Generalizing Morita duality: a homological approach

Alberto Tonolo
Dipartimento di Matematica Pura ed Applicata
Università di Padova - Italy
tonolo@math.unipd.it

Abstract

Let R and S be arbitrary associative rings. Given a bimodule ${ }_{R} W_{S}$, we denote by $\Delta_{\text {? }}$ and $\Gamma_{\text {? }}$ the functors $\operatorname{Hom}_{?}(-, W)$ and $\operatorname{Ext}_{?}^{1}(-, W)$, where $?=R$ or S. The functors Δ_{R} and Δ_{S} are right adjoint with the evaluation maps δ as unities. A module M is Δ-reflexive if δ_{M} is an isomorphism. In this paper we give, for a weakly cotilting bimodule ${ }_{R} W_{S}$, the notion of Γ-reflexivity. We construct large abelian subcategories \mathcal{M}_{R} and \mathcal{M}_{S} where the functors Γ_{R} and Γ_{S} are left adjoint and a "Cotilting theorem" holds.

Introduction

In this paper R and S will be associative rings with unity and ${ }_{R} W_{S}$ will be a bimodule. We denote by Δ_{R} and Δ_{S} the contravariant functors

$$
\operatorname{Hom}_{R}(-, W): R-\operatorname{Mod} \rightarrow \operatorname{Mod}-S \quad \text { and } \quad \operatorname{Hom}_{S}(-, W): \operatorname{Mod}-S \rightarrow R-\operatorname{Mod}
$$

and by Γ_{R} and Γ_{S} the contravariant functors

$$
\operatorname{Ext}_{R}^{1}(-, W): R \text {-Mod } \rightarrow \operatorname{Mod}-S \quad \text { and } \quad \operatorname{Ext}_{S}^{1}(-, W): \operatorname{Mod}-S \rightarrow R \text {-Mod. }
$$

For each left R-module (resp. right S-module) M, we denote by $\delta_{M}: M \rightarrow \Delta_{S} \Delta_{R} M$ (resp. $\delta_{M}: M \rightarrow$ $\Delta_{R} \Delta_{S} M$) the evaluation map. These maps define natural transformations δ between the identity functor $1_{R \text {-Mod }}$ and $\Delta_{S} \Delta_{R}$ and between the identity functor $1_{\text {Mod-S }}$ and $\Delta_{R} \Delta_{S}$, which are the unities of the right adjoint pair $\left(\Delta_{R}, \Delta_{S}\right)$. A module M is said to be Δ-reflexive if δ_{M} is an isomorphism.

The bimodule ${ }_{R} W_{S}$ defines a Morita duality ($[14,2]$) if the classes of Δ-reflexive modules contain the rings and are finitely closed, i.e. closed with respect to submodules, factor modules and finite direct sums. This happens if and only if $R_{R} W_{S}$ is a Morita bimodule, i.e. it is balanced and ${ }_{R} W$ and W_{S} are injective cogenerators ([1, Theorem 24.1]). Morita bimodules are "rare": B. J. Müller has proved ([15]) that there exists a Morita bimodule ${ }_{R} W_{S}$ if and only if both the regular module ${ }_{R} R$ and the minimal cogenerator of R-Mod are linearly compact. For an extensive introduction to Morita duality, including various recent results, see [19].

Let ${ }_{R} W_{S}$ be an arbitrary bimodule. The subcategories Cogen ${ }_{R} W$ and Cogen W_{S} of left R - and right S-modules cogenerated by W are the classes of modules M such that δ_{M} is a monomorphism; they contain the classes of Δ-reflexive modules. Outside these classes the functors Δ_{R} and Δ_{S} are not faithful: there we will consider the contribution of their derived functors Γ_{R} and Γ_{S}.

In order that the functors Δ_{R}, Δ_{S} and Γ_{R}, Γ_{S} play a major role in R-Mod and Mod- S, we require that on both sides the injective dimension of W is less than or equal to 1 and, to avoid overlaps of the two functors, that the functors Γ_{R} and Γ_{S} vanish on modules cogenerated by W. Such a bimodule ${ }_{R} W_{S}$ will be called weakly cotilting (see page 6). A Morita bimodule is clearly a weakly cotilting bimodule, since $\operatorname{Cogen}_{R} W=\operatorname{Ker} \Gamma_{R}$ and Cogen $W_{S}=\operatorname{Ker} \Gamma_{S}$ are the whole categories of modules. Interesting examples
of weakly cotilting bimodules exist, also in the commutative case: if R is a maximal valuation domain, the regular bimodule ${ }_{R} R_{R}$ is weakly cotilting (see Example 2.1).

The word "cotilting" appears for the first time in [12] for modules over finite dimensional algebras. Next, in [4], cotilting modules over noetherian rings are considered. In [5], a "Cotilting theorem" for modules over arbitrary rings is given: it is a dual form of the celebrated Brenner and Butler theorem, known also as the "Tilting theorem". Recently (see [8, 10] and in particular [7, 9]) the theory has been developed further.
Notation: we denote by $\Delta_{S R}^{2}$ (resp. $\Delta_{R S}^{2}$) and by $\Gamma_{S R}^{2}\left(\right.$ resp. $\left.\Gamma_{S R}^{2}\right)$ the compositions $\Delta_{S} \Delta_{R}$ (resp. $\Delta_{R} \Delta_{S}$) and $\Gamma_{S} \Gamma_{R}$ (resp. $\Gamma_{S} \Gamma_{R}$). Writing $\Delta, \Gamma, \Delta^{2}, \Gamma^{2}, \Delta \Gamma, \Gamma \Delta, \ldots$ as well as simply "module" we intend that we are indifferently working with left R - or right S - modules.

