Generalizing Morita duality: a homological approach

Alberto Tonolo Dipartimento di Matematica Pura ed Applicata Università di Padova - Italy tonolo@math.unipd.it

Abstract

Let R and S be arbitrary associative rings. Given a bimodule $_RW_S$, we denote by $\Delta_?$ and $\Gamma_?$ the functors $\operatorname{Hom}_?(-,W)$ and $\operatorname{Ext}_?^1(-,W)$, where ? = R or S. The functors Δ_R and Δ_S are right adjoint with the evaluation maps δ as unities. A module M is Δ -reflexive if δ_M is an isomorphism. In this paper we give, for a weakly cotilting bimodule $_RW_S$, the notion of Γ -reflexivity. We construct large abelian subcategories \mathcal{M}_R and \mathcal{M}_S where the functors Γ_R and Γ_S are left adjoint and a "Cotilting theorem" holds.

Introduction

In this paper R and S will be associative rings with unity and $_RW_S$ will be a bimodule. We denote by Δ_R and Δ_S the contravariant functors

 $\operatorname{Hom}_R(-,W): R\operatorname{-Mod} \to \operatorname{Mod} S$ and $\operatorname{Hom}_S(-,W): \operatorname{Mod} S \to R\operatorname{-Mod}$

and by Γ_R and Γ_S the contravariant functors

 $\operatorname{Ext}^1_R(-,W):R\operatorname{-Mod}\to\operatorname{Mod}\nolimits S\quad\text{and}\quad\operatorname{Ext}^1_S(-,W):\operatorname{Mod}\nolimits S\to R\operatorname{-Mod}\nolimits.$

For each left *R*-module (resp. right *S*-module) *M*, we denote by $\delta_M : M \to \Delta_S \Delta_R M$ (resp. $\delta_M : M \to \Delta_R \Delta_S M$) the evaluation map. These maps define natural transformations δ between the identity functor $1_{R-\text{Mod}}$ and $\Delta_S \Delta_R$ and between the identity functor $1_{\text{Mod-}S}$ and $\Delta_R \Delta_S$, which are the unities of the right adjoint pair (Δ_R, Δ_S). A module *M* is said to be Δ -reflexive if δ_M is an isomorphism.

The bimodule $_RW_S$ defines a Morita duality ([14, 2]) if the classes of Δ -reflexive modules contain the rings and are finitely closed, i.e. closed with respect to submodules, factor modules and finite direct sums. This happens if and only if $_RW_S$ is a Morita bimodule, i.e. it is balanced and $_RW$ and W_S are injective cogenerators ([1, Theorem 24.1]). Morita bimodules are "rare": B. J. Müller has proved ([15]) that there exists a Morita bimodule $_RW_S$ if and only if both the regular module $_RR$ and the minimal cogenerator of R-Mod are linearly compact. For an extensive introduction to Morita duality, including various recent results, see [19].

Let $_RW_S$ be an arbitrary bimodule. The subcategories Cogen_RW and Cogen_WS of left R- and right S-modules cogenerated by W are the classes of modules M such that δ_M is a monomorphism; they contain the classes of Δ -reflexive modules. Outside these classes the functors Δ_R and Δ_S are not faithful: there we will consider the contribution of their derived functors Γ_R and Γ_S .

In order that the functors Δ_R , Δ_S and Γ_R , Γ_S play a major role in *R*-Mod and Mod-*S*, we require that on both sides the injective dimension of *W* is less than or equal to 1 and, to avoid overlaps of the two functors, that the functors Γ_R and Γ_S vanish on modules cogenerated by *W*. Such a bimodule $_RW_S$ will be called *weakly cotilting* (see page 6). A Morita bimodule is clearly a weakly cotilting bimodule, since Cogen $_RW = \text{Ker}\,\Gamma_R$ and Cogen $W_S = \text{Ker}\,\Gamma_S$ are the whole categories of modules. Interesting examples of weakly cotilting bimodules exist, also in the commutative case: if R is a maximal valuation domain, the regular bimodule $_{R}R_{R}$ is weakly cotilting (see Example 2.1).

The word "cotilting" appears for the first time in [12] for modules over finite dimensional algebras. Next, in [4], cotilting modules over noetherian rings are considered. In [5], a "Cotilting theorem" for modules over arbitrary rings is given: it is a dual form of the celebrated Brenner and Butler theorem, known also as the "Tilting theorem". Recently (see [8, 10] and in particular [7, 9]) the theory has been developed further.

Notation: we denote by Δ_{SR}^2 (resp. Δ_{RS}^2) and by Γ_{SR}^2 (resp. Γ_{SR}^2) the compositions $\Delta_S \Delta_R$ (resp. $\Delta_R \Delta_S$) and $\Gamma_S \Gamma_R$ (resp. $\Gamma_S \Gamma_R$). Writing Δ , Γ , Δ^2 , Γ^2 , $\Delta\Gamma$, $\Gamma\Delta$, ... as well as simply "module" we intend that we are indifferently working with left *R*- or right *S*- modules.

In this paper we try to understand, in the whole categories of modules, the behaviour and the relationships among the functors Γ^2 , the identity functors and Δ^2 : the zero left derived functor of Δ^2 will have a key role to relate them (see Theorem 1.2). It leads us to a natural definition of Γ -reflexivity (Definition 2.5), whereas in the literature (see [4, 15]) this problem is solved only inside special classes of modules. Hence we construct naturally abelian subcategories \mathcal{M}_R and \mathcal{M}_S where a Cotilting theorem (see Corollary 2.10) can be proved: they are the classes of left R- and right S- modules where the left derived maps $L_0\delta$ and $L_1\delta$ of the evaluation map δ are natural equivalences. For the first time, as far as we know, the existence of a local adjunction between the functors Γ_R and Γ_S is studied and proved.

