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Abstract. An adjoint pair of contravariant functors between abelian cate-

gories can be extended to the adjoint pair of their derived functors in the

associated derived categories. We describe the reflexive complexes and inter-
pret the achieved results in terms of objects of the initial abelian categories.

In particular we prove that, for functors of any finite cohomological dimension,
the objects of the initial abelian categories which are reflexive as stalk com-

plexes form the largest class where a Cotilting Theorem in the sense of Colby

and Fuller [CbF1, Ch. 5] works.

Introduction

Adjoint pairs of functors in derived categories are deeply studied by several
authors (see for instance [CPS, Hap, Har, R]). A large class of these pairs is
obtained extending ([K, Lemma 13.6]) adjoint functors between abelian categories
to their derived functors. In this paper we focus on the adjunctions and on the
corresponding dualities obtained by extending contravariant adjoint functors. Wide
classes of examples arise in module and sheaf categories.

Both the adjunctions, the one in the abelian categories and the one in the asso-
ciated derived categories, determine a different notion of reflexivity: to distinguish
them, we will call D-reflexive the complexes which are reflexive with respect to the
adjunction in the derived categories. An object of the starting abelian categories
is called D-reflexive if it is D-reflexive as stalk complex, simply reflexive if it is
reflexive with respect to the adjunction in the abelian categories.

Our main aim is to describe the D-reflexive complexes and to study the D-
reflexive objects of the initial abelian categories. Reading on the underlying abelian
categories all the effects of the duality in the corresponding derived categories, we
prove that for an adjoint pair of functors of cohomological dimension 1, the D-
reflexive objects are exactly those for which a Cotilting Theorem in the sense of
Colby and Fuller ([CbF1, Ch. 5]) holds (Theorem 4.3). Our approach allows on
one side to read this celebrated result in its traditional framework as a natural
consequence of the duality between derived categories induced by contravariant
Hom-functors associated to a cotilting bimodule. On the other side it permits to
generalize the Cotilting Theorem to arbitrary abelian categories and adjoint pairs
of contravariant functors of any finite cohomological dimension. Thus, on the one
hand we get a general and unitary version of all the several cases considered in the
literature of dualities induced by cotilting bimodules of injective dimension 1 (see
[Cb, Cb1, CbF, CbF1, Cp, CpF, Ma, T]). On the other hand, under cohomological
conditions automatically satisfied in the traditional settings, we succeed in finding
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positive results which generalize to arbitrary abelian categories and adjoint functors
of cohomological dimension n the results obtained by Miyashita [M] for a cotilting
bimodule of injective dimension n in the noetherian case.

In the first section we recall some preliminaries on derived functors and their
properties; particular attention is dedicated to the notion of way-out functor.

In the second section we describe the adjoint pairs we are interested in, and we
compare the related notions of reflexivity in the abelian and in the associated de-
rived categories. In particular we give examples of D-reflexive objects in the starting
abelian categories which are not reflexive and, conversely, of reflexive objects which
are not D-reflexive.

In the third section we investigate the relation between the D-reflexivity of a
complex and of its terms or its cohomologies. We show that if the cohomologies or
the terms are D-reflexive, then so is the complex itself. The converse in general is
not true (see Examples 3.2, 3.3). Assuming that the functors have cohomological
dimension at most one, we prove that a complex is D-reflexive if and only if its
cohomologies are D-reflexive (see Corollary 3.6).

In the fourth and fifth sections we study in details the D-reflexive objects in
the abelian categories we start from. The fourth is dedicated to the favorable
case of functors of cohomological dimension ≤ 1. We prove that a Cotilting Theo-
rem [CbF1] for the classes of D-reflexive objects (Theorem 4.3) holds. Finally the
fifth section is devoted to the case of functors with arbitrary finite cohomological
dimension, assuming the abelian categories have enough projectives. The latter
hypothesis permits us to use the standard tool of spectral sequences. For a spectral
sequence analysis in the covariant case see [BB1]. This approach allows us to reveal
the cohomological conditions (Condition I, II page 22) necessary to generalize the
results obtained in cohomological dimension ≤ 1 (Theorems 5.2, 5.4). In particular
we completely recover the results obtained for module categories by Miyashita [M]
in the noetherian case and in [AT] for arbitrary associative rings.

Several examples occur along the whole paper describing pathologies and positive
results.

For the unexplained notations in module theory we refer to [AF], for those in
sheaf theory to [Har2]. We follow [Har, W] for definitions and results regarding
derived categories, derived functors and spectral sequences.

1. Preliminaries

Given an abelian category A, we denote by K(A) (resp. K+(A), K−(A), Kb(A))
the homotopy category of unbounded (resp. bounded below, bounded above,
bounded) complexes of objects of A and by D(A) (resp. D+(A), D−(A), Db(A))
the associated derived category. In the sequel with D∗(A) or D†(A) we will denote
any of these derived categories. Moreover, with D∗≤n(A), n ∈ Z, we mean all the
complexes in D∗(A) whose cohomologies are zero in any degree greater than n.
Similarly, we define D∗≥n(A).

All the considered functors between derived categories are assumed to be δ-
functors, i.e. they commute with the shift functor and send triangles to triangles.
Given an object M ∈ A, we continue to denote by M also the stalk complex in
D(A) associated to M , i.e. the complex with M concentrated in degree zero.
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Let X : · · · → X−1
g−1→ X0

g0→ X1 → . . . be a complex in D(A). For any integer
n ∈ Z we define the following truncations:

τ>nX : · · · → 0→ Xn+1 → Xn+2 → . . . τ≤nX : · · · → Xn−1 → Xn → 0→ . . .

σ>nX : · · · → 0→ Xn/ ker gn → Xn+1 → . . . σ≤nX : · · · → Xn−1 → ker gn → 0→ . . .

In particular, for any n ∈ Z there are the following triangles:

τ>nX → X → τ≤nX → τ>nX[1] σ≤nX → X
πX→ σ>nX → σ≤nX[1].

In this section we study the behavior of the composition of contravariant way-out
functors and the relations among the way-out conditions, the finite cohomological
dimension and the closure properties of the acyclic objects associated to a con-
travariant functor. Let us first recall the definition of way-out functors, as in [Har,
Chp. I §7] and [L, Chp. I §11].

Definition 1.1. Let A and B be abelian categories and let F : D∗(A)→ D(B) be
a covariant (resp. contravariant) functor.

(1) The functor F is way-out left if there exists n ∈ Z such that

F (D∗≤0(A)) ⊆ D≤n(B) (resp. F (D∗≥0(A)) ⊆ D≤n(B));

in such a case we define the upper dimension of F setting

dim+ F = inf{n : F (D∗≤0(A)) ⊆ D≤n(B)} (resp. = inf{n : F (D∗≥0(A)) ⊆ D≤n(B)}).
(2) The functor F is way-out right if there exists n ∈ Z such that

F (D∗≥0(A)) ⊆ D≥n(B) (resp. F (D∗≤0(A)) ⊆ D≥n(B));

in such a case we define the lower dimension of F setting

dim− F = sup{n : F (D∗≥0(A)) ⊆ D≥n(B)} (resp. = sup{n : F (D∗≤0(A)) ⊆ D≥n(B)}).

Remark 1.2. Let F : D∗(A)→ D(B) be a covariant (resp. contravariant) functor.
If F is way-out left and dim+ F = m, then for any k ∈ Z

F (D∗≤k(A)) ⊆ D≤k+m(B) (resp. F (D∗≥k(A)) ⊆ D≤m−k(B))

Analogously, if F is way-out right and dim− F = m, then for any k ∈ Z
F (D∗≥k(A)) ⊆ D≥k+m(B) (resp. F (D∗≤k(A)) ⊆ D≥m−k(B)).

Clearly, if F is both way-out left and right, then it is bounded, i.e. it sends bounded
complexes in D∗(A) to bounded complexes in D(B).

The following easy proposition will be useful in the sequel.

Proposition 1.3. Let G1 : D∗(A) → D†(B) and G2 : D†(B) → D(C) be two
contravariant functors and F = G2G1 their composition.

(1) If G1 is way-out left with dim+G1 = m1 and G2 is way-out right with
dim−G2 = m2, then F is way-out right with dim− F = m2 −m1;

(2) if G1 is way-out right with dim−G1 = m1 and G2 is way-out left with
dim+G2 = m2, then F is way-out left with dim+ F = m2 −m1.

From now on we denote by Φ : A → B and Ψ : B → A two additive non zero con-
travariant functors between the abelian categories A and B. Following [Har, Theo-
rem 5.1], to guarantee the existence of the derived functors R∗Φ : D∗(A)→ D(B)
and R†Ψ : D†(B) → D(A), we assume the existence of triangulated subcategories
P of K∗(A) and Q of K†(B) such that:
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• every object ofK∗(A) and every object ofK†(B) admits a quasi-isomorphism
from objects of P and Q, respectively;
• if P and Q are exact complexes in P and Q, then also Φ(P ) and Ψ(Q) are

exact.
Given complexes X ∈ D∗(A) and Y ∈ D†(B), we have R∗ ΦX = ΦP and

R†ΨY = ΨQ, where P is a complex in P quasi-isomorphic to X, and Q is a
complex in Q quasi-isomorphic to Y .

If Φ(K∗(A)) ⊆ K†(B) and Φ(P) ⊆ Q, then there exists also R∗(ΨΦ) and it is
isomorphic to R†Ψ R∗Φ [Har, Proposition 5.4].

Definition 1.4. (1) An object A in A is called Φ-acyclic if Hi(R∗ ΦA) = 0
for any i 6= 0.

(2) The category A has enough Φ-acyclic objects if any object in A is image of
a Φ-acyclic object.

(3) The functor Φ has cohomological dimension ≤ n if, for each A in A, we
have Hi(R∗ΦA) = 0 for |i| > n

Remark 1.5. If A has enough Φ-acyclic objects, then the right derived functor
R−Φ : D−(A) → D(B) is defined and it may be computed using Φ-acyclic reso-
lutions: given a complex X ∈ D≤n(A), we have that R−ΦX = ΦL, where L is a
complex in D≤n(A) with Φ-acyclic terms quasi-isomorphic to X. In particular, if
the category A has enough projectives, R− Φ : D−(A) → D(B) is defined, and for
each object A in A, Hn(R−ΦA) coincides with the usual right nth-derived functor
of Φ evaluated in A.

