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Special values of L-functions
and the arithmetic of Darmon points

By Matteo Longo at Padova, Victor Rotger at Barcelona and Stefano Vigni at London

Abstract. Building on our previous work on rigid analytic uniformizations, we intro-
duce Darmon points on Jacobians of Shimura curves attached to quaternion algebras over Q
and formulate conjectures about their rationality properties. Moreover, if K is a real quadratic
field, E is an elliptic curve over Q without complex multiplication and � is a ring class charac-
ter such that LK.E; �; 1/ 6D 0, we prove a Gross–Zagier type formula relating Darmon points
to a suitably defined algebraic part of LK.E; �; 1/; this generalizes results of Bertolini, Dar-
mon and Dasgupta to the case of division quaternion algebras and arbitrary characters. Finally,
as an application of this formula, assuming the rationality conjectures for Darmon points we
obtain vanishing results for Selmer groups of E over extensions of K contained in narrow ring
class fields when the analytic rank ofE is zero, as predicted by the Birch and Swinnerton-Dyer
conjecture.

1. Introduction

The purpose of this article is threefold. Firstly, following [10], [12] and [15] and building
on our previous work [23] on rigid analytic uniformizations, we introduce a special supply of
points on Jacobians of Shimura curves which we call Darmon points, after the foundational
work [10] of Henri Darmon in his investigation of counterparts in the real setting of the theory
of complex multiplication. To be in line with the current language, our points could also be
called “Stark–Heegner points” (as in loc. cit.), but we feel that the new terminology we adopt
here is more representative of the genesis of our constructions. Secondly, we prove an avatar of
the Gross–Zagier formula relating Darmon points to the special values of twists by ring class
characters of base changes to real quadratic fieldsK ofL-functions of elliptic curvesE over Q,
provided the analytic rank of E over K is 0. Finally, under this analytic condition we use this
formula to prove vanishing results for (twisted) Selmer groups of elliptic curves over narrow
ring class fields of real quadratic fields. Let us describe first the motivation and background
and then our results more in detail.

Let A=Q be an elliptic curve of conductor NA. Throughout this work we stay for sim-
plicity in the realm of elliptic curves, but the reader should find no difficulties in extending
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our statements to the more general setting of a modular abelian variety A=Q associated with a
normalized newform fA 2 S2.�0.N // with trivial nebentypus and Fourier coefficients living
in a totally real number field of arbitrary degree; the reader may consult [19] and the references
therein for the necessary background.

Let K be a real quadratic field of discriminant ıK with .NA; ıK/ D 1. Assume that there
exists a prime ` which is inert inK and dividesNA exactly. If one further assumes the Heegner
condition that all primes dividing NA=` be split in K, then the sign of the functional equation
of the L-function LK.A; s/ of A over K is �1 and the Birch and Swinnerton-Dyer conjecture
predicts that the rank of the Mordell–Weil group A.H/ is at least ŒH W K� for all (narrow) ring
class fields H of K.

Under these conditions, in [10] Darmon introduced a family of local points on A over
the unramified quadratic extension of Q` and conjectured that they are in fact global. More
precisely, he predicted that his points are rational over narrow ring class fields of K and sat-
isfy properties which are analogous to those enjoyed by classical Heegner points over abelian
extensions of imaginary quadratic fields (see [4] for results in this direction); these points
should account for the expectations of high rank described above. Darmon’s points were later
lifted from elliptic curves to certain quotients of classical modular Jacobians by Dasgupta in
[12]; this was achieved by proving a rigid analytic uniformization result for modular Jacobi-
ans which can be phrased as an equality of L-invariants and turns out to be a strong form
of a theorem of Greenberg and Stevens ([16]). Both Darmon’s and Dasgupta’s constructions,
relying heavily on the theory of modular symbols, do not lend themselves to straightforward
extensions to more general settings in which the sign of the functional equation of LK.A; s/
is still �1 (so that a similar family of points should exist) but the Heegner condition is not
verified (cf. [11, Conjecture 3.16] or below for details). To circumvent this problem, in [15]
M. Greenberg reinterpreted Darmon’s theory in terms of group cohomology; this allowed him
to conjecturally define local points onA, generalizing Darmon’s original constructions to much
broader arithmetic contexts. It must be noted that Greenberg’s definitions are conditional on
the validity of an unproved statement ([15, Conjecture 2]); this conjecture (over Q) has been
proved by the authors of the present paper in [23] and, independently and by different methods,
by Dasgupta and Greenberg in [13].

The main result of [23], of which Greenberg’s conjecture is a corollary, provides an
explicit rigid analytic uniformization of the maximal toric quotient of the Jacobian of a Shimura
curve attached to a division quaternion algebra over Q at a prime dividing exactly the level, and
can be viewed as complementary to the classical theorem of Čerednik and Drinfeld that gives
rigid uniformizations at primes dividing the discriminant. Moreover, it extends to arbitrary
quaternion algebras the results of Dasgupta for classical modular curves.

In order to describe the content of this article we need to introduce some notation, which
will be used throughout our work. As above, let K be a real quadratic field of discriminant ıK ,
which we embed into the real numbers by using one of its two archimedean places11;12,
and let ` be a prime number that remains inert in K. Let OK be the ring of integers of K
and for every integer c � 1 let Oc D Z C cOK be the order of K of conductor c. SettingbOc WD Oc ˝Z

bZ (with bZ being the profinite completion of Z), let

PicC.Oc/ D bO�cK�1;CnA�K=K�
be the narrow (or strict) class group of Oc , where AK is the ring of adeles of K and K�

1;C is
the connected component of the identity in K�11 � K

�
12

. By class field theory, PicC.Oc/ is
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canonically isomorphic to the Galois group Gc WD Gal.Hc=K/ where Hc is the narrow ring
class field of K of conductor c.

Let D � 1 be the square-free product of an even number of primes and M � 1 be a
positive integer prime to D such that `−DM . Let XD0 .M/ and XD0 .M`/ denote the Shimura
curves attached to the indefinite quaternion algebra B of reduced discriminant D and choices
of Eichler orders R0 � R of levels M and M`, respectively (cf. [11, Chapter IV]).

In the first part of this paper we introduce local Darmon points on the `-new quotient
JD0 .M`/`-new of the Jacobian ofXD0 .M`/; ifA=Q is an elliptic curve of conductorDM`, then
we know by modularity and by the Jacquet–Langlands correspondence that A is a quotient of
JD0 .M`/`-new and our points lift from A those defined by Greenberg. Following [10], [12] and
[15], we formulate global rationality and reciprocity conjectures for them. All definitions and
conjectures, together with a quick review of the main results of [23], can be found in Section 3
(see, in particular, §3.2). We remark that the constructions and the techniques introduced in [23]
and in the present paper have been used in [25] to prove that linear combinations of Darmon
points on elliptic curves weighted by certain genus characters of K are rational over the genus
fields of K predicted by Conjecture 3.8. This extends to an arbitrary quaternionic setting the
theorem on the rationality of Stark–Heegner points obtained by Bertolini and Darmon in [4],
and at the same time gives evidence for the rationality conjectures formulated here and in [15].

A crucial role in the definition of Darmon points is played by the group

�` WD
�
R˝ ZŒ1=`�

��
1

of elements of reduced norm 1 of R˝ZŒ1=`�, which can be embedded in SL2.Q`/ and which
we call the Ihara group at ` (see §2.1). The abelianization �ab

`
of �` is well known to be finite,

and we devote Section 2 to the study of its support. In the absence of the counterparts for
Shimura curves associated with division quaternion algebras of the results proved by Ribet in
[32] (this being due to the lack of a full analogue for general Shimura curves of the so-called
Ihara’s lemma for modular curves), we invoke a theorem of Diamond and Taylor ([14]) on the
Eisenstein-ness of certain maximal ideals of Hecke algebras to get a bound on the support of
�ab
`

which is fine enough for our arithmetic purposes. The reader can find all details in §2.3
(see, in particular, Theorem 2.2), which may be of independent interest.

Let us now describe the main results of this article. Let E=Q be an elliptic curve without
complex multiplication of conductorN D NE prime to ıK and denote by f0.q/D

P1
nD1 anq

n

the normalized newform of weight 2 on �0.N / associated with E by the Shimura–Taniyama
correspondence. Let LK.E; s/ D LK.f0; s/ be the complex L-function of E over K and
assume that

the sign of the functional equation of LK.E; s/ isC1.

This implies that LK.E; s/ vanishes to even order (and is expected to be frequently non-zero)
at the critical point s D 1. This is equivalent to saying that the set of primes

† WD
®
qjN W ordq.N / is odd and q is inert in K

¯
has even cardinality (and is possibly empty). We shall further assume that ordq.N / D 1 for all
q 2 †. LetD be the product of the primes in† (withD WD 1 if† D ;), then setM WD N=D.

Write bGc for the group of complex-valued characters of Gc , fix a character � 2 bGc and
let LK.E; �; s/ be the twist of LK.E; s/ by �. For the remainder of this article choose c prime
to ıKN . By [11, Theorem 3.15], it follows from our running assumptions that the sign of the
functional equation for LK.E; �; s/ isC1 as well.
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Write ZŒ�� for the cyclotomic subring of C generated over Z by the values of �. In Sec-
tion 4 we introduce the algebraic part LK.E; �; 1/ 2 ZŒ��S of the special value LK.E; �; 1/,
where S is a certain auxiliary finite set of prime numbers. Such an algebraic part is defined
in terms of a twisted sum of homology cycles associated with conjugacy classes of oriented
optimal embeddings of Oc into a fixed Eichler order of B of level M . Thanks to previous
work of Popa ([30]), it can be shown that LK.E; �; 1/ 6D 0 if and only if LK.E; �; 1/ 6D 0

(cf. Theorem 4.8).
From now on assume that LK.E; �; 1/ 6D 0. Suppose that p is a prime number ful-

filling the conditions listed in Assumption 5.1, which exclude only finitely many primes. In
particular, p is a prime of good reduction for E such that LK.E; �; 1/ is not zero modulo p.
Corresponding to any such p, in §5.2 we introduce the notion of p-admissible primes (usually
simply called “admissible”), which are certain primes not dividing Np and inert in K. For a
sign � 2 ¹˙º and a suitable p-admissible prime ` we introduce a map

@` W J
.`/
� .K`/˝ ZŒ��S �! ZŒ��=pZŒ��S

(denoted by @0
`
˝ id in §7.2) and a twisted sum of Darmon points P �� 2 J

.`/
� .K`/ ˝ ZŒ��S .

Here J .`/� is an abelian variety over Q whose existence is a conjectural refinement of our work
in [23] and which is predicted to be isogenous to JD0 .M`/`-new (see §3.1 and §3.2 for details).
If D D 1 (i.e., B ' M2.Q/), then our Darmon points need to be replaced by the points on
modular Jacobians defined by Dasgupta in [12, §3.3] (see also [5, §1.2]).

Letting Œ?� denote the class of the element ? in a quotient group and writing t` for the
exponent of �ab

`
, our Gross–Zagier type formula for the special value of LK.E; �; s/ can then

be stated as follows.

Theorem 1.1. The equality @`.P ��/ D t` � ŒLK.E; �; 1/� holds in ZŒ��S=pZŒ��S .

This result extends the main theorem of [5], where a similar formula was proved for
D D 1 and � trivial. The extension of [5, Theorem 3.9] to the case of D D 1 and arbitrary
characters is relatively straightforward, the only ingredient that needs to be added being a
version of Popa’s classical formula in the twisted setting. However, note that the methods of
[5] are heavily based on modular symbol constructions, while our proof for arbitrary D > 1

relies on the techniques introduced in [23]. A proof of Theorem 1.1, which can also be viewed
as a “reciprocity law” in the sense of [3], is given in Theorem 7.4. As in [5], a key ingredient
is a level raising result (Theorem 6.3) at the admissible prime `; more precisely, since ` is inert
in K, the construction of Darmon points is available “at level M`”, and the proof of the above
theorem boils down to suitably relating Darmon points on J .`/� to the class modulo p of the
algebraic part LK.E; �; 1/. We devote Sections 6 and 7 to a careful analysis of these issues.

What makes the formula of Theorem 1.1 interesting, and especially useful for the arith-
metic applications we are going to describe, is the fact that p does not divide the integer t`.
The possibility of requiring such a non-divisibility for a p-admissible prime ` is non-trivial and
rests on the results on the support of �ab

`
that, as already mentioned, we obtain in Section 2.

We conclude this introduction by stating the main arithmetic consequences of Theorem
1.1. Let K 0 be an extension of K contained in Hc for some c � 1 as before and let LK0.E; s/
be the L-function of E over K 0 (recall that a necessary and sufficient condition for an abelian
extension K 0 of K to be contained in a ring class field is that it be Galois over Q with the non-
trivial element of Gal.K=Q/ acting on Gal.K 0=K/ by inversion). For any prime number p let
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Selp.E=K 0/ be the p-Selmer group of E over K 0. While Theorem 1.1 is of a genuinely local
nature (that is, to obtain it we do not need to use any conjectural global property of Darmon
points), to prove the following vanishing result (Theorem 8.15) we have to assume the validity
of Conjecture 3.8, which predicts that the Darmon points are rational over suitable (narrow)
ring class fields of K.

Theorem 1.2. Assume Conjecture 3.8. If LK0.E; 1/ 6D 0, then

Selp.E=K 0/ D 0

for all but finitely many primes p. In particular, E.K 0/ is finite.

Theorem 1.2 is a consequence of a vanishing result for p-Selmer groups of E twisted by
anticyclotomic characters (Theorem 8.11), and the set of primes for which it is valid contains
those satisfying Assumption 5.1. Observe that this result, which is predicted by the conjecture
of Birch and Swinnerton-Dyer, is (a strengthening of) the counterpart in the real quadratic
setting of the main result of [24], which was obtained (unconditionally) in the more classical
context of imaginary quadratic fields and Heegner points. When D D 1, the above theorem
represents an explicit instance of the “potential arithmetic applications” of Theorem 1.1 which
are alluded to by Bertolini, Darmon and Dasgupta in the introduction to [5]. We refer the reader
to §8.6 for other arithmetic consequences of Theorem 1.1 (e.g., twisted versions of the Birch
and Swinnerton-Dyer conjecture for E over K 0 in analytic rank 0).

Notation and conventions. Throughout our work we fix an algebraic closure NQ of Q
and view all number fields as subfields of NQ. If F is a number field, we write OF and GF for
the ring of integers and the absolute Galois group Gal. NQ=F / of F , respectively, and denote by
Fv the completion of F at a place v.

For all prime numbers ` we fix an algebraic closure NQ` of Q` and an embedding
NQ ,! NQ`. Moreover, C` denotes the completion of NQ`.

If ` is a prime, then F` is the finite field with ` elements. We sometimes write Fp in place
of Z=pZ when we want to emphasize the field structure of Z=pZ.

If G is a profinite group and M is a continuous G-module, we let H 1.G;M/ be the first
group of continuous cohomology ofG with coefficients inM . In particular, ifG is the absolute
Galois group of a (local or global) field F , then we denote H 1.G;M/ also by H 1.F;M/.

Let F be a number field, p a prime number and A=F an abelian variety. We write AŒpn�
for the pn-torsion subgroup of A. NQ/. As customary, we let Selpn.A=F / be the pn-Selmer
group of A over F , i.e., the subgroup of H 1.F;AŒpn�/ consisting of those classes which
locally at every place of F belong to the image of the local Kummer map. If A has good
reduction at a prime ideal q � OF such that q−p, we let H 1

sing.Fq; AŒp�/ and H 1
fin.Fq; AŒp�/

denote the singular and finite parts of H 1.Fq; AŒp�/ as defined in [24, §3].
Finally, for any ring R and any pair of maps f WM ! N , g W P ! Q of R-modules we

write f ˝ g W M ˝R P ! N ˝R Q for the R-linear map obtained by extending additively
the rule m˝ p 7! f .m/˝ g.p/.
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2. On Ihara’s group

2.1. Basic definitions. As in the introduction, letD � 1 be a square-free product of an
even number of primes and let M � 1 be an integer coprime with D. Let B be the (unique,
up to isomorphism) indefinite quaternion algebra over Q of discriminant D. Let R D R.M/

be a fixed Eichler order of level M in B and write �D0 .M/ for the group of norm 1 elements
in R. If ` −DM is a prime number, then let R0 D R.M`/ � R be an Eichler order of level
M` contained in R and let �D0 .M`/ be the group of norm 1 elements in R0.