1 Deriving the functor Δ^2

Let $_{R}W_{S}$ be a bimodule. Consider a projective resolution

$$\dots \xrightarrow{d_1} P_1 \xrightarrow{d_0} P_0 (\xrightarrow{\varepsilon} M) \to 0$$

of a left R-module M. Applying the covariant functor Δ_{SR}^2 we obtain the complex

$$\dots \xrightarrow{\Delta_{SR}^2(d_1)} \Delta_{SR}^2 P_1 \xrightarrow{\Delta_{SR}^2(d_0)} \Delta_{SR}^2 P_0 \xrightarrow{\Delta_{SR}^2(d_{-1})} 0.$$

The *n*-th left derived functor $L_n \Delta_{SR}^2$ is defined by

$$L_n \Delta_{SR}^2(M) = [\operatorname{Ker} \Delta_{SR}^2(d_{n-1})] / [\operatorname{Im} \Delta_{SR}^2(d_n)].$$

The augmentation ε yields a map $\Delta_{SR}^2(P_0) \to \Delta_{SR}^2 M$ thus defining a natural map $\beta : L_0 \Delta_{SR}^2 \to \Delta_{SR}^2$. Denoted by δ the unity of the right adjoint pair (Δ_R, Δ_S) , we have the following commutative diagram of functors and natural maps

In the sequel the natural map $L_0\delta$ will be denoted simply by $\delta^{(0)}$.

Lemma 1.1. Given the solid part of the commutative diagram

with exact rows and columns, there are unique maps α and β such that the diagram commutes. With these maps the second column is exact; moreover, if ϑ is monic, then so is α .

Proof. It follows by diagram chasing.

Assuming that Cogen $W_S \subseteq \operatorname{Ker} \Gamma_S$, it is possible to calculate the left derived functors of Δ_{SR}^2 working with short exact sequences. The *i*-th differentiation operator d_i factorizes through its image K_i ; let $d_i = \lambda_i \circ \mu_i$ such a factorization. Applying Δ_R to $0 \to K_{i+1} \xrightarrow{\lambda_{i+1}} P_{i+1} \xrightarrow{\mu_i} K_i \to 0$ we get $0 \to \Delta_R K_i \xrightarrow{\Delta_R(\mu_i)} \Delta_R P_{i+1} \to C \to 0$ where C is the cokernel of $\Delta_R(\mu_i)$. Since $C \leq \Delta_R K_{i+1}$ and $\operatorname{Im} \Delta_R \subseteq \operatorname{Cogen} W_S$, $\Delta_{SR}^2(\mu_i)$ is surjective. Therefore

$$L_n \Delta_{SR}^2(M) = [\operatorname{Ker} \Delta_{SR}^2(d_{n-1})] / [\operatorname{Im} \Delta_{SR}^2(\lambda_n \circ \mu_n)] = [\operatorname{Ker} \Delta_{SR}^2(d_{n-1})] / [\operatorname{Im} \Delta_{SR}^2(\lambda_n)].$$

The following theorem describes how the functors 1_R , Δ_{SR}^2 , Γ_{SR}^2 and $L_0 \Delta_{SR}^2$ are related on the whole category of left *R*-modules.

Theorem 1.2. Let $_RW_S$ be a bimodule such that Cogen $W_S \subseteq \text{Ker } \Gamma_S$. Then there exists a natural map α such that

is a commutative diagram with exact row of functors and natural maps. In particular, on the subcategory $\operatorname{Ker} \Gamma_R$ (resp. $\operatorname{Ker} \Delta_R$) β (resp. α) is a natural isomorphism.

Proof. About the triangle involving the natural maps $\delta^{(0)}$, δ and β we have discussed above. Let us prove the existence of the wished natural map α . Consider an exact sequence

$$(\#) \qquad 0 \to K \xrightarrow{\lambda_0} P \xrightarrow{\varepsilon} M \to 0$$

with P projective. Denote by I the Im $\Delta_R(\lambda_0)$ and by $i: I \to \Delta_R K$, $p: \Delta_R P \to I$ the morphisms factorizing $\Delta_R(\lambda_0)$. Applying the functors Δ_R and hence Δ_S to (#), we obtain the exact sequences

$$0 \to \Delta_S I \xrightarrow{\Delta_S(p)} \Delta_{SR}^2 P \to \Delta_{SR}^2 M \to 0 \qquad 0 \to \Delta_S \Gamma_R M \to \Delta_{SR}^2 K \xrightarrow{\Delta_S(i)} \Delta_S I \xrightarrow{\partial} \Gamma_{SR}^2 M \to 0$$

and hence, after an application of Lemma 1.1, we have the commutative diagram with exact rows and

columns

Now it remains to see that α is natural. Consider a morphism $f: M \to N$ of left *R*-modules and the commutative diagram with exact rows

with P and Q projective modules. Applying Δ_R we have the following commutative diagrams with exact rows

$$(*) \qquad \begin{array}{c} 0 \longrightarrow \Delta_{R}M \longrightarrow \Delta_{R}P \xrightarrow{p} I \longrightarrow 0 \\ \Delta_{R}(f) & \Gamma_{R}(\varphi) & \uparrow \\ 0 \longrightarrow \Delta_{R}N \longrightarrow \Delta_{R}Q \xrightarrow{q} J \longrightarrow 0 \end{array} \qquad \begin{array}{c} 0 \longrightarrow I \longrightarrow \Delta_{R}K \longrightarrow \Gamma_{R}M \longrightarrow 0 \\ \uparrow & \uparrow \\ \Delta_{R}(\varphi') & \Gamma_{R}(f) \\ 0 \longrightarrow J \longrightarrow \Delta_{R}N \longrightarrow 0 \end{array}$$

where I and J are the images of $\Delta_R(\lambda)$ and $\Delta_R(\mu)$. Applying Δ_S we obtain the diagram