If Φ has finite cohomological dimension n and A has enough Φ-acyclics, then
any complex X ∈ D(A) is quasi-isomorphic to a complex L with Φ-acyclic terms;
thus the total derived functor R Φ exists and R ΦX = ΦL (see [Har, Corollary 5.3,
γ.]).

Notice that if R∗ Φ : D∗(A) → D(B) is way-out in both directions, then it has
finite cohomological dimension. Under the hypothesis that A has enough Φ-acyclic
objects, also the converse holds:

Proposition 1.6. Let A and B be abelian categories, and Φ : A → B a contravari-
ant functor. Assume A has enough Φ-acyclic objects; then

(1) R−Φ is way-out right of lower dimension 0;
(2) if Φ has finite cohomological dimension n, then R Φ is way-out left of upper

dimension n.

Proof. 1. It is clear, since R−Φ may be computed on Φ-acyclic resolutions.
2. Let X := 0 → X0 → X1 → ... be an object in D≥0(A). Since Φ has finite

cohomological dimension, there exists a complex of Φ-acyclic objects L := ... →
L−1 → L0 → L1 → ... quasi isomorphic to X. Denote by C the cokernel of
L−1 → L0; then C is quasi isomorphic to τ≤0L. Since Hi(R ΦC) = 0 for i > n,
then for each i > n we have

0 = Hi(R Φ(τ≤0L)) = Hi(Φ(τ≤0L)) = Hi(ΦL) = Hi(R ΦX).

�

Proposition 1.7. Assume R∗ Φ is way-out right of lower dimension ≥ 0 and way-
out left of upper dimension ≤ n. If 0→ X0 → X1 → · · · → Xn is an exact complex
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where the Xi, i > 0, are Φ-acyclic objects of A, then also X0 is Φ-acyclic. In
particular, if n = 1 the class of Φ-acyclic objects is closed under submodules.

Proof. Let X := 0 → X0 → X1 → · · · → Xn → 0; we have to prove that
Hi(R∗ Φ(X0)) = 0 for each i 6= 0. Since the stalk complex X0 belongs to D∗≤0(A),
and R∗Φ has lower dimension ≥ 0, R∗Φ(X0) belongs to D≥0(B). Therefore it is
sufficient to prove that Hi(R∗ Φ(X0)) = 0 for each i > 0. Consider the triangle

τ>0X → X → τ≤0X → τ>0X[1]

and observe that τ≤0X is the stalk complex X0; then for each i > 0 we have the
exact sequence

Hi−1(R∗ Φ(τ>0X))→ Hi(R∗Φ(X0))→ Hi(R∗Φ(X)).

Now, since the terms in τ>0X are Φ-acyclics, R∗ Φ(τ>0X) has non-zero terms only
in negative degrees, and therefore it has the (i − 1)th cohomology equal to zero.
Since X belongs to D∗≥n(A), and dim+(R∗Φ) ≤ n, we get that R∗Φ(X) belongs
to D∗≤0(B). So also the ith cohomology of R∗Φ(X) vanishes, and we conclude. �

Definition 1.8. Assume that Φ(K∗(A)) ⊆ K†(B). We say that an object L ∈ A
is Ψ-Φ-acyclic if L is Φ-acyclic and Φ(L) is Ψ-acyclic. We say that the abelian
category A has enough Ψ-Φ-acyclic objects if any A ∈ A is image of a Ψ-Φ-acyclic
object.

Proposition 1.9. Assume that Φ(K∗(A)) ⊆ K†(B).
(1) If A has enough Ψ-Φ-acyclic objects, then R†Ψ R∗ Φ is way-out left of

upper dimension ≤ 0.
(2) If Φ has cohomological dimension n, and A and B have enough Φ-acyclics

and Ψ-acyclics, respectively, then R†Ψ R∗ Φ is way-out right of lower di-
mension ≥ −n.

Proof. 1. It follows since any complex in D∗≤0(A) is quasi-isomorphic to a complex
in D∗≤0(A) with Ψ-Φ-acyclic terms.

2. It follows by Propositions 1.3, 1.6. �

2. Adjunction and Reflexive objects

From now on, we are interested in the situation when (Φ,Ψ) is a right adjoint
pair; in particular Φ and Ψ are left exact. The following result has a key role in
our analysis.

Lemma 2.1 ([K, Lemma 13.6]). Let (Φ,Ψ) be a right adjoint pair. Assume that
R∗ Φ(X) and R†Ψ(Y ) belong to D†(B) and D∗(A), for any X in D∗(A) and Y in
D†(B), respectively. Then (R∗ Φ,R†Ψ) is a right adjoint pair.

Thus, under suitable assumptions on the existence of the derived functors, any
adjunction in abelian categories can be extended to the associated derived cate-
gories. In this section we compare these two adjunctions. In particular we describe
the relationship between the units of the two adjunction, and we show the inde-
pendence of the related notions of reflexivity.

Example 2.2. 1. Let (X,OX) be a locally noetherian scheme such that every
coherent sheaf on X is a quotient of a locally free sheaf. Consider the abelian
category ModX of sheaves of OX -modules, and the thick subcategory CohX of
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coherent sheaves. Let G be a coherent sheaf of finite injective dimension; consider
the functor Hom(−,G) : ModX →ModX. The pair (Hom(−,G),Hom(−,G)) is a
right adjunction. By [Har2, Chp. III] there exists the derived functor

RbHom(−,G) : Db(CohX)→ Db(CohX).

Therefore, by Lemma 2.1, (RbHom(−,G),RbHom(−,G)) is a right adjoint pair.
Moreover, by [Har, Cor. I.5.3], there exists also the total derived functor

RHom(−,G) : D(CohX)→ D(CohX).

and so (RHom(−,G),RHom(−,G)) is a right adjoint pair.
2. Let R be a ring, RU a left R-module and S the endomorphism ring of

RU . The pair (HomR(−, U),HomS(−, U)) is a right adjunction. By [S, Theo-
rem C], the derived functors R HomR(−, U) and R HomS(−, U) always exist and
so (R HomR(−, U),R HomS(−, U)) is a right adjoint pair. If both RU and US have
finite injective dimension, then R HomR(−, U) and R HomS(−, U) are bounded,
since they are way-out in both directions. It follows that also (Rb HomR(−, U),Rb HomS(−, U))
is a right adjoint pair.

In the sequel, we assume that (Φ,Ψ) is an adjoint pair inducing the adjoint pair
(R∗Φ,R†Ψ). Denoted by η and ξ the units of the right adjoint pair (Φ,Ψ), we
indicate with η̂ and ξ̂ the units of the right adjoint pair (R∗Φ,R†Ψ), i.e. the
natural maps

η̂ : idD∗(A) → R†Ψ R∗Φ, ξ̂ : idD†(B) → R∗Φ R†Ψ

such that R∗Φ(η̂X) ◦ ξ̂R∗ ΦX = 1R∗ ΦX and R†Ψ(ξ̂Y ) ◦ η̂R† ΨY = 1R† ΨY for each
X in D∗(A) and each Y in D†(B).

Suppose that A has enough Ψ-Φ-acyclic objects. Let X ∈ D−(A) and L be a
complex in K−(A) of Ψ-Φ-acyclics quasi-isomorphic to X. Then R†Ψ R∗ ΦX =
ΨΦL, η̂X is isomorphic to η̂L in D−(A), and the latter coincides with the term to
term extension of the unity η to K−(A).

Proposition 2.3. Assume that A has enough Ψ-Φ-acyclic objects. Let A be an
object of A and ι be the canonical map of complexes σ≤0 R∗ΦA→ R∗ ΦA. If Φ(A)
admits a Ψ-acyclic resolution, we have

ηA = H0(R†Ψ(ι)) ◦H0(η̂A) = H0(R†Ψ(ι) ◦ η̂A).

Proof. Consider a Ψ-Φ-acyclic resolution L : ... → L−1
d−1→ L0 → 0 of A with

augmentation f : L0 → A; we have the commutative diagram:

L0
f

//

η̂L0=ηL0
��

A

η̂A

��

R†Ψ R∗ ΦL0 = ΨΦ(L0)
R† Ψ R∗ Φ(f)

// R†Ψ R∗ ΦA
R† Ψ(ι)

// R†Ψ(σ≤0 R∗ΦA) = R†Ψ(ΦA)
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Applying the cohomology functor H0, the solid part of the following diagram com-
mutes:

L0
f

//

η̂L0=ηL0

��

A ηA

""

^ [ W T
P

K
F

H0(η̂A)

��

ΨΦ(L0)

ΨΦ(f)

44U W Y Z \ ] _ a b d e g i

H0(R† Ψ R∗ Φ(f))
// H0(R†Ψ R∗ ΦA)

H0(R† Ψ(ι))
// Ψ(ΦA)

Let us see that H0(R†Ψ(ι)) ◦H0(R†Ψ R∗Φ(f)) = ΨΦ(f); then, for the naturality
of η we will have

ηA◦f = ΨΦ(f)◦ηL0 = (H0(R†Ψ(ι))◦H0(R†Ψ R∗Φ(f))◦η̂L0 = (H0(R†Ψ(ι))◦H0(η̂A))◦f ;

since f is an epimorphism, we will conclude.
Let Q be a Ψ-acyclic resolution of Φ(A). Consider the diagram

0 // Φ(L0) // 0 R∗ ΦL0

0 //

OO

Φ(L0) // Φ(L−1)

OO

// ... R∗ ΦA

R∗ Φ(f)

OO

0 //

OO

Φ(A)

Φ(f)

OO

// 0

OO

// ... ΦA

OO

Q−1
//

OO

Q0

OO

// 0

OO

Q

qiso

OO

Applying Ψ we get the commutative diagram

0

��

ΨΦ(L0)oo 0

��

oo R†Ψ R∗ Φ(L0)