Fix an isomorphism of Q`-algebras

�` W B ˝Q Q`

'
�! M2.Q`/

such that �`.R˝ Z`/ is equal to M2.Z`/ and �`.R0 ˝ Z`/ is equal to the subgroup of M2.Z`/
consisting of upper triangular matrices modulo `. Letting the subscript “1” denote elements of
norm 1, we define the Ihara group at ` to be the subgroup of SL2.Q`/ given by

�` WD
�
R˝ ZŒ1=`�

��
1

�`
,�! SL2.Q`/:

It acts on Drinfeld’s `-adic half-plane H` WD C` �Q` with dense orbits. The study of �` (or,
rather, of its abelianization) when ` varies over the set of primes not dividing MD will be the
goal of the next two subsections.

2.2. Finiteness of �ab
`

. We begin our discussion with a direct proof of the finiteness of
the abelianization �ab

`
of �` for all ` −MD, which is a well-known fact (cf., e.g., [20]). The

reader is referred to [27, Chapters VIII and IX] (in particular, to [27, p. 324, Proposition 5.3])
for general results of this type.

Before proving the proposition we are interested in, let us introduce some notation. Let

�1; �2 W X
D
0 .M`/ �! XD0 .M/

be the two natural degeneracy maps defined as

�D0 .M`/z
�1
7�! �D0 .M/z; �D0 .M`/z

�2
7�! �D0 .M/!`z:

Here !` is an element in R.M`/ of reduced norm ` that normalizes �D0 .M`/. As a piece
of notation, for any element  in (respectively, subgroup G of) �D0 .M`/ we shall write
O WD !`!

�1
`

(respectively, OG WD !`G!�1` ). Moreover, let

�� WD ��1 ˚ �
�
2 W H1

�
XD0 .M/;Z

�2
�! H1

�
XD0 .M`/;Z

�
and

�� WD .�1;�; �2;�/ W H1
�
XD0 .M`/;Z

�
�! H1

�
XD0 .M/;Z

�2

Brought to you by | Universita degli Studi di Padova
Authenticated | 147.162.114.35
Download Date | 6/6/14 8:53 AM



Longo, Rotger and Vigni, Special values of L-functions and Darmon points 205

be the maps induced in homology by pull-back and push-forward, respectively. In terms of
group homology, they correspond to the maps

�� WD ��1 ˚ �
�
2 W H1

�
�D0 .M/;Z

�2
�! H1

�
�D0 .M`/;Z

�
and

�� WD .�1;�; �2;�/ W H1
�
�D0 .M`/;Z

�
�! H1

�
�D0 .M/;Z

�2
induced by corestriction and restriction, respectively.

Proposition 2.1. The group �ab
`

is finite for all primes `−MD.

Proof. As shown in [23, equation (30)], there is a long exact sequence in homology

H1
�
�D0 .M`/;Z

� ��
�! H1

�
�D0 .M/;Z

�2
�! H1.�`;Z/(2.1)

�! H0
�
�D0 .M`/;Z

�
�! H0

�
�D0 .M/;Z

�2
:

Since the actions on Z are trivial, the last homomorphism can be naturally identified with the
diagonal embedding of Z into Z2, which is obviously injective. Thus the exactness of (2.1)
implies that coker.��/ ' H1.�`;Z/, which in turn is isomorphic to �ab

`
. But in the proof of

[23, Lemma 6.2] it is shown that the endomorphism �� ı �
� is injective with finite cokernel.

Since coker.��/ is a quotient of coker.�� ı ��/, it follows that �ab
`

is finite.

2.3. Results on the support of �ab
`

. In this subsection we study the support (i.e., the
set of primes dividing the order) of �ab

`
, which is finite by Proposition 2.1, as ` varies in the set

of primes not dividingMD. Thanks to Ihara’s lemma, in the case of modular curves (i.e., when
D D 1) the size of �ab

`
is controlled in [32, Theorem 4.3], and an explicit result on the support

of �ab
`

has been given by Dasgupta in [12]. Namely, in [12, Proposition 3.7] it is shown that
the primes in this set are divisors of 6�.M/.`2 � 1/, where � is the classical Euler function.

Assume D > 1. The extra difficulties in the non-split quaternionic setting arise from
the fact that the counterpart of [32] is not yet available. Results of this type would follow, for
instance, if �` had the so-called “congruence subgroup property”. In this case, it might be
possible to show that the support of �ab

`
is contained in the set of primes dividing �.M/, thus

showing that it is in fact independent of `. See [7] for an account of this problem.
We will obtain results on the support of �ab

`
by means of a theorem of Diamond and

Taylor ([14, Theorem 2]) which represents a weak analogue of Ihara’s lemma for Shimura
curves.

To begin our study, observe that the two coverings �1 and �2 of §2.2 give rise by Picard
functoriality to a homomorphism of abelian varieties

� W JD0 .M/˚ JD0 .M/ �! JD0 .M`/

between Jacobians. The kernel of � is isomorphic to Hom.�ab
`
;U/, where U is the group of

complex numbers of norm 1. Thus we see that if a prime number p is in the support of �ab
`

,
then the map

�p W J
D
0 .M/Œp�˚ JD0 .M/Œp� �! JD0 .M`/Œp�

induced by � on the p-torsion subgroup is not injective. We study the kernel of �p by means of
[14, Theorem 2].
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To start with, let us fix some notation. For any prime q − D choose an isomorphism
'q W B ˝Q Qq ' M2.Qq/ of Qq-algebras in such a way that for all qjM one has

'q.R˝ Zq/ D

´ 
a b

c d

!
2 M2.Zq/

ˇ̌̌
c � 0 .mod qn.q//

µ
;

where qn.q/ is the exact power of q dividingM . We also require that '` satisfies the additional
condition

'`.R
0
˝ Z`/ D

´ 
a b

c d

!
2 M2.Z`/

ˇ̌̌
c � 0 .mod `/

µ
:

For every q as above and every integer m � 0 write � loc
0 .q

m/ for the subgroup of GL2.Zq/
consisting of matrices

�
a b
c d

�
with c � 0 .mod qm/. We further denote by � loc

1 .q
m/ the sub-

group of � loc
0 .q

m/ consisting of matrices
�
a b
c d

�
with d � 1 .mod qm/ and c � 0 .mod qm/.

For primes q−D let
iq W B ,�! GL2.Qq/

denote the composition of the canonical inclusion B ,! B ˝ Qq with isomorphism 'q . Let
�D1 .M/ be the subgroup of �D0 .M/ consisting of those elements  with iq./ 2 � loc

1 .q
n.q//

for all qjM . Moreover, let Q � 1 be the smallest integer such that MQ � 4 and ` − Q
(so Q D 1 if M � 4) and define �D1 .MQ/ as the subgroup of �D1 .M/ consisting of those
elements  such that iq./ 2 � loc

1 .q/. Finally, consider the subgroup �D1;0.MQ; `/ of
�D1 .MQ/ whose elements are the  such that i`./ 2 � loc

0 .`/. Write XD1 .M/, XD1 .MQ/
and XD1;0.MQ; `/ for the compact Shimura curves associated with �D1 .M/, �D1 .MQ/ and
�D1;0.MQ; `/, respectively, and let JD1 .M/, JD1 .MQ/ and JD1;0.MQ; `/ denote their Jacobian
varieties. For i D 1; 2 the inclusion �D1;0.MQ; `/ � �

D
1 .MQ/ induces coverings

#i W X
D
1;0.MQ; `/ �! XD1 .MQ/

defined, as above, by #1.Œz�/ D Œz� and #2.Œz�/ D Œ!`.z/�. By Picard functoriality, we obtain
a homomorphism

# W JD1 .MQ/˚ J
D
1 .MQ/ �! JD1;0.MQ; `/

between Jacobians. Further, the inclusions

�D1 .MQ/ � �
D
1 .M/ � �D0 .M/

induce coverings of the relevant Riemann surfaces and thus, again by Picard functoriality, ho-
momorphisms � W JD0 .M/ ! JD1 .M/ and � W JD1 .M/ ! JD1 .MQ/. Finally, the inclusion
�D0 .M`/ � �D1;0.MQ; `/ gives a homomorphism � W JD0 .M`/! JD1;0.MQ; `/. These maps
fit in the commutative diagram

(2.2) JD0 .M/˚ JD0 .M/
�˚� //

�

��

JD1 .M/˚ JD1 .M/
�˚� // JD1 .MQ/˚ J

D
1 .MQ/

#

��
JD0 .M`/

� // JD1;0.MQ; `/:

Since � and � arise by Picard functoriality from coverings of Riemann surfaces, their kernels
are finite. Thus the kernels of � ˚� and �˚ � are finite too, and we denote by C1 and C2 their
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orders. Note that C1 and C2 do not depend on ` (the kernel of � is, by definition, the Shimura
subgroup of JD0 .M/ and its size is known to divide �.M/; see [22]).

Observe that the kernel of # is finite as well. To show this, note that the maps #1 and #2
induce, this time by Albanese functoriality, a homomorphism

# 0 W JD1;0.MQ; `/ �! JD1 .MQ/˚ J
D
1 .MQ/

on Jacobians, and the composition # 0 ı # is represented by the matrix
�
`C1 T`
T` `C1

�
. Since the

eigenvalues of T` are bounded by 2
p
`, we see that # 0 ı # is injective on tangent spaces, and

thus its kernel is finite. So the kernel of # is finite; we denote its cardinality by C.`/. In the
following we study the size of C.`/. We first note that if a prime p divides C.`/, then the map

#p W J
D
1 .MQ/Œp�˚ J

D
1 .MQ/Œp� �! JD1;0.MQ; `/Œp�

induced by # on the p-torsion subgroup is not injective.
For any discrete subgroup G of SL2.R/ denote by S2.G;C/ the C-vector space of cusp

forms of weight 2 and level G. Let F D ¹f1; : : : ; fhº, where h is the dimension of JD1 .MQ/,
be a basis of S2.�D1 .MQ/;C/ consisting of eigenforms for the action of the Hecke algebra
and (at the cost of renumbering) assume that ¹f1; : : : ; fmº is a set of representatives for the
set of orbits of F under the action of GQ. Denote by A1 D Af1 ; : : : ; Am D Afm the abelian
varieties associated with these forms via the Eichler–Shimura construction, fix an isogeny

JD1 .MQ/
�
�!

mY
iD1

Ai

and let C3 be the order of its kernel, which of course does not depend on `. By the Jacquet–
Langlands correspondence, each of the abelian varieties Ai is isogenous over Q to the abelian
variety Af0;i associated with a classical modular form f0;i 2 S2.�1.MDQ/;C/ for the con-
gruence subgroup �1.MDQ/ � SL2.Z/.

For every i D 1; : : : ; m fix an isogeny  i W Ai ! Af0;i and denote by di the size of
its kernel. Set C4 WD

Qm
iD1 di and notice that C4 is independent of `. Finally, recall that

the mod p representation of GQ associated with a modular form f 2 S2.�
D
1 .MQ/;C/ is

irreducible for all but finitely many prime numbers p. For every i let ei be the product of the
primes p such that the GQ-representation Af0;i Œp� is reducible, then set C5 WD

Qm
iD1 ei .

Now let us recall [14, Theorem 2], which is a (weak) substitute for Ihara’s lemma in
the context of Shimura curves attached to non-split quaternion algebras. Let p be a prime
number not dividing 6MDQ`. Following [14], denote by T the image in End.JD1 .MQ//
of the polynomial ring generated over Z by the Hecke operators Tq and the spherical (i.e.,
diamond) operators Sq for primes q −MDQ. A maximal ideal m of T containing p is said to
be Eisenstein if for some integer d � 1 and all but finitely many primes q with q � 1 .mod d/
we have Tq � 2 2 m and Sq � 1 2 m. By [14, Theorem 2], the maximal ideals of T in the
support of ker.#p/ are Eisenstein.

If m is a maximal ideal of T belonging to the support of S2.�1.MDQ/;C/ with resid-
ual characteristic p, then m is the kernel of the reduction modulo p of the homomorphism
T ! OE associated with one of the eigenforms f0;i 2 S2.�1.MDQ/;C/, where E is a
suitable number field. For simplicity, denote by f the eigenform associated with m. By
[14, Proposition 2], the ideal m is Eisenstein if and only if the mod p Galois representation �m
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attached to m is reducible. With notation as above, this can be rephrased by saying that m is
Eisenstein if and only if the GQ-representation Af Œp� is reducible.

The main result of this subsection is the following.

Theorem 2.2. There exists an integer C � 1 such that for all but finitely many primes
`−MD the support of �ab

`
is contained in the set of primes dividing C`.

Proof. With notation as before, we show that the integer

C WD 6C1C2C3C4C5MDQ;

which depends only on M , D and Q, does the job. More precisely, we show that if `−MDQ
and the prime p belongs to the support of �ab

`
, then p divides C`. Thus fix a prime `−MDQ.

As remarked earlier, if the prime p lies in the support of �ab
`

, then ker.�p/ is not zero.
The first step of the proof consists in showing that if p −C3C4MDQ` but p divides the

order of ker.#p/ then pjC5. To this aim, fix a maximal ideal m of T in the support of ker.#p/.
Then m has residual characteristic p and is Eisenstein because p−6MDQ`. Since

ker.#p/ � JD1 .MQ/Œp�˚ J
D
1 .MQ/Œp�;

it follows that m belongs to the support of JD1 .MQ/Œp�. As p − C3, the ideal m belongs to
the support of the T -module Ai Œp� for some i 2 ¹1; : : : ; mº. Next, since p −C4, the isogeny
 i W Ai ! Af0;i induces an isomorphism Ai Œp� ' Af0;i Œp� of GQ-modules, where, as before,
f0;i is the classical cusp form associated with fi by the Jacquet–Langlands correspondence.
Hence m belongs to the support of the T -module Af0;i Œp� as well. But, as pointed out before,
m is Eisenstein, so the GQ-representation Af0;i Œp� is reducible, and this proves that pjC5.

The second (and final) step is an easy diagram chasing. Namely, suppose that
p − 6C3C4C5MDQ`. Thanks to the first step, we already know that #p is injective (note
that the order of ker.#p/ is a priori a power of p). The commutativity of diagram (2.2) shows
that

ker.�p/ � ker
�
.�˚ �/ ı .� ˚ �/

�
;

so the order of ker.�p/ divides C1C2, whence pjC1C2.

3. Darmon points on Jacobians of Shimura curves

In this section assume that D > 1. Our goal is to define Darmon points on Jacobians
of Shimura curves over Q and on closely related abelian varieties. These points are lifts of
the local points on elliptic curves introduced by M. Greenberg in [15]. The constructions we
perform and the conjectures we formulate are the counterparts of those proposed by Dasgupta
in [12, §3.3] when D D 1, later conjecturally refined by Bertolini, Darmon and Dasgupta in
[5, §§1.2–1.3]. We keep the notation of Section 2 in force for the rest of the article.

3.1. Rigid uniformizations of Jacobians of Shimura curves. In this subsection we
recall, and conjecturally refine, the main results of [23].

Denote byH the maximal torsion-free quotient of the cokernel of the map �� introduced
in §2.2, let JD0 .M`/ be the Jacobian variety of XD0 .M`/ and let JD0 .M`/`-new be its `-new
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quotient, whose dimension will be denoted by g; the abelian group H is free of rank 2g. Now
consider the torus

T WD Gm ˝Z H;

where Gm denotes the multiplicative group (viewed as a functor on commutative Q-algebras).
We will regardH and T as �`-modules with trivial action, where �` is the Ihara group of §2.1.
Write M0.H/ for the �`-module of H -valued measures on P1.Q`/ with total mass 0.

