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Abstract

We provide analogous characterizations of the families of dense and of closed subobjects with
respect to closure operators. The analogous behavior of hereditary and minimal closure
operators with respect to the families of dense and of closed subobjects, respectively, is
pointed out. We prove that, in the category of topological abelian groups, the total denseness
cannot be described as denseness with respect to a closure operator.
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Introduction

Notions involving denseness or closedness are encountered in many fields of contemporary math-
ematics. The categorical notion of closure operator gives us the possibility of their unified treat-
ment. The notion of closure operator used in this paper is the one gradually developed by
Dikranjan, Giuli, Tholen and further by Strecker and coworkers (see [5], [7], [10], [4]). It has
many predecessors throughout this century, most notably in the works of Birkhoff, Kuratowski,
C̆ech, Lawvere and Tierney.
Every closure operator C gives rise to two classes of subobjects – C-dense and C-closed ones.
The aim of this paper is to determine the properties which characterize a family of subobjects as
a class of C-dense or C-closed subobjects for a suitable closure operator C. Translated in terms
of factorization systems, the problem has a solution in the case of classes of closed subobjects:
these are the classes of subobjects stable under pullback and intersection (see [12] and [19]). This
result is not completely satisfactory in our setting: its categorical characterization does not give
a characterization of dense subobjects since they need not be stable under pushout. However
it can be formulated in lattice-theoretic terms and then leads to an analogous characterization
of the classes of dense subobjects (see Theorem 2.1, announced in [20] and [18]). This char-
acterization is used (see Example 3.3) to give a negative answer to the following question, set
by Dikranjan: can total denseness ([16]) in the category of topological groups be obtained by
means of a suitable closure operator? This notion of denseness plays a crucial role in topological
groups: for example, among the dense subgroups of compact groups the totally dense ones are
those satisfying the open-mapping theorem ([8], [9]).

1 The categorical setting

Consider a category X and a fixed class M of monomorphisms in X containing all isomorphisms
and closed under composition. For every object X in X , the class of all morphisms in M with
codomain X is preordered by the relation “ ≤ ”, where m ≤ n, with m, n ∈ M, means that
there exists a unique morphism m

n
such that n ◦

m
n

= m. Each equivalence class with respect to
the relation “ ≤ & ≥ ” is called M-subobject of X . The family of all M-subobjects of X is
denoted by M/X ; we do not distinguish between the equivalence classes and their representative
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morphisms. In the examples, when there is no danger of confusion, we will denote the M-sub-
objects simply by their domains. Throughout the paper we assume X to be an M-complete
category, i.e.

• ∀X ∈ Ob(X ), M/X is closed under intersection (briefly X has M-intersection);

• ∀f : X → Y ∈ X and ∀n ∈ M/Y , the pullback of n under f , belongs to M/X (briefly X
has M-pullback).

In such a category there is a (uniquely determined) class of morphisms E such that (E ,M) is
a factorization system. The class E contains all isomorphisms, it is closed under composition
and is right-cancellable with respect to all morphisms (see definition below), while the class M
is left-cancellable with respect to monomorphisms (see [13]). In particular if m ≤ n ∈ M, then
m
n
∈ M. A closure operator on X (see [7], 2.10) is a family C = (cX)X∈Ob(X ) of maps

cX : M/X −→ M/X
m : M → X 7−→ cX(m) : cX(M) → X

such that for every X in X the following properties are satisfied:

Expansion : m ≤ cX(m) for all m ∈ M/X ;

Monotonicity : m ≤ m′ ∈ M/X ⇒ cX(m) ≤ cX(m′);

Continuity : f(cX(m)) ≤ cY (f(m)) for all f : X → Y in X and m ∈ M/X .