In this paper we try to understand, in the whole categories of modules, the behaviour and the relationships among the functors Γ^{2}, the identity functors and Δ^{2} : the zero left derived functor of Δ^{2} will have a key role to relate them (see Theorem 1.2). It leads us to a natural definition of Γ-reflexivity (Definition 2.5), whereas in the literature (see [4, 15]) this problem is solved only inside special classes of modules. Hence we construct naturally abelian subcategories \mathcal{M}_{R} and \mathcal{M}_{S} where a Cotilting theorem (see Corollary 2.10) can be proved: they are the classes of left R - and right S - modules where the left derived maps $L_{0} \delta$ and $L_{1} \delta$ of the evaluation map δ are natural equivalences. For the first time, as far as we know, the existence of a local adjunction between the functors Γ_{R} and Γ_{S} is studied and proved.

1 Deriving the functor Δ^{2}

Let ${ }_{R} W_{S}$ be a bimodule. Consider a projective resolution

$$
\ldots \xrightarrow{d_{1}} P_{1} \xrightarrow{d_{0}} P_{0}(\xrightarrow{\varepsilon} M) \rightarrow 0
$$

of a left R-module M. Applying the covariant functor $\Delta_{S R}^{2}$ we obtain the complex

$$
\ldots \xrightarrow{\Delta_{S R}^{2}\left(d_{1}\right)} \Delta_{S R}^{2} P_{1} \xrightarrow{\Delta_{S R}^{2}\left(d_{0}\right)} \Delta_{S R}^{2} P_{0} \xrightarrow{\Delta_{S R}^{2}\left(d_{-1}\right)} 0 .
$$

The n-th left derived functor $L_{n} \Delta_{S R}^{2}$ is defined by

$$
L_{n} \Delta_{S R}^{2}(M)=\left[\operatorname{Ker} \Delta_{S R}^{2}\left(d_{n-1}\right)\right] /\left[\operatorname{Im} \Delta_{S R}^{2}\left(d_{n}\right)\right] .
$$

The augmentation ε yields a map $\Delta_{S R}^{2}\left(P_{0}\right) \rightarrow \Delta_{S R}^{2} M$ thus defining a natural map $\beta: L_{0} \Delta_{S R}^{2} \rightarrow \Delta_{S R}^{2}$. Denoted by δ the unity of the right adjoint pair $\left(\Delta_{R}, \Delta_{S}\right)$, we have the following commutative diagram of functors and natural maps

In the sequel the natural map $L_{0} \delta$ will be denoted simply by $\delta^{(0)}$.

Lemma 1.1. Given the solid part of the commutative diagram

with exact rows and columns, there are unique maps α and β such that the diagram commutes. With these maps the second column is exact; moreover, if ϑ is monic, then so is α.

Proof. It follows by diagram chasing.
Assuming that Cogen $W_{S} \subseteq \operatorname{Ker} \Gamma_{S}$, it is possible to calculate the left derived functors of $\Delta_{S R}^{2}$ working with short exact sequences. The i-th differentiation operator d_{i} factorizes through its image K_{i}; let $d_{i}=\lambda_{i} \circ \mu_{i}$ such a factorization. Applying Δ_{R} to $0 \rightarrow K_{i+1} \xrightarrow{\lambda_{i+1}} P_{i+1} \xrightarrow{\mu_{i}} K_{i} \rightarrow 0$ we get $0 \rightarrow \Delta_{R} K_{i} \xrightarrow{\Delta_{R}\left(\mu_{i}\right)}$ $\Delta_{R} P_{i+1} \rightarrow C \rightarrow 0$ where C is the cokernel of $\Delta_{R}\left(\mu_{i}\right)$. Since $C \leq \Delta_{R} K_{i+1}$ and $\operatorname{Im} \Delta_{R} \subseteq \operatorname{Cogen} W_{S}$, $\Delta_{S R}^{2}\left(\mu_{i}\right)$ is surjective. Therefore

$$
L_{n} \Delta_{S R}^{2}(M)=\left[\operatorname{Ker} \Delta_{S R}^{2}\left(d_{n-1}\right)\right] /\left[\operatorname{Im} \Delta_{S R}^{2}\left(\lambda_{n} \circ \mu_{n}\right)\right]=\left[\operatorname{Ker} \Delta_{S R}^{2}\left(d_{n-1}\right)\right] /\left[\operatorname{Im} \Delta_{S R}^{2}\left(\lambda_{n}\right)\right] .
$$

The following theorem describes how the functors $1_{R}, \Delta_{S R}^{2}, \Gamma_{S R}^{2}$ and $L_{0} \Delta_{S R}^{2}$ are related on the whole category of left R-modules.

Theorem 1.2. Let ${ }_{R} W_{S}$ be a bimodule such that $\operatorname{Cogen} W_{S} \subseteq \operatorname{Ker} \Gamma_{S}$. Then there exists a natural map α such that

is a commutative diagram with exact row of functors and natural maps. In particular, on the subcategory $\operatorname{Ker} \Gamma_{R}\left(\right.$ resp. $\left.\operatorname{Ker} \Delta_{R}\right) \beta($ resp. $\alpha)$ is a natural isomorphism.

Proof. About the triangle involving the natural maps $\delta^{(0)}, \delta$ and β we have discussed above. Let us prove the existence of the wished natural map α. Consider an exact sequence

$$
\text { (\#) } \quad 0 \rightarrow K \xrightarrow{\lambda_{0}} P \xrightarrow{\varepsilon} M \rightarrow 0
$$

with P projective. Denote by I the $\operatorname{Im} \Delta_{R}\left(\lambda_{0}\right)$ and by $i: I \rightarrow \Delta_{R} K, p: \Delta_{R} P \rightarrow I$ the morphisms factorizing $\Delta_{R}\left(\lambda_{0}\right)$. Applying the functors Δ_{R} and hence Δ_{S} to (\#), we obtain the exact sequences

$$
0 \rightarrow \Delta_{S} I \xrightarrow{\Delta_{S}(p)} \Delta_{S R}^{2} P \rightarrow \Delta_{S R}^{2} M \rightarrow 0 \quad 0 \rightarrow \Delta_{S} \Gamma_{R} M \rightarrow \Delta_{S R}^{2} K \xrightarrow{\Delta_{S}(i)} \Delta_{S} I \xrightarrow{\partial} \Gamma_{S R}^{2} M \rightarrow 0
$$

and hence, after an application of Lemma 1.1, we have the commutative diagram with exact rows and
columns