In analogy with what is proved by Dasgupta in [12] for modular Jacobians, the abelian
variety JD0 .M`/`-new is uniformized by means of a suitable quotient of T . In order to do
this, in [23, Sections 4–6] an explicit element � in the cohomology group H 1.�`;M0.H// is
introduced as follows.

Denote by T the Bruhat–Tits tree of PGL2.Q`/, by V the set of its vertices and by E the
set of its oriented edges. For any edge e 2 E write s.e/; t.e/ 2 V for its source and its target,
respectively, and Ne for the same edge with reversed orientation. Let v� be the distinguished
vertex corresponding to the maximal order M2.Z`/ and let e� be the edge emanating from v�
and corresponding to the Eichler order consisting of the matrices

�
a b
c d

�
2 M2.Z`/ such that

`jc. Set Ov� WD t .e�/.
For any abelian groupM let F .V ;M/ and F .E;M/ denote the set of mapsm W V !M

and m W E ! M , respectively. These two sets are natural left �`-modules with action
. �m/.x/ WD m.�1x/ for any  2 �` and x 2 V or E . Define also

F0.E;M/ WD
®
m 2 F .E;M/ j m. Ne/ D �m.e/

¯
and

Fhar.M/ WD

²
m 2 F0.E;M/

ˇ̌̌ X
s.e/Dv

m.e/ D 0 for all v 2 V

³
;

which are �`-submodules of F .E;M/. The Fhar.H/ can be identified with M0.H/.
Fix once and for all

� a prime number r −`DM ;

� a system of representatives ¹giº`iD0 for �D0 .M`/n�D0 .M/;

� a system of representatives Y D ¹eºe2EC for �D0 .M`/n�` such that e.e/ D e� and of
the form

e D gi1 Ogj1gi2 Ogj2 � � �gis Ogjs with ik; jk 2 ¹0; : : : ; `º

for every even oriented edge e 2 EC.

Notice that, with these choices, for every even vertex v 2 VC there exists an edge e0 with
s.e0/ D v such that, putting v WD e0 , we have ¹eºs.e/Dv D ¹givº`iD0. This way, the
set ¹vºv2VC is also a system of representatives for �D0 .M/n�` satisfying v.v/ D v� for
every v 2 VC. Similarly, for any odd vertex v 2 V� we have ¹eºt.e/Dv D ¹ Ogivº`iD0,
where ¹vºv2V� is a system of representatives for O�D0 .M/n�` satisfying v.v/ D Ov� for
every v 2 V�.

The next object made its first appearance in [23, §4], where it is shown that it is indeed
well defined. The reader is referred to [23, Section 2] for a discussion of Hecke operators on
group homology and cohomology.
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Definition 3.1. Set

� WD .Tr � r � 1/ � �
Y
2 H 1

�
�`;Fhar.H/

�
D H 1

�
�`;M0.H/

�
;

where Tr is the r-th Hecke operator and �Y is the class of the cocycle

�Y
2 Z1

�
�`;M0.H/

�
; �Y

 .Ue/ WD Œg;e� for all  2 �` and e 2 EC:

Here g;e WD e
�1
�1.e/

2 �D0 .M`/ and for every g 2 �D0 .M`/ we write Œg� 2 H for the

class of g in the quotient H of H1.�D0 .M`/;Z/ ' �D0 .M`/ab. Finally, Ue WD �1e .Z`/.

Now we briefly recall from [23, §5.1] the integration pairing between Div0H` and
M0.H/. For any d 2 Div0H` let fd denote a rational function on P1.C`/ such that
div.fd / D d . The function fd is well defined only up to multiplication by constant non-zero
functions; however, since the multiplicative integral of a non-zero constant against a measure
� 2M0.H/ is 1, we get a GL2.Q`/-invariant pairing

(3.1) Div0H` �M0.H/ �! T .C`/; .d; �/ WD �

Z
P1.Q`/

fd d�:

We refer the reader to [23, §5.1] for the definition of the multiplicative integral as a limit of
Riemann products. Finally, by cap product we obtain from (3.1) a pairing

H1
�
�`;Div0H`

�
�H 1

�
�`;M0.H/

�
�! T .C`/:

It follows that the cohomology class � defines an integration map on the homology group
H1.�`;Div0H`/ with values in T .C`/.

Composing the boundary homomorphism H2.�`;Z/ ! H1.�`;Div0H`/ induced by
the degree map with the integration map produces a further map H2.�`;Z/ ! T .C`/ whose
image is denoted byL. It turns out thatL is a lattice of rank 2g in T .Q`/which is preserved by
the action of a suitable Hecke algebra. Finally, let K` denote the (unique, up to isomorphism)
unramified quadratic extension of Q`.

The following is [23, Theorem 1.1].

Theorem 3.2. The quotient T=L admits a Hecke-equivariant isogeny over K` to the
rigid analytic space associated with the product of two copies of JD0 .M`/`-new.

In fact, something more precise can be said. Write W1 for the Atkin–Lehner involution
defined in [23, §2.2], and for any ZŒW1�-moduleM and sign � 2 ¹˙º setM� WDM=.W1��1/.
Define

T� WD Gm ˝Z H�:

Since the cokernel of the canonical mapH ! HC˚H� is supported at 2, it follows that there
exists an isogeny of 2-power degree

(3.2) T=L �! TC=LC ˚ T�=L�

of rigid analytic tori over Q`. Then Theorem 3.2 is proved in [23] by showing that for all
� 2 ¹C;�º the quotient T�=L� admits a Hecke-equivariant isogeny overK` to the rigid analytic
space associated with the abelian variety JD0 .M`/`-new. In the sequel we shall assume the
following variant of [5, Conjecture 1.5].
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Conjecture 3.3. If � 2 ¹C;�º, then the quotient T�=L� is isomorphic over K` to the
rigid analytic space associated with an abelian variety J .`/� defined over Q.

As in [5], we expect that the abelian variety J .`/� will be endowed with a natural action
of the Hecke algebra and that the isomorphism of Conjecture 3.3 will be Hecke equivariant;
moreover, we also expect that if one lets the non-trivial element of Gal.K`=Q`/ act on T=L
via the Hecke operator U`, then the above isomorphism will be defined over Q`. Granting
Conjecture 3.3, fix once and for all isomorphisms

(3.3) T˙=L˙
'
�! J

.`/
˙

defined over K`.

3.2. Darmon points on J .`/

˙
and on JD

0
.M`/`-new. In this subsection we also assume

that ` is inert in K, so K` is nothing other than the completion of K at the prime above `. We
freely use the notation of [23], to which we refer for all details. Since ` is kept fixed in the
discussion to follow, for simplicity we set

� WD �`:

In [23, §7.3] a class d 2 H 2.�; T .C`// is introduced whose image in H 2.�; T .C`/=L/ is
trivial; moreover, the lattice L is the smallest subgroup of T .Q`/ with this property. Choose
a representative � of �. If z 2 K` � Q`, then d can be represented by the 2-cocycle
d D dz 2 Z

2.�; T .K`// given by

(3.4) .1; 2/ 7�! �

Z
P1.Q`/

t � �11 .z/

t � z
d�2.t/:

It follows that there exists a map ˇ D ˇz W � ! T=L such that

(3.5) ˇ12 � ˇ
�1
1
� ˇ�12 � d1;2 .mod L/

for all 1; 2 2 � . Notice that ˇ is well defined only up to elements of Hom.�; T=L/.
Denote by # W K ,! R the embedding fixed at the beginning of this paper and choose

also an embedding K ,! C`. If O is an order of K, then an embedding  W K ,! B is said to
be an optimal embedding of O into R if  �1.R/ D O. Denote by Emb.O; R/ the set of such
embeddings. For every  2 Emb.O; R/ there is a unique z 2 K` �Q` such that

 .˛/

 
z 

1

!
D ˛

 
z 

1

!
for all ˛ 2 K:

By Dirichlet’s unit theorem, the abelian group of units in O of norm 1 is free of rank 1; let " be
the generator of this group such that #."/ > 1, then set  WD  ."/ 2 �D0 .M/.

Let t D t` denote the exponent of �ab. Set

P WD t � ˇz . / 2 T .K`/=L:

Multiplication by t ensures that P does not depend on the choice of a map ˇ as above.

Brought to you by | Universita degli Studi di Padova
Authenticated | 147.162.114.35
Download Date | 6/6/14 8:53 AM



212 Longo, Rotger and Vigni, Special values of L-functions and Darmon points

Proposition 3.4. The point P does not depend on the choice of a representative of �.

Proof. Let � and �0 be two representatives for �. It turns out that the 2-cocycles dz 
and d 0z defined as in (3.4) in terms of � and �0, respectively, are cohomologous. More pre-
cisely, there exists a map � W � ! T .Kp/ such that

dz .1; 2/ D d
0
z 
.1; 2/ � �.12/ � �.1/

�1
� �.2/

�1

for all 1; 2 2 � . One can explicitly write an expression for � as follows. Letm 2M0.H/ be
such that � D �0 C .m/ �m for all  2 �; a direct computation shows that

(3.6) �./ D

�
�

Z
P1.Qp/

s � �1.z /

s � z 
dm.s/

�
� './;

where ' W � ! T .Kp/ is a homomorphism. Write N� for the composition of � with the projec-
tion onto T .Kp/=L. If ˇz W � ! T=L (respectively, ˇ0z W � ! T=L) splits dz (respec-
tively, d 0z ) modulo L, then ˇz D ˇ

0
z 
� N� � '0 for a suitable homomorphism '0 W � ! T=L.

It follows that

(3.7) t � ˇz D
�
t � ˇ0z 

�
� .t � N�/:

Since  .z / D z and m has total mass 0, equation (3.6) shows that t � �. / D 1. By
definition of the point P , the result follows from this and equation (3.7).

The next proposition studies the dependence of P on  .

Proposition 3.5. The point P depends only on the �D0 .M/-conjugacy class of  .

Proof. Fix an embedding  , an element  2 �D0 .M/ and set  0 WD  �1. As in
[23, §4.2], choose a radial (in the sense of [23, Definition 4.7]) system Yrad D ¹eºe2EC to
compute �, and introduce the set

Y0rad WD
®
 0e WD �1.e/

�1
¯
e2EC

:

One checks that Y0rad is again a radial system. A simple computation shows that

(3.8) �

Z
P1.Qp/

t � �11 z 

t � z 
d�Yrad

2
.t/ D �

Z
P1.Qp/

t � �11 �1z 0

t � z 0
d�

Y0rad
2�1

.t/:

If ˇ0z 0 splits the 2-cocycle

.1; 2/ 7�! �

Z
P1.Qp/

t � �11 z 0

t � z 0
d�

Y0rad
2 .t/;

then equation (3.8) ensures that for all Q 2 � we can take ˇz . Q/ D ˇ0z 0 . Q
�1/. By

Proposition 3.4, the point P 0 does not depend on the choice of the representative for �. Since
�Y0rad is a representative of � by [23, Lemma 4.11], it follows that

P 0 D t � ˇ
0
z 0
. 0/ D t � ˇz . / D P ;

as was to be shown.
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Although, in light of this result, the symbol PŒ � would be more appropriate, for nota-
tional simplicity we will continue to write P for the points we have just introduced. However,
the reader should always keep in mind that P D P 0 whenever  and  0 are �D0 .M/-
conjugate.

Now let �˙ W T=L ! J
.`/
˙

be the two maps obtained by composing isogeny (3.2) with
the canonical projections onto the factors and then with isomorphisms (3.3).

Definition 3.6. The Darmon points on J .`/
˙

attached to O are the points

P˙ WD �˙.P / 2 J
.`/
˙
.K`/

for  2 Emb.O; R/.

When a choice of sign � 2 ¹˙º has been made, the point P � will be denoted simply
by P (or even by Pd where d is the conductor of O, if the embedding  is understood).
Although in this article we shall ultimately work with points on J .`/� for a fixed choice of sign
�, it is worthwhile to explicitly introduce Darmon points on Jacobians of Shimura curves. To
do this, choose isogenies

(3.9) T˙=L˙ �! JD0 .M`/`-new

over K` and write �˙ W T=L ! JD0 .M`/`-new for the two maps obtained by composing
isogeny (3.2) with the canonical projections onto the factors and then with isogenies (3.9).

Definition 3.7. The Darmon points on JD0 .M`/`-new attached to O are the points

�˙.P / 2 J
D
0 .M`/`-new.K`/

for  2 Emb.O; R/.

If A is an elliptic curve over Q of conductor DM`, then the points introduced in Def-
inition 3.7 map to the local points on A defined by M. Greenberg in [15] under the modular
projection JD0 .M`/`-new ! A.

We conclude this subsection by stating the algebraicity properties conjecturally satisfied
by our Darmon points. Write H for the narrow ring class field of K attached to O and denote
by

.a;  / 7�!  a

the action of a 2 PicC.O/ on (�D0 .M/-conjugacy classes of) embeddings in Emb.O; R/ as
described, e.g., in [35, Chapter III, §5C] (see also Proposition 4.2). Finally, let PicC.O/ be the
narrow class group of O and let

rec W PicC.O/
'
�! Gal.H=K/

be the isomorphism induced by the reciprocity map of global class field theory.
For the purposes of the present paper, we formulate our rationality conjecture only for

Darmon points on J .`/
˙

, but completely analogous statements could be given for points on
JD0 .M`/`-new as well.
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Conjecture 3.8. If  2 Emb.O; R/, then P˙ 2 J
.`/
˙
.H/ and

P˙ a D rec.a/�1
�
P˙ 

�
for all a 2 PicC.O/.

This is the analogue of [5, Conjecture 1.7] and is a refinement of [12, Conjecture 3.9],
which in turn is the counterpart of [10, Conjectures 5.6 and 5.9].

4. Algebraic parts of special values and a theorem of Popa

Let E=Q be an elliptic curve of conductor N and let K be a real quadratic field as in the
introduction; moreover, again with the notation of the introduction, set

D WD
Y
q2†

q � 1; M WD N=D:

Let f denote the modular form on �D0 .M/ (well defined up to scalars) associated with f0 by
the Jacquet–Langlands correspondence; in particular, if D D 1 then f D f0. In this section
we introduce the algebraic part of the special value at s D 1 of the L-function

LK.E; �; s/ D LK.f0; �; s/ D LK.f; �; s/

and describe some consequences of a formula proved by Popa in [30].

4.1. Review of the group structure of PicC.Oc/. Recall the notation of the introduc-
tion; in particular, let c � 1 be an integer prime to ıKN . As before, the reciprocity map of
global class field theory provides a canonical isomorphism

rec W PicC.Oc/
'
�! Gc ;

where Gc is the Galois group over K of the narrow ring class field of K of conductor c. Let
now Pic.Oc/ be the Picard group of Oc , that is the group of homothety classes of proper Oc-
ideals of K; class field theory then identifies Pic.Oc/ with the Galois group over K of the
(weak) ring class field Kc of K of conductor c. It turns out that if h.c/ is the order of Pic.Oc/
and hC.c/ is the order of PicC.Oc/ then hC.c/=h.c/ D 1 or 2, soHc is an extension ofKc of
degree at most 2 (see, e.g., [8, Chapter 15, §I]).

Since .c; ıK/ D 1 by assumption, the principal ideal .
p
ıK/ is a proper Oc-ideal of K,

so we can consider its class DK in PicC.Oc/. Of course, D2
K D 1, hence DK is either trivial

or of order 2. Furthermore, there is a short exact sequence

(4.1) 0 �! ¹1;DKº �! PicC.Oc/ �! Pic.Oc/ �! 0;

so the natural surjection PicC.Oc/ � Pic.Oc/ is an isomorphism (i.e., hC.c/ D h.c/) pre-
cisely when DK is trivial. Equivalently, PicC.Oc/ D Pic.Oc/ if and only if the order Oc has
a unit of norm �1. In general, sequence (4.1) does not split; in fact, it splits if and only if the
integer ıK is not a sum of two squares (see [8, Chapter 14, §B]).
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Now define the Galois element

�K WD rec.DK/ 2 Gc :

It follows that �K is trivial when hC.c/ D h.c/ and has order 2 otherwise.
The automorphism �K plays a special role in our considerations because it allows us to

introduce, as in [2], a natural notion of parity for characters of Gc . As before, write bGc for the
group of complex-valued characters of Gc .

