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Abstract

Let R and S be arbitrary associative rings. Given a bimodule RWS , we denote by ∆? and Γ? the
functors Hom?(−,W ) and Ext1?(−,W ), where ? = R or S. The functors ∆R and ∆S are right adjoint
with the evaluation maps δ as unities. A module M is ∆-reflexive if δM is an isomorphism. In this paper
we give, for a weakly cotilting bimodule RWS , the notion of Γ-reflexivity. We construct large abelian
subcategories MR and MS where the functors ΓR and ΓS are left adjoint and a “Cotilting theorem”
holds.

Introduction

In this paper R and S will be associative rings with unity and RWS will be a bimodule. We denote by ∆R

and ∆S the contravariant functors

HomR(−,W ) : R-Mod→ Mod-S and HomS(−,W ) : Mod-S → R-Mod

and by ΓR and ΓS the contravariant functors

Ext1
R(−,W ) : R-Mod→ Mod-S and Ext1

S(−,W ) : Mod-S → R-Mod.

For each left R-module (resp. right S-module) M , we denote by δM : M → ∆S∆RM (resp. δM : M →
∆R∆SM) the evaluation map. These maps define natural transformations δ between the identity functor
1R-Mod and ∆S∆R and between the identity functor 1Mod-S and ∆R∆S , which are the unities of the right
adjoint pair (∆R,∆S). A module M is said to be ∆-reflexive if δM is an isomorphism.

The bimodule RWS defines a Morita duality ([14, 2] ) if the classes of ∆-reflexive modules contain the
rings and are finitely closed, i.e. closed with respect to submodules, factor modules and finite direct sums.
This happens if and only if RWS is a Morita bimodule, i.e. it is balanced and RW and WS are injective
cogenerators ([1, Theorem 24.1]). Morita bimodules are “rare”: B. J. Müller has proved ([15]) that there
exists a Morita bimodule RWS if and only if both the regular module RR and the minimal cogenerator
of R-Mod are linearly compact. For an extensive introduction to Morita duality, including various recent
results, see [19].

Let RWS be an arbitrary bimodule. The subcategories CogenRW and CogenWS of left R- and right
S-modules cogenerated by W are the classes of modules M such that δM is a monomorphism; they contain
the classes of ∆-reflexive modules. Outside these classes the functors ∆R and ∆S are not faithful: there
we will consider the contribution of their derived functors ΓR and ΓS .

In order that the functors ∆R, ∆S and ΓR, ΓS play a major role in R-Mod and Mod-S, we require
that on both sides the injective dimension of W is less than or equal to 1 and, to avoid overlaps of the two
functors, that the functors ΓR and ΓS vanish on modules cogenerated by W . Such a bimodule RWS will
be called weakly cotilting (see page 6). A Morita bimodule is clearly a weakly cotilting bimodule, since
CogenRW = Ker ΓR and CogenWS = Ker ΓS are the whole categories of modules. Interesting examples
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of weakly cotilting bimodules exist, also in the commutative case: if R is a maximal valuation domain,
the regular bimodule RRR is weakly cotilting (see Example 2.1).

The word “cotilting” appears for the first time in [12] for modules over finite dimensional algebras.
Next, in [4], cotilting modules over noetherian rings are considered. In [5], a “Cotilting theorem” for
modules over arbitrary rings is given: it is a dual form of the celebrated Brenner and Butler theorem,
known also as the “Tilting theorem”. Recently (see [8, 10] and in particular [7, 9]) the theory has been
developed further.

Notation: we denote by ∆2
SR (resp. ∆2

RS) and by Γ2
SR (resp. Γ2

SR) the compositions ∆S∆R (resp. ∆R∆S)
and ΓSΓR (resp. ΓSΓR). Writing ∆, Γ, ∆2, Γ2, ∆Γ, Γ∆, . . . as well as simply “module” we intend that
we are indifferently working with left R- or right S- modules.

In this paper we try to understand, in the whole categories of modules, the behaviour and the rela-
tionships among the functors Γ2, the identity functors and ∆2: the zero left derived functor of ∆2 will
have a key role to relate them (see Theorem 1.2). It leads us to a natural definition of Γ-reflexivity
(Definition 2.5), whereas in the literature (see [4, 15]) this problem is solved only inside special classes
of modules. Hence we construct naturally abelian subcategories MR and MS where a Cotilting theorem
(see Corollary 2.10) can be proved: they are the classes of left R- and right S- modules where the left
derived maps L0δ and L1δ of the evaluation map δ are natural equivalences. For the first time, as far as
we know, the existence of a local adjunction between the functors ΓR and ΓS is studied and proved.