R† Ψ R∗ Φ(f)

��

0

��

ΨΦ(L0)

��

ΨΦ(f)
yyssssssssss

oo ΨΦ(L−1)

��

ΨΦ(d−1)
oo ...oo R†Ψ R∗ Φ(A)

R† Ψ(ι)

��

ΨΦ(A) � s

%%KKKKKKKKKK

Ψ(Q−1) Ψ(Q0)oo 0oo R†Ψ(Φ(A))
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Therefore, having observed that ΨΦ(f) ◦ ΨΦ(d−1) = 0, the induced maps on the
0th-cohomologies are obtained as follows:

H0(R†Ψ R∗ ΦL0)

H0(R† Ψ R∗ Φ(f))

��
�
�
�

ΨΦ(L0)

Coker(ΨΦ(d−1) = H0(R†Ψ R∗ ΦA)

H0(R† Ψ(ι))

��
�
�
�

ΨΦ(L0)oooo

ΨΦ(f)

��

H0(R†Ψ(ΦA)) ΨΦ(A)

i.e. ΨΦ(f) = H0(R†Ψ(ι)) ◦H0(R†Ψ R∗ Φ(f)). �

Both the adjoint pairs (Φ,Ψ) and (R∗Φ,R†Ψ) define on the corresponding
categories the classes of reflexive objects, i.e. the classes where the unity maps
induce isomorphisms. To distinguish, we call simply reflexive the objects A in
A or B in B such that the natural maps ηA or ξB are isomorphisms; instead we
say D-reflexive the complexes which are reflexive with respect to the adjoint pair
(R∗ Φ,R†Ψ). Observe that any object A in A is also, in a natural way, an object
in D∗(A). Both the maps ηA and η̂A can be considered; therefore A can be reflexive
or D-reflexive. The two notions are independent:

Example 2.4. In this and all future examples k denotes an algebraically closed
field. For any finite-dimensional k-algebra given by a quiver with relations, if i is
a vertex, we denote by P (i) the indecomposable projective associated to i, by E(i)
the indecomposable injective associated to i, and by S(i) the simple top of P (i) or,
equivalently, the simple socle of E(i).

Let Λ denote the k-algebra given by the quiver ·1 a→ ·2 b→ ·3 c→ ·4 with relations
ba = 0 = cb.

(1) Let ΛW = S(1)⊕ S(3); then S = End ΛW is k ⊕ k. Since ΛW and WS have
finite injective dimension, we have the two right adjoint pairs

(HomΛ(−,W ),HomS(−,W )) and (Rb HomΛ(−,W ),Rb HomS(−,W )).

An easy computation permits to verify that S(1) is reflexive. Regarding S(1) as a
stalk complex, it is quasi isomorphic to its projective resolution P := 0→ P (3)→
P (2)→ P (1)→ 0. Since P has HomS(−,W )-HomΛ(−,W )-acyclic terms,

Rb HomS(Rb HomΛ(S(1),W ),W ) = HomS(HomΛ(P,W ),W )

is the complex 0 → S(3) → 0 → S(1) → 0, which is not quasi-isomorphic to P .
Then S(1) is not D-reflexive.

(2) Let ΛΛΛ be the regular bimodule. Since the left and the right regular modules
have finite injective dimension, we have the two right adjoint pairs

(HomΛ(−,Λ),HomΛ(−,Λ)) and (Rb HomΛ(−,Λ),Rb HomΛ(−,Λ)).

It is straightforward to verify that the simple module S(2) ∈ Λ-mod is not reflex-
ive. Since all indecomposable projective modules are reflexive and HomΛ(−,Λ)-
HomΛ(−,Λ)-acyclic, the simple module S(2) is D-reflexive.

Proposition 2.5. If A ∈ A is reflexive and Ψ-Φ-acyclic, then A is D-reflexive.
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Proof. We have to prove that η̂A is a quasi-isomorphism, i.e. Hi(η̂A) are isomor-
phisms for each i. Since A is Ψ-Φ-acyclic, then R†Ψ R∗ΦA is the stalk complex
ΨΦA. Clearly Hi(η̂A) = 0 for each i 6= 0 are isomorphisms; since A is reflexive,
also H0(η̂A) = ηA is an isomorphism. �

The category of D-reflexive complexes is a triangulated subcategory of D∗(A).
In particular the subcategory of stalk D-reflexive complexes is thick, i.e, if two
terms of a short exact sequence in A are D-reflexive, then also the third is. This
follows easily since any short exact sequence in A gives rise to a triangle in D∗(A).

Note that, from the adjunction formulas, it follows that if a complex X is D-
reflexive, then also R∗ΦX is D-reflexive.

Definition 2.6. [AC, Sect. 2] Let R be a ring. A left module RU is partial cotilting
if it satisfies the following conditions:

(1) injdimRU <∞;
(2) ExtiR(Uα, U) = 0, for each i > 0 and any cardinal α.

The module RU is cotilting if moreover the following condition is satisfied
(3) there exists n ∈ N and an exact sequence 0 → Un → · · · → U1 → U0 →

Q → 0 where Q is an injective cogenerator of R-Mod and Ui are direct
summands of products of copies of U .

A bimodule RUS is (partial) cotilting if both RU and US are (partial) cotilting.

Partial cotilting modules give rise to an interesting class of examples of ad-
joint pairs of contravariant functors. If RUS is a partial cotilting bimodule, the
functors in the adjoint pair (HomR(−, U),HomS(−, U)) have finite cohomological
dimension; thus the derived functors Rb HomR(−, U) and Rb HomS(−, U) form a
right adjoint pair in Db(R-Mod) and Db(Mod-S). If P is a projective module in
R-Mod, HomR(P,U) is a direct summand of UαS for a suitable cardinal α, and
so, by condition (2) in Definition 2.6, HomR(P,U) is HomS(−, U)-acyclic. Thus
R-Mod, and similarly Mod-S, have enough HomS(−, U)-HomR(−, U)-acyclic ob-
jects. Conversely, it is interesting to observe that, given a bimodule RUS , to assume
both the finite cohomological dimension of HomR(−, U) and HomS(−, U)), and the
HomS(−, U)-HomR(−, U)-acyclicity of the projectives, implies that RUS is a partial
cotilting bimodule.

3. Reflexive complexes

Let us now investigate the relation between the D-reflexivity of a complex in
D∗(A) and the D-reflexivity of its terms or its cohomologies. This analysis will
have an essential role in order to obtain our main results in the fourth and fifth
sections. We always assume that (Φ,Ψ) is an adjoint pair inducing the adjoint pair
(R∗ Φ,R†Ψ).

Theorem 3.1. Let X be an object in D∗(A).
(1) If X ∈ Db(A) and any term of X is D-reflexive, then X is D-reflexive;
(2) if X ∈ Db(A) and Hi(X) is D-reflexive for each i ∈ Z, then X is D-

reflexive.
Assume R†Ψ R∗ Φ is way-out left (resp. right).

(3) If X ∈ D−(A) (resp. D+(A)) and any term of X is D-reflexive, then X is
D-reflexive;
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(4) if X ∈ D−(A) (resp. D+(A)) and Hi(X) is D-reflexive for any i, then X
is D-reflexive.

Assume R†Ψ R∗ Φ is way-out on both directions.
(5) If any term of X is D-reflexive, then X is D-reflexive;
(6) if Hi(X) is D-reflexive for any i, then X is D-reflexive.

Proof. 1. We can assume X := 0 → X−n → X−n+1 → ... → X0 → 0. The thesis
follows easily, by induction on the length n of X, considering the triangles

τ>−1(X)→ X → τ≤−1(X)→ τ>−1(X)[1].

2, 4, 6. The results follows applying [Har, Chp. I, Prop. 7.1] to the morphism
η̂ : 1D∗(A) → R†Ψ R∗ Φ and considering the thick subcategory ofD-reflexive objects
of A.

3. For short we denote by Γ the composition R†Ψ R∗ Φ. We prove the result
for Γ way-out left; the right case is analogous. Following the proof of [Har, I.7.1],
for each j ∈ Z, it is possible to find a suitable n ∈ Z such that

Hj(τ>nX) ∼= Hj(X) and Hj(Γ τ>nX) ∼= Hj(ΓX).

Then the conclusion follows since Hj(Γ τ>nX) ∼= Hj(τ>nX) by part 1.
5. Let X ∈ D(A); consider the triangle

τ>0X → X → τ≤0X → τ>0X[1];

From 3 we know that τ≤0X is D-reflexive since R†Ψ R∗Φ is way-out left and that
τ>0X is D-reflexive since R†Ψ R∗ Φ is way-out right. Thus we conclude that X is
D-reflexive. �

The converse of the previous theorem is not in general true: in the following
examples we show that there exist D-reflexive complexes with not D-reflexive terms
or not D-reflexive cohomologies.

Example 3.2. Let Λ denote the k-algebra given by the quiver

·3

��
>>>>>>>

·1

??�������

��
>>>>>>> ·4 // ·5

oo

·2

??�������

with relations such that the left projective modules are
1

2 3
4

, 2
4 ,

3
4
5

, 4
5 and 5

3 .

Consider the module ΛU = 5 ⊕ 3
4
5
⊕ 1

2 3
4

and let S = EndΛ(U). The alge-
bra S is given by the quiver ·6 → ·7 → ·8 with right projectives 8

7 , 7
6 and

6 , and US = 8
7 ⊕ 7

6 ⊕ 7
6 ⊕ 6 ⊕ 6 . Since ΛUS is a partial cotilting bimod-

ule, (Rb HomΛ(−, U),Rb HomS(−, U)) is a right adjunction and the projective Λ-
modules are HomS(−, U)-HomΛ(−, U)-acyclic objects. Consider the complex with
projective terms

P : 0 // 4
5

//
3
4
5

// 5
3

//
3
4
5

//
1

2 3
4

// 0
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and the obvious non-zero differentials. It is easy to check that the morphism η̂P ,
given by the diagram

0 // 4
5

//

ηP (4)

��

3
4
5

//

ηP (3)

��

5
3

//

ηP (5)

��

3
4
5

//

ηP (3)

��

1
2 3

4
//

ηP (1)

��

0

0 //
3
4
5

∼= //
3
4
5

// 5 //
3
4
5

//
1

2 3
4

// 0

is a quasi-isomorphism. Nevertheless the terms P (5) and P (4) are not D-reflexive.