Definition 4.1. A character � 2 bGc is said to be even (respectively, odd) if �.�K/ D 1
(respectively, �.�K/ D �1).

Equivalently, a character is even if it factors through Gal.Kc=K/, and is odd otherwise.
In particular, if hC.c/ D h.c/, then �K D 1 and all characters of Gc are even.

4.2. Oriented optimal embeddings. Equip R and Oc with local orientations at prime
numbers dividing N D DM , i.e., ring homomorphisms

Oq W R �! kq; oq W Oc �! kq

for every prime qjN , where kq stands for the finite field with q (respectively, q2) elements if
qjM (respectively, qjD).

Write Emb.K;B/ for the set of embeddings of K into B , which is non-empty because
all the primes at which B is ramified are inert in K. The group B� acts on Emb.K;B/ by
conjugation on B and the stabilizer of  2 Emb.K;B/ is the (non-split) torus  .K�/. We say
that  2 Emb.K;B/ is an oriented optimal embedding of Oc into R if  2 Emb.Oc ; R/ and

Oq ı  jOc D oq

for every prime qjN . The set of all such embeddings will be denoted by E.Oc ; R/, and the
cardinality of the set of �D0 .M/-conjugacy classes of elements of E.Oc ; R/ is hC.c/.

Let !1 2 R� be an element of reduced norm �1. Note that !1 normalizes �D0 .M/; in
fact, all such elements lie in a single orbit for the action of �D0 .M/. For any  2 B� set

(4.2) � WD !1!
�1
1 :

In particular, � 2 R when  2 R. Moreover, if  2 E.Oc ; R/, then it is immediate to check
that

 � WD !1 !
�1
1

is in E.Oc ; R/ too. By definition, if  .
p
ıK/ D  then  �.

p
ıK/ D 

�.

Proposition 4.2. There exists a bijection

F W E.Oc ; R/=�
D
0 .M/ �! PicC.Oc/

such that F.Œ ��/ DDK � F.Œ �/ for all  2 E.Oc ; R/.
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Proof. To begin with, the claimed correspondence is certainly not canonical, as
E.Oc ; R/=�

D
0 .M/ is naturally a torsor under the action of PicC.Oc/. In order to describe

it, we are thus led to fix an auxiliary optimal embedding  0 2 E.Oc ; R/. Now we can provide
an explicit bijection

(4.3) PicC.Oc/ �! E.Oc ; R/=�
D
0 .M/

as follows. Given the class Œa� 2 PicC.Oc/ of an ideal a, the setR 0.a/ is a left ideal, which is
known to be principal because B is indefinite. Since n.R�/ D ¹˙1º, we may find an element
a 2 R with reduced norm n.a/ > 0 such that R 0.a/ D Ra, this a being well defined up to
elements in �D0 .M/. Set

 Œa� WD a 0a
�1
2 E.Oc ; R/:

It is easy to check that the rule Œa� 7! Œ Œa�� induces a well-defined bijection as in (4.3). The
inverse of (4.3) can then be taken to be the searched-for F in the statement of the proposition.

Finally, notice that if a D b � .
p
ıK/ then we can take

a D !1 � b �  0.
p
dK/;

where b 2 R is such that n.b/ > 0 and R 0.b/ D Rb. Hence

 Œa� D
�
!1 � b �  0.

p
dK/

�
 0
�
 0.

p
dK/
�1
� b�1 � !�11

�
:

Since  0.
p
dK/ 0 0.

p
dK/
�1 D  0 because Oc is a commutative ring, we conclude that

 Œb�DK
D  �Œb�:

Thus
F.Œ ��/ DDK � F.Œ �/

for all  2 E.Oc ; R/, as was to be shown.

We choose once and for all an optimal embedding  0 2 E.Oc ; R/ and regard the bijec-
tion F of Proposition 4.2, built out of  0, as fixed. Notice that, by this proposition, Œ �� D Œ �
if and only if hC.c/ D h.c/. Observe also that this is the case precisely when !1 can be taken
to lie in Oc . Consider the composition

G WD rec ı F W E.Oc ; R/=�D0 .M/ �! Gc ;

which is a bijection satisfying

(4.4) G.Œ ��/ D �K �G.Œ �/

for all  2 E.Oc ; R/. Now for every � 2 Gc choose an embedding

 � 2 G
�1.�/;

so that the family ¹ �º�2Gc is a set of representatives of the �D0 .M/-conjugacy classes of
oriented optimal embeddings of Oc into R. If ;  0 2 R, write  �  0 to indicate that  and
 0 are in the same �D0 .M/-conjugacy class, and adopt a similar notation for (oriented) optimal
embeddings of Oc into R. Since

G.Œ �� �/ D �K �G.Œ � �/ D �K�
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by equality (4.4), we deduce that

(4.5)  �� �  �K�

for all � 2 Gc .
After choosing a (fundamental) unit "c of Oc of norm 1, normalized so that "c > 1 with

respect to the fixed real embedding of K, define

(4.6) � WD  � ."c/ 2 �
D
0 .M/

for all � 2 Gc . As an immediate consequence of (4.5) and (4.6), one has

(4.7) �� D  
�
� ."c/ �  �K� ."c/ D �K�

for all � 2 Gc . This seemingly innocuous conjugacy relation will play a crucial role in the
proof of Proposition 4.4.

4.3. Homology of Shimura curves and complex conjugation. Let TM D TD
M be the

algebra of Hecke operators acting on cusp forms of weight 2 on �D0 .M/, which is generated
over Z by the Hecke operators T` for primes ` −DM and Uq for primes qjM . The algebra
TM acts naturally on the (singular) homology group H1.XD0 .M/;Z/. As before, let a` 2 Z
be the eigenvalue of f for the action of the Hecke operator T` (respectively, U`) if ` − M
(respectively, if `jM ). Set

If WD
˝
T` � a`; `−DM I Uq � aq; qjM

˛
� TM ;

so that If is the kernel of the algebra homomorphism

(4.8) 'f W TM �! Z; T` 7�! a`; Uq 7�! aq

determined by f . As a piece of notation, for any TM -module A write Af WD A=If A for the
maximal quotient of A on which TM acts via 'f .

We want to embed XD0 .M/ into its Jacobian. If D D 1, then let

(4.9) � W X0.M/ �! J0.M/

be the usual map sending the cusp1 on X0.M/ to the origin of J0.M/.
IfD > 1, then, following [37], let the Hodge class be the unique � 2 Pic.XD0 .M//˝Q of

degree 1 on which the Hecke operators at primes not dividing M act as multiplication by their
degree (see [37, p. 30] for an explicit expression of � and [9, §3.5] for a detailed exposition).
Writing JD0 .M/ for the Jacobian variety of XD0 .M/, one can define a map

XD0 .M/ �! JD0 .M/˝Q

by sending a point x 2 XD0 .M/ to the class Œx�� �. Multiplying this map by a suitable integer
m� 0 gives a finite embedding

(4.10) � W XD0 .M/ �! JD0 .M/

defined over Q (cf. [9, §3.5]), which we fix once and for all.
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Choose a parametrization
JD0 .M/ �! E

defined over Q, whose existence is guaranteed by the modularity of E and (when D > 1) the
Jacquet–Langlands correspondence. Denote by

�E W X
D
0 .M/ �! E

the surjective morphism over Q obtained by pre-composing the parametrization above with the
map � defined either in (4.9) or in (4.10). Let now dE be the degree of �E , and if T is a finite
set of prime numbers write ZT for the localization of Z in which the primes in T are inverted.
Throughout this article we fix a (minimal) finite set of primes S such that

� all prime divisors of 6dE belong to S ;

� the ZS -module H1.XD0 .M/;ZS /f is torsion-free.

The universal coefficient theorem for homology ensures that this can actually be done. Then
push-forward gives an isomorphism

(4.11) �E;� W H1
�
XD0 .M/;ZS

�
f

'
�! H1.E;ZS /:

Remark 4.3. Although – in order to make our choice somewhat more canonical – the
set S is taken to be minimal, enlarging S does not affect the above two properties, and so all
statements proved remain valid when S is replaced by any set containing it. This freedom of
modifying the size of S will be exploited in the proof of Theorem 6.3.

Let H be the complex upper half-plane and let… W H ! XD0 .M/ be the canonical map.
For every point z0 2 H there is a group homomorphism

(4.12) �D0 .M/ �! �1
�
XD0 .M/;….z0/

�
defined by the following recipe: if  2 �D0 .M/ and ˛ W Œ0; 1�! H is a path from z0 to .z0/,
then the map (4.12) sends  to the (strict) homotopy class of the loop … ı ˛ around ….z0/.
Since H is simply connected, this class does not depend on the choice of ˛.

By Hurewicz’s theorem, the abelianization of �1.XD0 .M/;….z0// is canonically iso-
morphic to H1.XD0 .M/;Z/, hence there is a group homomorphism

Œ � � W �D0 .M/ �! H1
�
XD0 .M/;ZS

�
which is independent of the choice of the base point z0 in H .

Recall the elements � 2 �D0 .M/ with � 2 Gc that were introduced in §4.2. Since the
group H1.XD0 .M/;ZS / is abelian, for each � 2 Gc the homology class Œ� � does not depend
on the representative  � of the �D0 .M/-conjugacy class of (oriented) optimal embeddings in
terms of which � was defined (cf. equation (4.6)).

Let now " 2 R� be a unit of norm �1 and let � denote the involution on H given by
z 7! ". Nz/, where Nz is the conjugate of the complex number z. Since �D0 .M/ is a normal
subgroup of R�, the map � descends to an involution on XD0 .M/ by the formula

(4.13) ….z/� D …
�
". Nz/

�
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for all z 2 H ; according to Shimura, this action does not depend on the choice of an " as above
and coincides with the natural action of complex conjugation on the Riemann surface XD0 .M/

([34, Proposition 1.3]).
The rule (4.13) induces an action of � on the homology of XD0 .M/. With notation as in

(4.2), by definition of the homomorphism Œ � �, for all  2 �D0 .M/ one has

(4.14) Œ�� D Œ��

in H1.XD0 .M/;ZS /. The involution � restricts to a permutation of the subset ¹Œ� �º�2Gc ; the
understanding of this permutation provided by equation (4.7) will be crucial for our definition
of the algebraic part of LK.E; �; 1/.

4.4. The algebraic part. Here we introduce the algebraic part of the special value of
LK.E; �; s/ at the critical point s D 1. Set

I� WD
X
�2Gc

��1.�/Œ� � 2 H1
�
XD0 .M/;ZŒ��S

�
:

Since the Œ� � do not depend on z0 in H , the cycle I� is independent of z0.
The next result says that � acts either as C1 or as �1 on I� according to the parity of �

that was introduced in Definition 4.1.

Proposition 4.4. The cycle I� lies in the C1-eigenspace (respectively, �1-eigenspace)
for � if � is even (respectively, odd).

Proof. Thanks to equality (4.14) and the conjugacy relation of equation (4.7), one has

I �� D
X
�2Gc

��1.�/Œ� �
�
D

X
�2Gc

��1.�/Œ�� � D
X
�2Gc

��1.�/Œ�K� �

D �.�K/ �

� X
�2Gc

��1.�K�/Œ�K� �

�

D �.�K/ �

� X
&2Gc

��1.&/Œ& �

�
D �.�K/I�;

which proves the proposition.

Consider the push-forward

I�;E WD �E;�.I�/ 2 H1.E;ZŒ��S /;

write H1.XD0 .M/;ZŒ��S /˙ for the eigenspace of H1.XD0 .M/;ZŒ��S / on which the involu-
tion � acts as multiplication by ˙1, and adopt a similar convention for H1.E;ZŒ��S /. Since
the morphism �E is defined over Q, one has

I� 2 H1
�
XD0 .M/;ZŒ��S

��
H) I�;E 2 H1.E;ZŒ��S /

�

for � 2 ¹C;�º. The reader is suggested to compare our homology cycle I�;E with the twisted
sum of period integrals I.f; �/ introduced in [2, p. 191].
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Keeping in mind that H1.E;Z/ identifies with the lattice of periods associated with a
Weierstrass equation for E, it can be checked that both H1.E;ZŒ��S /C and H1.E;ZŒ��S /�

are free of rank 1 over ZŒ��S ; here we fix canonical generators ˛CE and ˛�E of these two
eigenspaces over ZŒ��S as described in [28, §2.2].

Now suppose that I� 2 H1.XD0 .M/;ZŒ��S /� with � 2 ¹C;�º: by Proposition 4.4, the
nature of � depends on the parity of �. Let LK.E; �; 1/S be the unique element of ZŒ��S such
that the equality

(4.15) I�;E D LK.E; �; 1/S � ˛
�
E

holds in H1.E;ZŒ��S /.

Definition 4.5. The element LK.E; �; 1/S 2 ZŒ��S appearing in (4.15) is the algebraic
part of LK.E; �; 1/.

Since the finite set S has been fixed once and for all, from here on we drop the dependence
of the algebraic part of LK.E; �; 1/ on S from the notation and simply write LK.E; �; 1/ in
place of LK.E; �; 1/S .

Before we proceed to crucial considerations on the vanishing of LK.E; �; 1/, a few com-
ments are in order.

Remark 4.6. By construction, the cycle I� naturally belongs to the submodule
H1.X

D
0 .M/;ZŒ��/. In fact, as in [5], the need to localize at S will become evident only

later, but for clarity of exposition we decided to introduce the required formalism at the outset
of our work.

Remark 4.7. The definition of the algebraic part of the special value LK.E; �; 1/ given
by Bertolini, Darmon and Dasgupta in [5] is slightly different. In fact, LK.E; �; 1/ is defined
in [5, Section 2] to be the natural image of I� in H1.XD0 .M/;ZŒ��S /f (note, however, that
Bertolini et al. only consider the classical case of modular curves, with c D 1 and trivial �).
On the other hand, tensoring the isomorphism in (4.11) with ZŒ��S over ZS shows that the two
definitions of LK.E; �; 1/ are essentially equivalent.

4.5. Vanishing of the special value. The goal of this subsection is to prove that the
special value of LK.E; �; s/ vanishes exactly when its algebraic part does. This is a conse-
quence of a result proved by Popa in [30, Section 5] and reformulated in more classical terms
in [30, Section 6] when D D 1 and � is unramified. In this special case, Popa’s computa-
tions are based on a very explicit description of a bijection between suitable ideal classes and
conjugacy classes of optimal embeddings. While it seems difficult to exhibit such an explicit
correspondence when D > 1, Proposition 4.2 provides sufficient information to allow for a
“classical” formulation of Popa’s theorem in the general setting as well.

The result we are interested in is the following.

Theorem 4.8 (Popa). The special value LK.E; �; 1/ is non-zero if and only if
LK.E; �; 1/ is non-zero.
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Proof. As already remarked, this is a consequence of the formula for LK.E; �; 1/
proved by Popa in [30]. Since the results of Popa are expressed in the adelic language of
automorphic representations, we explain how to deduce the theorem in the formulation that
is convenient for our purposes. In fact, in equality (4.20) we give an explicit formula for
LK.E; �; 1/ when the character � is not necessarily trivial; in doing this, we freely use the
notation of [30].