Now it remains to see that α is natural. Consider a morphism $f: M \rightarrow N$ of left R-modules and the commutative diagram with exact rows

with P and Q projective modules. Applying Δ_{R} we have the following commutative diagrams with exact rows

where I and J are the images of $\Delta_{R}(\lambda)$ and $\Delta_{R}(\mu)$. Applying Δ_{S} we obtain the diagram

The back and the front square commute by definition of α_{M} and α_{N}. The top square commutes by the naturality of the connecting homomorphisms (see [17, Theorem 6.4]). The left hand square commutes by diagram (*) and the bottom square commutes by definition of $L_{0} \Delta_{S R}^{2}$. Thus, since ∂ is an epimorphism, an easy diagram chase shows that the right hand square commutes. Thus α is natural.

The first and the second claims of the following proposition suggest the forthcoming assumptions on the injective dimension of ${ }_{R} W$.

Proposition 1.3. If Cogen $W_{S} \subseteq \operatorname{Ker} \Gamma_{S}$, then

1. on the subcategory $\operatorname{Ker~}_{\operatorname{Ext}}^{R}{ }_{R}^{2}(-, W)$, the functors $L_{1} \Delta_{S R}^{2}$ and $\Delta_{S} \Gamma_{R}$ are naturally isomorphic;
2. if $\operatorname{Ext}_{R}^{i}(M, W)=0$ for $i=2,3, \ldots, n+1$, then $\left(L_{n} \Delta_{S R}^{2}\right) M=0$.

Proof. 1. Let $f: M \rightarrow N$ be a morphism of left R-modules. Consider P^{\bullet} and Q^{\bullet} projective resolutions of M and N with augmentations ε and ε^{\prime}, and differentiation operators d and d^{\prime}. Denote by $F: P^{\bullet} \rightarrow Q^{\bullet}$ the map of complexes over f and by K_{i} (resp. K_{i}^{\prime}) the image of $d_{i}\left(\right.$ resp. $\left.d_{i}^{\prime}\right)$. Consider the diagrams

Since $\operatorname{Ext}_{R}^{2}(M, W)=0=\operatorname{Ext}_{R}^{2}(N, W)$, we have $\Gamma_{R} K_{0}=0=\Gamma_{R} K_{0}^{\prime}$. Denoted by $I\left(I^{\prime}\right)$ the image of $\Delta_{R}\left(\lambda_{0}\right)\left(\Delta_{R}\left(\lambda_{0}^{\prime}\right)\right)$, applying Δ_{R} we get

Applying Δ_{S} we obtain the diagrams

Then, since $\Delta_{S R}^{2}\left(d_{0}\right)=\vartheta \circ \eta \circ \Delta_{S R}^{2}\left(\mu_{0}\right)$ we have

$$
\left(L_{1} \Delta_{S R}^{2}\right) M \cong \operatorname{Ker}\left[\vartheta \circ \eta \circ \Delta_{S R}^{2}\left(\mu_{0}\right)\right] /\left[\operatorname{Im} \Delta_{S R}^{2}\left(\lambda_{1}\right)\right] \cong \Delta_{S} \Gamma_{R} M,
$$

$\left(L_{1} \Delta_{S R}^{2}\right) N \cong \Delta_{S} \Gamma_{R} N$ and $\left(L_{1} \Delta_{S R}^{2}\right)(f) \cong \Delta_{S} \Gamma_{R}(f)$.
2. Let us consider the long exact sequence

$$
\cdots \rightarrow\left(L_{n} \Delta_{S R}^{2}\right) P_{0}=0 \rightarrow\left(L_{n} \Delta_{S R}^{2}\right) M \rightarrow\left(L_{n-1} \Delta_{S R}^{2}\right) K_{0} \rightarrow\left(L_{n-1} \Delta_{S R}^{2}\right) P_{0}=0 \rightarrow \cdots
$$

We proceed by induction on $n \geq 2$. Let $n=2$: since $\operatorname{Ext}_{R}^{3}(M, W)=0$, we have $\operatorname{Ext}_{R}^{2}\left(K_{0}, W\right)=0$ and hence, by 1., $\left(L_{1} \Delta_{S R}^{2}\right) K_{0}=\Delta_{S} \Gamma_{R} K_{0}$. Being $\operatorname{Ext}_{R}^{2}(M, W)=0$, then $\Gamma_{R} K_{0}=0$. Therefore $\left(L_{2} \Delta_{S R}^{2}\right) M=$ $\left(L_{1} \Delta_{S R}^{2}\right) K_{0}=0$. Next, let $n>2$: if $\operatorname{Ext}_{R}^{i}(M, W)=0,2 \leq i \leq n+1$, then $\operatorname{Ext}_{R}^{i}\left(K_{0}, W\right)=0,1 \leq i \leq n$. By inductive hypothesis $\left(L_{n-1} \Delta_{S R}^{2}\right) K_{0}=0$. Therefore $\left(L_{n} \Delta_{S R}^{2}\right) M=0$.

In the next section we will study modules M such that $\delta_{M}^{(0)}$ is an isomorphism; we have the following

Proposition 1.4. If $\operatorname{Cogen} W_{S} \subseteq \operatorname{Ker} \Gamma_{S}$, then for each module M in Mod-S the maps $\delta_{\Delta M}^{(0)}$ and $\delta_{\Gamma M}^{(0)}$ are both monomorphisms.