For each X in X , an M-subobject m of X is called C-dense (resp. C-closed) if cX(m) = 1X
(resp. m = cX(m)). A closure operator C is said to be weakly hereditary (resp. idempotent) if
for each X in X and m ∈ M/X , the M-subobject m

cX(m) is C-dense (resp. cX(m) is C-closed);

it is hereditary (resp. minimal) if for each X in X and m ≤ n ∈ M/X , cN (m
n
) = cX(m)∧n

n
with

N the domain of n (resp. cX(n) = cX(m) ∨ n).
A class A ⊆ M

is right-cancellable (resp. left-cancellable) with respect to M if n ◦m ∈ A with m, n ∈ M
implies n ∈ A (resp. m ∈ A);

is stable under M-union if for all X in X one has 1X ∈ A and, given m ≤ ni ∈ M/X , with
i ∈ I 6= ∅, if m

ni
∈ A for all i ∈ I then m

∨ni
∈ A;

is stable under M-intersection if for all X in X and {mi}i∈I ⊆ M/X , with mi ∈ A for all i ∈ I,
also ∧mi ∈ A (in particular, one has 1X ∈ A with I = ∅);

has the preservation property (resp. reflection property) for morphisms if the following equiva-
lent conditions are satisfied

a) for every f : X → Y in X and n ∈ M/Y , f−1(n) ∈ A implies n ∈ A (resp. n ∈ A
implies f−1(n) ∈ A) whenever f(1X) ∨ n = 1Y ;

b) for every f : X → Y in X and n ∈ M/Y , f−1(n) ∈ A implies n
f(1X)∨n

∈ A (resp.
n

f(1X)∨n
∈ A implies f−1(n) ∈ A).

2 The Main Theorem

Let X be an M-complete category. It is known that a family of M-subobjects is the class of
all closed subobjects with respect to a closure operator if and only if it is a right factorization
class (see [7], 2.4), i.e. if and only if it is stable under intersection and under pullback (see [12]
and [19] for a proof of the dual result). To be stable under pullback is equivalent to being both
left-cancellable with respect to M and to have the reflection property. Hence a subclass C of M
is the family of closed M-subobjects in X with respect to an appropriate closure operator if and
only if
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i) C is left-cancellable with respect to M,

ii) C is stable under M-intersection,

iii) C has the reflection property.

In such a case there exists a uniquely determined idempotent closure operator CC such that C is
the family of all CC-closed M-subobjects in X . For X ∈ X and m ∈ M/X , CC is defined by

(
C
c)X(m) =

∧

{l ∈ M/X : m ≤ l & l ∈ C}.

The analogous behavior of the notions of denseness and closedness becomes clear, thanks to the
following

Theorem 2.1 A subclass D of M is the family of dense M-subobjects in X with respect to an

appropriate closure operator if and only if

i) D is right-cancellable with respect to M,

ii) D is stable under M-union,

iii) D has the preservation property.

In such a case there exists a uniquely determined weakly hereditary closure operator CD such that

D is the family of all CD-dense M-subobjects in X . For X ∈ X and m ∈ M/X, CD is defined

by

(c
D
)X(m) =

∨

{l ∈ M/X : m ≤ l & m
l
∈ D}.

Proof. Necessity: let D be the class of C-dense M-subobjects with respect to a closure operator
C. The right-cancellation property is obviously satisfied. To verify the stability under M-union,
let us consider an object X of X and a family m ≤ ni, i ∈ I, of M-subobjects. Suppose the
M-subobjects m

ni
are C-dense for each i ∈ I. Denoting by Ni the domain of ni, i ∈ I, for each

k ∈ I we have
nk

∨ni
= nk

∨ni

◦1Nk
= nk

∨ni
(cNk

( m
nk

)) ≤ c(∨Ni)(
m
∨ni

);

then the M-subobject m
∨ni

is C-dense. To check the preservation property take a morphism

f : X → Y in X and an M-subobject n of Y with f(1X) ∨ n = 1Y . Suppose f−1(n) is C-dense
and let f(1X) ◦e be the (E ,M)-factorization of f . The M-subobject e(f−1(n)) is C-dense and
f(1X) ◦e(f−1(n)) = f(f−1(n)). Then, since