First of all, observe that, due to the normalization commonly adopted in automorphic-
theoretic contexts (cf. [21, §5.14]), the special value of LK.E; �; s/ at s D 1 corresponds
to L.1=2; �f � ��/ in [30]. As recalled in §4.2, the �D0 .M/-conjugacy classes of oriented
optimal embeddings of Oc into R are in bijection with the elements of the Galois group Gc .
With arguments analogous to those exposed in [30, Section 6], if !f WD 2�if .z/dz is the
differential on XD0 .M/ associated with f , one then obtains an equality

(4.16) jl.�f /j
2
D

ˇ̌̌̌
ˇ X
�2Gc

��1.�/

Z � .z0/

z0

f .z/dz

ˇ̌̌̌
ˇ
2

D

ˇ̌̌̌ Z
I�

!f

ˇ̌̌̌2
;

where l is a certain linear form on a suitable space of automorphic forms (see [30, p. 852]) and
�f is the automorphic form attached to f as in [30, Proposition 5.3.6]. Equality (4.16) is the
analogue (with k D 1) of the formula given, in the split case, in [30, p. 862] for an unramified
� (in this setting, see also [30, Theorem 6.3.1], which provides a formulation of Popa’s results
suitable for the arithmetic applications of [5]). Now [30, Theorem 5.3.9] with k D 1 asserts
that there is a non-zero constant � (denoted by C in loc. cit.) such that

(4.17) LK.E; �; 1/ D
�Nc2
p
ıK

Y
`jNc

�
1C

1

`

�
jl.�f /j

2
I

the explicit expression of � in the case where c D 1 can be found in [30, §5.4].
Combining equations (4.16) and (4.17) yields immediately the formula

(4.18) LK.E; �; 1/ D
�Mc2
p
ıK

Y
`jMc

�
1C

1

`

�ˇ̌̌̌ Z
I�

!f

ˇ̌̌̌2
;

and the claim of the theorem follows from (4.18) by passing to the push-forward

I�;E D �E;�.I�/ 2 H1.E;ZŒ��S /:

Namely, let !E be a Néron differential on the Néron model ofE over Z; by [36, Theorem 5.6],
there is an equality

��E .!E / D c.�E /!f

with c.�E / 2 C�. Then one has

(4.19) c.�E /

Z
I�

!f D

Z
I�;E

!E D LK.E; �; 1/

Z
˛�E

!E ;

where � 2 ¹C;�º and I� 2 H1.XD0 .M/;ZŒ��S /�. Finally, combining (4.18) and (4.19) gives
the equality

(4.20) LK.E; �; 1/ D
ˇ̌
LK.E; �; 1/

ˇ̌2
�

�Mc2

jc.�E /j2
p
ıK

Y
`jMc

�
1C

1

`

�ˇ̌̌̌ Z
˛�E

!E

ˇ̌̌̌2
;

and the theorem is proved.
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5. Admissible primes relative to f and p

For any prime number q fix an isomorphism EŒq� ' .Z=qZ/2 by choosing a basis of
EŒq� over Z=qZ and let

�E;q W GQ �! GL2.Z=qZ/

be the representation of GQ acting on EŒq�.

5.1. Choice of p. Here we introduce the restrictions on the prime numbers p under
which we will prove our main results; they are analogous to those made in [24, Assump-
tion 4.1]. Before doing this, recall the finite set of primes S of §4.3, the algebraic part
LK.E; �; 1/ 2 ZŒ��S introduced in §4.4 and the prime r appearing in Definition 3.1. Finally,
fix an integer C as in Theorem 2.2.

Assumption 5.1. Suppose that LK.E; �; 1/ ¤ 0. Then

(1) p 62 S ;

(2) p−2cNCıKhC.c/.r C 1 � ar/;

(3) the Galois representation �E;p is surjective;

(4) the image of LK.E; �; 1/ in the quotient ZŒ��S=pZŒ��S is not zero;

(5) p− jE.Hc;q/torsj where Hc;q is the completion of Hc at a prime q dividing DM .

The “open image theorem” of Serre ([33]) ensures that condition (3) is satisfied for all
but finitely many primes p, while the torsion subgroup of E.Hc;q/ is finite by a well-known
theorem of Lutz ([26]); moreover, condition (4) excludes only a finite number of primes p since
LK.E; �; 1/ 6D 0 by Theorem 4.8. As a consequence, Assumption 5.1 is fulfilled by almost all
prime numbers p. Observe that, in order to avoid ambiguities, the condition LK.E; �; 1/ 6D 0
will always explicitly appear in the statements of our results.

Remark 5.2. Condition (5) in Assumption 5.1 is introduced in order to “trivialize” the
image of the local Kummer map at primes of bad reduction for E. The reader is referred
to, e.g., [18] to see how one could impose suitable local conditions at these primes too. We
also expect that Assumption 5.1 could be relaxed by using the methods recently proposed by
Nekovář in his work on level raising for Hilbert modular forms of weight two ([29]), which
greatly improves the techniques introduced in [3] and then refined in [24].

5.2. Admissible primes. Let p be the prime number chosen in §5.1 and recall the
quaternionic modular form f of weight 2 on �D0 .M/ associated with E by the Jacquet–
Langlands correspondence. Following [5, §3.3] (see also [3, Section 2] and [24, §4.2] for
an analogous definition in the imaginary quadratic setting), we say that a prime number ` is
admissible relative to f and p (or p-admissible, or even simply admissible) if it satisfies the
following conditions:

(1) `−Npc;

(2) the support of �ab
`

is contained in the set of prime divisors of C`;

(3) ` is inert in K;
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(4) p−`2 � 1;

(5) pj.`C 1/2 � a2
`
.

Note that, thanks to Theorem 2.2, the first two conditions exclude only a finite number of
primes `. Moreover, as a consequence of condition (2) in Assumption 5.1, the prime p does
not divide the exponent t` of �ab

`
for all admissible primes `.

For every admissible prime ` choose once and for all a prime �0 of Hc above ` (we will
never deal with more than one admissible prime at the same time, so ignoring the dependence
of �0 on ` should cause no confusion). Since admissible primes are inert in K and do not
divide c, if ` is such a prime, then `OK splits completely in Hc , hence there are exactly hC.c/
primes of Hc above `. The choice of �0 allows us to fix an explicit bijection between Gc and
the set of these primes via the rule

(5.1) � 2 Gc 7�! �.�0/:

The inverse to this bijection will be denoted

� 7�! �� 2 Gc ;

so that ��.�0/ D �. Finally, an element � 2 Gc acts on the group rings ZŒGc� and Z=pZŒGc�
in the natural way by multiplication on group-like elements (that is,  7! � for all  2 Gc).

Lemma 5.3. Let ` be an admissible prime relative to f and p. The local cohomology
groups H 1

fin.Hc;`; EŒp�/ and H 1
sing.Hc;`; EŒp�/ are both isomorphic to Z=pZŒGc� as

ZŒGc�-modules.

Proof. Since p − `2 � 1, one can mimic the proof of [3, Lemma 2.6] and show that
the groups H 1

fin.K`; EŒp�/ and H 1
sing.K`; EŒp�/ are both isomorphic to Z=pZ. But the prime

ideal `OK of OK splits completely in Hc , hence H 1
fin.Hc;`; EŒp�/ and H 1

sing.Hc;`; EŒp�/ are
both isomorphic to Z=pZŒGc� as Fp-vector spaces. Finally, bijection (5.1) establishes isomor-
phisms which are obviously Gc-equivariant.

For ? 2 ¹fin, singº we fix once and for all isomorphisms

H 1
? .K`; EŒp�/ ' Z=pZ

which will often be viewed as identifications according to convenience.
The next result is the counterpart of [24, Proposition 4.5]. In fact, since the group

Gal.Hc=Q/ is generalized dihedral, with the non-trivial element � of Gal.K=Q/ acting on
the abelian normal subgroup Gc by

� 7�! ����1 D ��1;

the proof of [24, Proposition 4.5] is valid mutatis mutandis in our present context as well.

Proposition 5.4. Let s be a non-zero element of H 1.Hc ; EŒp�/. For every ı 2 ¹˙1º
there are infinitely many admissible primes ` such that p divides a`Cı.`C1/ and res`.s/ ¤ 0.

The existence result of Proposition 5.4 will be crucially exploited in §8.5 to show the
vanishing of Selmer groups which is one of the goals of this paper.
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6. Level raising and Galois representations

In this section we prove a level raising result modulo p at admissible primes (Theo-
rem 6.3) and an isomorphism between certain Galois representations over Fp attached to J .`/�
and E (Theorem 6.4).

6.1. Raising the level in one admissible prime. As in Section 3, fix a prime ` −DM
and a character � 2 bGc whose parity is denoted by �. Recall the modular eigenform f for
�D0 .M/ introduced in Section 4 and the homomorphism 'f W TM ! Z of (4.8). Write

N'f W TM �! Z=pZ

for the composition of 'f with the projection Z! Z=pZ and denote by mf its kernel, so that
mf D If C .p/ where If D ker.'f /.

As is well known, �� is injective and this allows us to identify H1.XD0 .M/;ZS /2 with
the submodule im.��/ of H1.XD0 .M`/;ZS /, which is stable under the action of TM`; this
provides H1.XD0 .M/;ZS /2 with a natural structure of TM`-module. More precisely, �� is
equivariant for the actions of Tq , tq for primes q −M` and of Uq , uq for primes qjM , while it
intertwines the actions of

�
T` �1
` 0

�
on the domain and of u` on the codomain.

Thanks to [23, Lemma 6.2], the natural inclusion ker.��/ � H1.XD0 .M/;Z/2� induces
an injection ker.��/ ,! coker.��/, so we may consider the Z- and ZS -modules

ˆ` WD coker.��/= ker.��/; ˆ`;S WD ˆ` ˝ ZS ;

respectively, which are endowed with canonical structures of TM`-modules and, again by [23,
Lemma 6.2], have finite cardinality.

For any abelian group M endowed with an action of the involution � , let M˙ denote the
maximal quotient of M on which � acts as ˙1. Since the maps �1 and �2 of Section 3 are
defined over Q, if � 2 ¹C;�º, then there are morphisms

��� W H1
�
XD0 .M/;Z

�2
�
! H1

�
XD0 .M`/;Z

�
�
;

��;� W H1
�
XD0 .M`/;Z

�
�
! H1

�
XD0 .M/;Z

�2
�

and an equality ˆ`;� D coker.��� /= ker.��;�/.
By a slight abuse of notation, from here on we will use the symbols �� and �� to denote

also the analogues with ZS -coefficients of the maps of Section 3. For any congruence subgroup
G let S2.G/ denote the C-vector space of weight 2 cusp forms on G. Write T `-old

M`
and T `-new

M`

for the quotients of TM` acting faithfully, respectively, on the image S`-old
2 .�D0 .M`// of the

degeneracy map
S2
�
�D0 .M/

�
˚ S2

�
�D0 .M/

�
�! S2

�
�D0 .M`/

�
and on its orthogonal complement with respect to the Petersson scalar product. We keep the
notations Tq and Uq to denote Hecke operators in TM , while tq and uq will be used for those
in TM`.

Let m0
f

denote the ideal of TM` generated by tq � aq for primes q −M`, uq � aq for
primes qjM , u`�ı and the prime p. Tensoring �� and �� with TM`=m

0
f

over TM` we obtain
maps

N�� W H1
�
XD0 .M/;ZS

�2ı
m0f �! H1

�
XD0 .M`/;ZS

�ı
m0f
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and
N�� W H1

�
XD0 .M`/;ZS

�ı
m0f �! H1

�
XD0 .M/;ZS

�2ı
m0f :

Lemma 6.1. The map N�� is surjective.

Proof. As in the proof of Proposition 2.1, there is an exact sequence

0 �! ker.��/ �! H1
�
XD0 .M`/;ZS

� ��
�! H1

�
XD0 .M/;ZS

�2
�! �ab

` ˝ ZS �! 0:

Since the image of �� is stable under TM`, the group �ab
`
˝ ZS inherits an action of TM`.

Since p does not divide the cardinality of �ab
`

and the residual characteristic of m0
f

is p, we
have �ab

`
=m0

f
D 0, and the result follows.

Proposition 6.2. There is a canonical isomorphism

coker. N�� ı N��/ ' ˆ`=m
0
f :

Proof. The module ˆ`;S is the quotient of coker.��/ by ker.��/, so it is isomorphic to
the quotient of H1.XD0 .M`/;ZS / by the ZS -submodule generated by ker.��/ and im.��/.
Hence there is an exact sequence

(6.1) hker.��/; im.��/i=m0f �! H1
�
XD0 .M`/;ZS

�ı
m0f �! ˆ`;S=m

0
f �! 0:

Thanks to Lemma 6.1, there is also an exact sequence

ker.��/=m0f �! H1
�
XD0 .M`/;ZS

�ı
m0f

N��
�! H1

�
XD0 .M/;ZS

�2ı
m0f �! 0:

We conclude that N�� induces an isomorphism

(6.2) N�� W
�
H1.X

D
0 .M`/;ZS /=m

0
f

�ı
hker. N��/; im. N��/i

'
�! coker. N�� ı N��/:

Since the ZS -submodule hker. N��/; im. N��/i is equal to the image of hker.��/; im.��/i=m0f in
H1.X

D
0 .M`/;ZS /

ı
m0
f

via the first map in (6.1), this shows that coker. N��ı N��/ is isomorphic
toˆ`;S=m0f . Finally, since p 62 S , the groupsˆ`;S=m0f andˆ`=m0f are canonically identified,
whence the claim follows.

Now we can prove the main result of this subsection.

Theorem 6.3. Suppose that ` is an admissible prime such that pja` � ı.` C 1/ for a
suitable ı 2 ¹C1;�1º. There exists a morphism

f` W T
`-new
M` �! Z=pZ

such that

� f`.tq/ D aq .mod p/ for all primes q−M`;

� f`.uq/ D aq .mod p/ for all primes qjM ;

� f`.u`/ D ı .mod p/.
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If mf` denotes the kernel of f`, then there is a group isomorphism

(6.3) ˆ`;�=mf`
'
�! H1.E;Z/�

ı
pH1.E;Z/� ' Z=pZ:

Proof. At the cost of enlarging S , in this proof we assume that `C 1 is invertible in ZS
(cf. Remark 4.3). Then, since ��ı�� D

�
`C1 T`
T` `C1

�
, the assignment .m; n/ 7! .`C1/m�T`.n/

induces an isomorphism of groups

(6.4) H1
�
XD0 .M/;ZS

�2ı im.�� ı ��/
'
�! H1

�
XD0 .M/;ZS

�ı�
T 2` � .`C 1/

2
�

which is equivariant for the action of the Hecke operators tq (respectively, Tq) for q −N` and
uq (respectively, Uq) for qjM on the left-hand (respectively, right-hand) side. Since u` acts
as
�
T` �1
` 0

�
on H1.XD0 .M/;ZS /2, we see that x 2 H1.XD0 .M/;ZS /

ı
pH1.X

D
0 .M/;ZS / is

an eigenvector for T` with eigenvalue a` � ı.` C 1/ .mod p/ if and only if .x; ı`x/ is an
eigenvector for u` with eigenvalue ı. Thanks to this and (6.4), we find an isomorphism of
groups

(6.5) coker.�� ı ��/=m0f
'
�! H1

�
XD0 .M/;ZS

�ı
mf :

Since coker.�� ı ��/=m0f and coker. N�� ı N��/ are canonically isomorphic, Proposition 6.2
yields an isomorphism of groups

(6.6) ˆ`=m
0
f

'
�! H1

�
XD0 .M/;ZS

�ı
mf :

It is now immediate to check that there is a canonical isomorphism

H1
�
XD0 .M/;ZS

�ı
mf ' H1

�
XD0 .M/;ZS

�
f

ı
pH1

�
XD0 .M/;ZS

�
f
:

By (4.11), the group H1.XD0 .M/;ZS /f is isomorphic to H1.E;ZS /. Since p 62 S , isomor-
phism (6.6) induces an isomorphism of groups

ˆ`=m
0
f

'
�! H1.E;Z/=pH1.E;Z/ ' .Z=pZ/2:

All the maps involved are equivariant for the action of � , so we get yet another isomorphism

ˆ`;�=m
0
f

'
�! H1.E;Z/�

ı
pH1.E;Z/� ' Z=pZ:

The action of TM` on ˆ` is through its `-new quotient, so m0
f

in fact belongs to T `-new
M`

. Since

ˆ`=m
0
f

is a one-dimensional Fp-vector space, the action of T `-new
M`

is given by a character

f` W T
`-new
M`

! Z=pZ whose kernel is mf` , as was to be proved.