1 Deriving the functor ∆2

Let RWS be a bimodule. Consider a projective resolution

. . .
d1→ P1

d0→ P0 (
ε→M )→ 0

of a left R-module M . Applying the covariant functor ∆2
SR we obtain the complex

. . .
∆2
SR(d1)
→ ∆2

SRP1
∆2
SR(d0)
→ ∆2

SRP0
∆2
SR(d−1)
→ 0.

The n-th left derived functor Ln∆2
SR is defined by

Ln∆2
SR(M) = [Ker ∆2

SR(dn−1)]/[Im ∆2
SR(dn)].

The augmentation ε yields a map ∆2
SR(P0) → ∆2

SRM thus defining a natural map β : L0∆2
SR → ∆2

SR.
Denoted by δ the unity of the right adjoint pair (∆R,∆S), we have the following commutative diagram of
functors and natural maps

L01R-Mod

∼= //

L0δ
��

1R-Mod

δ
��

L0∆2
SR

β // ∆2
SR

In the sequel the natural map L0δ will be denoted simply by δ(0).
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Lemma 1.1. Given the solid part of the commutative diagram

L
ψ // M //

ϑ
��

A //

α

���
�
� 0

L
ϕ // N //

��

B //

β

���
�
� 0

C

��

C

���
�
�

0 0

with exact rows and columns, there are unique maps α and β such that the diagram commutes. With these
maps the second column is exact; moreover, if ϑ is monic, then so is α.

Proof. It follows by diagram chasing.

Assuming that CogenWS ⊆ Ker ΓS , it is possible to calculate the left derived functors of ∆2
SR working

with short exact sequences. The i-th differentiation operator di factorizes through its image Ki; let

di = λi ◦ µi such a factorization. Applying ∆R to 0→ Ki+1
λi+1→ Pi+1

µi→ Ki → 0 we get 0→ ∆RKi
∆R(µi)→

∆RPi+1 → C → 0 where C is the cokernel of ∆R(µi). Since C ≤ ∆RKi+1 and Im ∆R ⊆ CogenWS ,
∆2
SR(µi) is surjective. Therefore

Ln∆2
SR(M) = [Ker ∆2

SR(dn−1)]/[Im ∆2
SR(λn ◦ µn)] = [Ker ∆2

SR(dn−1)]/[Im ∆2
SR(λn)].

The following theorem describes how the functors 1R, ∆2
SR, Γ2

SR and L0∆2
SR are related on the whole

category of left R-modules.

Theorem 1.2. Let RWS be a bimodule such that CogenWS ⊆ Ker ΓS. Then there exists a natural map α
such that

1R-Mod

δ(0)

��

δ

$$IIIIIIIII

0 // Γ2
SR

α // L0∆2
SR

β // ∆2
SR

// 0

is a commutative diagram with exact row of functors and natural maps. In particular, on the subcategory
Ker ΓR (resp. Ker ∆R) β (resp. α) is a natural isomorphism.

Proof. About the triangle involving the natural maps δ(0), δ and β we have discussed above. Let us
prove the existence of the wished natural map α. Consider an exact sequence

(#) 0→ K
λ0→ P

ε→M → 0

with P projective. Denote by I the Im ∆R(λ0) and by i : I → ∆RK, p : ∆RP → I the morphisms
factorizing ∆R(λ0). Applying the functors ∆R and hence ∆S to (#), we obtain the exact sequences

0 // ∆SI
∆S(p) // ∆2

SRP
// ∆2

SRM
// 0 0 // ∆SΓRM // ∆2

SRK
∆S(i) // ∆SI

∂ // Γ2
SRM

// 0

and hence, after an application of Lemma 1.1, we have the commutative diagram with exact rows and
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columns

0

��

0

���
�
�

0 // ∆SΓRM // ∆2
SRK

∆S(i) // ∆SI //

∆S(p)

��

Γ2
SRM

//

αM
���
�
�

0

0 // ∆SΓRM // ∆2
SRK

∆2
SR(λ0)

// ∆2
SRP

ρ //

∆2
SR(ε)

��

(L0∆2
SR)M //

βM
���
�
�

0

∆2
SRM

��

∆2
SRM

���
�
�

0 0

Now it remains to see that α is natural. Consider a morphism f : M → N of left R-modules and the
commutative diagram with exact rows