Example 3.3. Let Λ be the k-algebra given by the quiver

·1 // ·2 //
zz

·3 // ·4 // ·5
xx

with relations such that the left projective modules are
1
2
1

,
2

1 3
4

,
3
4
5

, 4
5 and 5

3 . Let

us consider the module ΛU = 2
1 ⊕

1
2
1
⊕ 5

3 and let S = EndΛ(U). Then S is given by
the quiver

·6 ·7 // ·8
zz

with relations such that the right projectives are 8
7 ,

7
8
7

, 6 , and US = 8
7 ⊕

7
8
7
⊕ 6 ⊕

6 . Since ΛUS is a partial cotilting bimodule, (Rb HomΛ(−, U),Rb HomS(−, U))
is a right adjunction and the projective Λ-modules are HomS(−, U)-HomΛ(−, U)-
acyclic objects. Let us consider the complex X ∈ Db(A) with projective terms

0→ 1
2
1

f→ 1
2
1

f→ 1
2
1
→ 0

where Im f = socP (1) and Ker f = radP (1). This complex is D-reflexive: indeed
Rb HomS(Rb HomΛ(X,U), U) = HomS(HomΛ(X,U), U) and

1
2
1

= HomS(HomΛ(
1
2
1
, U), U),

so the evaluation map η̂X is trivially a quasi-isomorphism. Nevertheless the coho-
mology module Ker f/ Im f = S(2) is not D-reflexive. In fact, let us consider a
projective resolution of S(2)

P : 0→ 4
5 →

3
4
5
→ 5

3 ⊕ 4
5 →

3
4
5
⊕ 3

4
5
→ 2

1 3
4
⊕ 5

3 →
1
2
1
⊕ 3

4
5
→ 2

1 3
4
→ 0.

An easy computation shows that Rb HomS(Rb HomΛ(S(2), U), U) = HomS(HomΛ(P,U), U)
is the complex

0→ 0→ 5
3

∼=→ 5
3 → 5

3 ⊕ 5
3 → 2

1 ⊕ 5
3 →

1
2
1
⊕ 5

3 → 2
1 → 0

which has non zero cohomologies in degrees 0 and −3. So η̂S(2) is not a quasi-
isomorphism and the module S(2) is not D-reflexive.

Given a finitely generated cotilting module of injective dimension ≤ 1 over an
Artin algebra, in [CbCpF] is proved, using our terminology (see the forthcom-
ing Theorem 4.3) that the class of D-reflexive modules coincides with the class of
finitely generated ones. This can be generalized to cotilting modules of arbitrary
finite injective dimension; in particular we obtain, in this setting, a converse of
Theorem 3.1.

Theorem 3.4. Let Λ be an Artin algebra, ΛU a finitely generated cotilting module
and S = End ΛU . Consider the adjoint pair (Rb HomΛ(−, U),Rb HomS(−, U)).
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(1) A complex X ∈ Db(Λ-Mod) is D-reflexive if and only if the cohomologies
Hi(X), i ∈ Z, are finitely generated.

(2) The subcategory of bounded D-reflexive complexes is equivalent to Db(Λ-mod).
In particular a complex X ∈ Db(Λ-Mod) is D-reflexive if and only if the cohomolo-
gies Hi(X), i ∈ Z, are D-reflexive.

Proof. We recall that the assumptions imply that ΛUS is a faithfully balanced
cotilting bimodule ([M, Theorem 1.5]).

1. Let ∗ = Hom(−,W ) be the usual duality between mod-Λ and Λ-mod, where
W is the minimal injective cogenerator. Then ΛU

∗ = VΛ is a finitely generated
tilting module (see [M]). Recall that a Λ-module is reflexive with respect to the
adjoint pair (∗, ∗) if and only if it is finitely generated, and that the adjoint pair
(−⊗L

SV,R HomΛ(V,−)) defines an equivalence betweenDb(Mod-Λ) andDb(Mod-S)
(see [CPS, Hap]). Let now X ∈ Db(Λ-Mod) be a D-reflexive complex and let
P ∈ K−(Λ-Mod) be a complex of projective modules quasi-isomorphic to X. Then
P is quasi-isomorphic to HomS(HomΛ(P,U), U). Using the standard adjunction
formulas, since U = V ∗, we get that

HomS(HomΛ(P,U), U) = HomS(HomΛ(P, V ∗), U) ∼= HomS(HomΛ(V, P ∗), U) =

= HomS(HomΛ(V, P ∗), V ∗) ∼= HomS(HomΛ(V, P ∗)⊗S V,W ) =
= HomΛ(HomΛ(V, P ∗)⊗S V,W ).

Moreover HomΛ(V, P ∗) = R HomΛ(V, P ∗) and, since HomΛ(V, I) is (− ⊗S V )-
acyclic for any injective Λ-module I [M, Lemma 1.7], we obtain that

HomΛ(V, P ∗)⊗S V = R HomΛ(V, P ∗)⊗L
S V
∼= P ∗.

Hence P is quasi-isomorphic to P ∗∗. For ∗ is an exact functor, we conclude that
Hi(P ) is isomorphic to Hi(P )∗∗ for any i. Thus all the cohomologies of X are
finitely generated. Conversely, if all the cohomologies of X are finitely generated,
they are D-reflexive: indeed all finitely generated projective Λ-modules are reflexive
with respect to the adjoint pair (HomR(−, U),HomS(−, U)). Then we conclude by
Proposition 2.5 and Theorem 3.1.

2. It is well known that the subcategory of complexes in Db(Λ-Mod) with finitely
generated cohomologies is equivalent to Db(Λ-mod) (see [Har, Proposition I.4.8]).

�

Limiting strongly the way-out dimensions, it is possible to prove that a complex
is D-reflexive if and only if its cohomologies are D-reflexive in a more general setting.

Proposition 3.5. Let X be an object of D∗(A). Suppose the functor R†Ψ R∗Φ
to be way-out left of upper dimension ≤ 0 and way-out right of lower dimension
≥ −1. Then X is D-reflexive if and only if its cohomologies are D-reflexive.

Proof. For short, let us denote by Γ the composition R†Ψ R∗Φ. First let us sup-
pose X ∈ D−(A) to be a D-reflexive complex. We can assume X ∈ D≤0(A) is of
the form

X : . . .→X−1→X0 → 0.
Let us first prove that H0(X) is a D-reflexive object. Consider the triangle

(∗) σ≤−1X→X→σ>−1X → σ≤−1X[1].

The complex σ>−1X is quasi isomorphic to the stalk complex H0(X), and the com-
plex σ≤−1X has zero cohomologies in degrees greater than−1. Since dim+ Γ ≤ 0, we
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have Hi(ΓX) = 0, Hi(Γσ>−1X) = 0 and Hi(Γσ≤−1X[−1]) = Hi−1(Γσ≤−1X) = 0
for i > 0. Applying to the triangle (∗) first Γ and then the cohomology functor, we
get the commutative diagram with exact rows

H−1(σ≤−1X)
∼= //

��

H−1(X) //

∼=
��

0 //

��

0 //

��

H0(X) //

∼=
��

H0(σ>−1X) //

��

0

H−1(Γσ≤−1X) // H−1(ΓX) // H−1(Γσ>−1X) // 0 // H0(ΓX) // H0(Γσ>−1X) // 0

Thus we deduce thatH−1(Γσ>−1X) = 0. Since dim− Γ ≥ −1, we haveHi(Γσ>−1X) =
0 for i ≤ −2. Hence σ>−1X ∼= H0(X) is D-reflexive. Then, from the triangle (∗)
we deduce that the complex σ≤−1X is D-reflexive. Repeating the same argument
for σ≤−1X[−1], we get that H−1(σ≤−1X) ∼= H−1(X) is D-reflexive. Continuing in
such a way, we conclude that Hi(X) is a D-reflexive object for any i ≤ 0.

Suppose now X to be a D-reflexive complex in D(A). Consider the triangle

σ≤0X→X→σ>0X → σ≤0X[1]

For the way-out dimensions of Γ, we haveHi(Γσ>0X) = 0 for i < 0 andHi(Γσ≤0X) =
0 for i > 0. So we get the commutative exact diagram

H−1(X) //

∼= ��

0 //

��

H0(σ≤0X) //

��

H0(X) //

∼= ��

0 //

��

0 //

��

H1(X) //

∼=��

H1(σ>0X) //

��

0

H−1(ΓX) // 0 // H0(Γσ≤0X) // H0(ΓX) // H0(Γσ>0X) // 0 // H1(ΓX) // H1(Γσ>0X) // 0

from which we conclude that σ≤0X and σ>0X are D-reflexive complexes. Since
the complex σ≤0X belongs to D−(A), for what we have already proved we get that
Hi(X) is D-reflexive for any i ≤ 0. Similarly, considering the truncation in degree
i > 0 and the triangle

σ≤iX→X→σ>iX → σ≤iX[1],
we conclude that Hi(X) is D-reflexive for any index i. �

Corollary 3.6. Assume Φ has cohomological dimension at most one and A has
enough Ψ-Φ-acyclic objects. If B has enough Ψ-acyclics, then a complex X ∈ D(A)
is D-reflexive if and only if its cohomologies Hi(X) are D-reflexive.