The back and the front square commute by definition of α_M and α_N . The top square commutes by the naturality of the connecting homomorphisms (see [17, Theorem 6.4]). The left hand square commutes by diagram (*) and the bottom square commutes by definition of $L_0\Delta_{SR}^2$. Thus, since ∂ is an epimorphism, an easy diagram chase shows that the right hand square commutes. Thus α is natural.

The first and the second claims of the following proposition suggest the forthcoming assumptions on the injective dimension of $_{R}W$.

Proposition 1.3. If Cogen $W_S \subseteq \text{Ker} \Gamma_S$, then

1. on the subcategory $\operatorname{Ker}\operatorname{Ext}^2_R(-,W)$, the functors $L_1\Delta^2_{SR}$ and $\Delta_S\Gamma_R$ are naturally isomorphic;

2. if $\operatorname{Ext}_{R}^{i}(M, W) = 0$ for i = 2, 3, ..., n + 1, then $(L_{n}\Delta_{SR}^{2})M = 0$.

Proof. 1. Let $f: M \to N$ be a morphism of left *R*-modules. Consider P^{\bullet} and Q^{\bullet} projective resolutions of *M* and *N* with augmentations ε and ε' , and differentiation operators *d* and *d'*. Denote by $F: P^{\bullet} \to Q^{\bullet}$ the map of complexes over *f* and by K_i (resp. K'_i) the image of d_i (resp. d'_i). Consider the diagrams

Since $\operatorname{Ext}_{R}^{2}(M,W) = 0 = \operatorname{Ext}_{R}^{2}(N,W)$, we have $\Gamma_{R}K_{0} = 0 = \Gamma_{R}K_{0}^{\prime}$. Denoted by $I(I^{\prime})$ the image of $\Delta_{R}(\lambda_{0})$ ($\Delta_{R}(\lambda_{0}^{\prime})$), applying Δ_{R} we get

Applying Δ_S we obtain the diagrams

Then, since $\Delta_{SR}^2(d_0) = \vartheta \circ \eta \circ \Delta_{SR}^2(\mu_0)$ we have

$$(L_1\Delta_{SR}^2)M \cong \operatorname{Ker}[\vartheta \circ \eta \circ \Delta_{SR}^2(\mu_0)]/[\operatorname{Im} \Delta_{SR}^2(\lambda_1)] \cong \Delta_S\Gamma_R M,$$

 $(L_1 \Delta_{SR}^2) N \cong \Delta_S \Gamma_R N$ and $(L_1 \Delta_{SR}^2) (f) \cong \Delta_S \Gamma_R (f).$

2. Let us consider the long exact sequence

$$\cdots \rightarrow (L_n \Delta_{SR}^2) P_0 = 0 \rightarrow (L_n \Delta_{SR}^2) M \rightarrow (L_{n-1} \Delta_{SR}^2) K_0 \rightarrow (L_{n-1} \Delta_{SR}^2) P_0 = 0 \rightarrow \cdots$$

We proceed by induction on $n \ge 2$. Let n = 2: since $\operatorname{Ext}_R^3(M, W) = 0$, we have $\operatorname{Ext}_R^2(K_0, W) = 0$ and hence, by 1., $(L_1\Delta_{SR}^2)K_0 = \Delta_S\Gamma_R K_0$. Being $\operatorname{Ext}_R^2(M, W) = 0$, then $\Gamma_R K_0 = 0$. Therefore $(L_2\Delta_{SR}^2)M = (L_1\Delta_{SR}^2)K_0 = 0$. Next, let n > 2: if $\operatorname{Ext}_R^i(M, W) = 0$, $2 \le i \le n + 1$, then $\operatorname{Ext}_R^i(K_0, W) = 0$, $1 \le i \le n$. By inductive hypothesis $(L_{n-1}\Delta_{SR}^2)K_0 = 0$. Therefore $(L_n\Delta_{SR}^2)M = 0$.

In the next section we will study modules M such that $\delta_M^{(0)}$ is an isomorphism; we have the following

Proposition 1.4. If Cogen $W_S \subseteq \text{Ker} \Gamma_S$, then for each module M in Mod-S the maps $\delta_{\Delta M}^{(0)}$ and $\delta_{\Gamma M}^{(0)}$ are both monomorphisms.

Proof. Since for each module cogenerated by W, the evaluation map is injective, $\delta_{\Delta M}^{(0)}$ is a monomorphism by Theorem 1.2. Next, consider an exact sequence $0 \to K \xrightarrow{i} P \to M \to 0$ with P projective. Applying Δ we obtain the exact sequences

$$0 \to \Delta M \to \Delta P \to I \to 0 \quad 0 \to I \to \Delta K \xrightarrow{\varphi} \Gamma M \to 0.$$

Applying the functor $L_0\Delta^2$ we have the following commutative diagram with exact rows

Let $\delta_{\Gamma M}^{(0)}(x) = 0$ with $x \in \Gamma M$; consider $y \in \Delta K$ such that $x = \varphi(y)$. Since $[(L_0 \Delta^2)(\varphi) \circ \delta_{\Delta K}](y) = 0$, there exists $z \in \Delta^3 P$ such that $\delta_{\Delta K}(y) = \Delta^3(i)(z)$. Thus

$$y = [\Delta(\delta_K) \circ \delta_{\Delta K}](y) = [\Delta(\delta_K) \circ \Delta^3(i)](z) = [\Delta(i) \circ \Delta(\delta_P)](z)$$

belongs to $\operatorname{Im} \Delta(i)$ and hence $x = \varphi(y) = 0$.