6.2. Galois representations. In this subsection we show the existence of an isomor-
phism of GQ-modules J .`/� Œp�=mf` ' EŒp� and the existence of an isomorphism of groups
ˆ`;�=mf` ' H 1

sing.K`; EŒp�/. Our arguments are inspired by those in [3, §5.6]. We fix an
admissible prime ` and we suppose that p j a` � ı.`C 1/.

Write GK` WD Gal. NQ`=K`/ for the absolute Galois group of the local fieldK`. Since we
are assuming Conjecture 3.3, there is a short exact sequence of left TM`ŒGK` �-modules

0 �! L� �! T�. NQ`/ �! J .`/� . NQ`/ �! 0:
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Since L is a free abelian group and T�. NQ`/ is divisible, the snake lemma implies that there is a
short exact sequence of TM`ŒGK` �-modules

(6.7) 0 �! T�Œp� �! J .`/� Œp� �! L�=p �! 0;

where T�Œp� and J .`/� Œp� are the p-torsion subgroups of T�. NQ`/ and J .`/� . NQ`/, respectively.
By tensoring the above exact sequence with TM`=mf` over TM`, and recalling that p 2 mf` ,
we find an exact sequence of TM`=mf` ŒGK` �-modules

0 �!
�
T�Œp�=mf`

�ı
M �! J .`/� Œp�=mf` �! L�=mf` �! 0

for a certain TM`=mf` ŒGK` �-submodule M of T�Œp�=mf` . Taking GK`-cohomology of the
above exact sequence yields an exact sequence of TM`=mf`-modules

(6.8)
L�=mf` �! H 1

�
K`; .T�Œp�=mf`/=M

�
�! H 1

�
K`; J

.`/
� Œp�=mf`

�
�! H 1.K`; L�=mf`/:

We first study the last term in (6.8). Let Qab
`

be the maximal abelian extension of Q`. Since
L�=mf` is abelian and defined over K`, the cohomology group H 1.K`; L�=mf`/ is equal
to the group of continuous homomorphisms Homcont.Gal.Qab

`
=K`/; L�=mf`/. By local class

field theory, there is an isomorphism

Gal.Qab
` =K`/ '

OZ �O�K` ;

where O�K`
is the group of units in the ring of integers OK` of K` and OZ ' Gal.Qunr

`
=K`/ is

(isomorphic to) the Galois group of the maximal unramified extension Kunr
`

of K`, which is
equal to Qunr

`
because the extensionK`=Q` is unramified. Now recall the short exact sequence

0 �! O�K`;1 �! O�K` �! .OK`=`OK`/
�
�! 0;

where O�K`;1
is the group of the elements of O�K`

which are congruent to 1 modulo `. Since
O�K`;1

is a pro-`-group and L�=mf` is p-torsion, the group Homcont.O
�
K`;1

; L�=mf`/ is trivial,
hence

Homcont.O
�
K`
; L�=mf`/ D Homcont

�
.OK`=`OK`/

�; L�=mf`
�
D 0;

the second equality being due to the fact that p − `2 � 1 D j.OK`=`OK`/�j. It follows that
there are canonical isomorphisms of groups

Homcont
�
Gal.Qab

` =K`/; L�=mf`
�
' Homcont

�
Gal.Qunr

` =K`/; L�=mf`
�

' Hom
�
Z=pZ; L�=mf`

�
:

Let �p be the group of p-th roots of unity in NQ`. To study the term H 1.K`; .T�Œp�=mf`/=M/

in sequence (6.8), first recall that T� is isomorphic to Gm ˝ H�, so T�Œp� is isomorphic to
�p ˝H� as a GK`-module. Since the structure of TM`-module on T� is given by the Hecke
action on H�, there is an isomorphism

T�Œp�=mf` ' �p ˝ .H�=mf`/:

Furthermore, it can be easily seen that there exists a submodule N of H�=mf` such that the
TM`=mf`-module .T�Œp�=mf`/=M is isomorphic to �p ˝

�
.H�=mf`/=N

�
. Now, the group

GK` acts trivially onH� and, as a consequence of Hilbert’s Theorem 90, the groupH 1.K`;�p/
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is isomorphic toK�
`
=.K�

`
/p. Since p−`2�1, the quotientK�

`
=.K�

`
/p is isomorphic to Z=pZ.

We conclude that there are group isomorphisms

H 1
�
K`; .T�Œp�=mf`/=M

�
' .H�=mf`/=N ˝ Z=pZ ' .H�=mf`/=N;

the second one being a consequence of the fact that p 2 mf` .
The connecting map in (6.8), which under the above identifications can be rewritten as

L�=mf` ! .H�=mf`/=N , can be explicitly computed as follows. Let ker.��;�/ be the projec-
tion of ker.��;�/ to H�. As above, one has

H 1.K`; T�Œp�/ ' H
1.K`;�p/˝H� ' K

�
` =.K

�
` /
p
˝H� ' Z=pZ˝H� ' H�=p;

and the connecting homomorphism L�=p ! H 1.K`; T�Œp�/ which arises by taking the GK`-
cohomology of sequence (6.7) can be rewritten asL�=p ! H�=p and is induced by composing
the natural inclusion L� ,! T�.Q`/ with the valuation map

ord` W T�.Q`/ D Q�` ˝H�
ord`˝id
�����! Z˝H� D H�:

Thanks to [23, Proposition 6.3] and the fact that all the maps involved are equivariant for the
action of � , we have ord`.L�/ D tr. ker.��;�// where tr WD Tr � r � 1.

Since the Galois action commutes with the Hecke action, it follows that the image of the
connecting homomorphism L�=mf` ! .H�=mf`/=N is tr. ker.��;�/=mf`/. The endomor-
phism tr of ker.��;�/=mf` is just multiplication by the reduction modulo p of ar � .r C 1/,
which is an isomorphism because p − ar � .r C 1/ by Assumption 5.1. Hence tr takes
ker.��;�/=mf` isomorphically onto its image and induces an isomorphism

.H�=mf`/
ı�

ker.��;�/=mf`
� '
�! .H�=mf`/

ı
tr
�

ker.��;�/=mf`
�
:

Now recall that, by definition, ˆ`;� WD coker.f �� /= ker.��;�/, so ˆ`;�=mf` is isomorphic
to the quotient of coker.f �� /=mf` by the image of ker.��;�/=mf` . This last quotient maps
surjectively onto .H�=mf`/

ı
. ker.��;�/=mf`/ and thus there exists a canonical surjective ho-

momorphism
ˆ`;�=mf` �� .H�=mf`/

ı
tr
�

ker.��;�/=mf`
�
:

The exact sequence of TM`=mf`-modules (6.8) can therefore be rewritten as

(6.9) 0 �! ‰ �! H 1
�
K`; J

.`/
� Œp�=mf`

�
�! Homcont

�
Gal.Qunr

` =K`/; L�=mf`
�
;

where ‰ is a suitable quotient of ˆ`;�=mf` .

Theorem 6.4. The following assertions hold.

(1) The GQ-modules J .`/� Œp�=mf` and EŒp� are isomorphic.

(2) The groups ˆ`;�=mf` and H 1
sing.K`; EŒp�/ are isomorphic.

(3) The exact sequence (6.9) can be rewritten as

0 �! ˆ`;�=mf` �! H 1.K`; EŒp�/ �! Homcont
�
Gal.Qunr

` =K`/; L�=mf`
�
:
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Proof. By [6] and the Eichler–Shimura relations, the quotient J .`/� Œp�=mf` is isomor-
phic as a GQ-module to the direct sum of h � 1 copies of EŒp�. By [3, Lemma 2.6], the
Fp-vector space H 1.K`; EŒp�/ has dimension 2 and can be (non-canonically) decomposed
into a sum

H 1.K`; EŒp�/ D H
1
fin.K`; EŒp�/˚H

1
sing.K`; EŒp�/

of one-dimensional subspaces. The image of H 1
sing.K`; EŒp�/ in the group of continuous ho-

momorphisms in exact sequence (6.9) is trivial. Since dimFp .‰/ � dimFp .ˆ`;�=mf`/ and
dimFp .ˆ`;�=mf`/ D 1 by the last claim of Theorem 6.3, we conclude that h D 1 and

‰ ' ˆ`;�=mf` ' H
1
sing.K`; EŒp�/;

from which all the statements follow.

In light of Theorem 6.4, from here on we fix an isomorphism

(6.10) J .`/� Œp�=mf` ' EŒp�

of GQ-modules and an isomorphism

(6.11) ˆ`;�=mf` ' H
1
sing.K`; EŒp�/

of Fp-vector spaces.

7. Gross–Zagier type formula and Darmon points

In this section assume that D > 1. Fix throughout an admissible prime `, set

� WD �`

for the Ihara group at ` and denote by t the exponent t` of �ab. Building on the arguments and
constructions of [23], in this section we prove our Gross–Zagier type formula (Theorem 7.4)
relating the class modulo p of LK.E; �; 1/ to a certain twisted sum of Darmon points. This
is a generalization to the case of division quaternion algebras and arbitrary characters of the
formula proved in [5, Theorem 3.9]. In fact, a suitable extension of the arguments with modular
symbols and specializations of Stark–Heegner points described in [5, §3.3] yields the analogue
of Theorem 7.4 in the D D 1 setting.

7.1. Auxiliary results. Recall from §6.2 and the proof of Theorem 6.4 that the cokernel
of the map arising from the composition of the inclusion L� � T�.Q`/, the valuation map
ord` W T�.Q`/ ! H� and the projection H� � H�=mf` , which is denoted by ‰ in (6.9), is
a non-trivial Fp-vector space isomorphic to ˆ`;�=mf` . For any unramified extension W=K`
denote by

(7.1) @` W J
.`/
� .W / �! ˆ`;�=mf`

the map that is obtained by composing the inverse of isomorphism (3.3) with the valuation map
ord` W T�.W /=L� ! H�=ord`.L�/, the canonical projection to ‰ and the isomorphism of this
Fp-vector space with ˆ`;�=mf` .
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Let
r W H` �! T

denote the GL2.Q`/-equivariant reduction map (see, e.g., [11, §5.1]) and fix a base point
� 2 K` �Q` such that r.�/ D v�. Let 1 2 � and let ¹e0; : : : ; enº be a set of edges ei 2 EC

such that

� s.e1/ D v�, s.en/ D 1.v�/ DW vn;

� t .ei / D t .eiC1/ DW vi for odd indices in ¹1; : : : ; n � 1º;

� s.ei / D s.eiC1/ DW vi for even indices in ¹2; : : : ; n � 2º.

Notice that, in the above, the integer n is always even. If 2 2 � , then, by [23, Proposition
5.2], there is an equality

(7.2) ord`

�
�

Z
P1.Q`/

t � �11 .�/

t � �
d�Y

2
.t/

�
D

nX
iD0

.�1/i�Y
2
.ei /

of elements in H , where �Y is the cocycle introduced in Definition 3.1.

Remark 7.1. In the following we adopt the identification

H1
®
�D0 .M/;ZS

¯
D �D0 .M/ab

˝ ZS

and write Œ� for the natural image in H1.�D0 .M/;ZS / of an element  2 �D0 .M/.

Now we introduce the 1-cocycle

QmY
2 Z1

�
�;F

�
V ;H1

�
�D0 .M/;ZS

���
defined by the rule

QmY
 .v/ WD Œg;v�;

where g;v 2 �D0 .M/ is given by the formula

g;v WD

´
v

�1
�1.v/

if v 2 VC

!�1
`
v

�1
�1.v/

!` if v 2 V�.

Note that v�1�1.v/ stabilizes v� (respectively, Ov�), and thus lies in �D0 .M/ (respectively, in
O�D0 .M/), if v 2 VC (respectively, v 2 V�). Hence g;v always lies in �D0 .M/. We leave it
to the reader to check that QmY is a well-defined cocycle; see Definition 3.1 and [23, Section 4]
for a similar construction.

Consider the composition

pr1 W H1
�
XD0 .M/;ZS

�2� H1
�
XD0 .M/;ZS

�2ı
m0f

� coker. N�� ı N��/� ˆ`;�=mf` ' Z=pZ;

where the first two maps are the canonical projections, the third is induced by Proposition 6.2
and the isomorphism is that of (6.3). If e 2 E , then set

(7.3) Q�Y
 .e/ WD pr1

�
QmY
 .s.e//; Qm

Y
 .t.e//

�
:
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Similarly, define also the composition

pr2 W H1
�
XD0 .M/;ZS

�
� H1

�
XD0 .M/;ZS

�ı
mf ' coker. N�� ı N��/

� ˆ`;�=mf` ' Z=pZ;

where the first isomorphism is (6.5). Recall from condition (5) in Assumption 5.1 that there
exists ı 2 ¹˙1º such that pja` C ı.` C 1/. The isomorphism in (6.4) is induced by the map
.x; y/ 7! .`C 1/x � T`.y/; since pja` � ı.`C 1/, this map is just .x; y/ 7! .`C 1/.x � ıy/

from H1.X
D
0 .M/;ZS /2

ı
m0
f

to H1.XD0 .M/;ZS /
ı

mf . It follows that

(7.4) Q�Y
 .e/ D .`C 1/ pr2

�
QmY
 .t.e// � ı Qm

Y
 .s.e//

�
:

We thus obtain that Q�Y is also well defined with values in F0.E;Z=pZ/.
Finally, introduce the map

pr3 W H1
�
XD0 .M`/;ZS

�
�� coker. N�� ı N��/ �� ˆ`;�=mf` ' Z=pZ;

where the first arrow is the composition of the canonical projection

H1
�
XD0 .M`/;ZS

�
��

�
H1.X

D
0 .M`/;ZS /=m

0
f

�ı
hker. N��/; im. N��/i

with isomorphism (6.2), and define

N�Y
WD pr3.�

Y/:

Lemma 7.2. N�Y D Q�Y .

Proof. Fix  2 � and e 2 EC and let g;e 2 �D0 .M`/ be such that e D g;ee0 for
some e0 2 EC. By Definition 3.1, one has

N�Y
 .e/ D pr3

�
Œg;e�

�
;

while by (7.3) there is an equality

Q�Y
 .e/ D pr1

�
Œg;e�; Œ!

�1
` g;e!`�

�
:

By construction, there is a commutative triangle

H1
�
XD0 .M`/;ZS

�
��

// // coker. N�� ı N��/

H1
�
XD0 .M/;ZS

�2
55 55

where the vertical arrow is induced by the map �D0 .M`/! �D0 .M/2 taking  to .; !�1
`
!`/

via the canonical projections and the other two maps are the surjections already appearing in
the definitions of pr1 and pr3. This shows the required equality for even edges. The analogous
equality for odd edges follows similarly.
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Let us denote by @0
`

the composition of the map @` in (7.1) with the isomorphism (6.3)
between ˆ`;�=mf` and Z=pZ. Fix now  2 Emb.O; R/ and choose � WD z , where, as in
§3.2, z 2 H` \ K` is the (unique) point such that  .˛/

�z 
1

�
D ˛

�z 
1

�
for all ˛ 2 K. Let

us also write d� for the composition of the 2-cocycle d D d� introduced in (3.4) with the
map T .K`/ ! J

.`/
� .K`/ defined in the obvious way. Similarly, if ˇ is as in (3.5), then let

ˇ� W � ! J
.`/
� .K`/ be the induced map. Observe that, with this notation in force, Definition

3.6 reads

(7.5) P � WD t � ˇ�. / 2 J
.`/
� .K`/:

It is worthwhile to explicitly remark that in this section we view the Darmon points P � as
rational over the local field K`. In fact, the Gross–Zagier type results we are about to prove
are of a genuinely local nature, so we do not need to assume that the points we work with are
global, as predicted by Conjecture 3.8.

