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Abstract

A collection of recent papers reveals that linear barycentric rational interpolation with the
weights suggested by Floater and Hormann is a good choice for approximating smooth functions,
especially when the interpolation nodes are equidistant. In the latter setting, the Lebesgue con-
stant of this rational interpolation process is known to grow only logarithmically with the number
of nodes. But since practical applications not always allow to get precisely equidistant samples, we
relax this condition in this paper and study the Floater–Hormann family of rational interpolants
at distributions of nodes which are only almost equidistant. In particular, we show that the cor-
responding Lebesgue constants still grow logarithmically, albeit with a larger constant than in the
case of equidistant nodes.
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1 Introduction

Given a set of n + 1 data values f0, f1, . . . , fn that are associated with the n + 1 real valued nodes
x0 < x1 < · · · < xn, the classical univariate interpolation problem is to find a function g with g(xj) = fj
for j = 0, 1, . . . , n, where g is taken from a finite-dimensional linear subspace of the Banach space
C0[x0, xn] of continuous functions over [x0, xn] with the maximum norm. A recently discovered gener-
alization of polynomial interpolation is the family of rational interpolants

r(x) =

∑n−d
j=0

λj(x)pj(x)
∑n−d

j=0
λj(x)

, 0 ≤ d ≤ n,

where pj is the unique polynomial of degree at most d with pj(xk) = fk for k = j, . . . , j + d, and

λj(x) =
(−1)

j

(x− xj) · · · (x − xj+d)
.

For d = n, the interpolant r is the unique interpolating polynomial, and in general the degrees of the
numerator and denominator of r are at most n and n− d, respectively. Moreover, r has no real poles,
as proved by Berrut [1] for d = 0 and by Floater and Hormann [6] for d ≥ 1. The latter work also shows
how to derive the barycentric form of these rational interpolants,

r(x) =

n
∑

j=0

wj

x− xj
fj

/ n
∑

j=0

wj

x− xj
, (1)

with weights

wk = (−1)k−d
∑

i∈Jk

i+d
∏

j=i,j 6=k

1

|xk − xj |
, (2)
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where
Jk = {i ∈ {0, 1, . . . , n− d} : k − d ≤ i ≤ k}, (3)

which is to be preferred for the numerical evaluation of r. We refer to [2] for more details on the
implementation of linear barycentric rational interpolants.

Floater and Hormann [6] further demonstrate the favourable approximation properties of these
rational interpolants. If the data values fj = f(xj) are sampled from some sufficiently smooth function
f , then the approximation error ‖r − f‖∞ over the interpolation interval [x0, xn] is on the order of
hd+1, where

h = max
0≤j≤n−1

(xj+1 − xj)

is the maximal distance between neighbouring interpolation nodes. Alternatively, the approximation
error can be bounded from above by considering the Lebesgue constant

Λn = max
x0≤x≤xn

Λn(x), (4)

which is the maximum value of the Lebesgue function

Λn(x) =

n
∑

j=0

|wj |

|x− xj |

/∣

∣

∣

∣

n
∑

j=0

wj

x− xj

∣

∣

∣

∣

. (5)

Since the rational interpolants in (1) reproduce polynomials of degree at least d by construction, it is
straightforward to show that

‖r − f‖∞ ≤ (1 + Λn)‖p
∗ − f‖∞,

where p∗ is the best approximation of f among all polynomials of degree d. Bos et al. [3, 4] show that
Λn grows only logarithmically with n, at least for equidistant nodes and fixed d.

In this paper we show that Λn grows logarithmically for quasi-equidistant nodes, too (see Section 2,
where we also improve a bound from [3]). That is, we assume that there exists some global mesh ratio

M ≥ 1, which does not depend on n, such that

h

h∗
≤ M, (6)

where
h∗ = min

0≤j≤n−1
(xj+1 − xj)

is the minimal distance between neighbouring nodes. Such node distributions may arise from experi-
ments, where the aim is to sample a signal at a constant rate, which in turn is perturbed by imprecision
in the measurement locations (see Section 3). The behaviour of the derivatives of the rational inter-
polants for such nodes has been studied in [7].

2 Theoretical bounds

Let us begin by deriving bounds on the absolute value of the barycentric weights in (2). This result is
then used to establish an upper and a lower bound on the Lebesgue constant.