0 // K
λ //

ϕ′

��

P
ε //

ϕ

��

M //

f

��

0

0 // H
µ // Q

η // N // 0

with P and Q projective modules. Applying ∆R we have the following commutative diagrams with exact
rows

(∗)
0 // ∆RM // ∆RP

p // I // 0 0 // I // ∆RK // ΓRM // 0

0 // ∆RN //

∆R(f)

OO

∆RQ
q //

ΓR(ϕ)

OO

J //

OO

0 0 // J //

OO

∆RH //

∆R(ϕ′)

OO

ΓRN //

ΓR(f)

OO

0

where I and J are the images of ∆R(λ) and ∆R(µ). Applying ∆S we obtain the diagram

∆SI
∂ //

∆S(p)

��

$$IIIIIIIIII Γ2
SRM

''OOOOOOOOOOO

αM

��

∆SJ
∂′ //

∆S(q)

��

Γ2
SRN

αN

��

∆2
SRP

ρ //

$$IIIIIIIII
(L0∆2

SR)M

''OOOOOOOOOOO

∆2
SRQ

// (L0∆2
SR)N

The back and the front square commute by definition of αM and αN . The top square commutes by the
naturality of the connecting homomorphisms (see [17, Theorem 6.4]). The left hand square commutes by
diagram (∗) and the bottom square commutes by definition of L0∆2

SR. Thus, since ∂ is an epimorphism,
an easy diagram chase shows that the right hand square commutes. Thus α is natural.

The first and the second claims of the following proposition suggest the forthcoming assumptions on
the injective dimension of RW .
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Proposition 1.3. If CogenWS ⊆ Ker ΓS, then

1. on the subcategory Ker Ext2
R(−,W ), the functors L1∆2

SR and ∆SΓR are naturally isomorphic;

2. if ExtiR(M,W ) = 0 for i = 2, 3, . . . , n+ 1, then (Ln∆2
SR)M=0.

Proof. 1. Let f : M → N be a morphism of left R-modules. Consider P • andQ• projective resolutions
of M and N with augmentations ε and ε′, and differentiation operators d and d′. Denote by F : P • → Q•

the map of complexes over f and by Ki (resp. K ′i) the image of di (resp. d′i). Consider the diagrams

0 // K1
λ1 //

��

P1
µ1 //

F1

��

K0
//

��

0 0 // K0
λ0 //

��

P0
ε //

F0

��

M //

f

��

0

0 // K ′1
λ′1 // Q1

µ′1 // K ′0
// 0 0 // K ′0

λ′0 // Q0
µ′0 // N // 0

Since Ext2
R(M,W ) = 0 = Ext2

R(N,W ), we have ΓRK0 = 0 = ΓRK
′
0. Denoted by I (I ′) the image of

∆R(λ0) (∆R(λ′0)), applying ∆R we get

0 // ∆RK0
∆R(µ0)// ∆RP1

∆R(λ1)// ∆RK1
// 0

0 // ∆RK
′
0

//

OO

∆RQ1
//

∆R(F1)

OO

∆RK
′
1

//

OO

0

0 // ∆RM // ∆RP0
// I // 0 0 // I // ∆RK0

// ΓRM // 0

0 // ∆RN //

∆R(f)

OO

∆RQ0
//

ΓR(F0)

OO

I ′ //

OO

0 0 // I ′ //

OO

∆RK
′
0

//

OO

ΓRN //

ΓR(f)

OO

0

Applying ∆S we obtain the diagrams

0 // ∆2
SRK1

∆2
SR(λ1)

//

��

∆2
SRP1

∆2
SR(µ0)

//

∆2
SR(F1)

��

∆2
SRK0

//

��

0 0 // ∆SI
ϑ //

��

∆2
SRP0

//

∆2
SR(F0)

��

∆2
SRM

//

��

0

0 // ∆2
SRK

′
1

// ∆2
SRQ1

// ∆2
SRK

′
0

// 0 0 // ∆SI
′ ϑ′ // ∆2

SRQ0
// ∆2

SRN
// 0

0 // ∆SΓRM //

∆SΓR(f)

��

∆2
SRK0

η //

��

∆SI //

��

Γ2
SRM

//

Γ2
SR(f)

��

0

0 // ∆SΓRN // ∆2
SRK

′
0

η′ // ∆SI
′ // Γ2

SRN
// 0

Then, since ∆2
SR(d0) = ϑ ◦ η ◦∆2

SR(µ0) we have

(L1∆2
SR)M ∼= Ker[ϑ ◦ η ◦∆2

SR(µ0)]/[Im ∆2
SR(λ1)] ∼= ∆SΓRM,

(L1∆2
SR)N ∼= ∆SΓRN and (L1∆2

SR)(f) ∼= ∆SΓR(f).
2. Let us consider the long exact sequence

. . . // (Ln∆2
SR)P0 = 0 // (Ln∆2

SR)M // (Ln−1∆2
SR)K0

// (Ln−1∆2
SR)P0 = 0 // . . .