Proof. By Proposition 1.9, R†Ψ R∗Φ is way-out left of upper dimension ≤ 0 and
way-out right of lower dimension ≥ −1. So we can apply Proposition 3.5. �

Example 3.7. As in Example 2.2, let (X,OX) be a locally noetherian scheme
such that every coherent sheaf on X is a quotient of a locally free sheaf of finite
rank. Assume the structure sheaf OX has injective dimension one. Consider the
abelian category ModX of sheaves of OX -modules and the thick subcategory CohX
of coherent sheaves. Then (RHom(−,OX),RHom(−,OX)) is a right adjoint pair
in D(CohX) which satisfies the assumptions of the previous corollary. Indeed, let L
be the class of locally free sheaves of finite rank. Any object in L is Hom(−,OX)-
acyclic and any F ∈ CohX is image of a locally free sheaf of finite rank. Moreover,
for any G locally free of finite rank, Hom(G,OX) is locally a finite direct sum of
copies of OX and so it is Hom(−,OX)-acyclic. Thus L satisfies the assumption of
Definition 1.8. Finally RHom(−,OX) has cohomological dimension one.

Applying Proposition 2.5 we get that any locally free sheaf of finite rank is D-
reflexive. Thus, considering locally free resolutions, by Theorem 3.1 we obtain that
any coherent sheaf is D-reflexive and so any complex in D(CohX) is D-reflexive.
Note that Corollary 3.6 is trivially verified: indeed, if Y is a D-reflexive complex
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in D(CohX), then its cohomologies are D-reflexive objects, being coherent sheaves
(cfr. [Har, Prop. V. 2.1]).

The following technical result will be useful in the fifth section; its proof follows
the same arguments used proving Proposition 3.5.

Lemma 3.8. Let X be a D-reflexive object in D∗≤n(A), n ∈ Z. Suppose the functor
R†Ψ R∗Φ to be way-out left of upper dimension ≤ 0 and that R∗ΦHj(X) is a stalk
complex for each j ∈ Z. For each j ∈ Z, let ρ(j) be an integer such that

Hi(R∗ΦHj(X)) = 0 for each i 6= ρ(j).

Then the cohomologies of X are D-reflexive if and only if

Hi(R†ΨHρ(j)(R∗ΦHj(X))) = 0 for each i 6= ρ(j), ρ(j)− 1.

Proof. Consider the triangle

(∗) σ≤n−1X→X→σ>n−1X → σ≤n−1X[1].

The complex σ>n−1X is quasi isomorphic to the stalk complex Hn(X)[−n], and
the complex σ≤n−1X has zero cohomologies in degrees greater than n − 1. By hy-
pothesis, Hi(R∗ΦHn(X)) = 0 for each i 6= ρ(n); therefore R∗Φ(Hn(X)[−ρ(n)]) =
R∗ ΦHn(X)[ρ(n)] is quasi isomorphic to the stalk complex Hρ(n)(R∗ΦHn(X)).
Let us denote by Γ the composition R†Ψ R∗ Φ; then we have

Γ(σ>n−1X) = Γ(Hn(X)[−n]) = R†Ψ(R∗ΦHn(X)[n]) =

= R†Ψ(Hρ(n)(R∗ΦHn(X))[n− ρ(n)]) = R†ΨHρ(n)(R∗ΦHn(X))[ρ(n)− n].
Since dim+ Γ ≤ 0, we haveHi(ΓX) = 0, Hi(Γσ>n−1X) = 0 andHi(Γσ≤n−1X[−1]) =
Hi−1(Γσ≤n−1X) = 0 for i > n. Applying to the triangle (∗) first Γ and then the
cohomology functor, we get the commutative diagram with exact rows

Hn−1(σ≤n−1X)
∼= //

��

Hn−1(X) //

∼=
��

0 //

��

0 //

��

Hn(X) //

∼=
��

Hn(σ>n−1X) //

��

0

Hn−1(Γσ≤n−1X) // Hn−1(ΓX) // Hn−1(Γσ>n−1X) // 0 // Hn(ΓX) // Hn(Γσ>n−1X) // 0

Thus we deduce thatHn−1(Γσ>n−1X) = 0 and thatHn(Γσ>n−1X) ∼= Hn(σ>n−1X).
Since Hn−i(σ>n−1X) = 0 for each i > 0, the complex σ>n−1X is D-reflexive, and
hence the n-th cohomology of X is D-reflexive, if and only if for each i > 1 we have

0 = Hn−i(Γσ>n−1X) = Hn−i(Γ(Hn(X)[−n])) =

= Hn−i(R†ΨHρ(n)(R∗ΦHn(X))[ρ(n)− n]) = Hρ(n)−i R†ΨHρ(n)(R∗ ΦHn(X)).
Next, from the triangle (∗), σ>n−1X is D-reflexive if and only if σ≤n−1X is D-
reflexive. Applying the same argument to σ≤n−1X, we prove that Hn−1(X) is
D-reflexive if and only if the cohomologies Hi(R†ΨHρ(n−1)(R∗ΦHn−1(X))) = 0
for each i 6= ρ(n− 1), ρ(n− 1)− 1. Iterating this procedure, we conclude. �

Remark 3.9. Observe that if the functor Φ has cohomological dimension ≤ 1,
and there are enough Ψ-acyclic objects, under the hypotheses of Lemma 3.8 the
condition Hi(R†ΨHρ(j)(R∗ ΦHj(X))) = 0 for each i 6= ρ(j), ρ(j) − 1 is always
satisfied (compare with Corollary 3.6). The key point is that

RΨHρ(j)RΦHjX ∼= (RΨRΦHjX)[−ρ(j)].

We have HiRΨHρ(j)RΦHjX = 0 for i < 0 (because there are enough Ψ-acyclic
objects) and Hi(RΨRΦHjX)[−ρ(j)] = Hi−ρ(j)(RΨRΦHjX) = 0 for i > ρ(j)
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(because RΨRΦ is way out left of upper dimension ≤ 0). Since Φ has cohomological
dimension ≤ 1, it is |ρ(j)| ≤ 1 and so we conclude.

Let us see now the connection between the cohomological dimension of Φ and
the closure of the class of D-reflexive objects under kernels and cokernels.

Theorem 3.10. Assume that A has enough Ψ-Φ-acyclic objects and B has enough
Ψ-acyclic objects. If Φ has cohomological dimension ≤ n, then, in any exact se-
quence

M1
f1→M2

f2→ ...
fn→Mn+1

of D-reflexive objects of A, the kernels and the cokernels of the morphisms fi,
i = 1, ..., n, are D-reflexive.

In particular, if Φ has cohomological dimension at most one, the class of D-
reflexive objects in A is an exact abelian subcategory of A.

Proof. First observe that by Proposition 1.9, for any object A in A, the object
R†Ψ R∗Φ(A) belongs to D≥−n(A) ∩ D≤0(A). Denoted by Ki the kernel of the
morphism fi, i = 1, ..., n, by Kn+1 the image of fn, and by Kn+2 the cokernel of
fn, let us consider the following triangles in Db(A):

Ki →Mi → Ki+1 → Ki[1], i = 1, ..., n+ 1.

Consider the maps H0(η̂Mi) : Mi → H0(R†Ψ R∗ΦMi), and H0(η̂Kj ) : Kj →
H0(R†Ψ R∗ ΦKj), 1 ≤ i ≤ n, 1 ≤ j ≤ n + 2. Since Mi are D-reflexive objects,
clearly H0(η̂Mi) are isomorphisms. We will prove that Hj(R†Ψ R∗ΦKi) = 0 for
each j 6= 0 and each 1 ≤ i ≤ n+ 2 and that all H0(η̂Kj

) are isomorphisms.
Because of the way-out dimension of R†Ψ R∗ Φ, Hj(R†Ψ R∗ ΦKi) = 0 for each

j > 0. Applying the cohomology functor we get the long exact sequences

0→ H−n(R†Ψ R∗ ΦKi)→ 0→ H−n(R†Ψ R∗ ΦKi+1)→ H−n+1(R†Ψ R∗ ΦKi)→ 0→ ...

...→ 0→ H−2(R†Ψ R∗ ΦKi+1)→ H−1(R†Ψ R∗ΦKi)→ 0→

→ H−1(R†Ψ R∗ΦKi+1)→ H0(R†Ψ R∗ΦKi)→ H0(R†Ψ R∗ΦMi)→ H0(R†Ψ R∗ΦKi+1)→ 0,

for i = 1, ..., n + 1. In particular H−n(R†Ψ R∗ ΦKi) = 0 for i = 1, ..., n + 1;
therefore for j = 1, ..., n, since n− j + 1 < n− j + 2 ≤ n+ 1, we have

H−j(R†Ψ R∗ ΦK1) ∼= H−n(R†Ψ R∗ΦKn−j+1) = 0, and

H−j(R†Ψ R∗ΦK2) ∼= H−n(R†Ψ R∗ΦKn−j+2) = 0.

Working a little on diagrams

0 // Ki
//

H0(η̂Ki
)

��

Mi
//

∼=��

Ki+1
//

H0(η̂Ki+1 )
��

0

... // H0(R†Ψ R∗ΦKi) // H0(R†Ψ R∗ΦMi) // H0(R†Ψ R∗ ΦKi+1) // 0

with i = 1, 2, we get that H0(η̂K1) and H0(η̂K2) are isomorphisms. Therefore K1

and K2 are D-reflexive. Working with the triangles

Ki →Mi → Ki+1 → Ki[1], i = 2, ..., n+ 1

we get that also K3, ..., Kn+2 are D-reflexive. �
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4. The 1-dimensional case

In the previous section we have seen that more precise results are available when
the involved functors have cohomological dimension at most one. This section is
dedicated to study in detail this favorable case. Our aim is to characterize the
D-reflexive objects in the abelian categories A and B, producing a general form
of the Cotilting Theorem in the sense of Colby and Fuller (see [CbF1, Ch. 5]), a
contravariant version of the celebrated Brenner and Butler Theorem [BB].