Lemma 1. If the interpolation nodes are quasi-equidistant, then the weights in (2) satisfy

Wk ≤ |wk| ≤ MdWk,

where

Wk =
1

hdd!

∑

i∈Jk

(

d

k − i

)
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for k = 0, 1, . . . , n. Moreover,

Wk ≤
2d

hdd!
=: W,

with equality if and only if d ≤ k ≤ n− d.

Proof. By the definition of the minimal and maximal node distances h∗ and h, the distance between
two arbitrary nodes xk and xj satisfies

h∗|k − j| ≤ |xk − xj | ≤ h|k − j|. (7)

This leads to the lower bound

|wk| =
∑

i∈Jk

i+d
∏

j=i,j 6=k

1

|xk − xj |

≥
1

hd

∑

i∈Jk

i+d
∏

j=i,j 6=k

1

|k − j|
=

1

hd

∑

i∈Jk

1

(k − i)!(i+ d− k)!
=

1

hdd!

∑

i∈Jk

(

d

k − i

)

and similarly, using (6), to the upper bound

|wk| ≤
1

hd
∗d!

∑

i∈Jk

(

d

k − i

)

≤
Md

hdd!

∑

i∈Jk

(

d

k − i

)

.

The statement about the upper bound W of Wk follows directly from the definition of the index set Jk
in (3).

If the nodes are equidistant, then M = 1 and |wk| = Wk for k = 0, 1, . . . , n, as stated in [6].

Theorem 1. If the interpolation nodes are quasi-equidistant, then the Lebesgue constant in (4) satisfies

Λn ≤ (2 +M lnn) ·

{

3

4
M, if d = 0,

2d−1Md, if d ≥ 1.

Proof. From (5) it follows that Λn(xk) = 1 for k = 0, 1, . . . , n. Therefore, let xk < x < xk+1 for some k
with 0 ≤ k ≤ n− 1, and rewrite the Lebesgue function in (5) as

Λn(x) =

(x− xk)(xk+1 − x)

n
∑

j=0

|wj |

|x− xj |

(x− xk)(xk+1 − x)

∣

∣

∣

∣

∣

n
∑

j=0

wj

x− xj

∣

∣

∣

∣

∣

=:
Nk(x)

Dk(x)
.

We then derive an upper bound on the numerator Nk(x), following the proof of Theorem 2 in [3].
By Lemma 1,

Nk(x) = (x− xk)(xk+1 − x)

n
∑

j=0

|wj |

|x− xj |
≤ MdW (x − xk)(xk+1 − x)

n
∑

j=0

1

|x− xj |
,
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and further, using the inequalities (6) and (7), and the fact that xk < x < xk+1,

Nk(x)

MdW
≤ (xk+1 − xk) + (x− xk)(xk+1 − x)

(

k−1
∑

j=0

1

x− xj
+

n
∑

j=k+2

1

xj − x

)

≤ h+

(

h

2

)2
(

k−1
∑

j=0

1

xk − xj
+

n
∑

j=k+2

1

xj − xk+1

)

≤ h+

(

h

2

)2
M

h

(

k
∑

j=1

1

j
+

n−k−1
∑

j=1

1

j

)

≤ h+
Mh

2
lnn.

For establishing a lower bound on the denominator Dk(x), we distinguish the cases d = 0 and d ≥ 1.
If d = 0, then the weights in (2) simplify to wk = (−1)k and we have

Dk(x) = (x− xk)(xk+1 − x)

∣

∣

∣

∣

∣

n
∑

j=0

(−1)j

x− xj

∣

∣

∣

∣

∣

≥ (x− xk)(xk+1 − x)

(

−
1

x− xk−1

+
1

x− xk
+

1

xk+1 − x
−

1

xk+2 − x

)

(8)

= (xk+1 − xk)− (x − xk)(xk+1 − x)

(

1

x− xk−1

+
1

xk+2 − x

)

≥
2

3
h∗, (9)

where the inequality in (9) can be seen by first multiplying both sides with 3(x− xk−1)(xk+2 − x) and
then verifying that the quadratic polynomial

Qk(x) =
(

3(xk+1 − xk)− 2h∗

)

(x− xk−1)(xk+2 − x)− 3(x− xk)(xk+1 − x)(xk+2 − xk−1)

is non-negative. Substituting a = xk − xk−1, b = xk+1 − xk, c = xk+2 − xk+1, and y = x− xk, we find