2 The Cotilting Theorem

A left R-module W is said to be weakly cotilting if

(i) id $_RW \leq 1$,

(ii) $\operatorname{Ext}_{R}^{1}(W^{\alpha}, W) = 0$ for each cardinal α .

These conditions (i) and (ii) are equivalent to say that $\operatorname{Cogen}_R W \subseteq \operatorname{Ker} \Gamma_R$ and $\operatorname{id}_R W \leq 1$. It is easy to see that any faithful left *R*-module $_R W$ such that $\operatorname{Cogen}_R W \subseteq \operatorname{Ker} \Gamma_R$ is weakly cotilting. A weakly cotilting module $_R W$ is *cotilting* (see [8, Definition 1.6], [6, §2]) if and only if

for all M in R-Mod, if $\operatorname{Hom}_R(M, W) = 0 = \operatorname{Ext}_R^1(M, W)$, then M = 0.

In the sequel of the paper we suppose always that $_RW_S$ is a weakly cotilting bimodule, i.e. both $_RW$ and W_S are weakly cotilting.

Example 2.1. Consider a complete almost maximal Prüfer domain R (e.g. a maximal valuation domain). By [3, Proposition 4.2] id $R \leq 1$ and, by [11, Theorem 3.1], $\operatorname{Ext}_{R}^{1}(F, R) = 0$ for each torsion-free R-module F: in particular $\operatorname{Ext}_{R}^{1}(R^{\alpha}, R) = 0$ for each cardinal α . Therefore the regular bimodule $_{R}R_{R}$ is weakly cotilting. Observe that if R is not a Dedekind domain, it is not noetherian.

The simmetry of the setting suggests to denote simply by Δ^2 and by Γ^2 both the compositions $\Delta_S \circ \Delta_R$ and $\Delta_R \circ \Delta_S$, and $\Gamma_S \circ \Gamma_R$ and $\Gamma_S \circ \Gamma_R$; we will write also Δ , Γ , $\Delta\Gamma$, $\Gamma\Delta$, ... as well "module" to intend that we are indifferently working with left R- or right S- modules.

Proposition 2.2. For each module M we have the following commutative diagram with exact rows

Moreover

- 1. the squares on the left are pullback: in particular $\operatorname{Ker} \delta_{\operatorname{Reiv} M}^{(0)} \cong \operatorname{Ker} \delta_{M}^{(0)}$;
- 2. Coker $\delta_{\text{Reiv} M}^{(0)}$ belongs to Ker Γ if and only if Coker $\delta_{M}^{(0)}$ belongs to Ker Γ ;
- 3. the squares on the right are pushout if and only if $\delta^{(0)}_{\text{Reiv} M}$ is surjective.

Proof. The second row of the diagram, except for the injectivity of $(L_0\Delta^2)(i_M)$, is obtained applying $L_0\Delta^2$ to the first row: remember that, by Theorem 1.2, the functor $L_0\Delta^2$ is naturally isomorphic to Γ^2 and Δ^2 on Ker Δ and Ker Γ , respectively. The third row is part of Theorem 1.2. The commutativity of the top squares follows by the naturality of $\delta^{(0)}$. The maps $\Gamma^2(i_M)$ and $\Delta^2(p_M)$ are clearly isomorphisms and $\delta_{[M/\operatorname{Rej}_W M]}$ is a monomorphism. Then we have to verify only that $\alpha_M \circ \Gamma^2(i_M) = (L_0\Delta^2)(i_M)$ and $\Delta^2(p_M) \circ \beta_M = (L_0\Delta^2)(p_M)$. Let us see the first equality; the second one is obtained in a similar way. Given a projective resolution P^{\bullet} of $\operatorname{Rej}_W M$ and one Q^{\bullet} of M, consider the map $F: P^{\bullet} \to Q^{\bullet}$ over the inclusion i_M . We have the commutative diagram with exact rows

Applying Δ we get

$$0 \longrightarrow \Delta P_0 \xrightarrow{\Delta(\lambda_0)} \Delta K_0 \longrightarrow \Gamma \operatorname{Rej}_W M \longrightarrow 0$$

$$\uparrow \qquad \uparrow \qquad \Gamma(i_M) \uparrow \qquad 0$$

$$0 \longrightarrow \Delta M \longrightarrow \Delta Q_0 \xrightarrow{\Delta(\mu_0)} \Delta H_0 \longrightarrow \Gamma M \longrightarrow 0$$

Denote by J the image of $\Delta(\mu_0)$, by $q : \Delta Q_0 \to J$ the canonical projection and by $\rho : J \to \Delta P_0$ the induced morphism such that $\rho \circ q = \Delta(F_0)$. Applying Δ to the last diagram and $L_0 \Delta^2$ to $0 \to H_0 \to Q_0 \to M \to 0$ we have the commutative diagram with exact rows

Looking at the first and the third rows of the diagram, since $\Delta(q) \circ \Delta(\rho) = \Delta(\rho \circ q) = \Delta^2(F_0)$, we have $\alpha_M \circ \Gamma_{SR}^2(i_M) = (L_0 \Delta_{SR}^2)(i_M)$. In particular we obtain that $(L_0 \Delta_{SR}^2)(i_M)$ is a monomorphism. Properties 1. and 3. follow by [18, 10.3, 10.6]. The Snake Lemma (see [16, 11.3]) give us the exact sequence

$$0 \to \operatorname{Coker} \delta^{(0)}_{\operatorname{Rej}_W M} \to \operatorname{Coker} \delta^{(0)}_M \to \operatorname{Coker} \delta_{[M/\operatorname{Rej}_W M]} \to 0.$$

By [9, Lemma 1.1, d)] Coker $\delta_{[M/\operatorname{Rej}_W M]}$ belongs to Ker Γ . Therefore, since Ker Γ is closed under submodules, also property 2. is easily proved.