We assume A has enough Ψ-Φ-acyclic objects and B has enough Φ-Ψ-acyclic
objects, respectively, and (Φ,Ψ) is an adjoint pair of contravariant functors of
cohomological dimension at most one. In particular, under these assumptions,

• there exist the total derived functors R Φ and R Ψ, and they have both
lower dimension ≥ 0 and upper dimension ≤ 1,
• the composition R Ψ R Φ results to be way-out left of upper dimension ≤ 0

and way-out right of lower dimension ≥ −1 (Proposition 1.9), and it is
isomorphic to R(ΨΦ) ([Har, Proposition 5.4]),
• the families of Φ-acyclic and Ψ-acyclic objects are closed under submodules

(Proposition 1.7),
• a complex is D-reflexive if and only if its cohomologies are D-reflexive

(Corollary 3.6),
• the classes of D-reflexive objects in A and B are exact abelian subcategories

of A and B (Theorem 3.10).
In this setting we deal with the unbounded derived categories D(A) and D(B) and
the total derived functors R Φ and R Ψ: for any complex X in D(A) (resp. D(B)),
we denote by RiΦX (resp. RiΨX), i ∈ Z, the ith-cohomology Hi(R ΦX) (resp.
Hi(R ΨX)). Observe that R0ΦA = ΦA and R0ΨB = ΨB for each A in A and B
in B.

Lemma 4.1. Any object in Im Φ is Ψ-acyclic.

Proof. Let A be an object in A. Consider an epimorphism L→ A→ 0 where L is
a Ψ-Φ-acyclic object. Applying Φ we get the monomorphism 0→ ΦA→ ΦL. Since
ΦL is Ψ-acyclic, and the family of Ψ-acyclic objects is closed under submodules,
we conclude that ΦA is Ψ-acyclic. �

Observe that by the previous lemma any Φ-acyclic object is also Ψ-Φ-acyclic.

Proposition 4.2. An object A ∈ A is D-reflexive if and only if ΨR1ΦA = 0 and
the map H0(η̂A) : A→ R0(ΨΦ)A is an isomorphism.

Proof. Since R Ψ R Φ is way-out of upper dimension≤ 0 and lower dimension≥ −1,
the object A is D-reflexive if and only if H0(η̂A) and H−1(η̂A) are isomorphisms,
the latter being equivalent to H−1(R(ΨΦ)A) = 0. Let us consider the triangle

σ≤0 R ΦA→ R ΦA→ σ>0 R ΦA→ σ≤0 R ΦA[1];

taking in account the way-out dimensions of R Φ, this triangle is isomorphic to

ΦA→ R ΦA→ R1ΦA[−1]→ ΦA[1]

Applying R Ψ we get, using Lemma 4.1, the triangle

R Ψ(R1ΦA[−1])→ R Ψ R ΦA = R(ΨΦ)A→ ΨΦA→ R ΨR1ΦA[2].
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Considering the associated cohomology sequence, we get the exact sequence

0→ H−1(R Ψ(R1ΦA[−1]))→ H−1(R(ΨΦ)A)→ 0;

Then we conclude since

H−1(R Ψ(R1ΦA[−1])) = H0(R ΨR1ΦA) = ΨR1ΦA.

�

Theorem 4.3. An object A in A is D-reflexive if and only if
(1) Φ(A) and R1Φ(A) are D-reflexive;
(2) RiΨRjΦ(A) = 0 if i 6= j;
(3) there exists a natural map γA and an exact sequence

0→ R1ΨR1Φ(A)
γA→ A

ηA→ ΨΦ(A)→ 0

In such a case, when denoting by πR ΦA the natural map R ΦA → σ>0 R ΦA, we
have γA = H0(η̂A)−1 ◦R0Ψ(πR ΦA).

Proof. Assume A is D-reflexive. Since R ΦA is D-reflexive, from Corollary 3.6 it
follows that its cohomologies Φ(A) and R1ΦA are D-reflexive. By Lemma 4.1 Φ(A)
is Ψ-acyclic; therefore

R1Ψ(R0Φ(A)) = R1Ψ(Φ(A)) = 0.

By Proposition 4.2, we know also that ΨR1Φ(A) = 0, and so R0ΨR1Φ(A) = 0. To
prove (3), let us consider the triangle

σ≤0 R ΦA ι→ R ΦA πR ΦA→ σ>0 R ΦA→ σ≤0 R ΦA[1];

taking in account the way-out dimensions of R Φ, this triangle is isomorphic to

Φ(A) ι→ R ΦA πR ΦA→ R1Φ(A)[−1]→ Φ(A)[1].

Applying R Ψ, by Lemma 4.1 we get the triangle

R Ψ(R1Φ(A))[1]
R Ψ(πR ΦA)→ R Ψ R ΦA

R Ψ(ι)→ ΨΦ(A)→ R Ψ(R1Φ(A))[2].

Considering the associated cohomology sequence, we get the natural short exact
sequence

0→ R1Ψ(R1Φ(A))
R0Ψ(πR ΦA)→ H0(R Ψ R ΦA) = H0(R(ΨΦ)(A))

R0Ψ(ι)→ Ψ(Φ(A))→ 0.

Since A is D-reflexive, H0(η̂A) : A → H0(R(ΨΦ)(A)) is an isomorphism. Denote
by γA the composition H0(η̂A)−1 ◦ R0Ψ(πR ΦA); we can apply Proposition 2.3 to
get R0Ψ(ι) ◦H0(η̂A) = ηA and hence the natural exact sequence

0→ R1ΨR1Φ(A)
γA→ A

ηA→ ΨΦ(A)→ 0.

Conversely, assume conditions (1), (2) and (3) hold. Applying (1) to Φ(A) and
R1Φ(A), we get that R1ΨR1Φ(A) and ΨΦ(A) are D-reflexive. Therefore, by (3)
also A is D-reflexive. �

The same result holds for any D-reflexive object B in B, with the map θB :
R1ΦR1Ψ(B) → B, θB = H0(ξ̂B)−1 ◦ R0Φ(πR ΨB), which plays the role of the
natural map γ.

We are now ready to give a Cotilting Theorem in the sense of [CbF1, Ch. 5],
between the classes of D-reflexive objects induced by the pair of adjoint functors
(Φ,Ψ).
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Corollary 4.4. Consider the following subclasses of the abelian subcategories DA
and DB of D-reflexive objects in A and B:

TA = Ker Φ ∩ DA, FA = KerR1Φ ∩ DA

TB = Ker Ψ ∩ DB, FB = KerR1Ψ ∩ DA
Then the following conditions are satisfied:

(1) Φ : DA → FB, R1Φ : DA → TB, Ψ : DB → FA, R1Ψ : DB → TA.
(2) for each object A in DA and B in DB we have the following exact sequences

of natural maps

0→ R1ΨR1Φ(A)
γA→ A

ηA→ ΨΦ(A)→ 0

0→ R1ΦR1Ψ(B) θB→ B
ξB→ ΦΨ(B)→ 0

(3) the restrictions

Φ : FA −−→←−− FB : Ψ and R1Φ : TA −−→←−− TB : R1Ψ

define category equivalences.

Moreover these are the largest possible classes where such a duality arises

Our starting point was that (Φ,Ψ) is an adjoint pair of functors between the
abelian categories A and B. Now we show that (R1Φ, R1Ψ) is an adjoint pair of
functors between the abelian categories of D-reflexive objects of A and B.

Theorem 4.5. In the classes DA and DB of D-reflexive objects of A and B, the
pair (R1Φ, R1Ψ) is left adjoint with the natural maps γ and θ as units.

Proof. In order to prove that (R1Φ, R1Ψ) is a left adjoint pair in the classes DA
and DB, it is enough to show that θR1ΦA ◦R1Φ(γA) = idR1ΦA for any A ∈ DA and,
analogously, γR1ΨB ◦R1Ψ(θB) = idR1ΨB for any B ∈ DB.

Note that, from the adjunction formula R Φ(η̂A) ◦ ξ̂R ΦA = idR ΦA, we get that
R1Φ(η̂A) ◦ H1(ξ̂R ΦA) = idR1ΦA. We will prove that θR1ΦA = H1(ξ̂R ΦA)−1 and
R1Φ(γA) = R1Φ(η̂A)−1.

First, let us consider the diagram

ΦA //

ξ̂ΦA

��

R ΦA
πR ΦA //

ξ̂R ΦA

��

R1ΦA[−1] //

ξ̂R1ΦA[−1]

��

ΦA[1]

ξ̂ΦA[1]

��

R Φ R Ψ(ΦA) // R Φ R Ψ(R ΦA) // R Φ R Ψ(R1ΦA[−1]) // R Φ R Ψ(ΦA[1])

Applying the cohomology functor H1 we get

0 // R1ΦA

H1(ξ̂R ΦA)

��

R1ΦA

H1(ξ̂R1ΦA[−1])

��

// 0

(∗)

0 // H1(R Φ R Ψ(R ΦA))
H1(R Φ R Ψ(πR ΦA))

// H1(R Φ R Ψ(R1ΦA[−1])) // 0
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Let us prove that H1(R Φ R Ψ(πR ΦA)) is the identity map. Consider a Φ-acyclic
resolution P of A; then we have

R ΦA :=

πR ΦA

��

0 // Φ(P0)

p

��

α // Φ(P1) // ...

σ>0 R ΦA := 0 // Φ(P0)/Kerα // Φ(P1) // ...

Since the terms in both the complexes are Φ-Ψ-acyclic, we get

R Φ R Ψ R ΦA :=

R Φ R Ψ(πR ΦA)

��

0 // ΦΨΦ(P0)

ΦΨ(p)

��

ΦΨ(α)
// ΦΨΦ(P1) // ...

R Φ R Ψ(σ>0 R ΦA) = 0 // ΦΨ(Φ(P0)/Kerα) // ΦΨΦ(P1) // ...

Since the functor ΦΨ is exact on the short exact sequence of Φ-Ψ-acyclic objects

0→ Kerα→ Φ(P0)
p→ Φ(P0)/Kerα→ 0,

the map ΨΦ(p) is surjective; it is now clear that

H1(R Φ R Ψ(πR ΦA)) = 1H1(R Φ R Ψ R ΦA).

Since πR Ψ(R1ΦA) : R Ψ(R1ΦA) → σ>0 R Ψ(R1ΦA) is the identity map, by Theo-
rem 4.3 and diagram (∗) we have

θR1ΦA = H0(ξ̂R1ΦA)−1 = H1(ξ̂R1ΦA[−1])−1 = H1(ξ̂R ΦA)−1.