Proof. Since for each module cogenerated by W, the evaluation map is injective, $\delta_{\Delta M}^{(0)}$ is a monomorphism by Theorem 1.2. Next, consider an exact sequence $0 \rightarrow K \xrightarrow{i} P \rightarrow M \rightarrow 0$ with P projective. Applying Δ we obtain the exact sequences

$$
0 \rightarrow \Delta M \rightarrow \Delta P \rightarrow I \rightarrow 0 \quad 0 \rightarrow I \rightarrow \Delta K \xrightarrow{\varphi} \Gamma M \rightarrow 0 .
$$

Applying the functor $L_{0} \Delta^{2}$ we have the following commutative diagram with exact rows

Let $\delta_{\Gamma M}^{(0)}(x)=0$ with $x \in \Gamma M$; consider $y \in \Delta K$ such that $x=\varphi(y)$. Since $\left[\left(L_{0} \Delta^{2}\right)(\varphi) \circ \delta_{\Delta K}\right](y)=0$, there exists $z \in \Delta^{3} P$ such that $\delta_{\Delta K}(y)=\Delta^{3}(i)(z)$. Thus

$$
y=\left[\Delta\left(\delta_{K}\right) \circ \delta_{\Delta K}\right](y)=\left[\Delta\left(\delta_{K}\right) \circ \Delta^{3}(i)\right](z)=\left[\Delta(i) \circ \Delta\left(\delta_{P}\right)\right](z)
$$

belongs to $\operatorname{Im} \Delta(i)$ and hence $x=\varphi(y)=0$.

2 The Cotilting Theorem

A left R-module W is said to be weakly cotilting if
(i) $\operatorname{id}_{R} W \leq 1$,
(ii) $\operatorname{Ext}_{R}^{1}\left(W^{\alpha}, W\right)=0$ for each cardinal α.

These conditions (i) and (ii) are equivalent to say that $\operatorname{Cogen}_{R} W \subseteq \operatorname{Ker}_{R} \Gamma_{R}$ and $\operatorname{id}_{R} W \leq 1$. It is easy to see that any faithful left R-module ${ }_{R} W$ such that $\operatorname{Cogen}_{R} W \subseteq \operatorname{Ker} \Gamma_{R}$ is weakly cotilting. A weakly cotilting module ${ }_{R} W$ is cotilting (see [8, Definition 1.6], $[6, \S 2]$) if and only if
for all M in R-Mod, if $\operatorname{Hom}_{R}(M, W)=0=\operatorname{Ext}_{R}^{1}(M, W)$, then $M=0$.
In the sequel of the paper we suppose always that ${ }_{R} W_{S}$ is a weakly cotilting bimodule, i.e. both ${ }_{R} W$ and W_{S} are weakly cotilting.
Example 2.1. Consider a complete almost maximal Prüfer domain R (e.g. a maximal valuation domain). By [3, Proposition 4.2] id $R \leq 1$ and, by [11, Theorem 3.1], $\operatorname{Ext}_{R}^{1}(F, R)=0$ for each torsion-free R-module F : in particular $\operatorname{Ext}_{R}^{1}\left(R^{\alpha}, R\right)=0$ for each cardinal α. Therefore the regular bimodule ${ }_{R} R_{R}$ is weakly cotilting. Observe that if R is not a Dedekind domain, it is not noetherian.

The simmetry of the setting suggests to denote simply by Δ^{2} and by Γ^{2} both the compositions $\Delta_{S} \circ \Delta_{R}$ and $\Delta_{R} \circ \Delta_{S}$, and $\Gamma_{S} \circ \Gamma_{R}$ and $\Gamma_{S} \circ \Gamma_{R}$; we will write also $\Delta, \Gamma, \Delta \Gamma, \Gamma \Delta, \ldots$ as well "module" to intend that we are indifferently working with left R - or right S - modules.
Proposition 2.2. For each module M we have the following commutative diagram with exact rows

Moreover

1. the squares on the left are pullback: in particular $\operatorname{Ker} \delta_{\operatorname{Rej}_{W} M}^{(0)} \cong \operatorname{Ker} \delta_{M}^{(0)}$;
2. Coker $\delta_{\operatorname{Rej}_{W} M}^{(0)}$ belongs to $\operatorname{Ker} \Gamma$ if and only if $\operatorname{Coker} \delta_{M}^{(0)}$ belongs to $\operatorname{Ker} \Gamma$;
3. the squares on the right are pushout if and only if $\delta_{\operatorname{Rej}_{W} M}^{(0)}$ is surjective.

Proof. The second row of the diagram, except for the injectivity of $\left(L_{0} \Delta^{2}\right)\left(i_{M}\right)$, is obtained applying $L_{0} \Delta^{2}$ to the first row: remember that, by Theorem 1.2 , the functor $L_{0} \Delta^{2}$ is naturally isomorphic to Γ^{2} and Δ^{2} on $\operatorname{Ker} \Delta$ and $\operatorname{Ker} \Gamma$, respectively. The third row is part of Theorem 1.2. The commutativity of the top squares follows by the naturality of $\delta^{(0)}$. The maps $\Gamma^{2}\left(i_{M}\right)$ and $\Delta^{2}\left(p_{M}\right)$ are clearly isomorphisms and $\delta_{\left[M / \operatorname{Rej}_{W} M\right]}$ is a monomorphism. Then we have to verify only that $\alpha_{M} \circ \Gamma^{2}\left(i_{M}\right)=\left(L_{0} \Delta^{2}\right)\left(i_{M}\right)$ and $\Delta^{2}\left(p_{M}\right) \circ \beta_{M}=\left(L_{0} \Delta^{2}\right)\left(p_{M}\right)$. Let us see the first equality; the second one is obtained in a similar way. Given a projective resolution P^{\bullet} of $\operatorname{Rej}_{W} M$ and one Q^{\bullet} of M, consider the map $F: P^{\bullet} \rightarrow Q^{\bullet}$ over the inclusion i_{M}. We have the commutative diagram with exact rows