We proceed by induction on n ≥ 2. Let n = 2: since Ext3
R(M,W ) = 0, we have Ext2

R(K0,W ) = 0 and
hence, by 1., (L1∆2

SR)K0 = ∆SΓRK0. Being Ext2
R(M,W ) = 0, then ΓRK0 = 0. Therefore (L2∆2

SR)M =
(L1∆2

SR)K0 = 0. Next, let n > 2: if ExtiR(M,W ) = 0, 2 ≤ i ≤ n + 1, then ExtiR(K0,W ) = 0, 1 ≤ i ≤ n.
By inductive hypothesis (Ln−1∆2

SR)K0 = 0. Therefore (Ln∆2
SR)M = 0.

In the next section we will study modules M such that δ
(0)
M is an isomorphism; we have the following
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Proposition 1.4. If CogenWS ⊆ Ker ΓS, then for each module M in Mod-S the maps δ
(0)
∆M and δ

(0)
ΓM are

both monomorphisms.

Proof. Since for each module cogenerated by W , the evaluation map is injective, δ
(0)
∆M is a monomor-

phism by Theorem 1.2. Next, consider an exact sequence 0 → K
i→ P → M → 0 with P projective.

Applying ∆ we obtain the exact sequences

0→ ∆M → ∆P → I → 0 0→ I → ∆K
ϕ→ ΓM → 0.

Applying the functor L0∆2 we have the following commutative diagram with exact rows

∆P
∆(i) //

δ∆P
��

∆K
ϕ //

δ∆K
��

ΓM //

δ
(0)
ΓM��

0

∆3P
∆3(i) // ∆3K

(L0∆2)(ϕ)// (L0∆2)ΓM // 0

Let δ
(0)
ΓM (x) = 0 with x ∈ ΓM ; consider y ∈ ∆K such that x = ϕ(y). Since [(L0∆2)(ϕ) ◦ δ∆K ](y) = 0, there

exists z ∈ ∆3P such that δ∆K(y) = ∆3(i)(z). Thus

y = [∆(δK) ◦ δ∆K ](y) = [∆(δK) ◦∆3(i)](z) = [∆(i) ◦∆(δP )](z)

belongs to Im ∆(i) and hence x = ϕ(y) = 0.

2 The Cotilting Theorem

A left R-module W is said to be weakly cotilting if

(i) idRW ≤ 1,

(ii) Ext1
R(Wα,W ) = 0 for each cardinal α.

These conditions (i) and (ii) are equivalent to say that CogenRW ⊆ Ker ΓR and idRW ≤ 1. It is easy
to see that any faithful left R-module RW such that CogenRW ⊆ Ker ΓR is weakly cotilting. A weakly
cotilting module RW is cotilting (see [8, Definition 1.6], [6, §2]) if and only if

for all M in R-Mod, if HomR(M,W ) = 0 = Ext1
R(M,W ), then M = 0.

In the sequel of the paper we suppose always that RWS is a weakly cotilting bimodule, i.e. both RW
and WS are weakly cotilting.

Example 2.1. Consider a complete almost maximal Prüfer domain R (e.g. a maximal valuation domain).
By [3, Proposition 4.2] idR ≤ 1 and, by [11, Theorem 3.1], Ext1

R(F,R) = 0 for each torsion-free R-module
F : in particular Ext1

R(Rα, R) = 0 for each cardinal α. Therefore the regular bimodule RRR is weakly
cotilting. Observe that if R is not a Dedekind domain, it is not noetherian.

The simmetry of the setting suggests to denote simply by ∆2 and by Γ2 both the compositions ∆S ◦∆R

and ∆R ◦ ∆S , and ΓS ◦ ΓR and ΓS ◦ ΓR; we will write also ∆, Γ, ∆Γ, Γ∆, . . . as well “module” to intend
that we are indifferently working with left R- or right S- modules.