Second, thinking at γA : R1ΨR1ΦA→ A as a map between stalk complexes, let
us consider the following commutative diagram (see Theorem 4.3)

R Ψ(σ>0 R ΦA)
R Ψ(πR ΦA)

//

∼=qiso

��

R Ψ R ΦA
η̂−1

A // A

R Ψ(R1ΦA[−1])

R Ψ(R1ΦA)[1]

∼=qiso

��

R1ΨR1ΦA

γA

::uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Applying R Φ we get the commutative diagram

R Φ R Ψ R ΦA
R Φ R Ψ(πR ΦA)

//

R Φ(η̂A)

��

R Φ R Ψ(σ>0 R ΦA)

R ΦA
R Φ(γA)

44hhhhhhhhhhhhhhhhhhhh

Applying the cohomology functor H1 we get

R1Φ(γA) ◦H1(R Φ(η̂A)) = H1(R Φ R Ψ(πR ΦA)) = 1H1(R Φ R Ψ R ΦA).

�
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Example 4.6. Let R and S be arbitrary associative rings. Consider a par-
tial cotilting bimodule RUS of injective dimension ≤ 1. Then the adjunction
(HomR(−, U),HomS(−, U)) satisfies the assumptions of Theorem 4.3 and Theo-
rem 4.5 . In particular the classes of D-reflexive modules are abelian subcategories
of R-Mod and Mod-S and the restriction of the functors Ext1(−, U) to these classes
forms a left adjoint pair. Moreover, following Corollary 4.4, the functors Ext1(−, U)
induce a duality between the subcategories ofD-reflexive modules in Ker Hom(−, U)
and the functors Hom(−, U) between the subcategories of D-reflexive modules in
Ker Ext1(−, U) (compare with [Cb, Cb1, CbF, Cp, CpF, Ma, T]).

Example 4.7. As in Example 2.2, let (X,OX) be a locally noetherian scheme
such that every coherent sheaf on X is a quotient of a locally free sheaf. Assume
the structure sheaf OX has injective dimension one and consider the adjunction
(RHom(−,OX),RHom(−,OX)) in D(CohX). As we have already seen, any co-
herent sheaf isD-reflexive. Since any locally free sheaf of finite rank isHom(−,OX)-
Hom(−,OX)-acyclic, the assumption of Theorem 4.3 and Theorem 4.5 are satisfied.
Denoted as Ext(−,OX) the first derived functor of Hom(−,OX) (see [Har2, Chp.
III]), we get that (Ext(−,OX), Ext(−,OX)) is a left adjoint pair in CohX, the func-
tors Ext(−,OX) induce a duality between the coherent sheaves in KerHom(−,OX)
and the functors Hom(−,OX) between the coherent sheaves in Ker Ext(−,OX).

5. The n-dimensional case

In this section we recover a Cotilting Theorem in the case of functors of cohomo-
logical dimension greater than one. We assume A and B have enough projectives,
(Φ,Ψ) is an adjoint pair of contravariant functors of cohomological dimension at
most n, Φ(P ) is Ψ-acyclic for each projective P in A, and Ψ(Q) is Φ-acyclic for each
projective Q in B. For instance this is the case when Φ and Ψ are the contravariant
Hom-functors associated to a partial cotilting bimodule.

Let P be a projective resolution of an object A in A. Denote by Q∗∗ a Cartan-
Eilenberg resolution of Φ(P ); applying Ψ to the bicomplex Q∗∗, we get the bicom-
plex

... ... ... ...

... // ΨQ2,−1

OO

// ΨQ1,−1

OO

// ΨQ0,−1

OO

// 0

... // ΨQ2,0

OO

// ΨQ1,0

OO

// ΨQ0,0

OO

// 0

0

OO

0

OO

0

OO

To this bicomplex we associate two spectral sequences IE
pq
2 and IIE

pq
2 :

IE
pq
2 = Hp

h(Hq
v (ΨQ∗∗)) =

{
0 if q 6= 0
Hp
h(ΨΦP ) = Rp(ΨΦ)(A) if q = 0

IIE
pq
2 = Hp

v (Hq
h(ΨQ∗∗)) = Hp

v (Ψ(H−qh (Q∗∗))) = Hp
v (R Ψ(R−qΦA)) = RpΨR−qΦ(A).

Observe that IE
pq
2 = 0 for either p > 0 or q 6= 0 and IIE

pq
2 = 0 for either p < 0 or

q > 0.
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Both these spectral sequences converge to the hypercohomology Rq+pΨ(R Φ(A)).
The first spectral sequence IE

pq
2 collapses to yield

RnΨ(R Φ(A)) = Rn(ΨΦ)(A),

which is zero for n > 0. The second spectral sequence IIE
pq
2 lies on the fourth

quadrant:
_____________________________

R0ΨR0Φ(A) R1ΨR0Φ(A) R2ΨR0Φ(A) ...

R0ΨR1Φ(A) R1ΨR1Φ(A) R2ΨR1Φ(A) ...

R0ΨR2Φ(A) R1ΨR2Φ(A) R2ΨR2Φ(A) ...

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

... ... ...

together with maps

dpq2 : IIE
pq
2 = RpΨR−qΦ(A)→ IIE

p+2,q−1
2 = Rp+2ΨR1−qΦ(A).

Since the cohomological dimension of Φ and Ψ is at most n, we have IIE
pq
n+1 =

IIE
pq
n+i = IIE

pq
∞ for each p, q. For each s ≤ 0, Rs(ΨΦ)(A) has a finite filtration

0 = Fn+1+sRs(ΨΦ)(A) ⊆ Fn+sRs(ΨΦ)(A) ⊆ ...

... ⊆ F 1Rs(ΨΦ)(A) ⊆ F 0Rs(ΨΦ)(A) = Rs(ΨΦ)(A)
with [F iRs(ΨΦ)(A)]/[F i+1Rs(ΨΦ)(A)] ∼= IIE

i,s−i
∞ .

If n = 1 we have IIE
pq
2 = IIE

pq
∞ for each p and q; therefore

0 = R1(ΨΦ)(A) = IIE
10
2 = R1ΨR0Φ(A).

If A is D-reflexive, R−1(ΨΦ)(A) = 0 and R0(ΨΦ)(A) ∼= A; hence using the edge
homomorphisms, it is easy to get

(1) IIE
0−1
2 = R0ΨR1Φ(A) = 0;

(2) there exists the following short exact sequence with natural maps

0→ IIE
1−1
2 = R1ΨR1Φ(A)→ A→ IIE

00
2 = R0ΨR0Φ(A)→ 0.

It is not hard now to recover Proposition 4.2 and partially Theorem 4.3, (3).
If n = 2, we have IIE

pq
2 = IIE

pq
∞ for (p, q) = (1, 0), (p, q) = (2, 0), (p, q) = (0,−2)

and (p, q) = (1,−2). Since R1(ΨΦ)(A) = R2(ΨΦ)(A) = 0, we get R1ΨR0Φ(A) =
R2ΨR0Φ(A) = 0. If A is D-reflexive, R−2(ΨΦ)(A) = R−1(ΨΦ)(A) = 0 and
R0(ΨΦ)(A) ∼= A; hence using the edge homomorphisms, one gets

(1) R0ΨR2Φ(A) = R1ΨR2Φ(A) = 0;
(2) there exist the following exact sequences with natural maps

0→ R0ΨR1Φ(A)→ R2ΨR2Φ(A)→ A→ A/IIE
2,−2
∞ → 0

0→ R1ΨR1Φ(A)→ A/IIE
2,−2
∞ → R0ΨR0Φ(A)→ R2ΨR1Φ(A)→ 0
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Example 5.1. Let Λ denote the k-algebra given by the quiver

·1

��
>>>>>>>

���������

·2

��
>>>>>>> ·3

���������

·4

with relations such that the left projective modules are 1
2 3 , 2

4 , 3
4 , and 4 . Let us

consider the regular bimodule ΛΛΛ; it is easy to verify that it is a cotilting bimodule
of projective dimension 2. Consider the D-reflexive left Λ-module A := 2 3

4 ⊕ 1 .
The second spectral sequence at the second stage IIE

pq
2 and at the third and stable

stage IIE
pq
3 = IIE

pq
∞ assumes the following aspects:

1
2 3 ⊕ 1

2 3

))SSSSSSSSSSSSSSS 0 0

1
2 3

))SSSSSSSSSSSSSSSSS 4 1
2 ⊕ 1

3

0 0 1
2 ⊕ 1

3

2 ⊕ 3 0 0

0 4 0

0 0 1

Therefore we get the following exact sequences (see the previous condition (2)
in the case n = 2):

0→ 1
2 3 → 1

2 ⊕ 1
3 → A = 1 ⊕ 2 3

4 → 2 3
4 → 0

0→ 4 → 2 3
4 → 1

2 3 ⊕ 1
2 3 → 1

2 ⊕ 1
3 → 0

Note that, passing from n = 1 to n > 1, the spectral sequence IIE
pq
2 stabilizes

at the n + 1th stage; therefore we loose in general the possibility to describe the
D-reflexivity of an object A in terms of properties of the objects RiΨRjΦ(A).

Resuming, the key properties which consent us to give a “nice” Cotilting Theo-
rem in the 1-dimensional case are:

Condition I: the spectral sequence IIE
pq
2 stabilizes at the second stage,

Condition II: the cohomologies of a D-reflexive complex are D-reflexive.
Both these properties are in general false (see Examples 5.1, 3.3). The technical
conditions assumed in the following theorems guarantee both Condition I and II.
First, generalizing Theorem 4.3 we have

Theorem 5.2. Assume Φ and Ψ have cohomological dimension n and 1, respec-
tively. An object A in A is D-reflexive if and only if

(1) Φ(A) and R1Φ(A) are D-reflexive;
(2) RiΨRjΦ(A) = 0 for each i 6= j;
(3) there exists a short exact sequence

0→ R1ΨR1Φ(A)→ A→ ΨΦ(A)→ 0.