Qk(y + xk) = (3a+ 2h∗ + 3c)y2 + (2ah∗ − 2bh∗ − 2ch∗ − 6ab)y + a(b+ c)(3b− 2h∗),

and it is easy to check that the minimal value of this quadratic expression is

a+ b+ c

3a+ 2h∗ + 3c

(

6ac(b− h∗) + a(bc− h2
∗) + b(ac− h2

∗) + c(ab− h2
∗)
)

,

which is non-negative, because 0 < h∗ ≤ min(a, b, c). Note that the inequality in (8) also holds if k = 0
or k = n− 1, for example by letting x−1 = x0 − h and xn+1 = xn + h.

To handle the case d ≥ 1, we use two results from [6] to get

Dk(x) = (x− xk)(xk+1 − x)

∣

∣

∣

∣

∣

n
∑

j=0

wj

x− xj

∣

∣

∣

∣

∣

= (x − xk)(xk+1 − x)

∣

∣

∣

∣

∣

n−d
∑

j=0

λj(x)

∣

∣

∣

∣

∣

≥ (x− xk)(xk+1 − x)|λi(x)| =
(x− xk)(xk+1 − x)
∏i+d

j=i |xj − x|
,

for any i ∈ Jk \ {k − d}. It then follows from (7) that

Dk(x) ≥
1

∏k−1

j=i (x − xj)
∏i+d

j=k+2
(xj − x)

≥
1

∏k−1

j=i (xk+1 − xj)
∏i+d

j=k+2
(xj − xk)

≥
1

hd−1(k + 1− i)!(i + d− k)!
≥

1

hd−1d!
.
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For equidistant nodes (i.e., M = 1), the upper bound in Theorem 1 improves the one given in [3] for
d = 0 by a factor of 3/4, and it simplifies to the one given in [4] for d ≥ 1.

Theorem 2. If the interpolation nodes are quasi-equidistant, then the Lebesgue constant in (4) satisfies

Λn ≥
1

2d+2Md+1

(

2d+ 1

d

)

·

{

(

2 + ln(2n+ 1)
)

, if d = 0,

ln
(

n
d − 1

)

, if d ≥ 1.

Proof. In order to establish this lower bound, we follow the idea of the proof of Theorem 2 in [4] and

derive a lower bound for the numerator N(x) =
∑n

j=0

|wj|
|x−xj|

and an upper bound for the denominator

D(x) =
∣

∣

∑n
j=0

wj

x−xj

∣

∣ of the Lebesgue function in (5) at the midpoint x∗ = (x0+x1)/2 between the first

two interpolation nodes. According to (7), the distance between x∗ and xj satisfies

h∗

2
|2j − 1| ≤ |x∗ − xj | ≤

h

2
|2j − 1|. (10)

For the numerator, we omit some terms of the sum and use the lower bound W from Lemma 1 as
well as inequality (10) to get

N(x∗) =

n
∑

j=0

|wj |

|x∗ − xj |
≥

n−d
∑

j=d

|wj |

|x∗ − xj |
≥ W

n−d
∑

j=d

1

|x∗ − xj |
≥ W

2

h

n−d
∑

j=d

1

|2j − 1|
.

If d = 0, we then have

N(x∗)

W
≥

2

h

(

1 +

n
∑

j=1

1

2j − 1

)

≥
2

h

(

1 +

∫ n+1

1

dx

2x− 1

)

=
1

h

(

2 + ln(2n+ 1)
)

,

and for d ≥ 1 we find

N(x∗)

W
≥

2

h

n−d
∑

j=d

1

2j − 1
≥

2

h

∫ n−d+1

d

dx

2x− 1
=

1

h
ln

(

2n− 2d+ 1

2d− 1

)

≥
1

h
ln
(n

d
− 1
)

.

To bound the denominator, we first rewrite it in terms of the functions λj and notice that λ0(x
∗)

and λ1(x
∗) both have the same sign, and that the subsequent λj(x

∗) oscillate in sign and decrease in
absolute value. Therefore,

D(x∗) =

∣

∣

∣

∣

∣

n
∑

j=0

wj

x− xj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n−d
∑

j=0

λj(x
∗)

∣

∣

∣

∣

∣

≤ |λ0(x
∗)|+ |λ1(x

∗)| =
1

∏d
j=0

|x∗ − xj |
+

1
∏d+1

j=1
|x∗ − xj |

.