f(1X) = f(1X) ◦1f(X) = f(1X)[cf(X)(e(f
−1(n)))] ≤ cY (f(f

−1(n))) ≤ cY (n)

and 1Y = f(1X) ∨ n, the M-subobject n is C-dense.
Sufficiency: let D satisfy the conditions i), ii), iii). For each X in X and m ∈ M/X , set
FX(m) = {l ∈ M/X : m ≤ l & m

l
∈ D}. Let us prove that cX(m) :=

∨

FX(m) defines a
closure operator C = (cX)X∈Ob(X ). For m : M → X in M, 1M = m

m
∈ D gives m ≤ cX(m).

To show the monotonicity it suffices to see that for m ≤ m′ ∈ M/X and n ∈ FX(m) one

has n ∨ m′ ∈ FX(m′). By the right-cancellation property, m
n

∈ D implies m′
∧n
n

∈ D. Since
m′

∧n
n

= n−1(m′), the preservation property implies m′

n∨m′ ∈ D, i.e. n ∨ m′ ∈ FX(m′). Now
cX(m) ≤ cX(m′) is obvious. To conclude, for f : X → Y and m ∈ M/X , we must show
f(cX(m)) ≤ cY (f(m)). Since f preserves joins, it is sufficient to show that for each n ∈ FX(m),
f(n) ∈ FY (f(m)) holds. By definition, n ∈ FX(m) implies m

n
∈ D; since m

n
≤ (f ◦n)−1(f(m)),

by the right-cancellation property (f ◦n)−1(f(m)) belongs to D. Hence, again the preservation

property implies f(m)
(f ◦n)(1N )∨f(m) =

f(m)
f(n) ∈ D, i.e. f(n) ∈ FY (f(m)).

To prove that C is weakly hereditary note that for m ∈ M/X

c(cX(m))(
m

cX(m) ) = ∨F(cX(m))(
m

cX (m)) =
∨FX(m)
cX(m) = 1(cX(m)).
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Finally, D is the class of C-dense M-subobjects. In fact, if m
1X

= m ∈ D, then 1X ∈ FX(m);
hence m is C-dense. Conversely, cX(m) = 1X means

∨

FX(m) = 1X . Hence the stability of D
under M-union yields m = m

∨FX(m) ∈ D.

Given two closure operators C1 and C2 we set C1 ≤ C2 if for all X in X , m ∈ M/X , (c1)X(m) ≤
(c2)X(m) holds. The above proof shows that CD is the smallest closure operator which has D
as class of dense M-subobjects. For a closure operator C denote by DC the class of all C-dense
M-subobjects. Then the closure operator CDC

associated to DC (see Theorem 2.1) is the weakly
hereditary core Č of C, i.e. the largest weakly hereditary closure operator below C (see [7], 2.11).

Remark 2.2 For each subclass L of M, the family of classes of M-subobjects containing L and
satisfying the conditions of Theorem 2.1 is not empty (it contains M) and closed with respect
to intersection. Let L be its minimum. Setting L 7→ C

L
, C 7→ DC we define an order-preserving

Galois correspondence ([1], 6.25), between the subclasses of M and the closure operators of the
M-complete category X . This correspondence is a Galois equivalence between the subclasses of
M satisfying the conditions of Theorem 2.1 and the weakly hereditary closure operators of X .

Proposition 2.3 An operator C is hereditary if and only if it is weakly hereditary and the class

D of all C-dense M-subobjects is left-cancellable with respect to M. Dually, C is minimal if

and only if it is idempotent and the class C of all C-closed M-subobjects is right-cancellable with

respect to M.