Applying Δ we get

Denote by J the image of $\Delta\left(\mu_{0}\right)$, by $q: \Delta Q_{0} \rightarrow J$ the canonical projection and by $\rho: J \rightarrow \Delta P_{0}$ the induced morphism such that $\rho \circ q=\Delta\left(F_{0}\right)$. Applying Δ to the last diagram and $L_{0} \Delta^{2}$ to $0 \rightarrow H_{0} \rightarrow Q_{0} \rightarrow M \rightarrow 0$ we have the commutative diagram with exact rows

Looking at the first and the third rows of the diagram, since $\Delta(q) \circ \Delta(\rho)=\Delta(\rho \circ q)=\Delta^{2}\left(F_{0}\right)$, we have $\alpha_{M} \circ \Gamma_{S R}^{2}\left(i_{M}\right)=\left(L_{0} \Delta_{S R}^{2}\right)\left(i_{M}\right)$. In particular we obtain that $\left(L_{0} \Delta_{S R}^{2}\right)\left(i_{M}\right)$ is a monomorphism. Properties 1. and 3. follow by $[18,10.3,10.6]$. The Snake Lemma (see $[16,11.3]$) give us the exact sequence

$$
0 \rightarrow \operatorname{Coker} \delta_{\operatorname{Rej}_{W} M}^{(0)} \rightarrow \operatorname{Coker} \delta_{M}^{(0)} \rightarrow \operatorname{Coker} \delta_{\left[M / \operatorname{Rej}_{W} M\right]} \rightarrow 0
$$

By [9, Lemma 1.1, d)] Coker $\delta_{\left[M / \operatorname{Rej}_{W} M\right]}$ belongs to Ker Γ. Therefore, since Ker Γ is closed under submodules, also property 2 . is easily proved.

Corollary 2.3. The following conditions are equivalent

1. $\delta_{M}^{(0)}$ is an isomorphism,
2. $\delta_{\operatorname{Rej}_{W} M}^{(0)}$ and $\delta_{\left[M / \operatorname{Rej}_{W} M\right]}^{(0)}$ are isomorphisms.

In such a case $\delta_{\Gamma^{2} M}^{(0)}$ and $\delta_{\Delta^{2} M}^{(0)}$ are isomorphisms.
Proof. The equivalence of 1. and 2. follows easily by Proposition 2.2. If 2. is satisfied, then, again by Proposition 2.2 , we have $\operatorname{Rej}_{W} M \cong \Gamma^{2} M$ and $M / \operatorname{Rej}_{W} M \cong \Delta^{2} M$.

Proposition 2.4. A module M is Δ-reflexive if and only if $\delta_{M}^{(0)}$ and β_{M} are isomorphisms.
Proof. Since $\delta_{M}=\beta_{M} \circ \delta_{M}^{(0)}$ the sufficiency is clear. Suppose $\delta_{M}=\beta_{M} \circ \delta_{M}^{(0)}$ an isomorphism; looking at the diagram of Proposition 2.2, this happen if and only if $\delta_{\left[M / \operatorname{Rej}_{W} M\right]}^{(0)} \circ p_{M}$ is an isomorphism. Now, since p_{M} is surjective, $\delta_{\left[M / \operatorname{Rej}_{W} M\right]}^{(0)} \circ p_{M}$ is an isomorphism if and only if both p_{M} and $\delta_{\left[M / \operatorname{Rej}_{W} M\right]}^{(0)}$ are isomorphisms. Therefore $\operatorname{Rej}_{W} M=0$ and hence $\delta_{M}^{(0)}=\delta_{\left[M / \operatorname{Rej}_{W} M\right]}^{(0)}$ and β_{M} are isomorphisms.

The above proposition suggests the following
Definition 2.5. We say that a module M is Γ-reflexive if and only if $\delta_{M}^{(0)}$ and α_{M} are isomorphisms.
For each module M such that $\delta_{M}^{(0)}$ is an isomorphism we define a morphism $\gamma_{M}: \Gamma^{2} M \rightarrow M$, setting $\gamma_{M}=\delta_{M}^{(0)^{-1}} \circ \alpha_{M}$.

The maps γ_{M} define a natural transformation γ between Γ^{2} and the identity functor restricted to the class of modules where $\delta^{(0)}$ is a natural equivalence. Then a module M is Γ-reflexive if and only if γ_{M} is defined and it is an isomorphism; in such a case $M=\operatorname{Rej}_{W} M$ belongs to Ker Δ.

Let us consider the subcategories

- \mathcal{M}_{0} of all modules M such that $\delta_{M}^{(0)}$ is an isomorphism,
- \mathcal{M}_{1} of all modules M such that $\delta_{M}^{(1)}:=L_{1} \delta_{M}$ is an isomorphism,
- $\mathcal{M}=\mathcal{M}_{0} \cap \mathcal{M}_{1}$.

Since $\delta^{(1)}$ is a natural map between the zero functor (the first derived of the identity functor) and $L_{1} \Delta^{2} \cong$ $\Delta \Gamma$ (see Proposition 1.3), $\mathcal{M}_{1}=\operatorname{Ker} \Delta \Gamma$ and it is the largest subcategory where the functor $L_{0} \Delta^{2}$ is exact. It is interesting to observe that the subcategory of Δ-reflexive modules like all of these subcategories \mathcal{M}_{0}, $\mathcal{M}_{1}, \mathcal{M}$ are defined through the evaluation map δ.

Clearly (see Proposition 2.4 and Definition 2.5) the Δ-reflexive and the Γ-reflexive modules belong to \mathcal{M}_{0}. In fact the Δ-reflexive modules belong to \mathcal{M}, since $\Gamma \Delta=0$. The next theorem shows as each module in \mathcal{M}_{0} is an extension of a Γ-reflexive module by a Δ-reflexive module.