From (7.2) and Lemma 7.2 we obtain equalities

(7.6) @0`
�
d�.1; 2/

�
D

nX
iD0

.�1/i N�Y
2
.ei / D

nX
iD0

.�1/i Q�Y
2
.ei /;

with the edges ei being defined as for equality (7.2); namely, the ei 2 EC satisfy

� s.e1/ D v�, s.en/ D �11 .v�/ DW vn;

� t .ei / D t .eiC1/ DW vi for odd indices in ¹1; : : : ; n � 1º;

� s.ei / D s.eiC1/ DW vi for even indices in ¹2; : : : ; n � 2º.

Define a function ˛� W � ! Z=pZ by setting

˛� ./ WD �.`C 1/ pr2
�
QmY
 .v�/

�
:

Observe that, by definition, the equality ˛� D ˛� 0 holds for all � 0 with r.� 0/ D v�. Recall the
element  2 �D0 .M/ attached to the embedding  as in §3.2.

Lemma 7.3. Suppose ı D �1. The equality

@0`.P
�
 / D t � ˛� . /

holds in Z=pZ.

Proof. Fix 1; 2 2 � and e 2 E . Choose a sequence ¹e0; : : : ; enº of even edges joining
the vertices v� and �11 .v�/ as in (7.6). Since ı D �1, by (7.4) there is an equality

nX
iD0

.�1/i Q�Y
2
.ei / D .`C 1/

nX
iD0

.�1/i pr2
�
QmY
 .t.e//C Qm

Y
 .s.e//

�
:

The terms in the right-hand sum cancel out telescopically and we find that

(7.7)
nX
iD0

.�1/i Q�Y
2
.ei / D �.`C 1/ pr2

�
QmY
 .t.en// � Qm

Y
 .s.e0//

�
:
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Observe that

QmY
12

.v�/ � Qm
Y
1
.v�/ D

�
12

�1
�12 �11 .v�/

�
�
�
1
�1
�11 .v�/

�
(7.8)

D
�
�11 .v�/

2
�1
�12 �11 .v�/

�
D QmY

2

�
�11 .v�/

�
:

Combining (7.6), (7.7) and (7.8) we obtain

(7.9) @0`
�
d�.1; 2/

�
D ˛� .12/ � ˛� .1/ � ˛� .2/:

It is then a consequence of equations (3.5) and (7.9) that both @0
`
ıˇ� and ˛� split the 2-cocycle

@0
`
ı d� 2 Z

2.�;Z=pZ/, whence

(7.10) @0`
�
t � ˇ�./

�
D t � ˛� ./

for all  2 � because @0
`

is a group homomorphism. In light of (7.5), the claim of the lemma
follows upon taking  D  in equality (7.10).

7.2. A Gross–Zagier formula. Recall the set ¹ � j � 2 Gcº of representatives for the
�D0 .M/-equivalence classes of optimal embeddings of Oc into R fixed in §4.2. For simplicity,
set �� WD z � and v� WD r.�� / for all � 2 Gc . Since the reduction map is �-equivariant and `
is prime to c, the stabilizer of v� in GL2.Q`/ coincides with GL2.Z`/, hence v� D v� for all
� 2 Gc . Define

(7.11) P �� WD
X
�2Gc

P � � ˝ �
�1.�/ 2 J .`/� .K`/˝ ZŒ��S

and, again to ease the writing, set � WD  � 2 �
D
0 .M/ for all � 2 Gc .

Let Œ?� be the class of the element ? in a quotient group. Now we can prove our Gross–
Zagier type formula for the (algebraic part of the) special value LK.E; �; 1/, which can also
be regarded as an explicit reciprocity law in the sense of [3].

Theorem 7.4. Suppose ı D �1. Then

.@0` ˝ id/.P ��/ D t �
�
LK.E; �; 1/

�
in ZŒ��S=pZŒ��S .

Proof. Combining Lemma 7.3 with the fact that v� D v� for all � 2 Gc gives

(7.12) .@0` ˝ id/.P ��/ D t �
X
�2Gc

˛�� .� /˝ �
�1.�/

in ZŒ��S=pZŒ��S . Since ˛�� .� / D pr2.Œ� �/, by definition of LK.E; �; 1/ one hasX
�2Gc

˛�� .� /˝ �
�1.�/ D

�
LK.E; �; 1/

�
in ZŒ��S=pZŒ��S . The result then follows from equality (7.12).
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8. Arithmetic results and consequences

With our special value formula (Theorem 7.4) at hand, in this section we prove the results
on the vanishing of the Selmer groups and on the Birch and Swinnerton-Dyer conjecture for E
in the case of analytic rank 0 that were anticipated in the introduction.

From here on we shall assume the validity of Conjecture 3.8.

8.1. A result on local Kummer maps. Quite generally, let F be a number field and let

� W J .`/� .F / �! H 1
�
F; J .`/� Œp�

�
be the Kummer map relative to J .`/� . Composing � with the maps induced by the canonical
projection J .`/� Œp�! J

.`/
� Œp�=mf` and by isomorphism (6.10) yields a map

(8.1) N� W J .`/� .F / �! H 1.F;EŒp�/:

By a slight abuse of notation, we adopt the symbol N� also for the map

N� W J .`/� .K`/ �! H 1.K`; EŒp�/

which is obtained by considering the local counterpart of the Kummer map � and viewing
(6.10) as an isomorphism of Gal. NQ`=K`/-modules via the inclusion Gal. NQ`=K`/ ,! GQ

induced by the injection NQ ,! NQ` fixed at the outset.
If q is a prime number, let resq W H 1.F;EŒp�/ ! H 1.Fq; EŒp�/ be the restriction map

and let

ıq W E.Fq/ �! H 1.Fq; EŒp�/; �q W J
.`/
� .Fq/ �! H 1

�
Fq; J

.`/
� Œp�

�
be the local Kummer maps at q relative to E and J .`/� , respectively. Finally, for any prime p

of F above p let �p be the (normalized) valuation of Fp and let ep WD �p.p/ be the absolute
ramification index of Fp (in particular, ep D 1 if p is unramified in F ).

Proposition 8.1. Assume that ep < p � 1 for all pjp. If P 2 J .`/� .F /, then

resq
�
N�.P /

�
2 Im.ıq/

for all primes q−M`.

A proof of this proposition, obtained by combining the description of the image of the
local Kummer maps above p in terms of flat cohomology given in [24, §3.3] with classical
results of Raynaud on p-torsion group schemes ([31]), can be found in [24, Proposition 5.2].

8.2. Linear algebra preliminaries. The goal of this subsection is to recall the argu-
ments in [24, Section 8] and introduce the technical tools (Propositions 8.4 and 8.6) that will
be needed to prove the main arithmetic theorems of this paper.

Let � 2 bGc be our complex-valued character of Gc . Since p 62 S by condition (1) in
Assumption 5.1, every prime ideal p of ZŒ�� above p determines a prime ideal pS WD pZŒ��S
of ZŒ��S .

Brought to you by | Universita degli Studi di Padova
Authenticated | 147.162.114.35
Download Date | 6/6/14 8:53 AM



Longo, Rotger and Vigni, Special values of L-functions and Darmon points 235

Lemma 8.2. Let p be a prime ideal of ZŒ�� above p. The completion of ZŒ�� at p is
canonically isomorphic to the completion of ZŒ��S at pS .

Proof. For all integers n � 1 write NSn for the multiplicative system of ZŒ��=pn which
is the image of S under the natural projection. For every n � 1 there is a canonical ring
isomorphism

(8.2)
�
ZŒ��=pn

�
NSn
' ZŒ��S=p

n
S :

But the elements of NSn are invertible in ZŒ��=pn since p does not belong to S , hence the
localization .ZŒ��=pn/ NSn canonically identifies with ZŒ��=pn. In light of (8.2), the lemma is
proved by passing to the inverse limit.

Choose a prime ideal p of ZŒ�� above p such that

(8.3) the image of LK.E; �; 1/ in ZŒ��S=pS is not zero.

This can be done thanks to condition (4) in Assumption 5.1. Denote by W the p-adic comple-
tion of ZŒ��. The prime p is unramified in ZŒ�� since it does not divide hC.c/ by condition (2)
in Assumption 5.1, hence the ideal pW is the maximal ideal of W ; in particular, we conclude
from Lemma 8.2 that

ZŒ��S=pS D W=pW :

For any ZŒGc�-moduleM writeM ˝�C (respectively,M ˝�W ) for the tensor product of the
ZŒGc�-modules M and C (respectively, M and W ), where the structure of ZŒGc�-module on
C (respectively, W ) is induced by �. As in the introduction, if M is a ZŒGc�-module, define
also

M�
WD
®
x 2M ˝Z C j �.x/ D �.�/x for all � 2 Gc

¯
;

so that there is a canonical identification

M�
DM ˝� C

of CŒGc�-modules (for a proof of this fact see, e.g., [24, Proposition 8.1]).
Choose once and for all an (algebraic) isomorphism Cp ' C which is the identity on

ZŒ��. Henceforth we shall view C as a W -module via this isomorphism, obtaining an isomor-
phism �

E.Hc/˝� W
�
˝W C ' E.Hc/˝� C:

The following flatness result will be frequently used in the sequel.

Lemma 8.3. The module W is flat over ZŒGc�, and every FpŒGc�-module is flat.

Proof. First of all, W is flat over Z. Moreover, if ` is a prime number dividing hC.c/,
then ` 6D p, hence W=`W D 0. The flatness of W follows from [1, Theorem 1.6]. The second
assertion can be shown in the same way.

The next statement is proved exactly as [24, Proposition 8.3].

Proposition 8.4. If Selp.E=Hc/˝� W D 0, then E.Hc/� D 0.
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Thus the triviality of E.Hc/� is guaranteed by that of Selp.E=Hc/˝� W .
The rest of this subsection is devoted to a couple of further algebraic lemmas which are

needed to prove the vanishing of the twisted p-Selmer groups; this part follows [24, §8.2]
closely, so we will merely sketch the arguments and refer to loc. cit. for complete proofs.

In the following, use the symbol � also to denote the Z-linear extension

ZŒGc�
�
�! ZŒ�� � W

of the character �. Composing � with the projection onto W=pW yields a homomorphism
which factors through FpŒGc� D ZŒGc�=pZŒGc�, and we define �p W FpŒGc�! W=pW to be
the resulting map. In particular, the homomorphism �p gives W=pW a structure of FpŒGc�-
module (which is nothing other than the structure induced naturally by that of ZŒGc�-module
on W ), and for an FpŒGc�-module M the notation M ˝�p .W=pW/ will indicate that the
tensor product is taken over FpŒGc� with respect to �p.

Set I�p WD ker.�p/ and for any FpŒGc�-module M let MŒI�p � be the I�p -torsion sub-
module ofM , i.e., the submodule ofM which is annihilated by all the elements of I�p . Finally,
adopt similar notations and conventions for the map ��1p W FpŒGc�! W=pW which is induced
by the inverse character to �.

The flatness result of Lemma 8.3 yields the following important facts:

� for every FpŒGc�-module M there are canonical identifications

M ˝� W DM ˝�p .W=pW/ DMŒI�p �˝�p .W=pW/ DMŒI�p �˝� W

of W -modules ([24, Lemma 8.4]);

� if M is an FpŒGc�-module, then MŒI�p � injects into M ˝� W and MŒI��1p � injects into
MŒI��1p �˝� W ([24, Lemma 8.5]).

As a consequence, the linear algebra results in [24, §8.2] carry over verbatim to our real
quadratic setting; here we content ourselves with recalling the proof of a crucial statement
about the non-triviality of (the dual of) a certain restriction map in Galois cohomology.

To begin with, for any Fp-vector space V denote the Fp-dual of V by

V _ WD HomFp .V;Fp/:

The dual of an FpŒGc�-module inherits a natural structure of FpŒGc�-module: a Galois element
� acts on a homomorphism ' by �.'/ WD ' ı ��1. Furthermore, if f is a map of FpŒGc�-
modules, then its dual f _ is again Gc-equivariant. It can be immediately checked that if an
FpŒGc�-module is of I�p -torsion, then its dual is of I��1p -torsion.

Let ` be an admissible prime and let

res` W Selp.E=Hc/ �! H 1
fin.Hc;`; EŒp�/

be the natural restriction map; with a slight abuse of notation, we will adopt the same symbol
also for the map

res` W Selp.E=Hc/ŒI�p � �! H 1
fin.Hc;`; EŒp�/ŒI�p �

between the I�p -torsion submodules which is induced by the previous one.
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Lemma 8.5. If there exists s 2 Selp.E=Hc/ŒI�p � such that res`.s/ ¤ 0, then the map

res_` ˝ id W H 1
fin.Hc;`; EŒp�/ŒI�p �

_
˝� W �! Selp.E=Hc/ŒI�p �

_
˝� W

is injective and non-zero.

Proof. Keeping in mind the two consequences of Lemma 8.3 recalled above, proceed
as in the proof of [24, Lemma 8.8].

With this auxiliary result at hand, we can prove

Proposition 8.6. If there exists s 2 Selp.E=Hc/ŒI�p � such that res`.s/ ¤ 0, then the
map

res_` ˝ id W H 1
fin.Hc;`; EŒp�/

_
˝� W �! Selp.E=Hc/_ ˝� W

is non-zero.

Proof. In the commutative square

H 1
fin.Hc;`; EŒp�/

_ ˝� W
res_
`
˝id

//

����

Selp.E=Hc/_ ˝� W

����
H 1

fin.Hc;`; EŒp�/ŒI�p �
_ ˝� W

� � // Selp.E=Hc/ŒI�p �
_ ˝� W

the vertical maps are surjective and the bottom horizontal arrow is (injective and) non-zero by
Lemma 8.5. Hence the upper horizontal arrow must be non-zero.

8.3. Construction of an Euler system. As before, let Oc be the order ofK of conduc-
tor c and let Hc be the narrow ring class field of K of conductor c. Let ` be an admissible
prime such that pj`C 1C a` (so ı D �1 in Theorem 6.3) and choose  2 Emb.Oc ; R/. Now
recall the prime �0 of Hc above ` fixed in §5.2; there is a canonical isomorphism

i�0 W Hc;�0
'
�! K`;

with Hc;�0 being the completion of Hc at �0. Since we are assuming Conjecture 3.8, we can
consider the Darmon point

Pc D P
�
 2 J

.`/
� .Hc/ ,�! J .`/� .K`/;

where the injection is induced by i�0 . With N� as in (8.1) for F D Hc , define a cohomology
class

�.`/ WD N�.Pc/ 2 H
1.Hc ; EŒp�/:

The collection of classes ¹�.`/º indexed by the set of admissible primes is an Euler system
relative to E=K and, as in [24], will be used in the sequel to bound the p-Selmer groups. In the
following we will deduce the main properties of �.`/.

Recall the choice of the prime ideal p of ZŒ�� above p made in (8.3); the ring W is the
completion of ZŒ�� at p. Let us introduce the map

(8.4) d
�

`
W H 1.Hc ; EŒp�/ �! H 1

sing.Hc;`; EŒp�/˝� W
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obtained by composing the restriction from H 1.Hc ; EŒp�/ to H 1.Hc;`; EŒp�/ with the map
H 1.Hc;`; EŒp�/! H 1.Hc;`; EŒp�/˝�W which takes x to x˝ 1 and finally with the canon-
ical projection to the singular part of the cohomology.

As explained in [24, §9.3] (to which we refer for details), the choice of a prime �0 of Hc
above ` made in §5.2 induces natural isomorphisms

H 1
? .Hc;`; EŒp�/

'
�! H 1

? .K`; EŒp�/˝Z ZŒGc�

for ? 2 ¹fin, singº, so that we can (and do) view d
�

`
as taking values in the W -module

H 1
sing.K`; EŒp�/˝Z W .

Proposition 8.7. If LK.E; �; 1/ 6D 0, then d�
`
.�.`// 6D 0.