Corollary 2.3. The following conditions are equivalent

1. $\delta_M^{(0)}$ is an isomorphism,

2. $\delta_{\operatorname{Rej}_W M}^{(0)}$ and $\delta_{[M/\operatorname{Rej}_W M]}^{(0)}$ are isomorphisms.

In such a case $\delta_{\Gamma^2 M}^{(0)}$ and $\delta_{\Delta^2 M}^{(0)}$ are isomorphisms.

Proof. The equivalence of 1. and 2. follows easily by Proposition 2.2. If 2. is satisfied, then, again by Proposition 2.2, we have $\operatorname{Rej}_W M \cong \Gamma^2 M$ and $M/\operatorname{Rej}_W M \cong \Delta^2 M$.

Proposition 2.4. A module M is Δ -reflexive if and only if $\delta_M^{(0)}$ and β_M are isomorphisms.

Proof. Since $\delta_M = \beta_M \circ \delta_M^{(0)}$ the sufficiency is clear. Suppose $\delta_M = \beta_M \circ \delta_M^{(0)}$ an isomorphism; looking at the diagram of Proposition 2.2, this happen if and only if $\delta_{[M/\operatorname{Rej}_W M]}^{(0)} \circ p_M$ is an isomorphism. Now, since p_M is surjective, $\delta_{[M/\operatorname{Rej}_W M]}^{(0)} \circ p_M$ is an isomorphism if and only if both p_M and $\delta_{[M/\operatorname{Rej}_W M]}^{(0)}$ are isomorphisms. Therefore $\operatorname{Rej}_W M = 0$ and hence $\delta_M^{(0)} = \delta_{[M/\operatorname{Rej}_W M]}^{(0)}$ and β_M are isomorphisms.

The above proposition suggests the following

Definition 2.5. We say that a module M is Γ -reflexive if and only if $\delta_M^{(0)}$ and α_M are isomorphisms.

For each module M such that $\delta_M^{(0)}$ is an isomorphism we define a morphism $\gamma_M : \Gamma^2 M \to M$, setting $\gamma_M = \delta_M^{(0)^{-1}} \circ \alpha_M$.

$$0 \longrightarrow \Gamma_{SR}^2 M \xrightarrow{\gamma_M} [L_0 \Delta_{SR}^2] M \xrightarrow{\beta_M} \Delta_{SR}^2 M \longrightarrow 0$$

The maps γ_M define a natural transformation γ between Γ^2 and the identity functor restricted to the class of modules where $\delta^{(0)}$ is a natural equivalence. Then a module M is Γ -reflexive if and only if γ_M is defined and it is an isomorphism; in such a case $M = \operatorname{Rej}_W M$ belongs to $\operatorname{Ker} \Delta$.

Let us consider the subcategories

- \mathcal{M}_0 of all modules M such that $\delta_M^{(0)}$ is an isomorphism,
- \mathcal{M}_1 of all modules M such that $\delta_M^{(1)} := L_1 \delta_M$ is an isomorphism,
- $\mathcal{M} = \mathcal{M}_0 \cap \mathcal{M}_1$.

Since $\delta^{(1)}$ is a natural map between the zero functor (the first derived of the identity functor) and $L_1 \Delta^2 \cong \Delta \Gamma$ (see Proposition 1.3), $\mathcal{M}_1 = \text{Ker} \Delta \Gamma$ and it is the largest subcategory where the functor $L_0 \Delta^2$ is exact. It is interesting to observe that the subcategory of Δ -reflexive modules like all of these subcategories \mathcal{M}_0 , \mathcal{M}_1 , \mathcal{M} are defined through the evaluation map δ .

Clearly (see Proposition 2.4 and Definition 2.5) the Δ -reflexive and the Γ -reflexive modules belong to \mathcal{M}_0 . In fact the Δ -reflexive modules belong to \mathcal{M} , since $\Gamma \Delta = 0$. The next theorem shows as each module in \mathcal{M}_0 is an extension of a Γ -reflexive module by a Δ -reflexive module.

Theorem 2.6. For each module $M \in \mathcal{M}_0$ the sequence

 $0 \to \Gamma^2 M \xrightarrow{\gamma_M} M \xrightarrow{\delta_M} \Delta^2 M \to 0$

is exact, ΔM and $\Delta^2 M$ are Δ -reflexive and $\Gamma^2 M$ is Γ -reflexive.

