorem.

Our operators correspond to the N — o« [imit of
projective unitary representations of I". These opera-
tors may be useful in studying the moduli space of
M(atrix) string theory [29]. They also play arole in
the N — oo limit of QCD as considered in [30].

Finally, let us note that an alternative proposal of
noncommutative Riemann surfaces and C*-algebras
has been considered in [22,31].
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