Proposition 2.2. For each module M we have the following commutative diagram with exact rows

0 // RejW M
iM //

δ
(0)
RejW M

��

M
pM //

δ
(0)
M

��

[M/RejW M ] //
� _

δ[M/RejW M ]

��

0

0 // Γ2 RejW M
(L0∆2)(iM ) //

Γ2(iM )∼=
��

(L0∆2)M
(L0∆2)(pM ) // ∆2[M/RejW M ] // 0

0 // Γ2M
αM // (L0∆2)M

βM // ∆2M //

∆2(pM ) ∼=

OO

0
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Moreover

1. the squares on the left are pullback: in particular Ker δ
(0)
RejW M

∼= Ker δ
(0)
M ;

2. Coker δ
(0)
RejW M belongs to Ker Γ if and only if Coker δ

(0)
M belongs to Ker Γ;

3. the squares on the right are pushout if and only if δ
(0)
RejW M is surjective.

Proof. The second row of the diagram, except for the injectivity of (L0∆2)(iM ), is obtained applying
L0∆2 to the first row: remember that, by Theorem 1.2, the functor L0∆2 is naturally isomorphic to Γ2

and ∆2 on Ker ∆ and Ker Γ, respectively. The third row is part of Theorem 1.2. The commutativity of
the top squares follows by the naturality of δ(0). The maps Γ2(iM ) and ∆2(pM ) are clearly isomorphisms
and δ[M/RejW M ] is a monomorphism. Then we have to verify only that αM ◦ Γ2(iM ) = (L0∆2)(iM ) and
∆2(pM ) ◦ βM = (L0∆2)(pM ). Let us see the first equality; the second one is obtained in a similar way.
Given a projective resolution P • of RejW M and one Q• of M , consider the map F : P • → Q• over the
inclusion iM . We have the commutative diagram with exact rows

0 // K0
λ0 //

��

P0
//

F0

��

RejW M //

iM
��

0

0 // H0
µ0 // Q0

// M // 0

Applying ∆ we get

0 // ∆P0
∆(λ0) // ∆K0

// Γ RejW M // 0

0 // ∆M // ∆Q0
∆(µ0) //

OO

∆H0
//

OO

ΓM //

Γ(iM )

OO

0

Denote by J the image of ∆(µ0), by q : ∆Q0 → J the canonical projection and by ρ : J → ∆P0 the induced
morphism such that ρ ◦ q = ∆(F0). Applying ∆ to the last diagram and L0∆2 to 0→ H0 → Q0 →M → 0
we have the commutative diagram with exact rows

0 // ∆Γ RejW M //

∆Γ(iM )

��

∆2K0
//

��

∆2P0
//

∆(ρ)

��

Γ2 RejW M = (L0∆2) RejW M //

Γ2(iM )

��

0

0 // ∆ΓRM // ∆2H0
// ∆J //

∆(q)

��

Γ2M //

αM
��

0

0 // (L1∆2)M // (L0∆2)H0
// ∆2Q0

// (L0∆2)M // 0

Looking at the first and the third rows of the diagram, since ∆(q) ◦ ∆(ρ) = ∆(ρ ◦ q) = ∆2(F0), we have
αM ◦Γ2

SR(iM ) = (L0∆2
SR)(iM ). In particular we obtain that (L0∆2

SR)(iM ) is a monomorphism. Properties
1. and 3. follow by [18, 10.3, 10.6]. The Snake Lemma (see [16, 11.3]) give us the exact sequence

0→ Coker δ
(0)
RejW M → Coker δ

(0)
M → Coker δ[M/RejW M ] → 0.

By [9, Lemma 1.1, d)] Coker δ[M/RejW M ] belongs to Ker Γ. Therefore, since Ker Γ is closed under submod-
ules, also property 2. is easily proved.

Corollary 2.3. The following conditions are equivalent
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1. δ
(0)
M is an isomorphism,

2. δ
(0)
RejW M and δ

(0)
[M/RejW M ] are isomorphisms.

In such a case δ
(0)
Γ2M

and δ
(0)
∆2M

are isomorphisms.

Proof. The equivalence of 1. and 2. follows easily by Proposition 2.2. If 2. is satisfied, then, again
by Proposition 2.2, we have RejW M ∼= Γ2M and M/RejW M ∼= ∆2M .

Proposition 2.4. A module M is ∆-reflexive if and only if δ
(0)
M and βM are isomorphisms.

Proof. Since δM = βM ◦ δ
(0)
M the sufficiency is clear. Suppose δM = βM ◦ δ

(0)
M an isomorphism; looking

at the diagram of Proposition 2.2, this happen if and only if δ
(0)
[M/RejW M ] ◦ pM is an isomorphism. Now,

since pM is surjective, δ
(0)
[M/RejW M ] ◦ pM is an isomorphism if and only if both pM and δ

(0)
[M/RejW M ] are

isomorphisms. Therefore RejW M = 0 and hence δ
(0)
M = δ

(0)
[M/RejW M ] and βM are isomorphisms.