Proof. Let � W ZŒ��S ,! W be the natural inclusion (cf. Lemma 8.2). There is a com-
mutative square

J
.`/
� .K`/

N� //

@`

��

H 1.K`; EŒp�/

ı`
����

ˆ`;�=mf`
#`

'
// H 1

sing.K`; EŒp�/

in which ı` is the projection and #` is isomorphism (6.11). Tensoring with ZŒ��S over Z and
then composing with the relevant maps id˝� yields a commutative diagram

(8.5)

J
.`/
� .K`/˝ ZŒ��S

N�˝id //

@`˝id

��

H 1.K`; EŒp�/˝ ZŒ��S

ı`˝id

����

id˝� // H 1.K`; EŒp�/˝W

ı`˝id

����
ˆ`;�=mf` ˝ ZŒ��S

#`˝id
'

//

id˝�

��

H 1
sing.K`; EŒp�/˝ ZŒ��S

id˝� // H 1
sing.K`; EŒp�/˝W

ˆ`;�=mf` ˝W

#`˝id

'

22

The arguments described in [24, §§9.1–9.3] show that

d
�

`

�
�.`/

�
D
�
.#` ı @`/˝ �

�
.P ��/;

where P �� is defined in (7.11). Since #`˝ id is an isomorphism, showing that d�
`
.�.`// 6D 0 is

equivalent to showing that

(8.6) .@` ˝ �/.P
�
�/ 6D 0 in ˆ`;�=mf` ˝W ' W=pW

(here the map @` ˝ � is equal to the composition of the left vertical arrows in (8.5)).
In order to prove (8.6) consider the map

ZŒ��S=pZŒ��S
�
�! W=pW

induced by �. The non-vanishing of LK.E; �; 1/ is equivalent, by Theorem 4.8, to the non-
vanishing of LK.E; �; 1/. On the other hand, �.ŒLK.E; �; 1/�/ 6D 0 by (8.3) and p− t` because
` is admissible, hence claim (8.6) follows from Theorem 7.4.
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8.4. Local Tate pairings and global duality. For every place v of Q, including the
archimedean one, denote by

h ; iv W H
1.Hc;v; EŒp�/ �H

1.Hc;v; EŒp�/ �! Z=pZ

the local Tate pairing at v. Global Tate duality, which is a consequence of the reciprocity law
of class field theory (specifically, of the global reciprocity law for elements in the Brauer group
of Hc), asserts that

(8.7)
X
v

hresv.k/; resv.s/iv D 0

for all k; s 2 H 1.Hc ; EŒp�/. Actually, since the Brauer group of R has order 2 and p is odd
by condition (2) in Assumption 5.1, for all k; s 2 H 1.Hc ; EŒp�/ one has

(8.8)
X
q

hresq.k/; resq.s/iq D 0

with q running over the set of prime numbers (in other words, in (8.7) we can restrict the sum
to the finite places of Q).

Let now ` be an admissible prime. As explained in [24, §9.4], the local Tate pairing h ; i`
gives rise to isomorphisms of one-dimensional W=pW -vector spaces

(8.9) H 1
? .Hc;`; EŒp�/˝� W

'
�! H 1

� .Hc;`; EŒp�/
_
˝� W

for ¹?; �º D ¹fin, singº. Moreover, the restriction

res` W Selp.E=Hc/ �! H 1
fin.Hc;`; EŒp�/

induces a W -linear map

�` W H
1
sing.Hc;`; EŒp�/˝� W �! Selp.E=Hc/_ ˝� W :

Lemma 8.8. If there exists s 2 Selp.E=Hc/ŒI�p � such that res`.s/ ¤ 0, then �` is
non-zero.

Proof. Immediate from (8.9) and Proposition 8.6.

In the next lemma the symbol ıq stands for the local Kummer map at q.

Lemma 8.9. If q is a prime dividing N , then Im.ıq/ D 0.

Proof. Since ıq factors through E.Hc;q/=pE.Hc;q/, the statement follows from con-
dition (5) in Assumption 5.1.

Now recall the map d�
`

defined in (8.4).

Proposition 8.10. The element d�
`
.�.`// belongs to the kernel of �`.

Proof. Keeping Lemma 8.9 and formula (8.8) in mind, proceed exactly as in the proof
of [24, Proposition 9.6].
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8.5. Proof of the first vanishing result. As a first arithmetic consequence of Theo-
rem 7.4, we prove a vanishing result for twisted Selmer groups: all other results will follow
from this one. Recall that we are assuming Conjecture 3.8 throughout.

Theorem 8.11. If LK.E; �; 1/ 6D 0, then Selp.E=Hc/˝� W D 0.

Proof. By what was said in §8.2, it is enough to show that Selp.E=Hc/ŒI�p � D 0.
Assume that s 2 Selp.E=Hc/ŒI�p � is not zero and choose an admissible prime ` such that
pja` C ` C 1 and res`.s/ 6D 0, which exists by Proposition 5.4. Since LK.E; �; 1/ 6D 0,
Proposition 8.7 ensures that d�

`
.�.`// 6D 0; then d�

`
.�.`// generates H 1

sing.Hc;`; EŒp�/˝� W

over W . On the other hand, Proposition 8.10 says that d�
`
.�.`// belongs to the kernel of the

W -linear map �`, and this contradicts the non-triviality of �` that was shown in Lemma 8.8.

By exploiting the surjectivity of the representation �E;p (condition (3) in Assumption 5.1)
and the flatness of W over ZŒGc� (Lemma 8.3), formal algebraic considerations yield also the
following reformulation of Theorem 8.11.

Theorem 8.12. If LK.E; �; 1/ 6D 0, then

Selpn.E=Hc/˝� W D 0

for all integers n � 1.

The reader is referred to [24, Theorem 9.8] for details.

8.6. Applications. In this subsection let K 0 be an extension of K contained in Hc and
let

� W Gal.K 0=K/ �! C�

be a character. Adopting the usual notation for twisted L-functions and eigenspaces, we state
the first consequence of Theorem 8.11.

Theorem 8.13. If LK.E; �; 1/ 6D 0, then E.K 0/� D 0.

Proof. Let � 2 bGc be the character induced by � in the obvious way, so that there is an
equality of twisted L-functions

LK.E; �; s/ D LK.E; �; s/

up to finitely many Euler factors (cf., e.g., [36, Section 7]). Therefore LK.E; �; 1/ 6D 0,
whence E.Hc/� D 0 by a combination of Proposition 8.4 and Theorem 8.11. But there is a
natural inclusion E.K 0/� � E.Hc/�, and the theorem is proved.

Theorem 8.13 is the �-twisted conjecture of Birch and Swinnerton-Dyer for E over K 0

in the case of analytic rank 0. In fact, under this analytic condition Theorem 8.11 also yields a
vanishing result for the groups Selp.E=K 0/ for all prime numbers p satisfying Assumption 5.1
(recall that this excludes only finitely many primes). As will be clear, to obtain this it is crucial
that we were able to prove Theorem 8.11 for all complex-valued characters � of Gc .
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To begin with, we need some further notation and an auxiliary result. Let Qnr
p be the

maximal unramified extension of Qp, let OQnr
p

be its ring of integers and let �p be its residue
field (which is an algebraic closure of Fp). In order to avoid confusion, for every � 2 bGc
denote by W� the ring W associated with � as in §8.2. Finally, since every W� is a finite
unramified extension of Zp, for all � we can (and do) fix embeddings W� ,! OQnr

p
, which

endow �p with a structure of W�-module. Then define

Selp.E=K 0/� WD
®
x 2 Selp.E=K 0/˝Z �p j �.x/ D �.�/x for all � 2 Gal.K 0=K/

¯
:

From here on let p be a prime satisfying Assumption 5.1.

Lemma 8.14. If LK.E; �; 1/ 6D 0, then Selp.E=K 0/� D 0.

Proof. Let � 2 bGc be the character induced by �. Then, as in the proof of Theorem 8.13,
LK.E; �; 1/ 6D 0, whence Selp.E=Hc/˝� W� D 0 by Theorem 8.11. Since p −hC.c/, one
can apply Maschke’s theorem to theGc-representation Selp.E=Hc/˝Z�p and mimic the proof
of [24, Proposition 8.1] to obtain an identification

Selp.E=Hc/� D Selp.E=Hc/˝� �p

of �pŒGc�-modules. Thus we get that

(8.10) Selp.E=Hc/� D
�
Selp.E=Hc/˝� W�

�
˝W�

�p D 0:

On the other hand, as explained in [17, Lemma 4.3], the surjectivity of �E;p ensures that E
has no non-trivial p-torsion rational over Hc , and then the inflation-restriction exact sequence
in Galois cohomology gives an injection Selp.E=K 0/ ,! Selp.E=Hc/, which in turn induces
an injection

(8.11) Selp.E=K 0/� ,�! Selp.E=Hc/�

of eigenspaces. The lemma follows by combining (8.10) and (8.11).

Let now LK0.E; s/ be the L-function of E over K 0.

Theorem 8.15. If LK0.E; 1/ 6D 0, then

Selpn.E=K 0/ D 0

for all integers n � 1.

Proof. Routine algebraic considerations show that it is enough to prove the result for
n D 1. For simplicity, set G0 WD Gal.K 0=K/. There is a factorization

(8.12) LK0.E; s/ D
Y
�

LK.E; �; s/;

where � varies over the complex-valued characters of G0. Now observe that the embeddings
W� ,! OQnr

p
fixed before induce a bijection between the �p-valued and the C-valued characters

of G0. Therefore, since p− ŒK 0 W K�, Maschke’s theorem ensures that there is a decomposition

(8.13) Selp.E=K 0/˝Z �p D
M
�

Selp.E=K 0/�
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as a direct sum of eigenspaces. Since LK0.E; 1/ 6D 0, equality (8.12) implies LK.E; �; 1/ 6D 0
for all �, hence Selp.E=K 0/� D 0 for all � by Lemma 8.14. Since Selp.E=K 0/ is a finite-
dimensional Fp-vector space, the theorem is an immediate consequence of (8.13).

As a piece of notation, for every integer n � 1 letXpn.E=K
0/ be the pn-Shafarevich–

Tate group of E over K 0. Theorem 8.15 immediately yields

Corollary 8.16. If LK0.E; 1/ 6D 0, thenXpn.E=K
0/ D 0 for all n � 1 and E.K 0/ is

finite.

This is the conjecture of Birch and Swinnerton-Dyer for E over K 0 in analytic rank 0.

Remark 8.17. (1) The Birch and Swinnerton-Dyer conjecture for E over K 0 in ana-
lytic rank 0 can also be obtained directly from Theorem 8.13 via a decomposition argument
analogous to the one used in the proof of Theorem 8.15.

(2) If K 0 D K, then Theorem 8.15 is part of a result due to Kolyvagin (a sketch of
its proof can be found in [24, Theorem 9.11]) establishing (unconditionally) the finiteness of
E.K/ andX.E=K/ for all quadratic fields K such that LK.E; 1/ 6D 0. The key ingredients
in Kolyvagin’s proof of this theorem are non-vanishing results for the special values of the
first derivatives of base changes of L.E; s/ to suitable auxiliary imaginary quadratic fields and
Kolyvagin’s results in rank one. In light of this, even in the particular case where K 0 D K

our proof of Theorem 8.15, albeit conditional, is genuinely new, since it takes place entirely
“in rank zero” and in the real quadratic setting, without invoking any result over imaginary
quadratic fields.

(3) It should be possible, with some extra effort, to extend the techniques of this article
and obtain the finiteness of the full Shafarevich–Tate groupsX.E=K 0/.

References

[1] D. J. Benson and K. R. Goodearl, Periodic flat modules, and flat modules for finite groups, Pacific J. Math.
196 (2000), no. 1, 45–67.

[2] M. Bertolini and H. Darmon, A Birch and Swinnerton-Dyer conjecture for the Mazur–Tate circle pairing,
Duke Math. J. 122 (2004), no. 1, 181–204.

[3] M. Bertolini and H. Darmon, Iwasawa’s main conjecture for elliptic curves over anticyclotomic Zp-
extensions, Ann. of Math. (2) 162 (2005), no. 1, 1–64.

[4] M. Bertolini and H. Darmon, The rationality of Stark–Heegner points over genus fields of real quadratic fields,
Ann. of Math. (2) 170 (2009), no. 1, 343–369.

[5] M. Bertolini, H. Darmon and S. Dasgupta, Stark–Heegner points and special values of L-series, in: L-
functions and Galois representations, London Math. Soc. Lecture Note Ser. 320, Cambridge University Press,
Cambridge (2007), 1–23.

[6] N. Boston, H. Lenstra and K. Ribet, Quotients of group rings arising from two-dimensional representations,
C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 4, 323–328.

[7] M. Ciavarella and L. Terracini, About an analogue of Ihara’s lemma for Shimura curves, Funct. Approx.
Comment. Math. 45 (2011), no. 1, 23–41.

[8] H. Cohn, A classical invitation to algebraic numbers and class fields, Universitext 9, Springer, New York
1978.

[9] C. Cornut and V. Vatsal, Nontriviality of Rankin–Selberg L-functions and CM points, in: L-functions and
Galois representations, London Math. Soc. Lecture Note Ser. 320, Cambridge University Press, Cambridge
(2007), 121–186.

[10] H. Darmon, Integration on Hp�H and arithmetic applications, Ann. of Math. (2) 154 (2001), no. 3, 589–639.

Brought to you by | Universita degli Studi di Padova
Authenticated | 147.162.114.35
Download Date | 6/6/14 8:53 AM



Longo, Rotger and Vigni, Special values of L-functions and Darmon points 243

[11] H. Darmon, Rational points on modular elliptic curves, CBMS Reg. Conf. Ser. Math. 101, American Mathe-
matical Society, Providence 2004.

[12] S. Dasgupta, Stark–Heegner points on modular Jacobians, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 3,
427–469.

[13] S. Dasgupta and M. Greenberg, L-invariants and Shimura curves, Algebra Number Theory, to appear.
[14] F. Diamond and R. Taylor, Nonoptimal levels of mod l modular representations, Invent. Math. 115 (1994),

no. 3, 435–462.
[15] M. Greenberg, Stark–Heegner points and the cohomology of quaternionic Shimura varieties, Duke Math. J.

147 (2009), no. 3, 541–575.
[16] R. Greenberg and G. Stevens, p-adic L-functions and p-adic periods of modular forms, Invent. Math. 111

(1993), no. 2, 407–447.
[17] B. H. Gross, Kolyvagin’s work on modular elliptic curves, in: L-functions and arithmetic, London Math. Soc.

Lecture Note Ser. 153, Cambridge University Press, Cambridge (1991), 235–256.
[18] B. H. Gross and J. A. Parson, On the local divisibility of Heegner points, in: Number theory, analysis and

geometry – in memory of Serge Lang, Springer, New York (2012), 215–241.
[19] X. Guitart and J. Quer, Modular abelian varieties over number fields, preprint 2009, http://arxiv.org/

abs/0905.2550.
[20] Y. Ihara, Shimura curves over finite fields and their rational points, in: Curves over finite fields, Contemp.

Math. 245 (1999), 15–23.
[21] H. Iwaniec and E. Kowalski, Analytic number theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathe-

matical Society, Providence 2004.
[22] S. Ling, Shimura subgroups of Jacobians of Shimura curves, Proc. Amer. Math. Soc. 118 (1993), no. 2, 385–

390.
[23] M. Longo, V. Rotger and S. Vigni, On rigid analytic uniformizations of Jacobians of Shimura curves, Amer. J.

Math., to appear.
[24] M. Longo and S. Vigni, On the vanishing of Selmer groups for elliptic curves over ring class fields, J. Number

Theory 150 (2010), no. 1, 128–163.
[25] M. Longo and S. Vigni, The rationality of quaternionic Darmon points over genus fields of real quadratic

fields, submitted (2011).
[26] E. Lutz, Sur l’équation y2 D x3 � Ax � B dans les corps p-adiques, J. reine angew. Math. 177 (1937),

238–247.
[27] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergeb. Math. Grenzgeb. (3) 17, Springer, Berlin

1991.
[28] B. Mazur and H. P. F. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), no. 1, 1–61.
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