Proof. The short exact sequence follows by Theorem 1.2 and the above definition of the map γ . Applying Δ to it, we obtain the long exact sequence of right S-modules

$$0 \to \Delta^3 M \stackrel{\Delta(\delta_M)}{\to} \Delta M \stackrel{\Delta(\gamma_M)}{\to} \Delta \Gamma^2 M \to \Gamma \Delta^2 M = 0 \to \Gamma M \stackrel{\Gamma(\gamma_M)}{\to} \Gamma^3 M \to 0.$$

Since $\Delta(\delta_M) \circ \delta_{\Delta_M} = 1_{\Delta M}$, $\Delta(\delta_M)$ and $\delta_{\Delta M}$ are isomorphisms and $\Delta\Gamma^2 M = 0$. Then ΔM and $\Delta^2 M$ are Δ -reflexive. Since $\Delta\Gamma^2 M = 0$, $\alpha_{\Gamma^2 M}$ is an isomorphism. Also, by Corollary 2.3, $\Gamma^2 M \cong \operatorname{Ker} \delta_M = \operatorname{Rej}_W M$ implies $\delta_{\Gamma^2 M}^{(0)}$ is an isomorphism, thus $\Gamma^2 M$ is Γ -reflexive.

Corollary 2.7. 1. A module M is Δ -reflexive if and only if $M \in \text{Ker } \Gamma \cap \mathcal{M}_0$.

- 2. A module M is Γ -reflexive if and only if $M \in \text{Ker } \Delta \cap \mathcal{M}_0$.
- 3. The functors Δ_R and Δ_S send objects in \mathcal{M}_0 to objects in Ker $\Gamma \cap \mathcal{M}_0$, inducing a duality between the full subcategories Ker $\Gamma \cap \mathcal{M}_0$.
- 4. The pair $(\operatorname{Ker} \Delta \cap \mathcal{M}_0, \operatorname{Ker} \Gamma \cap \mathcal{M}_0)$ is a torsion theory in \mathcal{M}_0 .
- 5. The class \mathcal{M}_0 is closed under finite direct sums and direct summands of modules in \mathcal{M}_0 and images, cokernels and pushout of morphisms in \mathcal{M}_0 .

Proof. 1., 2. and 3. follow immediately by Theorem 2.6.

4. There are no non zero homomorphisms between Γ -reflexive and Δ -reflexive objects. For, let $M \in \text{Ker } \Delta \cap \mathcal{M}_0$ and $N \in \text{Ker } \Gamma \cap \mathcal{M}_0$ and f a morphism of M to N; since $N \cong \Delta^2 N$, there exists a monomorphism $\varphi : N \to W^{\alpha}$ for some cardinal α . Since $M \cong \Gamma^2 M$ and $\Delta \Gamma^2 M = 0$, $\varphi \circ f = 0$ and hence f = 0. Moreover these classes are maximal in \mathcal{M}_0 , with respect to this property: if $L \in \mathcal{M}_0$ (resp. $M \in \mathcal{M}_0$) and Hom(L, M) = 0 for each $M \in \text{Ker } \Gamma \cap \mathcal{M}_0$ (resp. for each $L \in \text{Ker } \Delta \cap \mathcal{M}_0$), by Theorem 2.6 $\delta_L = 0$ (resp. $\gamma_M = 0$) and hence $L \cong \Gamma^2 L$ belongs to $\text{Ker } \Delta$ (resp. $M \cong \Delta^2 M$ belongs to $\text{Ker } \Gamma$).

5. The closure under finite direct sums is a consequence of the additivity of $L_0\Delta^2$. Let $f: M \to N$ a morphism with $M, N \in \mathcal{M}_0$. Consider the commutative diagrams with exact rows

Since $\delta_M^{(0)}$ and $\delta_N^{(0)}$ are isomorphisms, then $\delta_{\text{Im}\,f}^{(0)}$ and hence $\delta_{N/\text{Im}\,f}^{(0)} = \delta_{\text{Coker}\,f}^{(0)}$ are isomorphisms. If $M_1 \oplus M_2 \in \mathcal{M}_0$, then also the images of the endomorphisms projections belongs to \mathcal{M}_0 . Finally, the pushout of two morphisms $f: L \to M$ and $g: L \to N$ with L, M, and N in \mathcal{M}_0 is the cokernel of the map $L \to M \oplus N, \ l \mapsto (f(l), g(l))$, and hence it belongs to \mathcal{M}_0 .

The adjunction between Δ_R and Δ_S was crucial in proving that the functor Δ sends objects of \mathcal{M}_0 to objects which are Δ -reflexive. Lacking such a property it is not even clear if the functor Γ sends objects of \mathcal{M}_0 to objects of \mathcal{M}_0 . The problem is solved in the smaller class \mathcal{M} , thanks to the following lemma.

Lemma 2.8. For each module M in \mathcal{M}_1 we have

$$\Gamma(\delta_M^{(0)}) \circ [\Gamma(\alpha_M)]^{-1} \circ [\alpha_{\Gamma M}]^{-1} \circ \delta_{\Gamma M}^{(0)} = 1_{\Gamma M}$$

Proof. Let $M \in \mathcal{M}_1$; then $\Gamma(\alpha_M)$ and $\alpha_{\Gamma M}$ are both isomorphisms. Next, consider a short exact sequence $0 \to K \xrightarrow{i} P \xrightarrow{p} M \to 0$ with P projective. Denoting the image of $\Delta(i)$ by I, we have the following diagram with exact rows

Applying Δ to it and $L_0 \Delta^2$ to $\Delta K \xrightarrow{\partial_1} \Gamma M \to 0$ we get the following diagram