In such a case RiΦ(A) = 0 for each i > 1.
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Proof. The spectral sequence IIE
pq
2 stabilizes at the second stage: for only two

columns survive. Therefore if A is D-reflexive, we get immediately the orthogonal
relations RiΨRjΦ(A) = 0 for each i 6= j. The filtration of A ∼= R0(ΨΦ(A)) produces
the short exact sequence

0→ R1ΨR1Φ(A)→ A→ R0ΨR0Φ(A) = ΨΦ(A)→ 0.

By the adjunction, also R Φ(A) is D-reflexive; then, by Propositions 3.5 and 1.9, its
cohomologies RiΦ(A) are also D-reflexive. Then R Ψ(RiΦ(A)) are D-reflexive: re-
membering the orthogonal relations, both the complexes R Ψ(Φ(A)) = ΨΦ(A) and
R Ψ(R1Φ(A))∼=R1ΨR1Φ(A)[−1] are D-reflexive; moreover, since 0∼= R Ψ(RiΦ(A)),
for i ≥ 2 the objects RiΦ(A) are equal to zero. Conversely, consider the triangle
associated to the short exact sequence (3). By (1), (2) and the adjunction, both
the complexes R Ψ(Φ(A)) = ΨΦ(A) and R Ψ(R1Φ(A))∼=R1ΨR1Φ(A)[−1] are D-
reflexive; thus one gets the D-reflexivity of A from the D-reflexivity of the other
two terms in the sequence of 3). �

Let us give an example where the previous theorem applies.

Example 5.3. Let Λ denote the k-algebra given by the quiver

·0 // ·1 // ·2 // ·3 // ·4

with relations such that the left projective modules are
0
1
2

,
1
2
3

,
2
3
4

, 3
4 and 4 . Consider

the left Λ-module ΛU =
2
3
4
⊕ 3 ⊕ 1

2
3
⊕ 1 ; it is easy to verify that it has injective

dimension 2. The endomorphism ring S := End(ΛU) is the k-algebra given by the
quiver

·7

·5 // ·6 //

??�������
·8

with relations such that the right projective modules are 7
6 , 8

6 , 6
5 , and 5 . The right

S-module US = 7 ⊕ 7 8
6 ⊕ 7

6 ⊕ 6
5 has injective dimension 1. It is easy to verify that

ΛUS is a partial cotilting bimodule. The projective module
0
1
2

and its projections
0
1 , 0 are the only not D-reflexive indecomposable Λ-modules, while all the inde-
composable S-modules are D-reflexive. In particular, consider the indecomposable
left Λ-module 1

2 ; it is a D-reflexive module of projective dimension 2. It satisfies
the three conditions of Theorem 5.2:

(1) Φ( 1
2 ) = 5 and R1Φ( 1

2 ) = 8 are D-reflexive;
(2) RiΨRjΦ( 1

2 ) = 0 for each i 6= j;
(3) there exists a short exact sequence

0→ R1ΨR1Φ( 1
2 ) = 2 → 1

2 → 1 = ΨΦ( 1
2 )→ 0.

Moreover R2Φ( 1
2 ) = 0.

A second possibility to obtain partial results is to characterize the D-reflexive
objects inside a suitable subclass of A. Both Theorems 4.3 and 5.2 suggest to
consider the subclass of objects A in A such that RiΨRjΦ(A) = 0 for each i 6= j;
in such a way, the spectral sequence IIE

pq
2 stabilizes at the second stage. To have

also that the cohomologies of a D-reflexive complex are still D-reflexive, Lemma 3.8
suggests to restrict further our class (compare with [AT, Theorem 2.7]).
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Theorem 5.4. Let (Φ,Ψ) be an adjoint pair of contravariant functors of coho-
mological dimensions ≤ n. An object A in A, such that RiΨRjΦ(A) = 0 and
RiΦRjΨRjΦ(A) = 0 if i 6= j, is D-reflexive if and only if for i = 0, 1, ..., n

(1) RiΦ(A) are D-reflexive;
(2) there exists a filtration

0 = An+1 ≤ An ≤ ... ≤ A0 = A

such that Ai/Ai+1
∼= RiΨRiΦ(A).

In such a case the objects RiΨRiΦ(A) result to be D-reflexive.

Proof. If A is D-reflexive, also R Φ(A) is D-reflexive; by Lemma 3.8, choosing as
ρ the identity function, the cohomologies RiΦ(A), i = 1, ..., n, are D-reflexive too.
Since RiΨRjΦ(A) = 0 for each i 6= j, the spectral sequence IIE

pq
2 stabilizes at the

second stage. Therefore Rs(ΨΦ)A = 0 for each s 6= 0 and R0(ΨΦ)A ∼= A has a
finite filtration

0 = An+1 ≤ An ≤ ... ≤ A0 = A

with factors Ai/Ai+1
∼= IIE

i,−i
∞ = IIE

i,−i
2 = RiΨRiΦ(A).

Conversely, let us assume condition (1) and (2) are satisfied. Since RiΦ(A)
is D-reflexive, the complex R ΨRiΦ(A) is D-reflexive; we want to prove that its
cohomology RiΨRiΦ(A) is D-reflexive too. By hypotheses RjΦRiΨRiΦ(A) = 0 for
any j 6= i; moreover, since

RiΦA ∼= R Φ R Ψ(RiΦA) = R Φ(RiΨRiΦA[−i]) = R Φ(RiΨRiΦA)[i],

we have
RiΦRiΨRiΦA = H0(R Φ(RiΨRiΦA)[i]) ∼= RiΦA.

Therefore RjΨRiΦRiΨ(RiΦA) = 0 for each j 6= i and by Lemma 3.8 the coho-
mologies of R ΨRiΦ(A) are D-reflexive. Consider now the triangles

RnΨRnΦ(A) = An → An−1 → An−1/An = Rn−1ΨRn−1Φ(A)→ An[1]

.......

A1 → A0 = A→ A0/A1 = R0ΨR0Φ(A)→ A1[1]
Since RnΨRnΦ(A) and Rn−1ΨRn−1Φ(A) are D-reflexive, also An−1 is D-reflexive.
Iterating this procedure on the other triangles, using the D-reflexivity of Ai−1/Ai,
i = n, n− 1, ..., 1, we prove the D-reflexivity of A. �

We are now ready to give a Cotilting Theorem in the sense of [CbF1, Ch. 5],
between the classes of D-reflexive objects induced by the pair of adjoint functors
(Φ,Ψ) in the n-dimensional case.

Corollary 5.5. Consider the following subclasses of the classes DA and DB of
D-reflexive objects in A and B:

DA = ∩i6=j
(
KerRiΨRjΦ ∩KerRiΦRjΨRjΦ

)
and

DB = ∩i 6=j
(
KerRiΦRjΨ ∩KerRiΨRjΦRjΨ

)
.

Then setting

E iΦ = (∩j 6=i KerRjΦ) ∩ DA and E iΨ = (∩j 6=i KerRjΨ) ∩ DB
the following conditions are satisfied:

(1) RiΦ : DA → E iΨ and RiΨ : DB → E iΦ.
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(2) for each object A in DA and B in DB there exists filtrations

0 = An+1 ≤ An ≤ ... ≤ A0 = A and

0 = Bn+1 ≤ Bn ≤ ... ≤ B0 = B

such that Ai/Ai+1
∼= RiΨRiΦ(A) and Bi/Bi+1

∼= RiΦRiΨ(B).
(3) the restrictions

RiΦ : E iΦ −−→←−− E iΨ : RiΨ

define category equivalences.

Example 5.6. Let Λ denote the k-algebra given by the quiver A8 with relations

such that the left projective modules are
1
2
3
4

,
2
3
4

, 3
4 ,

4
5
6
7
8

,
5
6
7
8

,
6
7
8

, 7
8 , 8 . Consider the

cotilting module ΛU =
1
2
3
4

⊕ 1 ⊕ 3
4 ⊕

4
5
6
7
8

⊕
5
6
7
8

⊕ 6
7
8
⊕ 7

8 ⊕ 7 of injective dimension 2 and let

S = EndΛ(U). Applying Theorem 3.4 we get that any complex in Db(Λ-mod) and
in Db(mod-S) is D-reflexive w.r.t the adjunction (R HomΛ(−, U),R HomS(−, U)).
The Λ-module X =

1
2
3

satisfies the assumptions of Theorem 5.4, indeed:

• ExtiS(ExtjΛ(X,U), U) = 0 for i 6= j

• HomS(HomΛ(X,U), U) = 1, Ext1
S(Ext1

Λ(X,U), U) = 2, Ext2
S(Ext2

Λ(X,U), U) =
3
• Ext1

Λ(1, U) = Ext2
Λ(1, U) = 0, HomΛ(2, U) = Ext2

Λ(2, U) = 0, HomΛ(3, U) =
Ext1

Λ(3, U) = 0

We conclude that X admits a filtration 0 ≤ X1 ≤ X0 ≤ X, where X1 = 3, X0/X1 =
2, X/X0 = 1. Consider now the simple module 4; since Ext2

S(Ext1
Λ(4, U), U) =

3, the assumptions of Theorem 5.4 fail. Moreover HomS(HomΛ(4, U), U) = 3
4 ,

Ext1
S(Ext1

Λ(4, U), U) = 0, Ext2
S(Ext2

Λ(4, U), U) = 0 and so 4 does not admit any
filtration with D-reflexive factors.

Remark 5.7. If R is noetherian and RUS is a finitely generated cotilting bimodule,
then any finitely generated projective module is reflexive and Hom(−, U)-acyclic,
so D-reflexive. It follows that any finitely generated module is D-reflexive. Let now
M ∈ R-mod such that ExtjR(M,U) = 0 for i 6= j. Then, for M and ExtiR(M,U)
are D-reflexive, it follows that ExtjS(ExtiR(M,U)) = 0 and

ExtjR(ExtiS(ExtiR(M,U), U), U) = 0 for i 6= j,

so we are in the assumption of Theorem 5.4. Thus we get from Corollary 5.5 that

M ∼= Exti(ExtiR(M,U), U),

recovering the Miyashita result (cfr. [M, Theorem 1.16]).
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