The above proposition suggests the following

Definition 2.5. We say that a module M is Γ-reflexive if and only if δ
(0)
M and αM are isomorphisms.

For each module M such that δ
(0)
M is an isomorphism we define a morphism γM : Γ2M → M , setting

γM = δ
(0)
M

−1
◦ αM .

M

δ
(0)
M

∼=
��

δM

&&MMMMMMMMMMM

0 // Γ2
SRM

αM //

γM

88

[L0∆2
SR]M

βM // ∆2
SRM

// 0

The maps γM define a natural transformation γ between Γ2 and the identity functor restricted to the
class of modules where δ(0) is a natural equivalence. Then a module M is Γ-reflexive if and only if γM is
defined and it is an isomorphism; in such a case M = RejW M belongs to Ker ∆.

Let us consider the subcategories

• M0 of all modules M such that δ
(0)
M is an isomorphism,

• M1 of all modules M such that δ
(1)
M := L1δM is an isomorphism,

• M =M0 ∩M1.

Since δ(1) is a natural map between the zero functor (the first derived of the identity functor) and L1∆2 ∼=
∆Γ (see Proposition 1.3),M1 = Ker ∆Γ and it is the largest subcategory where the functor L0∆2 is exact.
It is interesting to observe that the subcategory of ∆-reflexive modules like all of these subcategoriesM0,
M1, M are defined through the evaluation map δ.

Clearly (see Proposition 2.4 and Definition 2.5) the ∆-reflexive and the Γ-reflexive modules belong to
M0. In fact the ∆-reflexive modules belong toM, since Γ∆ = 0. The next theorem shows as each module
in M0 is an extension of a Γ-reflexive module by a ∆-reflexive module.

Theorem 2.6. For each module M ∈M0 the sequence

0→ Γ2M
γM→ M

δM→ ∆2M → 0

is exact, ∆M and ∆2M are ∆-reflexive and Γ2M is Γ-reflexive.
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Proof. The short exact sequence follows by Theorem 1.2 and the above definition of the map γ.
Applying ∆ to it, we obtain the long exact sequence of right S-modules

0→ ∆3M
∆(δM )→ ∆M

∆(γM )→ ∆Γ2M → Γ∆2M = 0→ ΓM
Γ(γM )→ Γ3M → 0.

Since ∆(δM ) ◦ δ∆M
= 1∆M , ∆(δM ) and δ∆M are isomorphisms and ∆Γ2M = 0. Then ∆M and ∆2M are

∆-reflexive. Since ∆Γ2M = 0, αΓ2M is an isomorphism. Also, by Corollary 2.3, Γ2M ∼= Ker δM = RejW M

implies δ
(0)
Γ2M

is an isomorphism, thus Γ2M is Γ-reflexive.

Corollary 2.7. 1. A module M is ∆-reflexive if and only if M ∈ Ker Γ ∩M0.

2. A module M is Γ-reflexive if and only if M ∈ Ker ∆ ∩M0.

3. The functors ∆R and ∆S send objects in M0 to objects in Ker Γ ∩M0, inducing a duality between
the full subcategories Ker Γ ∩M0.

4. The pair (Ker ∆ ∩M0,Ker Γ ∩M0) is a torsion theory in M0.

5. The class M0 is closed under finite direct sums and direct summands of modules in M0 and images,
cokernels and pushout of morphisms in M0.

Proof. 1., 2. and 3. follow immediately by Theorem 2.6.
4. There are no non zero homomorphisms between Γ-reflexive and ∆-reflexive objects. For, let M ∈

Ker ∆ ∩ M0 and N ∈ Ker Γ ∩ M0 and f a morphism of M to N ; since N ∼= ∆2N , there exists a
monomorphism ϕ : N → Wα for some cardinal α. Since M ∼= Γ2M and ∆Γ2M = 0, ϕ ◦ f = 0 and
hence f = 0. Moreover these classes are maximal in M0, with respect to this property: if L ∈ M0 (resp.
M ∈M0) and Hom(L,M) = 0 for each M ∈ Ker Γ∩M0 (resp. for each L ∈ Ker ∆∩M0), by Theorem 2.6
δL = 0 (resp. γM = 0) and hence L ∼= Γ2L belongs to Ker ∆ (resp. M ∼= ∆2M belongs to Ker Γ).