(#)

exact rows

Its solid part is commutative; let us prove that the whole diagram is commutative. Given an exact sequence $0 \to H_1 \to Q \xrightarrow{q} \Delta K \to 0$ with Q projective, we can construct the following commutative diagram with

where $H_2 = q^{-1}(I)$. Applying Δ twice we have the following commutative diagram with exact rows

$$\begin{array}{c} 0 \longrightarrow \Delta^{2}H_{1} \longrightarrow \Delta^{2}H_{2} \longrightarrow \Delta^{2}I \longrightarrow 0 \\ & & & & \downarrow & & \downarrow \\ 0 \longrightarrow \Delta^{2}H_{1} \longrightarrow \Delta^{2}Q \longrightarrow \Delta^{3}K \longrightarrow 0 \\ & & & \downarrow & & \downarrow \\ 0 \longrightarrow \Delta^{2}H_{2} \longrightarrow \Delta^{2}Q \longrightarrow \Gamma^{3}M \longrightarrow 0 \\ & & & \downarrow & & \downarrow \\ 0 \longrightarrow \Delta^{2}I \longrightarrow \Delta^{3}K \xrightarrow{\partial_{3}}\Gamma^{3}M \longrightarrow 0 \end{array}$$

The dotted arrow $\Delta^3 K \longrightarrow \Gamma^3 M$ represents the unique mapping such that the middle right square of the diagram commutes. On one hand it is, by construction, $\alpha_{\Gamma M}^{-1} \circ (L_0 \Delta^2)(\partial_1) \circ \beta_{\Delta K}^{-1}$; on the other hand, looking at the commutative right bottom square, it must be ∂_3 . Therefore, the whole diagram (#) commutes. Now the promised identity follows by

$$\Gamma(\delta_M^{(0)}) \circ [\Gamma(\alpha_M)]^{-1} \circ [\alpha_{\Gamma M}]^{-1} \circ \delta_{\Gamma M}^{(0)} \circ \partial_1 = \Gamma(\delta_M^{(0)}) \circ [\Gamma(\alpha_M)]^{-1} \circ [\alpha_{\Gamma M}]^{-1} \circ (L_0 \Delta^2)(\partial_1) \circ \delta_{\Delta K}^{(0)} =$$
$$= \Gamma(\delta_M^{(0)}) \circ [\Gamma(\alpha_M)]^{-1} \circ \partial_3 \circ \beta_{\Delta_K} \circ \delta_{\Delta K}^{(0)} = \Gamma(\delta_M^{(0)}) \circ \partial_2 \circ \delta_{\Delta K} = \partial_1 \circ \Delta(\delta_K) \circ \delta_{\Delta K} = \partial_1$$

and the fact that ∂_1 is epic.

We are ready to present the complete version of our "Cotilting Theorem", knowing better, inside the class $\mathcal{M} = \mathcal{M}_0 \cap \mathcal{M}_1$, the behaviour of the functor Γ .

Theorem 2.9. For each module $M \in \mathcal{M}$ the sequence

$$0 \to \Gamma^2 M \stackrel{\gamma_M}{\to} M \stackrel{\delta_M}{\to} \Delta^2 M \to 0$$

is exact, ΔM and $\Delta^2 M$ are Δ -reflexive, ΓM and $\Gamma^2 M$ are Γ -reflexive.

Proof. We have only to prove that ΓM is Γ -reflexive, the rest following by Theorem 2.6. Applying Theorem 1.2 to ΓM we have the short exact sequence

$$0 \to \Gamma^3 M \stackrel{\alpha_{\Gamma M}}{\to} (L_0 \Delta^2) \Gamma M \to \Delta^2 \Gamma M = 0;$$

hence $\alpha_{\Gamma M}$ is an isomorphism. Since $\Gamma(\delta_M^{(0)})$ is an isomorphism, by Lemma 2.8 also $\delta_{\Gamma M}^{(0)}$ is an isomorphism and hence ΓM is Γ -reflexive.

- **Corollary 2.10** (The Cotilting Theorem). 1. The functors Δ_R and Δ_S send objects in \mathcal{M} to objects in Ker $\Gamma \cap \mathcal{M} = \text{Ker } \Gamma \cap \mathcal{M}_0$, inducing a duality between the full subcategories Ker $\Gamma \cap \mathcal{M}$.
 - 2. The functors Γ_R and Γ_S send objects in \mathcal{M} to objects in Ker $\Delta \cap \mathcal{M}$, inducing a duality between the full subcategories Ker $\Delta \cap \mathcal{M}$.
 - 3. The pair $(\text{Ker } \Delta \cap \mathcal{M}, \text{Ker } \Gamma \cap \mathcal{M})$ is a torsion theory in \mathcal{M} .
 - 4. The class *M* is closed under extensions and direct summands of modules in *M* and images, kernels, cokernels, pullback and pushout of morphisms in *M*: in particular, it is an abelian subcategory of the category of left *R* or right *S* modules.
 - 5. The functors Γ_R and Γ_S are left adjoint in \mathcal{M} with the natural maps γ as counities.

Proof. 1. If $M \in \text{Ker } \Gamma \cap \mathcal{M}_0$, then by Theorem 2.6 $M \cong \Delta^2 M$. Therefore $\Delta \Gamma M \cong \Delta \Gamma \Delta^2 M = 0$, so, since $\mathcal{M}_1 = \text{Ker } \Delta \Gamma$, M belongs to \mathcal{M} . Now the claim follows by Corollary 2.7, 3.

2. follows by Theorems 2.9 and 2.6.

3. follows by 2 and Corollary 2.7, 4.