Proof. If C is hereditary, then it is clearly weakly hereditary. Let m ≤ n ∈ M with m = n ◦
m
n
∈

D. By the hereditariness of C we have, with N the domain of n, cN (m
n
) = n∧cX(m)

n
= n∧1X

n
= 1N ,

i.e. m
n
∈ D. Conversely, let C be weakly hereditary and let D have the left-cancellation property.

Given X in X and m ≤ n ∈ M/X , m
cX(m) =

n∧cX(m)
cX (m)

◦
m

n∧cX(m) is C-dense. By our hypothesis on

D, the M-subobject m
n∧cX(m) belongs to D. Since C = CD (see Theorem 2.1) we have cN (m

n
) =

n∧cX(m)
n

and C is hereditary. Next, if C is minimal, obviously C is idempotent. Let X be in X
andm ≤ n ∈ M/X with m = n ◦

m
n
∈ C. By the minimality of C we have cX(n) = cX(m)∨n = n,

i.e. n ∈ C. Conversely, let C be idempotent. Pick X in X and m ≤ n ∈ M/X , then cX(m)

is C-closed and cX(m) = (cX(m) ∨ n) ◦
cX (m)

cX(m)∨n
. By the right-cancellation property of C, the

M-subobject cX(m) ∨ n belongs to C. Then we have cX(n) = n ∨ cX(m) and C is minimal.

3 Comments and Applications

Clearly, the conditions to be stable under M-union and to have the preservation property in
Theorem 2.1 are independent. The following example guarantees also the independence of the
right-cancellation property with respect to M from the others.

Example 3.1 The set {0, 1, 2} with the natural order is a small category X . It is a M-complete
category with M := Mor(X ). Let m : 0 → 2 and n : 1 → 2 be the (unique) morphisms with the
indicated domain and codomain. The class A := M\ {n} is stable under M-union and has the
preservation property; but, since m ∈ A and n /∈ A, it is not right-cancellable.

The following examples show that the left- and the right-cancellation property with respect to
M of the class of C-dense and of C-closed subobjects alone does not imply the hereditariness
and the minimality, respectively, of the operator C. Let r be a preradical on the category
R-Mod of left modules on a ring R and their homomorphisms. It is possible to define two
closure operators Cr and Cr, respectively called the minimal and the maximal closure operators
associated to r (see [6]). The minimal closure operator Cr is defined, for any submodule L of M ,
by (cr)M (L) := L+ r(M). The maximal closure operator Cr is defined, for any submodule L of
M , by crM (L) = π−1(r(M/L)), where π is the canonical projection.

Examples 3.2 1) Let us consider, on the category Ab of abelian groups and their homomor-
phisms, the preradicals socle and maximal divisible subgroup, denoted by Soc and d respectively.
Fix M to be the class of monomorphisms of Ab. For r = Soc ◦d the class D of all isomorphisms of
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Ab is the class of Cr-dense M-subobjects since G = Soc ◦d(G) always implies G = 0. Obviously
D is left-cancellable. Nevertheless Cr is not hereditary: consider the subgroups Z(p), Z(p2) of
the Prüfer group Z(p∞). Then (cr)Z(p2)(Z(p)) = Z(p), while (cr)Z(p∞)(Z(p)) = Z(p2).

2) Let us consider a totally ordered set (X,≤) with bottom and top elements as a small cat-
egory. It is M-complete with M := Mor(X ). Given a pair a ≤ b of elements of X , setting

(ca,b)y(x) =

{

a ∧ y if a > x
x ∨ (b ∧ y) if a ≤ x

for each x ≤ y in X , we define a closure operator Ca,b.

It is easy to see that Ca,b and Cb,b have the same class C of closed M-subobjects. Since Cb,b is
minimal, C is right-cancellable, while, if |X | ≥ 3 and a is not the bottom element of X , Ca,b is
not idempotent, hence certainly minimal.