We then conclude, using first (10) and then (6), that

D(x∗) ≤
2d+1

hd+1
∗

∏d
j=0

|2j − 1|
+

2d+1

hd+1
∗

∏d+1

j=1
|2j − 1|

=
2d+1

hd+1
∗

(

2d+ 1
∏d+1

j=1
(2j − 1)

+
1

∏d+1

j=1
(2j − 1)

)

≤
22d+2Md+1

hd+1d!
(

2d+1

d

) .

Note that the lower bound in Theorem 2 simplifies to the one given in [4] for d ≥ 1 and equidistant
nodes with M = 1.
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Figure 1: Minimum, maximum, and average Lebesgue constants (vertical bars with crosses) for quasi-
equidistant nodes with a random perturbation of at most δ = 1/6 (left) and δ = 3/10 (right), that
is, with global mesh ratios at most M = 2 (left) and M = 4 (right). Circles indicate the Lebesgue
constants for equidistant nodes, bullets mark the minimal global mesh ratios. The plots for d = 0 are
not shown because they are very similar to those for d = 1.

3 Numerical experiments

We finally present some results of the extensive numerical experiments that we carried out. We first
considered the situation where a set of equidistant interpolation nodes is perturbed randomly with a
fixed maximum relative perturbation δ ∈ (0, 1/2). Since Lebesgue constants are invariant with respect
to translations and uniform scalings of the interpolation nodes, due to the invariance of Lagrange
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Figure 2: Lebesgue functions for two specific sets of n = 15 (left) and n = 31 (right) quasi-equidistant
nodes with fixed global mesh ratio M = 2.

elementary polynomials to affine transformations, we simply used

xj = j + δj , j = 0, . . . , n,

with randomly chosen δj ∈ [−δ, δ]. Hence, the global mesh ratio is at most M = (1 + 2δ)/(1− 2δ). For
fixed d and n, we generated N = 1, 000, 000 different sets of such interpolation nodes and computed the
corresponding Lebesgue constants. The vertical bars in Figure 1 show the ranges of these N Lebesgue
constants and the crosses mark their averages. We observe that the variance of the Lebesgue constants
grows rapidly with both d and δ and only slowly with n. Moreover, the average values are not too far
from the Lebesgue constants in the equidistant setting with the same number of interpolation nodes,
which are indicated by the circles in Figure 1, and the relative distance decreases with d. The case
d = 3 also reveals that the random perturbations can actually improve the Lebesgue constant, and that
this becomes less likely as n increases. In principle, one could expect the circles to always lie within the
range of Lebesgue constants, as the perfectly uniform distribution is just a special case of the randomly
perturbed nodes. The fact that this is not always the case is explained by the bullets in Figure 1, which
mark the smallest global mesh ratio M that we found among the N randomly created sets of nodes;
the greatest M is not shown because it was close to (1 + 2δ)/(1− 2δ) in all examples.

Figure 2 shows the Lebesgue functions for some sets of quasi-equidistant nodes with global mesh
ratio M = 2. We tested many such sets of nodes and found two cases to give particularly large Lebesgue
constants: in the first case, we let the first subinterval [x0, x1] be of length M and all others of length 1,
in the second case we let the central subinterval

[

x⌊n/2⌋, x⌊n/2⌋+1

]

be of length M and again all others
of length 1. For a better comparison, we scaled the nodes so that [x0, xn] = [0, 1]. Except for d = 0
and the first set of nodes, the maximum of the Lebesgue function is always found in the single interval
of length M , and for d ≥ 2, the first set gives larger Lebesgue constants than the second set. This can
also be seen in Figure 3, where the bullets mark the Lebesgue constants for the first set of nodes and
the circles correspond to the second set. We observe that these are still quite far from the theoretical
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Figure 3: Lebesgue constants (bullets and circles) for the two specific sets of quasi-equidistant nodes
with global mesh ratioM = 2 that are shown in Figure 2, compared with the upper bound in Theorem 1.

upper bound that we derive in Theorem 1, and it remains to be figured out, as discussed in [5] in the
case of polynomial interpolation, if there are node configurations with a fixed global mesh ratio that
lead to yet larger Lebesgue constants than those displayed here.
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