5. The closure under finite direct sums is a consequence of the additivity of L0∆2. Let f : M → N a
morphism with M , N ∈M0. Consider the commutative diagrams with exact rows

0 // Ker f //

δ
(0)
Ker f

��

M //

∼=δ
(0)
M

��

Im f //

δ
(0)
Im f

��

0

(L0∆2) Ker f // (L0∆2)M // (L0∆2) Im f // 0

0 // Im f //

δ
(0)
Im f

��

N //

∼=δ
(0)
N

��

N/ Im f //

δ
(0)
N/ Im f

��

0

(L0∆2) Im f // (L0∆2)N // (L0∆2)N/ Im f // 0.

Since δ
(0)
M and δ

(0)
N are isomorphisms, then δ

(0)
Im f and hence δ

(0)
N/ Im f = δ

(0)
Coker f are isomorphisms. If M1 ⊕

M2 ∈ M0, then also the images of the endomorphisms projections belongs to M0. Finally, the pushout
of two morphisms f : L → M and g : L → N with L, M , and N in M0 is the cokernel of the map
L→M ⊕N , l 7→ (f(l), g(l)), and hence it belongs to M0.

The adjunction between ∆R and ∆S was crucial in proving that the functor ∆ sends objects ofM0 to
objects which are ∆-reflexive. Lacking such a property it is not even clear if the functor Γ sends objects
of M0 to objects of M0. The problem is solved in the smaller class M, thanks to the following lemma.

Lemma 2.8. For each module M in M1 we have

Γ(δ
(0)
M ) ◦ [Γ(αM )]−1

◦ [αΓM ]−1
◦ δ

(0)
ΓM = 1ΓM .
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Proof. Let M ∈ M1; then Γ(αM ) and αΓM are both isomorphisms. Next, consider a short exact

sequence 0 → K
i→ P

p→ M → 0 with P projective. Denoting the image of ∆(i) by I, we have the
following diagram with exact rows

0 // K
i //

δK
��

P
p //

δP
��

M //

δ
(0)
M��

0

0 // ∆2K // ∆2P // (L0∆2)M // 0

0 // ∆2K // ∆I //

OO

Γ2M //

αM

OO

0

Applying ∆ to it and L0∆2 to ∆K
∂1→ ΓM → 0 we get the following diagram

(#)

∆K
∂1 // ΓM

∆3K
∂2 //

∆(δK)

OO

Γ(L0∆2)M

Γ(δ
(0)
M )

OO

Γ(αM )

��
∆3K

∂3 // Γ3M

αΓM

���
�
�

(L0∆2)∆K
L0∆2(∂1) //

β∆K

OO�
�
�

(L0∆2)ΓM

∆K
∂1 //

δ
(0)
∆K

OO

ΓM

δ
(0)
ΓM

OO

Its solid part is commutative; let us prove that the whole diagram is commutative. Given an exact sequence
0 → H1 → Q

q→ ∆K → 0 with Q projective, we can construct the following commutative diagram with
exact rows

0 // H1
// H2

//
� _

��

I //

��

0

0 // H1
//

� _

��

Q
q // ∆K //

∂1

��

0

0 // H2
//

��

Q //

��

ΓM // 0

0 // I // ∆K
∂1 // ΓM // 0
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where H2 = q−1(I). Applying ∆ twice we have the following commutative diagram with exact rows

0 // ∆2H1
// ∆2H2

//

��

∆2I //

��

0

0 // ∆2H1
//

��

∆2Q // ∆3K //

��

0

0 // ∆2H2
//

��

∆2Q //

��

Γ3M // 0

0 // ∆2I // ∆3K
∂3 // Γ3M // 0

The dotted arrow ∆3K // Γ3M represents the unique mapping such that the middle right square

of the diagram commutes. On one hand it is, by construction, α−1
ΓM ◦ (L0∆2)(∂1) ◦ β−1

∆K ; on the other
hand, looking at the commutative right bottom square, it must be ∂3. Therefore, the whole diagram (#)
commutes. Now the promised identity follows by

Γ(δ
(0)
M ) ◦ [Γ(αM )]−1

◦ [αΓM ]−1
◦ δ

(0)
ΓM ◦ ∂1 = Γ(δ

(0)
M ) ◦ [Γ(αM )]−1

◦ [αΓM ]−1
◦ (L0∆2)(∂1) ◦ δ

(0)
∆K =

= Γ(δ
(0)
M ) ◦ [Γ(αM )]−1

◦ ∂3 ◦ β∆K
◦ δ

(0)
∆K = Γ(δ

(0)
M ) ◦ ∂2 ◦ δ∆K = ∂1 ◦∆(δK) ◦ δ∆K = ∂1

and the fact that ∂1 is epic.