4. Consider an exact sequence $0 \to J \to H \to K \to 0$ with $J, K \in \mathcal{M}$; applying $L_0 \Delta^2$ we obtain the exact sequence

$$0 \to (L_0 \Delta^2) J \to (L_0 \Delta^2) H \to (L_0 \Delta^2) K \to 0.$$

Since $\delta_J^{(0)}$ and $\delta_K^{(0)}$ are isomorphisms, also $\delta_H^{(0)}$ is an isomorphism. Applying $L_1\Delta^2$ we have the exact sequence

$$0 = (L_1 \Delta^2) J \to (L_1 \Delta^2) H \to (L_1 \Delta^2) K = 0;$$

therefore $H \in \mathcal{M}$ and \mathcal{M} is closed under extensions. Next, observe that given an exact sequence $0 \to A \to B \to C \to 0$ with $B \in \mathcal{M}$, it is $A \in \mathcal{M}$ if and only if $C \in \mathcal{M}$: applying $L_0\Delta^2$ to $0 \to A \to B \to C \to 0$ we have the following commutative diagram with exact rows

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$
$$\downarrow \delta_A^{(0)} \simeq \downarrow \delta_B^{(0)} \qquad \qquad \downarrow \delta_C^{(0)}$$
$$0 \longrightarrow \Delta \Gamma A \longrightarrow \Delta \Gamma B = 0 \longrightarrow \Delta \Gamma C \longrightarrow (L_0 \Delta^2) A \longrightarrow (L_0 \Delta^2) B \longrightarrow (L_0 \Delta^2) C \longrightarrow 0$$

We have $\Delta\Gamma L = 0$ and $\delta_L^{(0)}$ is an isomorphism if and only if $\Delta\Gamma N = 0$ and $\delta_N^{(0)}$ is an isomorphism. We can then continue the proof of Corollary 2.7, 5., claiming that if N belongs to \mathcal{M} then $N/\operatorname{Im} f$ belongs to \mathcal{M} . Therefore, for what we have seen, $\operatorname{Im} f$ and hence $\operatorname{Ker} f$ belong to \mathcal{M} . In particular direct summands, pullback and pushout of morphisms in \mathcal{M} are in \mathcal{M} .

5. By Lemma 2.8 we obtain $\gamma_{\Gamma M} \circ \Gamma(\gamma_M) = 1_{\Gamma M}$. Therefore we conclude by [18, 45.5].

Remark 2.11. By the discussion preceeding Theorem 2.6 and Corollary 2.10, 4., all modules M, such that there exists an exact sequence $0 \to A \to B \to M \to 0$ with A and B which are Δ -reflexive, belong to \mathcal{M} (cf. with the class \mathcal{C} in [7, 9, 13]). If $_RW_S$ is a faithfully balanced weakly cotilting bimodule, then all finitely generated modules cogenerated by W are Δ -reflexive and hence they belong to \mathcal{M} . Therefore, again by Corollary 2.10, 4., all finitely presented modules are in \mathcal{M} . Moreover, by Proposition 1.4, finitely generated submodules of modules in $\mathrm{Im}\,\Gamma(\mathrm{resp.}\,\mathrm{Im}\,\Gamma\cap\mathcal{M}_1)$ belong to \mathcal{M}_0 (resp. \mathcal{M}).

Acknowledgement

I wish to thank my colleagues and friends Riccardo Colpi, Kent Fuller, Robert Colby, Enrico Gregorio and Francesca Mantese for the useful discussions and suggestions.

References

- [1] F.D.Anderson, K.R.Fuller, Rings and categories of modules, 2nd ed., GTM 13, Springer 1992.
- [2] G.Azumaja, A duality theory for injective modules, Amer.J.Math 81 (1959), 249–278.
- [3] W.Brandal, Almost maximal integral domains and finitely generated modules, Trans. Amer. Math. Soc. 183 (1973), 203–222.
- [4] R.Colby, A generalization of Morita duality and the tilting theorem, Comm.Algebra 17(7) (1989), 1709–1722.
- [5] R.Colby, A cotilting theorem for rings, Methods in Module Theory, M.Dekker New York 1993, 33–37.

- [6] R.Colby, K.Fuller, Tilting, cotilting and serially tilted rings, Comm.Algebra 18(5) (1990), 1585–1615.
- [7] R.Colpi, *Cotilting bimodules and their dualities*, to appear in Murcia Conference Proceedings 1998, Marcel Dekker.
- [8] R.Colpi, G.D'Este, A.Tonolo, Quasi-tilting modules and counter equivalences, J.Algebra 191 (1997), 461–494.
- [9] R.Colpi, K.Fuller, Cotilting modules and bimodules, to appear in Pacific J. Math.
- [10] R.Colpi, A.Tonolo, J.Trlifaj, Partial cotilting modules and the lattices induced by them, Comm.Algebra 25 (1997), 3225–3237.
- [11] L.Fuchs, L.Salce, *Modules over valuation domains*, Lecture Notes in Pure and Applied Mathematics 97, Marcel Dekker 1985.
- [12] D.Happel, Triangulated categories in the representation theory of finite dimensional algebras, Cambridge Univ. Press, Cambridge 1988.
- [13] F.Mantese, Moduli cotilting: dualità di Morita in teoria della torsione, Tesi di Laurea, Università di Padova, 1998.
- [14] K.Morita, Duality for modules and its applications to the theory of rings with minimum condition, Tokyo Kyoiku Daigaku, Ser. A6 (1958), 83–142.
- [15] B.J.Müller, Linear compactness and Morita duality, J.Algebra 16 (1970), 60–66.
- [16] R.S.Pierce, Associative Algebras, GTM 88, Springer 1982.
- [17] J.J.Rotman, An Introduction to Homological Algebra, New York, Academic Press, 1979.
- [18] R.Wisbauer, Fundations of Module and Ring Theory, Gordon and Breach Science Publishers, 1991.
- [19] W.Xue, *Rings with Morita duality*, LNM 11523, Springer 1992.