Theorem 2.6. For each module $M \in \mathcal{M}_{0}$ the sequence

$$
0 \rightarrow \Gamma^{2} M \xrightarrow{\gamma_{M}} M \xrightarrow{\delta_{M}} \Delta^{2} M \rightarrow 0
$$

is exact, ΔM and $\Delta^{2} M$ are Δ-reflexive and $\Gamma^{2} M$ is Γ-reflexive.

Proof. The short exact sequence follows by Theorem 1.2 and the above definition of the map γ. Applying Δ to it, we obtain the long exact sequence of right S-modules

$$
0 \rightarrow \Delta^{3} M \xrightarrow{\Delta\left(\delta_{M}\right)} \Delta M \xrightarrow{\Delta\left(\gamma_{M}\right)} \Delta \Gamma^{2} M \rightarrow \Gamma \Delta^{2} M=0 \rightarrow \Gamma M \xrightarrow{\Gamma\left(\gamma_{M}\right)} \Gamma^{3} M \rightarrow 0 .
$$

Since $\Delta\left(\delta_{M}\right) \circ \delta_{\Delta_{M}}=1_{\Delta M}, \Delta\left(\delta_{M}\right)$ and $\delta_{\Delta M}$ are isomorphisms and $\Delta \Gamma^{2} M=0$. Then ΔM and $\Delta^{2} M$ are Δ-reflexive. Since $\Delta \Gamma^{2} M=0, \alpha_{\Gamma^{2} M}$ is an isomorphism. Also, by Corollary $2.3, \Gamma^{2} M \cong \operatorname{Ker} \delta_{M}=\operatorname{Rej}_{W} M$ implies $\delta_{\Gamma^{2} M}^{(0)}$ is an isomorphism, thus $\Gamma^{2} M$ is Γ-reflexive.

Corollary 2.7. 1. A module M is Δ-reflexive if and only if $M \in \operatorname{Ker} \Gamma \cap \mathcal{M}_{0}$.
2. A module M is Γ-reflexive if and only if $M \in \operatorname{Ker} \Delta \cap \mathcal{M}_{0}$.
3. The functors Δ_{R} and Δ_{S} send objects in \mathcal{M}_{0} to objects in $\operatorname{Ker} \Gamma \cap \mathcal{M}_{0}$, inducing a duality between the full subcategories $\operatorname{Ker} \Gamma \cap \mathcal{M}_{0}$.
4. The pair $\left(\operatorname{Ker} \Delta \cap \mathcal{M}_{0}, \operatorname{Ker} \Gamma \cap \mathcal{M}_{0}\right)$ is a torsion theory in \mathcal{M}_{0}.
5. The class \mathcal{M}_{0} is closed under finite direct sums and direct summands of modules in \mathcal{M}_{0} and images, cokernels and pushout of morphisms in \mathcal{M}_{0}.

Proof. 1., 2. and 3. follow immediately by Theorem 2.6.
4. There are no non zero homomorphisms between Γ-reflexive and Δ-reflexive objects. For, let $M \in$ $\operatorname{Ker} \Delta \cap \mathcal{M}_{0}$ and $N \in \operatorname{Ker} \Gamma \cap \mathcal{M}_{0}$ and f a morphism of M to N; since $N \cong \Delta^{2} N$, there exists a monomorphism $\varphi: N \rightarrow W^{\alpha}$ for some cardinal α. Since $M \cong \Gamma^{2} M$ and $\Delta \Gamma^{2} M=0, \varphi \circ f=0$ and hence $f=0$. Moreover these classes are maximal in \mathcal{M}_{0}, with respect to this property: if $L \in \mathcal{M}_{0}$ (resp. $M \in \mathcal{M}_{0}$) and $\operatorname{Hom}(L, M)=0$ for each $M \in \operatorname{Ker} \Gamma \cap \mathcal{M}_{0}$ (resp. for each $L \in \operatorname{Ker} \Delta \cap \mathcal{M}_{0}$), by Theorem 2.6 $\delta_{L}=0\left(\right.$ resp. $\left.\gamma_{M}=0\right)$ and hence $L \cong \Gamma^{2} L$ belongs to Ker Δ (resp. $M \cong \Delta^{2} M$ belongs to Ker Γ).
5. The closure under finite direct sums is a consequence of the additivity of $L_{0} \Delta^{2}$. Let $f: M \rightarrow N$ a morphism with $M, N \in \mathcal{M}_{0}$. Consider the commutative diagrams with exact rows

Since $\delta_{M}^{(0)}$ and $\delta_{N}^{(0)}$ are isomorphisms, then $\delta_{\operatorname{Im} f}^{(0)}$ and hence $\delta_{N / \operatorname{Im} f}^{(0)}=\delta_{\text {Coker } f}^{(0)}$ are isomorphisms. If $M_{1} \oplus$ $M_{2} \in \mathcal{M}_{0}$, then also the images of the endomorphisms projections belongs to \mathcal{M}_{0}. Finally, the pushout of two morphisms $f: L \rightarrow M$ and $g: L \rightarrow N$ with L, M, and N in \mathcal{M}_{0} is the cokernel of the map $L \rightarrow M \oplus N, l \mapsto(f(l), g(l))$, and hence it belongs to \mathcal{M}_{0}.

The adjunction between Δ_{R} and Δ_{S} was crucial in proving that the functor Δ sends objects of \mathcal{M}_{0} to objects which are Δ-reflexive. Lacking such a property it is not even clear if the functor Γ sends objects of \mathcal{M}_{0} to objects of \mathcal{M}_{0}. The problem is solved in the smaller class \mathcal{M}, thanks to the following lemma.