Let TAb be the category of topological abelian groups and their continuous homomorphisms.
Fixing M to be the class of topological embeddings, TAb is an M-complete category. A subgroup
J of G ∈ Ob(TAb) is called totally dense in G if for each closed subgroup H of G, the intersection
J ∩H is dense in H . The following example answers a question of D. Dikranjan and shows that
the class of totally dense topological embeddings is not the class of dense M-subobjects with
respect to any closure operator.

Example 3.3 Let Z and Zp be the additive groups of integers and of p-adic integers endowed
with their p-adic topologies. Consider the subgroups N = Z × Z and X = Zp × 0 of Zp × Zp.
Then the topological subgroup X ∩ N is totally dense in X , while N is not totally dense in
Y = N + X = Zp × Z, so that the class of totally dense topological embeddings does not
have the preservation property. To see that N is not totally dense in Y pick ξ ∈ Zp such that
mξ 6∈ Z for each 0 6= m ∈ Z. Then the cyclic subgroup L of Y generated by (ξ, 1) is closed: for
(η, n) ∈ Y \L, one has [(η, n) + ps+1(H +K)]∩L = ∅, with s the maximum integer such that ps

divides η − nξ 6= 0. By L ∩N = 0, N is not totally dense in Y .

Trading denseness for C-denseness and closed subgroups for C-closed subobjects, we can define
total C-denseness in any category endowed with a closure operator C. Sometimes it can be a
denseness with respect to a suitable closure operator (see [21] for more details; examples include
the b-closure for topological spaces and total denseness for an appropriate subcategory of TAb).
Let X be an M-complete category with equalizers in M. The class Mepi := {m ∈ M : m
is epimorphism} satisfies the three conditions of Theorem 2.1. The unique weakly hereditary
closure operator which has Mepi as the class of dense M-subobjects is called the epi-closure
operator and denoted by Cepi (see [2] for the case of topological spaces). Since Mepi is closed
under composition, Cepi is also idempotent (see [7], Corollary 2.9). The class Meq of equalizers
of morphisms of X is stable under intersection and pullback. The unique idempotent closure
operator which has Meq as the class of closed M-subobjects is called the regular operator and
denoted by Creg (see [14]). The operators Cepi and Creg have the same class of dense M-
subobjects; then, by Theorem 2.1, Cepi is equal to Čreg, the weakly hereditary core of Creg

and, by Proposition 2.3, Cepi is hereditary if and only if Creg is hereditary. In general, the two
operators do not coincide (see [14]), not even when X is the torsionfree class of a radical of
R-modules:

Example 3.4 Let r be a radical of Mod−R, i.e. a preradical such that, for each module M in
Mod−R, r(M/r(M)) = 0 holds. Let us consider the category Fr := {M ∈ Mod−R : r(M) = 0}.
Setting M := Mor(Fr), Fr is an M-complete category with equalizers in M. It is easy to prove
that in Fr the operator Creg coincides with the maximal operator Cr associated to r. Then we
have Cepi = Čreg = Čr = Cr∗ where r∗ is the idempotent core of r (Proposition 2.4, [6]). Then
to have Cepi 6= Creg it is necessary to choose a non idempotent radical r. The Jacobson radical
J is not idempotent; let us see that CJ and CJ∗ do not coincide on FJ . Consider p2Z, pZ and
Z in FJ . Clearly the CJ -closure of p2Z in Z is equal to pZ; while p2Z is CJ∗ -closed in Z, since
J(J(Z/p2Z)) = J(pZ/p2Z) = 0.

In the category of Hausdorff topological spaces (or Tychonoff spaces, 0-dimensional T1 spaces
etc.) and continuous maps the epi-closure coincides with the usual topological closure. Recently

5



Uspenskĭı (see [22]), resolving a long-standing question, showed that this is not true in the
category of Hausdorff topological groups. Moreover he proved (see [23]) that in this category
Cepi (and hence Creg, as observed above) is not hereditary.
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their helpful comments and their permanent encouragement. My thanks go also to the referee
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