We are ready to present the complete version of our “Cotilting Theorem”, knowing better, inside the
class M =M0 ∩M1, the behaviour of the functor Γ.

Theorem 2.9. For each module M ∈M the sequence

0→ Γ2M
γM→ M

δM→ ∆2M → 0

is exact, ∆M and ∆2M are ∆-reflexive, ΓM and Γ2M are Γ-reflexive.

Proof. We have only to prove that ΓM is Γ-reflexive, the rest following by Theorem 2.6. Applying
Theorem 1.2 to ΓM we have the short exact sequence

0→ Γ3M
αΓM→ (L0∆2)ΓM → ∆2ΓM = 0;

hence αΓM is an isomorphism. Since Γ(δ
(0)
M ) is an isomorphism, by Lemma 2.8 also δ

(0)
ΓM is an isomorphism

and hence ΓM is Γ-reflexive.

Corollary 2.10 (The Cotilting Theorem). 1. The functors ∆R and ∆S send objects in M to objects
in Ker Γ ∩M = Ker Γ ∩M0, inducing a duality between the full subcategories Ker Γ ∩M.

2. The functors ΓR and ΓS send objects in M to objects in Ker ∆∩M, inducing a duality between the
full subcategories Ker ∆ ∩M.

3. The pair (Ker ∆ ∩M,Ker Γ ∩M) is a torsion theory in M.

4. The class M is closed under extensions and direct summands of modules in M and images, kernels,
cokernels, pullback and pushout of morphisms in M: in particular, it is an abelian subcategory of
the category of left R- or right S- modules.

5. The functors ΓR and ΓS are left adjoint in M with the natural maps γ as counities.
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Proof. 1. If M ∈ Ker Γ∩M0, then by Theorem 2.6 M ∼= ∆2M . Therefore ∆ΓM ∼= ∆Γ∆2M = 0, so,
since M1 = Ker ∆Γ, M belongs to M. Now the claim follows by Corollary 2.7, 3.

2. follows by Theorems 2.9 and 2.6.
3. follows by 2 and Corollary 2.7, 4.
4. Consider an exact sequence 0 → J → H → K → 0 with J , K ∈ M; applying L0∆2 we obtain the

exact sequence
0→ (L0∆2)J → (L0∆2)H → (L0∆2)K → 0.

Since δ
(0)
J and δ

(0)
K are isomorphisms, also δ

(0)
H is an isomorphism. Applying L1∆2 we have the exact

sequence
0 = (L1∆2)J → (L1∆2)H → (L1∆2)K = 0;

therefore H ∈M andM is closed under extensions. Next, observe that given an exact sequence 0→ A→
B → C → 0 with B ∈M, it is A ∈M if and only if C ∈M: applying L0∆2 to 0→ A→ B → C → 0 we
have the following commutative diagram with exact rows

0 // A //

δ
(0)
A��

B //

δ
(0)
B

∼=
��

C //

δ
(0)
C��

0

0 // ∆ΓA // ∆ΓB = 0 // ∆ΓC // (L0∆2)A // (L0∆2)B // (L0∆2)C // 0

We have ∆ΓL = 0 and δ
(0)
L is an isomorphism if and only if ∆ΓN = 0 and δ

(0)
N is an isomorphism. We

can then continue the proof of Corollary 2.7, 5., claiming that if N belongs toM then N/ Im f belongs to
M. Therefore, for what we have seen, Im f and hence Ker f belong toM. In particular direct summands,
pullback and pushout of morphisms in M are in M.

5. By Lemma 2.8 we obtain γΓM ◦ Γ(γM ) = 1ΓM . Therefore we conclude by [18, 45.5].

Remark 2.11. By the discussion preceeding Theorem 2.6 and Corollary 2.10, 4., all modules M , such
that there exists an exact sequence 0 → A → B → M → 0 with A and B which are ∆-reflexive, belong
to M (cf. with the class C in [7, 9, 13]). If RWS is a faithfully balanced weakly cotilting bimodule, then
all finitely generated modules cogenerated by W are ∆-reflexive and hence they belong to M. Therefore,
again by Corollary 2.10, 4., all finitely presented modules are inM. Moreover, by Proposition 1.4, finitely
generated submodules of modules in Im Γ (resp. Im Γ ∩M1) belong to M0 (resp. M).
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