Lemma 2.8. For each module M in \mathcal{M}_{1} we have

$$
\Gamma\left(\delta_{M}^{(0)}\right) \circ\left[\Gamma\left(\alpha_{M}\right)\right]^{-1} \circ\left[\alpha_{\Gamma M}\right]^{-1} \circ \delta_{\Gamma M}^{(0)}=1_{\Gamma M}
$$

Proof. Let $M \in \mathcal{M}_{1}$; then $\Gamma\left(\alpha_{M}\right)$ and $\alpha_{\Gamma M}$ are both isomorphisms. Next, consider a short exact sequence $0 \rightarrow K \xrightarrow{i} P \xrightarrow{p} M \rightarrow 0$ with P projective. Denoting the image of $\Delta(i)$ by I, we have the following diagram with exact rows

Applying Δ to it and $L_{0} \Delta^{2}$ to $\Delta K \xrightarrow{\partial_{1}} \Gamma M \rightarrow 0$ we get the following diagram
(\#)

Its solid part is commutative; let us prove that the whole diagram is commutative. Given an exact sequence $0 \rightarrow H_{1} \rightarrow Q \xrightarrow{q} \Delta K \rightarrow 0$ with Q projective, we can construct the following commutative diagram with exact rows

where $H_{2}=q^{-1}(I)$. Applying Δ twice we have the following commutative diagram with exact rows

The dotted arrow $\Delta^{3} K \xrightarrow{\square}>\Gamma^{3} M$ represents the unique mapping such that the middle right square of the diagram commutes. On one hand it is, by construction, $\alpha_{\Gamma M}^{-1} \circ\left(L_{0} \Delta^{2}\right)\left(\partial_{1}\right) \circ \beta_{\Delta K}^{-1}$; on the other hand, looking at the commutative right bottom square, it must be ∂_{3}. Therefore, the whole diagram (\#) commutes. Now the promised identity follows by

$$
\begin{gathered}
\Gamma\left(\delta_{M}^{(0)}\right) \circ\left[\Gamma\left(\alpha_{M}\right)\right]^{-1} \circ\left[\alpha_{\Gamma M}\right]^{-1} \circ \delta_{\Gamma M}^{(0)} \circ \partial_{1}=\Gamma\left(\delta_{M}^{(0)}\right) \circ\left[\Gamma\left(\alpha_{M}\right)\right]^{-1} \circ\left[\alpha_{\Gamma M}\right]^{-1} \circ\left(L_{0} \Delta^{2}\right)\left(\partial_{1}\right) \circ \delta_{\Delta K}^{(0)}= \\
=\Gamma\left(\delta_{M}^{(0)}\right) \circ\left[\Gamma\left(\alpha_{M}\right)\right]^{-1} \circ \partial_{3} \circ \beta_{\Delta_{K}} \circ \delta_{\Delta K}^{(0)}=\Gamma\left(\delta_{M}^{(0)}\right) \circ \partial_{2} \circ \delta_{\Delta K}=\partial_{1} \circ \Delta\left(\delta_{K}\right) \circ \delta_{\Delta K}=\partial_{1}
\end{gathered}
$$

and the fact that ∂_{1} is epic.
We are ready to present the complete version of our "Cotilting Theorem", knowing better, inside the class $\mathcal{M}=\mathcal{M}_{0} \cap \mathcal{M}_{1}$, the behaviour of the functor Γ.

Theorem 2.9. For each module $M \in \mathcal{M}$ the sequence

$$
0 \rightarrow \Gamma^{2} M \xrightarrow{\gamma_{M}} M \xrightarrow{\delta_{M}} \Delta^{2} M \rightarrow 0
$$

is exact, ΔM and $\Delta^{2} M$ are Δ-reflexive, ΓM and $\Gamma^{2} M$ are Γ-reflexive.
Proof. We have only to prove that ΓM is Γ-reflexive, the rest following by Theorem 2.6. Applying Theorem 1.2 to ΓM we have the short exact sequence

$$
0 \rightarrow \Gamma^{3} M \xrightarrow{\alpha_{\Gamma} M}\left(L_{0} \Delta^{2}\right) \Gamma M \rightarrow \Delta^{2} \Gamma M=0 ;
$$

hence $\alpha_{\Gamma M}$ is an isomorphism. Since $\Gamma\left(\delta_{M}^{(0)}\right)$ is an isomorphism, by Lemma 2.8 also $\delta_{\Gamma M}^{(0)}$ is an isomorphism and hence ΓM is Γ-reflexive.

Corollary 2.10 (The Cotilting Theorem). 1. The functors Δ_{R} and Δ_{S} send objects in \mathcal{M} to objects in $\operatorname{Ker} \Gamma \cap \mathcal{M}=\operatorname{Ker} \Gamma \cap \mathcal{M}_{0}$, inducing a duality between the full subcategories $\operatorname{Ker} \Gamma \cap \mathcal{M}$.
2. The functors Γ_{R} and Γ_{S} send objects in \mathcal{M} to objects in $\operatorname{Ker} \Delta \cap \mathcal{M}$, inducing a duality between the full subcategories $\operatorname{Ker} \Delta \cap \mathcal{M}$.
3. The pair $(\operatorname{Ker} \Delta \cap \mathcal{M}, \operatorname{Ker} \Gamma \cap \mathcal{M})$ is a torsion theory in \mathcal{M}.
4. The class \mathcal{M} is closed under extensions and direct summands of modules in \mathcal{M} and images, kernels, cokernels, pullback and pushout of morphisms in \mathcal{M} : in particular, it is an abelian subcategory of the category of left R - or right S - modules.
5. The functors Γ_{R} and Γ_{S} are left adjoint in \mathcal{M} with the natural maps γ as counities.

Proof. 1. If $M \in \operatorname{Ker} \Gamma \cap \mathcal{M}_{0}$, then by Theorem $2.6 M \cong \Delta^{2} M$. Therefore $\Delta \Gamma M \cong \Delta \Gamma \Delta^{2} M=0$, so, since $\mathcal{M}_{1}=\operatorname{Ker} \Delta \Gamma, M$ belongs to \mathcal{M}. Now the claim follows by Corollary 2.7, 3 .
2. follows by Theorems 2.9 and 2.6 .
3. follows by 2 and Corollary 2.7, 4 .
4. Consider an exact sequence $0 \rightarrow J \rightarrow H \rightarrow K \rightarrow 0$ with $J, K \in \mathcal{M}$; applying $L_{0} \Delta^{2}$ we obtain the exact sequence

$$
0 \rightarrow\left(L_{0} \Delta^{2}\right) J \rightarrow\left(L_{0} \Delta^{2}\right) H \rightarrow\left(L_{0} \Delta^{2}\right) K \rightarrow 0
$$

Since $\delta_{J}^{(0)}$ and $\delta_{K}^{(0)}$ are isomorphisms, also $\delta_{H}^{(0)}$ is an isomorphism. Applying $L_{1} \Delta^{2}$ we have the exact sequence

$$
0=\left(L_{1} \Delta^{2}\right) J \rightarrow\left(L_{1} \Delta^{2}\right) H \rightarrow\left(L_{1} \Delta^{2}\right) K=0
$$

therefore $H \in \mathcal{M}$ and \mathcal{M} is closed under extensions. Next, observe that given an exact sequence $0 \rightarrow A \rightarrow$ $B \rightarrow C \rightarrow 0$ with $B \in \mathcal{M}$, it is $A \in \mathcal{M}$ if and only if $C \in \mathcal{M}$: applying $L_{0} \Delta^{2}$ to $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ we have the following commutative diagram with exact rows

We have $\Delta \Gamma L=0$ and $\delta_{L}^{(0)}$ is an isomorphism if and only if $\Delta \Gamma N=0$ and $\delta_{N}^{(0)}$ is an isomorphism. We can then continue the proof of Corollary 2.7, 5 ., claiming that if N belongs to \mathcal{M} then $N / \operatorname{Im} f$ belongs to \mathcal{M}. Therefore, for what we have seen, $\operatorname{Im} f$ and hence $\operatorname{Ker} f$ belong to \mathcal{M}. In particular direct summands, pullback and pushout of morphisms in \mathcal{M} are in \mathcal{M}.
5. By Lemma 2.8 we obtain $\gamma_{\Gamma M} \circ \Gamma\left(\gamma_{M}\right)=1_{\Gamma M}$. Therefore we conclude by [18, 45.5].

Remark 2.11. By the discussion preceeding Theorem 2.6 and Corollary 2.10, 4., all modules M, such that there exists an exact sequence $0 \rightarrow A \rightarrow B \rightarrow M \rightarrow 0$ with A and B which are Δ-reflexive, belong to \mathcal{M} (cf. with the class \mathcal{C} in $[7,9,13])$. If ${ }_{R} W_{S}$ is a faithfully balanced weakly cotilting bimodule, then all finitely generated modules cogenerated by W are Δ-reflexive and hence they belong to \mathcal{M}. Therefore, again by Corollary 2.10, 4., all finitely presented modules are in \mathcal{M}. Moreover, by Proposition 1.4, finitely generated submodules of modules in $\operatorname{Im} \Gamma\left(\right.$ resp. $\left.\operatorname{Im} \Gamma \cap \mathcal{M}_{1}\right)$ belong to $\mathcal{M}_{0}($ resp. $\mathcal{M})$.

Acknowledgement

I wish to thank my colleagues and friends Riccardo Colpi, Kent Fuller, Robert Colby, Enrico Gregorio and Francesca Mantese for the useful discussions and suggestions.

References

[1] F.D.Anderson, K.R.Fuller, Rings and categories of modules, 2nd ed., GTM 13, Springer 1992.
[2] G.Azumaja, A duality theory for injective modules, Amer.J.Math 81 (1959), 249-278.
[3] W.Brandal, Almost maximal integral domains and finitely generated modules, Trans. Amer. Math. Soc. 183 (1973), 203-222.
[4] R.Colby, A generalization of Morita duality and the tilting theorem, Comm.Algebra 17(7) (1989), 1709-1722.
[5] R.Colby, A cotilting theorem for rings, Methods in Module Theory, M.Dekker New York 1993, 33-37.
[6] R.Colby, K.Fuller, Tilting, cotilting and serially tilted rings, Comm.Algebra 18(5) (1990), 1585-1615.
[7] R.Colpi, Cotilting bimodules and their dualities, to appear in Murcia Conference Proceedings 1998, Marcel Dekker.
[8] R.Colpi, G.D'Este, A.Tonolo, Quasi-tilting modules and counter equivalences, J.Algebra 191 (1997), 461-494.
[9] R.Colpi, K.Fuller, Cotilting modules and bimodules, to appear in Pacific J. Math.
[10] R.Colpi, A.Tonolo, J.Trlifaj, Partial cotilting modules and the lattices induced by them, Comm.Algebra 25 (1997), 3225-3237.
[11] L.Fuchs, L.Salce, Modules over valuation domains, Lecture Notes in Pure and Applied Mathematics 97, Marcel Dekker 1985.
[12] D.Happel, Triangulated categories in the representation theory of finite dimensional algebras, Cambridge Univ. Press, Cambridge 1988.
[13] F.Mantese, Moduli cotilting: dualità di Morita in teoria della torsione, Tesi di Laurea, Università di Padova, 1998.
[14] K.Morita, Duality for modules and its applications to the theory of rings with minimum condition, Tokyo Kyoiku Daigaku, Ser. A6 (1958), 83-142.
[15] B.J.Müller, Linear compactness and Morita duality, J.Algebra 16 (1970), 60-66.
[16] R.S.Pierce, Associative Algebras, GTM 88, Springer 1982.
[17] J.J.Rotman, An Introduction to Homological Algebra, New York, Academic Press, 1979.
[18] R.Wisbauer, Fundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991.
[19] W.Xue, Rings with Morita duality, LNM 11523, Springer 1992.

